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The Vav family is a group of tyrosine phosphorylation-
regulated signal transduction molecules hierarchically located
downstream of protein tyrosine kinases. The main function of
these proteins is to work as guanosine nucleotide exchange
factors (GEFs) for members of the Rho GTPase family. In
addition, they can exhibit a variety of catalysis-independent
roles in specific signaling contexts. Vav proteins play essential
signaling roles for both the development and/or effector
functions of a large variety of cell lineages, including those
belonging to the immune, nervous, and cardiovascular
systems. They also contribute to pathological states such as
cancer, immune-related dysfunctions, and atherosclerosis.
Here, I will provide an integrated view about the evolution,
regulation, and effector properties of these signaling
molecules. In addition, I will discuss the pros and cons for
their potential consideration as therapeutic targets.

Introduction

The first member of the Vav family was discovered due to an
artifactual oncogenic activation of the VAV1 gene during the
course of focus formation assays conducted in M. Barbacid’s
lab.1 Since it was the sixth human oncogene identified by that
group, it was designated as the sixth letter of the Hebrew alphabet
(VAV). Mouse and human Vav2 and Vav3 genes were isolated
using standard cloning procedures in the 1995–1999 period.2-4

The rest of family members were identified during the extensive

characterization of genomes from multiple species that took place
during this last decade. The isolation of the other family mem-
bers led to the progressive designation of the founding member
of the family as Vav1, a name that has become common currency
in the field. Despite such a serendipitous discovery, we now
know that Vav proteins play crucial signaling roles in a large vari-
ety of organisms and cell types. They also show a quite idiosyn-
cratic activation by direct tyrosine phosphorylation, a property
that makes them critical elements in protein tyrosine kinase
(PTK)-regulated pathways. Consistent with the oncogenic activ-
ity shown by the founder member of the family, recent data have
revealed that these proteins also play roles in tumorigenesis,
metastasis, and many other diseases. In this review, I will provide
a general overview about this family, including new data about
its evolution, regulation, function, signaling specificity, and
potential therapeutic value. Readers can find additional informa-
tion about Vav proteins in previous review articles,5-10 book
chapters,11 and online resources.12-14

Phylogenetic Distribution and Structure

The earliest evidence of the presence of a Vav family protein
in the phylogenetic tree is found in Choanoflaggelates, a group
of unicellular aquatic protists considered to be the closest relatives
to metazoans.15 They are also the first known organisms that
developed PTK- and Src homology 2 (SH2)-encoding genes,15

thus emphasizing the close link that exists between Vav proteins
and PTK-driven signal transduction events. Since then, members
of this family have been found in all animal metazoans character-
ized so far. Single Vav family members are present in invertebrate
species while vertebrates contain 3 family members. However,
alternative splicing events yield different protein isoforms in all
species. In mammals, Vav1 is primarily detected in haemato-
poietic cells whereas Vav2 and Vav3 display broader expression
patterns.2-4,16,17

*Correspondence to: Xos�e R Bustelo; Email: xbustelo@usal.es
Submitted: 07/27/2014; Revised: 09/02/2014; Accepted: 09/05/2014
http://dx.doi.org/10.4161/21541248.2014.973757

This is an Open Access article distributed under the terms of the Creative
Commons Attribution-Non-Commercial License (http://creativecommons.
org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work is
properly cited. The moral rights of the named author(s) have been asserted.

www.landesbioscience.com 1Small GTPases

Small GTPases 5:2, 1--12; November 1, 2014; © 2014 Taylor & Francis Group, LLC
REVIEW

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


All Vav family proteins contain a basic, evolutionarily con-
served structural scaffold composed of an N-terminal calponin-
homology (CH) domain, an acidic (Ac) region, a catalytic Dbl-
homology (DH) domain involved in the guanosine nucleotide
exchange reaction, a pleckstrin-homology (PH) region, a C1 sub-
type zinc finger (ZF) domain, an SH2 and a C-terminal SH3
(CSH3) (Fig. 1). Additional domains were sequentially acquired
into the molecule during evolution, including a proline-rich
region (PRR) and a more N-terminally-located SH3 (NSH3)
(Fig. 1). The PRR was incorporated in the transition between
nematodes and flies. The NSH3 was acquired at the level of tuni-
cates and, since then, remained conserved in all species of the
Chordate phyla. The annotation of recently sequenced genomes
has revealed that the remnant structure of invertebrate Vav pro-
teins can be found in some Chordate Vav proteins due to differ-
ential splicing events. Thus, it is likely that the incorporation of
the NSH3 could represent a gain-of-function event not necessar-
ily required for maintaining the basal activity of the full-length
proteins. This is consistent with mutagenesis experiments indi-
cating that the functional integrity of the NSH3 domain is not
essential for the activation step and effector functions of Vav fam-
ily proteins in most cell types.18,19 An important structural prop-
erty of Vav proteins is that some of their domains form
superorder structures in the molecule. For example, the DH,
PH, and ZF domains fold together into a common structural
unit (referred hereafter as “catalytic core”)20-22 that, depending
on the spatial distribution of the domains, has either positive or
negative effects in the overall DH domain catalytic activity.20

