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1. Introduction 

Carbon materials are recognized as suitable supports in heterogeneous catalysis due to 

specific characteristics such as the broad variety of morphological, textural and 

chemical properties, which can be modified up to certain limits, resistance to 

acidic/basic media, and the potential easy recovery of precious metals by support burn 

out [1][2]. 

 

Besides, the following properties are usually required: (i) high purity, avoiding either 

catalyst poisoning or the promotion of unwanted side reactions, (ii) large volumes of 

meso/macropores to avoid diffusion limitations, and (iii) potential specific metal-

support interactions that can have positive effects on the catalytic activity and 

selectivity. Amongst the many carbon supports available, carbon nanofilaments (carbon 

nanotubes and carbon nanofibres) [3] and carbon xerogels [4][5][6] fulfill the 

mentioned requirements. 

 

Carbon nanofilaments suffer, however, from technical drawbacks related with their 

powdery condition, which makes handling in catalytic processes troublesome. In 

particular, powder CNFs exhibit problems of agglomeration and difficulty of filtration 

in slurry phase operation, and pressure drop in gas phase operation. These 

inconveniences can be avoided by the incorporation of carbon filaments into larger 

objects like, for example, ceramic monoliths. The preparation of a ceramic monolith 

completely covered with a well-attached layer of carbon nanofibres (CNF) of uniform 

thickness has been previously reported [7][8]. Since then, CNF/monoliths have been 



used as catalyst support for several gas and liquid phase reactions. In gas phase 

reactions, the main advantage of using CNF/monoliths is its robustness, portability and 

low pressure drop. Besides, immobilization of CNFs avoids their release to the 

atmosphere with the associated risk for human health. Ru nanoparticles have been 

dispersed in monoliths coated with either CNFs or N-CNFs and used in NH3 

decomposition for in-situ H2 generation [9]. The activity of those catalysts was 

significantly higher than that of similar ones prepared on other supports. A 

Fe/CNT/monolith was demonstrated to be active for CO2 conversion to hydrocarbons 

under high pressure conditions [10] while Pt and Pd on CNF/monolith have been used 

in the catalytic combustion of BTX (benzene, toluene and xylene) at low temperatures 

(< 200 ºC) [11]. The catalyst supported on CNF/monolith outperformed those supported 

on γ-Al2O3 because the hydrophobic nature of CNF favors the release of water formed 

during the reaction. 

 

In reactions carried out in liquid media, the main advantages of using CNF/monolith 

compared to CNF slurries or bulky carbon pellets are that the difficult filtration of the 

CNF slurry can be avoided, and that diffusion of the reactants is faster due to the large 

mesopore volume and low tortuosity of CNFs, and to the short diffusional path of the 

catalytic layer. For example, Pd supported on CNF/TiO2/monolith has been used for the 

selective hydrogenation of cinnamaldehyde (CAL)[12] obtaining a very high selectivity 

to HCAL (about 90%) at 95% CAL conversion. This performance is similar to that of 

powdered Pd/CNF (about 93%) but much better than that of Pd on activated carbon 

(about 45%) and Pd on mesoporous carbon (82%). Other liquid phase applications in 

which CNF/monoliths have shown outstanding properties are the immobilization of 

enzymes (lipase) for biocatalysis [13], as noble metal nanoparticle support for the 

reduction of nitrates and bromates in water [14][15] and as metal-free catalysts for the 

ozonation of organic pollutants in water [16].  

 

In carbon xerogels, the size and volume of meso/macropores can be controlled by the 

synthesis procedures [17] [18], including the synthesis variables (like pH of the starting 

solution) and the conditions of the drying and pyrolysis of precursor gels. Regarding 

this last point, the evaporative drying technique was found to be the easiest and less 

expensive method for the synthesis of a porous carbon with a tailored texture, allowing 

all pore sizes to be obtained, but with the pore volume and the pores size strongly 



correlated. Carbon xerogels have been used to support both, metal complexes [19], [6], 

[5] and metal nanoparticles [20] and the effect of the pore texture on mass transport was 

evidenced in gas phase catalysis [4] and in electrocatalysis [21].  