This central cassette also establishes phosphorylation-dependent
interactions with the CH-Ac and the CSH3 regions,20,23 a flip-
flop mechanism essential for the control of the overall biological
activity of these proteins during signal transduction.4,18,20,23,24

The Vav PRR and NSH3 domain also form a single functional
unit that facilitates the interaction with protein partners.25,26

Vav proteins are the only Ras superfamily GEFs that harbor
a DH-PH-ZF cassette and, consistent with their close
connection to tyrosine phosphorylation events, the prototypical

phosphotyrosine binding
SH2 domain. As will be
discussed latter, these
structural idiosyncrasies
have a significant impact in
the regulation and func-
tion of these proteins.

Signaling Roles

Tyrosine-phosphory-
lated Vav proteins exhibit
both catalysis-dependent
and independent activities
during cell signaling
(Fig. 2). The enzyme activ-
ity involves the stimulation
of GDP/GTP exchange on

Rho subfamily GTPases, a catalytic step that favors the transition
of these GTP-binding proteins from the inactive (GDP bound)
to the active, GTP bound state.4,24,27-29 The main in vitro sub-
strates for Vav proteins include Rac1 and RhoA subfamily pro-
teins.4,22-24,27-31 Consistent with those catalytic functions, Vav
protein can engage a large number of Rho family-dependent
cytoskeletal, signaling, and biological responses in most cell types
and species tested so far.12-14 These functions are highly con-
served, because active versions of D. melanogaster Vav can trigger
cytoskeletal change and cell transformation when ectopically
expressed in mouse cells.31 By contrast, Vav proteins do not seem
to effectively target Cdc42 under standard catalytic/substrate
ratio conditions.4,23,24,27-30 It should be noted, however, that a
very limited number of biological processes regulated by Vav pro-
teins have been attributed, at least partially to Cdc42-dependent
mechanisms.32-42 Whether this is due to catalytic or noncatalytic
processes, remains to be determined. Interestingly, in the case of
Vav1, the catalysis of nucleotide exchange on Rho proteins
requires the cooperation of the DH, PH and ZF regions.21,22

The requirement of the DH and ZF region seems to be also
required in all Vav proteins tested so far. However, there is more
flexibility regarding the involvement of the PH region, since con-
stitutively active versions of both Vav2 and Vav3 with inactive
PH domains are still catalytically active in vitro (Vav2, Vav3)
and in vivo (Vav3).21,22,43

The most characteristic noncatalytic function of Vav proteins
is the activation of the nuclear factor of activated T-cells (NFAT)
in lymphocytes. Although not fully characterized yet, this route
requires signals emanating from the Vav CH domain, the Vav-
dependent activation of phospholipase C-g (PLC-g) and the
downstream Ca2C-dependent calcineurin phosphatase, and syner-
gistic signals triggered by upstream antigenic receptors.6,8,18,44-48

It probably involves other Vav family- and cell type-specific fea-
tures as well, because Vav2 and Vav3, unlike the case of Vav1,
can trigger NFAT activation in B- but not T-cells.23,49 Noncata-
lytic roles for Vav1 in T lymphocytes have been also linked to
other biological processes such as integrin-mediated spreading

Figure 1. Examples of the multidomain structure of some Vav family proteins. Abbreviations for domains have been
indicated in the main text. The shape of the DH tries to mimic the 3 dimensional structure of this domain. Phosphory-
lation sites are shown as yellow circles. Amino acid numbers correspond to the primary sequence of mouse Vav1. An
Ac a helix involved in the stabilization of the autoinhibited structure of Vav proteins is shown as a blue box. Cel, C. ele-
gans; Dm, D. melanogaster.
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and the stabilization of Slp-
76 microclusters upon T-
cell receptor (TCR) stimula-
tion.50,51 The effectors that
mediate such functions are
still unknown. The identifi-
cation of ZF- and CSH3-
binding proteins that are
not obviously connected to
the catalytic performance of
Vav1 also suggests that addi-
tional catalysis-independent
signaling routes might
exist5,6,8,11-14,52 (Fig. 2).
Experimental evidence indi-
cates that Vav2 and D. mel-
anogaster Vav proteins can
also trigger GTPase-inde-
pendent routes in breast
cancer cells and during eye
development, respectively53

(D. Mart�ın-Bermudo, per-
sonal communication).
Some studies have also
described noncatalytic,
nuclear roles for Vav pro-
teins. Thus, Vav1 and Vav3
have been associated with
transcriptional responses
mediated by PU.1, NFAT,
NFkB, heat shock transcrip-
tion factor 1, and the andro-
gen receptor.54-60 In the case
of Vav3, this transcriptional activity seems to rely on adaptor
functions localized within the DH-PH-ZF cassette57,58,60 (Fig. 2).

Many of the pathways stimulated by cytoplasmic Vav proteins
contribute to signaling diversification events via the generation of
second messengers such as diacylglycerol (DAG), inositoltriphos-
phate (IP3), Ca2C, phoshadidylinositol (3,4,5)-triphosphate
(PIP3), phosphatidic acid, arachidonic acid, and cyclic guanosine
monophosphate (cGMP). The best example for such an activity
is seen in lymphocytes, where Vav1 favors the stepwise activation
of PLC-g, phosphatidylinositol-3 kinase (PI3K), protein kinase
C (PKC), and PKD.48,61,62 This leads to the stimulation of non-
conventional routes for a Rho GEF such as, for example, the
DAG-mediated stimulation of the RasGRP1-Ras-Raf-Erk axis in
stimulated T- and B-cells.8,62-66 Signaling diversification pro-
cesses have been also found in other cell types such as mouse nat-
ural killer cells, mast cells, osteoclasts, vascular smooth muscle
cells, and C. elegans tissues.67-71 Depending on the cell type and
signaling response involved, Vav proteins can trigger these signal-
ing diversification events in either a catalysis-dependent (i.e.,
cGMP production in vascular smooth muscle cells, DAG and
IP3 production in B lymphocytes, IP3 production in C. elegans
tissues) or independent (i.e., DAG and IP3 production in T lym-
phocytes) manner.47,62,70,71

A still poorly addressed issue is the level of functional redun-
dancy among the 3 Vav family proteins present in Chordate spe-
cies. However, cell biology and biochemical data suggest that
Vav proteins play overlapping, but not identical functions. This
evidence includes the different morphologies exhibited by Vav1
and Vav2 oncogene-transformed cells, the synergistic effects of
Vav2 and Vav3 in the generation of the Vav2;Vav3-dependent
transcriptomal program of breast cancer cells, the Vav1-specific
activation of NFAT in T-lymphocytes, the PH requirement for
biological activity, and differences in the spectrum of Vav CSH3
binding proteins.3,4,18,49,53,72-74 It remains to be determined
whether those nonredundant activities can be attributed to differ-
ent subcellular localizations, activities, or spectra of binding part-
ners. To date, nothing is known regarding the signaling
specificity of protein isoforms generated by each Vav family gene
by differential splicing in some tissues.

In vivo Roles

Genetic analyses have demonstrated that Vav proteins play
key signaling roles in many animal metazoans. In the case of C.
elegans, the depletion of Vav leads to larval lethality due to

Figure 2. The Vav family interactome. Examples of some of the Vav family interacting proteins and domains involved.
Effector molecules are shown in blue. Positive and negative regulators are shown in green and red, respectively. Pro-
teins whose interaction was only described for Vav2 or Vav3 are indicated by asterisks. Please, note that some of
these proteins may exert several functions in the context of Vav signaling.
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defective rhythmic contractile responses in a number of tissues,
including the pharynx, ovaries, and intestine. This phenotype has
been associated to Rho- and IP3-dependent Ca2C generation
defects.71 In D. melanogaster, the elimination of Vav leads to
defective neuronal axon guidance-related events and embryonic
lethality. The few Vav-less flies that manage to hatch show exten-
sive locomotor coordination defects caused by abnormal axon
innervation of the ellipsoid body, a key locomotor center in Dip-
tera. These defects are due to the normal implication of this pro-
tein in Rac1-dependent axon guidance and repulsion
processes.75,76 D. melanogaster Vav is also involved in the
development of the eye using, as indicated above, catalysis-
independent mechanisms (D. Mart�ın-Bermudo, personal
communication).

In mammals, the elimination of the haematopoietic -specific
Vav1 protein, either alone or in combination with other Vav
family proteins, leads to severe defects in lymphocyte develop-
ment, selection, and effector functions. The signaling dissection
of those defects indicate that Vav proteins are essential for T-cell
and B-cell receptor responses that contribute to cytoskeletal rear-
rangement, formation of lymphocyte/antigen presenting cell con-
tacts, PI3K- and PLC-g-mediated signaling diversification
events, activation of downstream transcriptional factors, expres-
sion of lymphocyte surface markers and cytokines, regulation of
cell cycle-promoting proteins, and stimulation of survival path-
ways. The function of Vav proteins in lymphocytes has been
extensively reviewed before.7,8,12-14 It is likely that Vav1 would
play additional roles in T-cells, because the lack of Vav1 unex-
pectedly leads to the long-term development of T-cell lympho-
mas, a process further aggravated when the Rasgrf2 gene is
simultaneously knocked out in mice.77 The mechanistic basis for
this “tumor suppressor”-like role remains unknown. Milder
effects have been also observed in other haematopoietic cell types,
including stem cells, natural killer cells, platelets, neutrophils,
macrophages, foam cells, mast cells, and dendritic cells.12-14