As indicated above, both a CNF-monolith sample and a carbon xerogel with a proper 

mesoporous structure can be suitable supports of catalysts to be used in gas-liquid 

reactions, even more if the active phase is a relatively bulky molecular species. Because 

of that, in this work these two carbon materials have been used to immobilize an Rh 

diamine complex with the objective of preparing hybrid catalysts, combining the 

advantageous properties of homogeneous and heterogeneous catalysts, to be used in 

hydrogenation reactions. The diamine Rh complex (schematically depicted in Figure 1) 

is [Rh(COD)NH2(CH2)2NH(CH2)3Si(OCH3)3]BF4, abbreviated as Rh(NN)Si. It contains 

the ligand cyclooctadiene (COD) and a bidentate amine ligand with a trimethoxysilane 

functionality (-Si(OCH3)3). The anchoring on the support is expected to occur through a 

covalent siloxane-type bond created by reaction of methoxy functionalities with surface 

–OH type groups. In this way, the study previously carried out dealing with the 

immobilization of the mentioned Rh complex on different carbon materials [22] is 

extended to these two structured carbon-based supports.  

 

Thus, the purpose of this work is to study the capability of a CNF-monolith sample and 

a granular carbon xerogel as supports in the preparation of hybrid catalyst. Using these 

supports allows taking advantage of both their open porous structure, which should 

decrease mass transfer limitations, and their morphology, which will facilitate the 

catalyst handling and will enable to avoid the difficult separation processes.  

 

 

Figure 1. Chemical structure of the Rh(NN)Si complex. 
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2. Experimental 

 

2.1.Supports 

CNF coated monolith 

The procedure used to prepare this support is as follows [23]: a cordierite monolith 

(from Corning, 1 cm diameter, 5 cm length, 400 cpsi (channels per squared inch)) was 

washcoated with alumina by dipcoating in a sol prepared with pseudoboehmite 

(AlOOH), urea and 0.3 M nitric acid with a weight ratio of 2:1:5. The liquid inside the 

monolith channels was removed by flushing pressurized air. Afterwards, the sample was 

dried at room temperature for 24 h while it was rotated around the longitudinal axis; 

then it was calcined in air at 873 K for 2 h. Nickel was deposited on the alumina 

washcoat as follows: the monolith sample was kept overnight in 1 L aqueous solution 

containing 29 g Ni(NO3)2
.
6H2O, 80 g NH4NO3 and 4 mL ammonia solution (25% w/w). 

This solution was flowing continuously through the channels. Then, the monolith was 

rinsed thoroughly with deionised water, dried (room temperature overnight, and 373 K 

for 1 h), and calcined in flowing nitrogen at 873 K for 2 h. The Ni content in the 

monoliths was 0.9 wt%. After reduction (hydrogen atmosphere, 873 K, 2 h), the CNF 

were grown by putting the sample in contact with a 100 mL/min flow of a 1:1 mixture 

C2H6:H2 at 873 K for 3.5 h. The amount of CNF deposited corresponds to 15.5 wt% 

carbon and supposes an average layer thickness of about 10 µm. The CNF grown on the 

monolith display a BET surface area of 150 m
2
/g, a micropore volume of 0.01 cm

3
/g 

and a mesopore volume equal to 0.30 cm
3
/g [24]. The sample is named M-CNF 

hereafter. 

 

To prepare the catalyst, sample M-CNF was cut into several pieces of about 7 mm 

length that contained between 20 and 30 mg of carbon. The cutting was done very 

carefully with a metallic saw in order to avoid any fracture of the ceramic material.  

Figure 2 shows a picture of the original M-CNF sample and of several cut pieces. 

 



 

Figure 2. Pictures of the CNF-coated monolith sample (M-CNF): original form and cut pieces. 

 

Carbon xerogel 

The carbon xerogel was prepared according to a reported procedure [18], which can be 

summarized as follows: the carbon gel was obtained by the polycondensation of 

resorcinol (R) and formaldehyde (F) in deionized water (R/F molar ratio= 0.5, dilution 

ratio D = 5.7), using a basic agent (Na2CO3, denoted C) to increase the pH of the 

solution. The R/C molar ratio was chosen equal to 750. Gelation was performed at 85 

°C for 72 h. Then, the sample was vacuum-dried at 333 K and heat treated (423 K, 0.01 

bar, 12 h) in order to obtain the organic xerogel. Finally, it was pyrolyzed under 

nitrogen flow (1073 K, 3 h), allowing the carbon xerogel material to be obtained.  

 

Previous to its use, the sample was grinded and sieved to ensure a particle size between 

1.0 and 1.4 mm (Figure 3). The sample is named CX3. 