Outside the haematopoietic system, Vav2 is important for the
nitric oxide-mediated relaxation of blood vessels. Due to this, its
depletion leads to hypertension and hypertension-associated dis-
eases such as cardiovascular remodeling, cardiorenal fibrosis, and
kidney function alterations.70,78 Vav3 plays roles in bone remodel-
ing, cerebellum development, and axon wiring events in the ven-
trolateral medulla. The former function is connected to the
control of macrophage-colony stimulation factor- and avb3 integ-
rin-dependent late osteoclast maturation stages.69 In the cerebel-
lum, Vav3 is involved in Purkinje cell dendritogenesis, the
survival and migration of granule cells, and the formation of the
intercrural fissure during the perinatal period. Due to these roles,
the absence of Vav3 leads to motor coordination and gaiting
defects in early postnatal periods of knockout mice.79 Finally,
Vav3 controls the migration of axons of GABAergic neurons from
the caudal to the rostral region of the ventrolateral medulla,80 a
brainstem center that controls sympathetic, respiratory, heart, car-
diovascular, and renal activities.81 When Vav3 is absent, the lack
of GABAergic wiring eliminates the tonic inhibition exerted by
the caudal over the rostral ventrolateral medulla, leading to
chronic sympathoexcitation and a large variety of sympathetic-

mediated defects such as tachycardia, brachypnea, hypertension,
and metabolic syndrome.80,82,83 The analysis of double Vav2¡/¡;
Vav3¡/¡ and triple Vav1¡/¡;Vav2¡/¡;Vav3¡/– knockout mice
has revealed defects in axon guidance, dendritic spine formation,
and synaptic plasticity in retinal, cortical and hippocampal neu-
rons.84,85 Alterations in enterocytic differentiation, intestinal epi-
thelial barrier integrity, and angiogenesis have been also
observed.86,87 It is not known as yet whether these functions
depend on either the single or combined action of these 3 GEFs.

Genetic data indicate that Vav proteins may cooperate with
other Rho GEFs in some biological responses. Those include the
collaboration of D. melanogaster Vav and Trio during axon guid-
ance processes, the cooperation shown by mouse Vav1 and
RasGRF2 proteins in both immature and tumor mouse T-cells,
and the functional interaction between Vav1 and P-Rex1 in
mouse neutrophil responses.75,77,88,89 However, despite the mul-
tiple Rho GEFs coexpressed with Vav proteins in normal tissues
and disease conditions, the inactivation of Vav proteins is suffi-
cient to generate a significant impact in many signaling contexts.
This indicates that they regulate quite specific regulatory steps
that cannot be redundantly stimulated by other Rho GEFs.

Regulatory Mechanisms

The biological activity of Vav proteins is controlled by phos-
phorylation-dependent changes in their intramolecular architec-
ture. Nonphosphorylated Vav proteins are inactive due to a
“closed” conformation mediated by extensive intramolecular
interactions between the CH-Ac, the CSH3, and the catalytic
core (Fig. 3A–C). These contacts occlude the GTPase binding
site, favor a catalytically incompetent conformation of the DH-
PH-ZF cassette, and limit the noncatalytic output of these pro-
teins.4,18,20,23,24,30 This inhibited structure is unleashed upon the
phosphorylation of Vav proteins on a number of tyrosine resi-
dues located in the Ac (Tyr174 and, to a lower extent Tyr142,
Tyr160), ZF (Tyr541 and Tyr544), and CSH3 (Tyr836; amino acid
numbers correspond to the primary sequence of mouse
Vav1)20,23,30,90 (Fig. 3A), leading to the activation of both
the catalytic and noncatalytic functions of these pro-
teins.4,18,20,23,24,30,90 The actual structure of this “open” confor-
mation has not been elucidated as yet in the case of the full-
length Vav proteins. Due to this, it remains to be determined
whether the CH-Ac and CSH3 fully detach from the rest of the
domains of the molecule during this activation step or, alterna-
tively, remain in contact with other domains in a different spatial
orientation. However, structural studies conducted with N-ter-
minally truncated Vav1 indicate that the catalytic DH-PH-ZF
core of Vav proteins probably undergoes a shift from a catalyti-
cally incompetent to a catalytically competent conformation
upon the release of the inhibitory domains.20 Likewise, the
CSH3 seems to remain in contact with the catalytic core when
Vav proteins are in the “open” state.23 In addition to the expo-
sure of effector sites, it is possible that this flip-flop activation
could be used for other regulatory layers. For example, it can be
speculated that the need of multiple phosphorylation events for
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Figure 3. Mechanism of activation of Vav family proteins. (A) A model for the phosphorylation-mediated activation of Vav proteins based on recently
described structural and biochemical data. The autoinhibited state of nonphosphorylated Vav proteins is stabilized by extensive contacts of the CH
domain and 2 tyrosine residues of the Ac region (Tyr142, Tyr160) with the DH and PH domains20; an a helix present in the Vav Ac domain (which contains
the Tyr174 phosphosite) with amino acids located in the GTPase binding interface of the DH domain20,30; and additional residues of the Ac with the PH
domain.20 In addition, 2 independent amino acid stretches of the CSH3, which do not include the canonical PRR binding site, establish interactions with
both the DH and PH domains (see also panel C below).23 Upon phosphorylation of indicated residues, the autoinhibited structure is released. Note that
the 3 dimensional structure of inactive and active full-length Vav proteins is unknown, so the conformations shown for the 2 functional states of Vav pro-
teins are hypothetical. Nonphosphorylated and phosphorylated tyrosine residues are shown as blue and yellow circles, respectively. The 2 sites of the
CSH3 domain of Vav proteins involved in formation of the autoinhibited structure are depicted as dark blue and red boxes. Color codes for Vav domains
are those used in Figure 1. (B) Crystal structure of the autoinhibited Vav1 CH-Ac-DH-PH-ZF region.20 Stretches of the Ac region that could not be crystal-
lized are shown as broken lanes. (C) The Vav1 CSH3 structure showing the areas that establish the intramolecular interaction with indicated domains
(red color).23 C, domain C-terminus; N, domain N-terminus; PRRBS, PRR binding site. The area corresponding to the canonical CSH3 PRR binding site is
shown in green. (D and E) Examples of some hyperactive Vav mutants (proteins 1 to 5) generated by either domain truncation (D) or amino acid muta-
tions (E). The full-length protein (WT) is included in both panels to facilitate an easy understanding of the type of mutations made. In E, the specific
amino acid residues that had been mutated have been highlighted using a cross sign. Mutants are ordered from top to bottom following the order of
discovery. The first mutation ever found in the Vav family is indicated in D (mutant 1).1,91 The truncated mutant proteins labeled as 2, 3, 4, and 5 shown
in panel D were first described by Schuebel et al. (1996),3 Schuebel et al. (1998),24 Movilla et al. (1999),4 and Barreira et al. (2014),23 respectively. In E,
mutant proteins labeled as 1–2 and 3–5 were first described by Lopez-Lago et al. (2000)90 and Barreira et al. (2014),23 respectively.
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optimal Vav activation could be used to establish minimal, digi-
tal-like thresholds for the activation of these proteins, setting up
gradients of activity, or engaging different downstream routes
depending on the strength of incoming extracellular stimuli and
the total number of phosphosites engaged at a given time. Con-
versely, they can represent a safeguard mechanism to avoid the
spurious stimulation of Vav proteins by the stochastic phosphor-
ylation of single phosphosites in nonstimulated cells. Interactions
of the Vav CSH3 with other proteins in the “close” state may
also induce conformational changes that could facilitate the
access of the hidden tyrosine hydroxyl groups for the phosphory-
lation step. Alternatively, they could delay the return of the
CSH3 back to the “close” state when taking place in the active
conformation, thus facilitating either the time- or subcellular
location-specific extension of active Vav signaling output in cells.
Regardless of all its potential regulatory roles, the relevance of
this intramolecular mechanism is underscored by its phylogenetic
conservation and, in addition, by the hyperactivation observed in
Vav proteins upon the mutation of either domains or residues
involved in maintaining the autoinhibited conforma-
tion3,4,18,20,23,24,31,71,90 (Fig. 3D and E). Indeed, a 66 amino
acid-long deletion of the Vav1 CH domain was the genetic alter-
ation that allowed the initial discovery of the VAV1 oncogene1,91

(Fig. 3D). It is worth noting that phosphorylation-independent
activation steps for the Vav family have been observed upon the
interaction of the p67 phagocyte oxidase subunit (p67Phox) and
the human immunodeficiency virus (HIV)-encoded v-Nef pro-
tein with the Vav1 catalytic core and CSH3, respectively41,92

(Fig. 2). The basis for such activation remains unknown,
although it may involve domain displacement mechanisms that
could favor the spurious “opening” of the autoinhibited state of
Vav proteins. This type of domain displacement-based activation
has been found before in other signaling molecules, such as the
Src kinase family.93