 

(a) (b) 



  

Figure 3.  Pictures of the carbon xerogel CX3 sample: (a) original form and (b) grinded (1.0-1.4 mm). 

 

Oxidation treatment 

In order to develop surface oxygen complexes on both carbon supports, necessary to 

graft the Rh complex, they were submitted to an oxidation treatment under the 

following conditions: heating up to 623 K (15 K/min) was done in He and then, the gas 

flow was changed to synthetic air (60 mL/min) with a soak time of 3.5 h. Afterwards, 

the samples were cooled down in air and stored until use. The oxidized samples are 

named M-CNFOx and CX3Ox, respectively. 

 

Characterization 

The surface chemistry of the oxidized supports was characterized by TPD (temperature 

programmed desorption), using a thermobalance SDT TA Instruments 2960 coupled to 

a mass spectrometer Balzers MSC 200Thermostar. Approximately, 10 mg of carbon 

material (obtained by scrapping in the case of the M-CNF sample) were heated at 20 

K/min up to 1300 K in a He flow of 20 mL/min. 

 

The textural properties of the supports were analyzed by N2 adsorption at 77 K, using  a 

Micromeritics ASAP 2020 device in the case of sample M-CNFOx and an automatic 

volumetric apparatus Autosorb-6B (Quantachrome) in the case of support CX3Ox. The 

samples were previously outgassed at 523 K for 4 h. BET surface area (SBET) and pore 

volumes of different size range (micropores, Vµ, and mesopores, Vmeso) were 

determined as described in the literature [25]. It was checked by mercury porosimetry 

that the carbon materials do not contain macropores. The skeletal density (s) of the 

carbon structures, i.e. all open pores excluded, was measured by helium pycnometry 



using a Micromeritics Accupyc 1330 device. The bulk density was calculated from the 

previous data as: 
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where VV is the total pore volume, i.e. the sum of mesopore and micropore volumes, 

Vmeso and Vµ. The void fraction corresponding to mesopores in the carbon material can 

be calculated as: 
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The supports were also characterized by transmission and scanning electron microscopy 

(TEM and SEM) using the JEOL JEM-2010 and HITACHI S-3000N microscopes, 

respectively. 

 

2.2.Catalysts 

The synthesis of the complex [Rh(COD)NH2(CH2)2NH(CH2)3Si(OCH3)3]BF4, 

(Rh(NN)Si) was carried out using standard Schlenk techniques and following the 

reported procedure [26].  

The synthesized Rh complex was characterized by infrared spectroscopy (FT-IR), X-ray 

photoelectron spectroscopy (XPS) and elemental analysis (EA), and the obtained 

results, which were reported elsewhere [22], indicate that the desired complex was 

obtained. 

 

The hybrid catalysts were prepared by impregnation of the supports (previously 

outgassed at 373 K, 3 h) with a methanol solution of the Rh(NN)Si complex (5 mL 

solution per gram of support). The mixture was maintained under reflux for 21 h; then, 

the solid was removed from the solution and washed with methanol in Soxhlet for 24 h. 

Afterwards, the catalysts were vacuum-dried (0.01 Pa) at room temperature for 24 h. In 

the following, the obtained hybrid catalysts are named M-CNFOx-Rh and CX3Ox-Rh. 

The actual amount of Rh loaded, determined by ICP-OES using the methodology 

described in the literature [26], was 0.4 wt% (39 µmol/g) in both samples. In the case of 



support M-CNFOx, this percentage is calculated with respect to the mass of CNF 

deposited on the ceramic monolith.  

 

Characterization 

The catalysts were characterized by XPS in a VG Microtech Multilab 3000 

spectrometer, and by TEM (both, fresh and used catalyst) using the same equipment as 

in the case of the supports. 

 

2.3. Catalytic activity 

Catalytic activity was tested in the hydrogenation of cyclohexene. Reactions were 

carried out in a stainless steel Parr reactor (40 mL, diameter = 2 cm), magnetically 

stirred, and equipped with a gas inlet valve for charging and purging the gas into the 

reactor and a pressure gauge for the pressure control. The experimental setup contains 

also a device to monitor the hydrogen consumption during the reaction. 