The Vav phosphorylation step is mediated by either trans-
membrane or cytosolic PTKs. The former subclass encompasses
a large variety of receptors for both soluble growth factors and
ephrins. The phosphorylation of Vav proteins by these receptors
usually involves a direct, SH2-mediated interaction of Vav pro-
teins with the autophosphorylated cytoplasmic tails of the kin-
ases.5,12-14 Historically, this was actually the first connection ever
described between Vav proteins and PTKs.94,95 Cytosolic Src,
Syk, Janus, Tec, and Abl family kinases are mainly involved in
the phosphorylation of Vav proteins downstream of receptors
lacking intrinsic tyrosine kinase domains such as those for anti-
gens, cytokines, and extracellular matrix proteins (i.e., integ-
rins).5,12-14 Src kinases are also in charge of phosphorylating Vav
proteins in other signaling cascades, including those initiated by
nitric oxide, Wnt, tumor necrosis factor, diacylglycerol-regulated
protein kinases, and some transmembrane PTKs.70,96-99 The
close connection of Src PTKs with Vav proteins probably
extends far in evolution, because these molecules are one of the
few kinase families present in Choanoflaggelates.15 Although the
interaction of Vav proteins with cytosolic kinases may be direct
as in the case of the transmembrane PTKs (Fig. 4, point a), it
usually entails the prior orchestration of either 2 or 3-step plasma

membrane translocation mechanisms. In the former case, Vav
proteins establish SH2-mediated interactions with phosphory-
lated coreceptors (i.e., CD19, Lck interacting membrane pro-
tein)49,100-102 (Fig. 4, point b). In the latter case, Vav proteins
first interact with cytosolic adaptor molecules using the SH2
(Slp76, Blnk), PRR-NSH3 (Grb2, Nck) or the CSH3 (dynamin
2) domains51,74,103-109 and, subsequently, utilize those adaptors
to dock onto phosphorylated proteins localized at the plasma
membrane (Fig. 4, point c). These docking proteins include cor-
eceptors (CD28), membrane-anchored scaffolding proteins (i.e.,
Lat), and TCR-localized adaptor molecules (Shb).106,110,111

Regardless of the translocation mechanism involved, the end-
point result is the phosphorylation of Vav proteins by the
upstream cytoplasmic PTKs. This latter step involves transient
physical interactions with the kinase, since the Vav SH2 domains
are always essential for the effective phosphorylation of these pro-
teins.18,19 It is expected that Vav proteins will return to the inac-
tive, “close” state at the end of the stimulation cycle via tyrosine
dephosphorylation (see above, Fig. 3A). However, this regulatory
step remains poorly characterized.

The translocation of Vav1 to the nucleus depends on a nuclear
localization signal present in the PH region and, in addition, by
uncharacterized cytoplasmic sequestering functions of the
CSH3.55 However, the mechanism that mediates the transloca-
tion step and subsequent activity of Vav1 in the nucleus still
remains obscure. Posttranslational modifications could be
involved, as inferred from the nucleus-specific arginine methyla-
tion of Vav1.112 The cotranscriptional activity of Vav3 is regu-
lated by the PH-mediated interaction with the cell division cycle
37 cochaperone60 (Fig. 2).

Vav proteins can be potentially controlled by lysine acetyla-
tion, caspase-mediated cleavage, proteolysis, microRNAs, gene
expression regulation, and epigenetic mechanisms.33,113-122 The
functional significance of most of these regulatory steps is still
unknown. However, there is strong genetic evidence in favor of
the microRNA-dependent regulation C. elegans Vav during
Notch signaling.117 The concerted action of demethylation and
transcriptional factors (i.e., c-Myb) has been shown to be
involved in the ectopic expression of human VAV1 gene in non-
hematopoietic cancer cells.120,122 The mouse Vav3 gene is also
transcriptionally activated by the aryl hydrocarbon receptor
(Ahr) under normal physiological conditions.121,123 Early studies
showed that the catalytic activity of Vav proteins could be acti-
vated upon the binding of DAG and PIP3 to the ZF and PH
domains, respectively.124,125 However, such regulatory action
seems at odds with the known inability of those domains to
directly bind those second messengers.126-129 Consistent with
this, it has been shown that these 2 Vav domains do not undergo
the expected DAG- and PIP3-dependent changes in subcellular
localization when expressed in cells.127,128 In the case of the ZF,
the reason for such lack of binding has been comprehensively
analyzed at the structural and biochemical level.126,127 In the case
of the PH, the lack of PIP3 binding is probably due to the
absence of consensus amino acid sequences that typically mediate
the high affinity interaction of other PH domains with this sec-
ond messenger.128,129 Extensive signaling and genetic evidence
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also indicate that Vav proteins act upstream rather than down-
stream of both PLC-g and PI3K family proteins.8,47,62,130