 

The M-CNFOx-Rh catalyst sample used was a 7 mm long piece, with about 20 mg 

CNF, while about 20 mg of catalyst CX3Ox-Rh were used. The M-CNFOx-Rh catalyst 

piece was suspended into the reactor by means of a yarn (Figure S1) and fixed on the 

reactor top. In a typical experiment, the mentioned amount of catalyst and 10 mL of a 5 

vol% cyclohexene in methanol solution were used. The reactor was pressurized with He 

and purged three times, and then H2 was filled in and evacuated three times to finally set 

the H2 pressure to 10 bar. Afterwards, the reactor was placed in the thermostatic bath at 

333 K and the stirring (1100 rpm) was started. An homogeneous phase reaction was 

also carried out with the Rh(NN)Si complex in solution, using the proper amount of the 

complex dissolved in methanol and keeping all the mentioned conditions. 

 

Previously, blank experiments without catalyst and with the support were carried out; 

cyclohexene conversion after 20 h was 8% and 5%, respectively. These tests indicate 

that in the absence of the Rh complex, the extent of the reaction is negligible compared 

to catalyzed systems. 

 

Reactants and products were analyzed by gas chromatography using the HP 6890 

equipment with a FID detector and a HP-1 Methyl Siloxane column (30 m-250 mm-

0.25 mm). 



 

 

3. Results and discussion  

 

3.1.Characterization of supports and catalysts 

Relevant data on the textural properties of the carbon materials used as support are 

collected in Table 1:  BET surface area (SBET), micropore volume (Vµ), mesopore 

volume (Vmeso), bulk density (bulk), skeletal density (s) and void fraction (); all 

parameters are expressed per mass or volume of carbon. The average and maximum 

pore size of each material is included in Table 1. 

Table 1. Textural properties of the oxidized carbon materials used as supports. 

Sample SBET Vµ Vmeso bulk s  wp,av wp,max 

 

(m²/g) (cm³/g) (cm³/g) (g/cm³) (g/cm³) (-) (nm) (nm) 

M-CNFOx 150 0.01 0.30 1.3 2.0 0.38 23 80 

CX3Ox 637 0.31 1.30 0.55 2.2 0.56 20 40 

 

The two carbon materials have very different morphology and also very different 

textural properties. It is interesting to notice the larger volume of mesopores of the 

carbon xerogel.  

 

The layer of carbon nanofibers (CNF) has a negligible micropore volume (calculated by 

the t-plot method) and a significantly smaller specific surface area than the carbon 

xerogel support. The obtained values of surface area and pore volume are in agreement 

with those reported in the literature for CNF aggregates [27]. 

 

The TPD profiles of samples M-CNFOx (scrapped carbon nanofibres) and CX3Ox are 

shown in Figures 4a and 4b, respectively. 

 



 

 

 

 Figure 4. TPD profiles of: (a) M-CNFOx and (b) CX3Ox. 

 

The quantification of the TPD profiles of Figure 4 is shown in Table 2. Data 

corresponding to the non-oxidized samples (M-CNF and CX3) are also included in 

Table 2 to better appreciate the effect of the oxidation treatment. The amount of phenol 

type groups was determined by deconvolution of the CO evolution profile in the 

temperature range of 873-973 K [28][29][30][31] using the Origin software.  
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Table 2. Quantification of TPD profiles: amounts of CO2 and CO evolved, total oxygen (as weight 

percentage), and amount of phenol-type groups. 

 

Sample CO2 

(µmol/g) 

CO 

(µmol/g) 

O         

(wt. %) 

Phenol-type groups 
[a] 

(μmol/g)
 

M-CNF 242 1868 3.8 520 

M-CNFOx 457 1878 4.5 582 

CX3 471 1101 3.3 314 

CX3Ox 756 2021 5.7 858 

[a] Determined by deconvolution of the CO desorption profile. 

 

CO2 evolution from sample M-CNFOx shows a maximum at about 770 K; this peak can 

be assigned to the decomposition of lactone and anhydride-type surface oxygen groups. 

The CO evolution starts at about 670 K and the profile suggests the presence of several 

CO-type groups, of different thermal stability, like anhydride, phenol, carbonyl and 

quinone [28] [29] [30][31]. The oxidation treatment with air leads to an increase of the 

surface oxygen complexes that decompose as CO2, while the amount of CO-type groups 

remains almost unchanged. 

 

The CO2 evolution profile of sample CX3Ox is wider (CO2 desorption occurs from 700 

to 1100 K) and suggests the presence in this sample of surface oxygen groups like 

anhydride and lactone. The CO evolution starts at a relatively high temperature and 

shows a maximum around 1000 K, revealing the presence of a high amount of phenol 

and carbonyl-type groups on the sample surface. Both CO2- and CO-type groups were 

generated by oxidation of the CX3Ox sample with air.   

 

The TPD data show that the oxidation treatment is more effective in the carbon xerogel 

than in the grown CNF. Notwithstanding, both samples contain enough phenol-type 

groups to ensure a feasible anchoring of the complex (three mol of phenol-type groups 

per mol of Rh complex, see Figure 1). 

 

Morphological and structural information on the supports was obtained by TEM 

analysis. Figure 5a shows TEM images of the carbon nanofibres of sample M-CNFOx:  

the CNF display a fishbone structure, with diameter ranging from 10 to 20 nm. Figure 



5b shows the TEM image of sample CX3Ox, displaying a spongy appearance with a 

tortuous pore network. 

 

 

Figure 5.TEM images of (a) fibres of M-CNFOx sample and (b) CX3Ox.  

 

The parameters determined from the XPS analysis of catalysts M-CNFOx-Rh and 

CX3Ox-Rh are presented in Table 3. These data show that the electronic state of Rh is 

almost unmodified upon heterogenization and corresponds to Rh(I). The binding energy 

found for N1s is characteristic of N in amine and is similar to that measured for the 

homogeneous complex [32]. 

 

The factor F, calculated as the ratio between the amount of Rh determined by XPS and 

by ICP (F = RhXPS/RhICP), is close to 4 for both catalysts. This indicates that the location 

of the complex in relation to the support porosity is similar in both catalysts. This result 

is similar to that previously found with catalysts prepared with carbon nanotubes and 

nanofibres, where F values close to 4 were reported too [26], and lower than those 

reported for catalysts prepared with a microporous activated carbon (between 10 and 

20) [33]. Thus, it can be considered that in the present case the Rh complex molecules 

are likely more internally located than in microporous activated carbon. 

 

Table 3. XPS data of the Rh(NN)Si complex and the hybrid catalysts. 

Sample 
Binding energy (eV) 

F=RhXPS/RhICP 
Rh3d5/2 N1s 



Rh(NN)Si 309.1 400.3 - 

M-CNFOx-Rh 309.0 401.0 4 

CX3Ox-Rh 308.7 400.5 4 

 

3.2.Catalytic activity 

Figure 6 shows the cyclohexene conversion versus time profiles obtained for the hybrid 

catalysts and the homogeneous Rh(NN)Si complex. Such conversion data have been 

determined from the hydrogen consumption versus time curves. TOF (s
-1

) determined at 

40 min reaction time is also shown in Figure 6 (in the legend). 

 

 

Figure 6. Cyclohexene conversion versus time of the homogeneous Rh(NN)Si complex and hybrid 

catalysts and TOF (at 40 min) (5 vol% cyclohexene in methanol, 10 bar H2, 333 K, 1100 rpm). 

 

Data of Figure 6 show that the hybrid catalysts lead to a noticeably higher conversion 

than the unsupported Rh complex. This was also observed with other carbon-based 

hybrid catalysts and it was explained by the potential confinement of the active species 

in the support porosity [22][26][34]. From about 1 h, both heterogeneous catalysts 

display similar conversion values with time, even though M-CNFOx-Rh gives a higher 

conversion in the first 30 min. One however notices that the conversion profile of 

CX3Ox seems more linear than that of M-CNFOx. The reason for this change of shape 
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is not clear at the moment but could come from a modification of the apparent reaction 

rate, due either to external/internal mass transport effects, or to a modification of the 

reaction pathway. 

 

The conversion profiles of both hybrid catalysts reveal different kinetics. In the case of 

sample CX3Ox-Rh, the linear variation of conversion with time in the first 40 minutes 

suggests a 0 reaction order, probably due to diffusional problems. Such a phenomenon 

has been recently reported in catalysts prepared with carbon xerogels [35]. The different 

morphology of the two hybrid catalysts bears differences in the diffusional path length. 

As indicated above the CNF coating has an average thickness of 10 µm while for the 1-

1.4 mm particles of CX3Ox-Rh the diffusion path is about 500-700 µm and thus 

diffusional limitations are very likely in this catalyst. 