Pathological Roles

There are no consistent examples of either gain- or loss-of-
function mutations for VAV family genes in human disease.
However, the regulatory cycle of Vav proteins can be altered in
some diseases by increased abundance or upon ectopic expression
in tissues that do not normally express them.53,120,122 In other
cases, Vav proteins can become hyperphosphorylated due to the
presence of oncogenic PTKs, mitogen-driven autocrine loops,
increased abundance of Vav-binding adaptors, and the CSH3-
mediated interaction with the g-herpesvirus M2 adaptor pro-
tein.35,73,131-136 Alternatively, the activation step can take place
without apparent changes in the phosphorylation status of Vav
proteins, as previously discussed in the case of the HIV v-Nef

protein.41 Genomic studies
have revealed that single
nucleotide polymorphisms
(SNPs) in VAV genes seem
to be linked to multiple
sclerosis (VAV1), schyzo-
phrenia (VAV3), and hypo-
thyroidism (VAV3).137-139

It is still unknown whether
there is a cause-effect rela-
tionship between most of
those genetic linkages and
the evolution of those dis-
eases. The only exception is
multiple sclerosis, since
patients containing specific
SNPs in the first intron of
the VAV1 gene show ele-
vated abundance of the
VAV1 mRNA and, in addi-
tion, increased production
of proinflammatory cyto-
kines by leukocytes present
in both peripheral blood
and the cerobrospinal
fluid.137 Conversely, the
presence of a specific SNP
in the first exon of the rat
Vav1 gene that promotes
the expression of a poorly
expressed Vav1 mutant ver-
sion (R63W) leads to
reduced production of
proinflammatory factors
and increased resistance to
autoimmune encephalitis
in this rodent species.137

Specific VAV2 and VAV3
SNPs have been also associated with glaucoma development,140

although this linkage has not been corroborated by independent
studies using other patient cohorts.141,142

Experiments with knockout mice indicate that endogenous
Vav proteins do play important roles in the evolution and/or pro-
gression of some of the above diseases. For example, the Vav1-
Rac1;Rac2-Pak1 pathway has been shown to be important for
the development and maintenance of c-Kit-positive acute mye-
loid leukemia through a cancer cell survival mechanism.143 Vav3
is important for the fitness of p190Brc-Abl-driven acute lympho-
blastic leukemia, an effect attributed to the implication of this
family member in the Rac2- and Pak1-dependent regulation of
both pro- and antiapoptotic Bcl family members.144 Vav2 and
Vav3 proteins are both required for breast tumorigenesis as well
as for the initiation and promotion phases of skin tumors.53,97 In
the case of breast, these proteins promote distal transcriptional
programs affecting the proliferation, survival, and neoangiogene-
sis of cells in the primary tumor. In addition, they favor the

Figure 4. Signaling steps for the stimulation of Vav proteins in lymphocytes. For simplicity, we only show the phos-
phorylation step mediated by a Syk family member. Gray and green arrows represent translocation and phosphoryla-
tion steps, respectively. This step should include SH2-mediated interactions with the kinase (not shown in steps b
and c). ITAM, immunoreceptor tyrosine-based activation motif.

www.landesbioscience.com 7Small GTPases



extravasation and subsequent fitness of breast cancer cells in the
lung parenchyma.53 In the skin, they make it possible the expres-
sion of large autocrine and paracrine programs that facilitate the
keratinotyce survival to DNA damaging insults, keratinocyte G1-
S cell cycle transitions during the tumor promotion phase, and
the generation of a proinflammatory environment.97 Interest-
ingly, the lack of Vav2 and Vav3 does not induce any overt
defects in the normal development, function, and long-term
homeostasis of both mammary glands and skin.53,97 This sug-
gests that Vav proteins may exert disease-specific tasks not
directly connected to their normal function in healthy tissues.
The contribution of Vav proteins to some of those tumors seems
to be seminal, as inferred from the detection of Vav2;Vav3-
dependent breast cancer gene signatures that can predict disease
outcome in breast cancer patients.53

Outside the cancer field, the systemic elimination of Vav1
blocks hyperlipidemia-linked prothrombotic states as well forma-
tion of atherosclerotic lesions. These therapeutic effects are due
to the specific function of Vav1 in platelets and macrophage-
derived foam cells, respectively.145-147 The specific elimination of
Vav1 catalytic activity has been shown to be sufficient for elimi-
nating other clinically relevant problems such as allograft tissue
rejection and graft versus host disease.148 Unlike the case of
breast and skin tumors, these latter results probably reflect the
intrinsic role of Vav1 in normal T-lymphocyte signaling. Vav2 is
also important for the development of hyperhomocysteinemia-
induced renal glomerulosclerosis,149 a pathophysiological event
commonly associated to end-stage renal disease in hypertensive
patients. This effect has been linked to defective reactive oxygen
species production in the kidney during those conditions.149

Finally, a number of genetic and cell biology approaches have
demonstrated the implication of Vav proteins, namely Vav1, in
the pathogenic cycles of both HIV and g-herpesviruses.41,73

Therapeutic Value of Vav Proteins: Pros and Cons

The above data indicate that Vav proteins could represent
potentially interesting therapeutic targets. However, this is far
from being an open and shut case. Thus, a devil’s advocate would
probably dismiss these knockout-based data because they do not
formally prove that the inactivation of Vav proteins is effective in
already developed diseases and, even if that were the case,
whether the simple inhibition of their catalytic activities would
be sufficient to generate a noticeable therapeutic impact. To
tackle this issue, it will be important to generate “second gener-
ation” knock-in mice capable of expressing catalytically inactive
Vav proteins in an inducible manner at clinically relevant disease
progression stages. The devil’s advocate could also argue that the
collateral effects induced by the inhibition of Vav proteins in
healthy tissues might hamper the implementation of such anti-
Vav therapies. According to the data generated with Vav family
knockout mice, such side effects could include hypertension,
metabolic syndrome, infection-associated endotoxemia, and
immunosuppression.8,54,78,82,83 Some of these problems stem
from roles of Vav3 in the embryonic period or, in the case of

endotoxemia, in noncatalytic functions of Vav1.54,80 It is predict-
able therefore that they will not show when using catalytic inhibi-
tors for Vav proteins in adult patients. However, the inactivation
of Vav2 in postnatal periods should promote hypertension and
associated diseases.70 This will actually represent a common prob-
lem for most Rac1-based therapies, because the inducible smooth
muscle cell-specific inactivation of the Rac1 gene in adult mice
triggers the same defects.150,151 However, these side effects can
be prevented, or cured if already developed, using standard anti-
hypertensive treatments currently available in the clinic70,78,82 (S.
Fabbiano and X.R.B., manuscript submitted). The systemic inhi-
bition of Vav proteins will also lead to immunosuppression and,
possibly, minor defects in other haematopoietic lineages.8,12-14

However, we do not know yet whether such defects would arise
upon the inducible inhibition of Vav1 or, alternatively, in adult-
hood periods when thymi have already regressed. It is also possi-
ble that, as in many other targeted therapies, clinical benefits
could be obtained without dire side effects due to the high signal-
ing and metabolic demands for cells in pathological settings. Evi-
dence for such therapeutic windows does exist in the case of
Vav2 and Vav3 in both the mammary gland and skin.53,97

Another important issue is whether we could successfully iso-
late pharmacologically effective chemical inhibitors for these pro-
teins. Indeed, it is widely assumed that the isolation of high
affinity inhibitors to the catalytic site of Rho GEFs is rather diffi-
cult due to the shallow nature of the GEF/GTPase binding inter-
face.152 However, the idiosyncratic nature of the catalytic core of
Vav proteins and its mechanism of activation can offer alternative
ways to achieve such inhibition without touching the catalytic
site. For example, the DH-PH-ZF structure contains additional
pockets for effective inhibition, a strategy that has been proven
fruitful before in the case of other Rho GEF interdomain linker
regions.153 Alternatively, we could generate drugs that could
mimic the inhibitory CH-Ac and CSH3 interactions with the
catalytic core. Finally, Vav-dependent diseases could be probably
treated using indirect approaches, such as either the single or
combined inhibition of therapeutic targets encoded by Vav-regu-
lated genes. Experimental evidence supporting this alternative
approach has been recently obtained in Vav-dependent breast
cancer cells.53 In any case, and as discussed above, the success of
this type of therapies will ultimately depend on the relative con-
tribution of the catalytic function of these proteins to the fitness
of already developed diseases. Although intrinsic to any type of
target-directed therapies, all the aforementioned problems under-
score the need of deepening our understanding of the role of Vav
proteins, and especially of their catalysis-dependent pathways, in
both normal physiological and disease conditions.

Final Remarks

Despite significant advances made in the understanding of the
regulatory and effector properties of Vav proteins, there are still
significant open questions in this field. Thus, we have still to get
a holistic view of the regulatory landscape of these proteins, the
contribution of GTPase-dependent and independent routes to
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the overall biological program of each Vav protein, and the level
of overlap/signaling specificity that exists among them. A better
understanding of Vav2 and Vav3 is still required because, up to
now, most of the characterization of the functional properties of
this family has been Vav1-based. Likewise, the function of Vav
proteins in many model organisms is still unknown. We also
need to complete the spectrum of Vav-dependent diseases and
the minimal number of Vav proteins that have to be inhibited to
get optimal therapeutic effects. In this context, it would be of
paramount importance to generate new animal models to assess
the therapeutic value of targeting the catalytic activity of these
proteins and, in addition, the side effects derived from such inhi-
bition. Finally, we have to devise ways to generate high affinity,
Vav family-specific inhibitors. This future work will give us a
holistic understanding of these proteins and, perhaps more
importantly, yield innovative tools to both diagnose and treat
human diseases.
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