 

Thus, although the hybrid catalysts are clearly more active than the homogeneous 

complex, their activity could be lowered due to diffusional limitations, particularly in 

the case of the CX3Ox-Rh catalyst. It was attempted to check for the existence of 

internal diffusional limitations via the estimation of the Weisz modulus, as described in 

reference [35]. The Weisz modulus (Φ) is defined as the ratio between the apparent 

specific reaction rate and the diffusion rate of reactants in the catalyst particle. For Φ 

larger than 1, the internal diffusion limitations become rate-determining. The Weisz 

modulus is calculated by [36], at the beginning of the reaction: 

se

2
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CD
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where rs  is the initial apparent specific reaction rate per unit of catalyst volume (kmol 

mcat
-3

 s
-1

), Lp is the characteristic dimension of the catalytic media (i.e. 1/6
th

 of the 

particle diameter for spherical catalyst pellets or thickness in the case of a flat active 

layer), Cs is the reactant concentration at the external particle surface, and De is the 

effective diffusivity through the catalyst pores. Fast stirring of the reactor allow to 

assimilate it to a perfectly mixed tank so that the reactant concentration at the external 

particle surface Cs is close to the reactant concentration in the solution bulk at the 

beginning of the reaction (Ce = 0.49 10
3
 mol/L, corresponding to 5% vol. cyclohexane 

in methanol). The effective diffusivity is defined by:  
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where Dm is the molecular diffusivity of the considered component (~10
-9

 m²/s for 

diffusion in liquids), ε is the void fraction of the catalyst and τ is tortuosity of the 

catalyst pores. The initial apparent specific reaction rate, rs, is calculated from the slope 

of the conversion vs. time curve: 
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t
dt

dX
is the slope at zero time of the tangent of the conversion curves (s

-1
) 

(Fig. 6), VR is the reactor volume (10  10
-6

 m
3
 of reacting fluid), ρbulk is the bulk 

density of the catalyst (kg/m
3
) which depends on the catalyst support (Table 1), and 

mcatal is the mass of catalyst used for each experiment (20  10
-6

 kg). 

Globally, the differences between both systems are (i) the void fraction of the support 

(0.38 vs. 0.56 for M-CNFOx and CX3-Ox, respectively), (ii) the characteristic length of 

the catalyst (10  10
-6

 for M-CNFOx; 10
-3

/6 m for CX3-Ox¸ assuming spherical 

particles) and (iii) rs (estimated, from Fig.6, equal to about 451 and 76 kmol mcat
-3

 s
-1

 for 

M-CNFOx-Rh and CX3-Ox-Rh, respectively). From the data gathered, Φ was found to 

be equal to 0.6 in the case of the monolith/CNF-supported catalyst and to 13 for the 

carbon xerogel-supported catalyst. In the latter case, mass transport limitations are 

clearly present, leading to a decrease of the catalytic activity with regard to chemical 

regime. In the former case, mass-transport limitations cannot be totally excluded since 

Φ is not much lower than 1 (please keep in mind that many values used are 

estimations), but these limitations are certainly less severe than in the case of the carbon 

xerogel. These calculations highlight the fact that, especially in liquid phase, an open 

texture such as that encountered in carbon xerogels does not guarantee the absence of 

such limitations. It is worth noticing that the pore size has no effect. In fact, the 

modification of the Weisz modulus between the two catalysts is mainly due to the 

difference in characteristic lengths, Lp. 

 



In order to decrease mass transport effects in the case of CX3-Ox-Rh, one could 

envisage grinding the catalyst particles, which would lead to a decrease of Lp. However, 

smaller particles would be more difficult to filter and recover. So, from a technical point 

of view, a potential higher effectiveness is sacrificed for a better handling when 

particles around 1 mm are used. 

 

Note also that, despite strong stirring, the absence of external mass transport limitations 

is not guaranteed, especially in the case of the xerogel-supported catalyst. Indeed, since 

the particles are mobile, one can consider that they are more or less immobile with the 

adjacent fluid, which could lead to non-negligible diffusion layer thickness. The 

existence of external diffusional limitations is however, in this case difficult to check; a 

deeper investigation, which is out of the scope of the present study, would be necessary 

to conclude with certainty. 

 

After the first catalytic run (t = 1.5 h), and in order to study its reusability, the hybrid 

catalyst was removed from the reaction media, washed with fresh solvent and used 

again in a catalytic run under the same conditions. Catalyst CX3Ox-Rh was removed by 

filtration while catalyst M-CNFOx-Rh, due to its morphology, could be much easily 

extracted from the reaction media (Figure S1).  

 

Figure 7 shows the cyclohexene conversion profiles corresponding to the first and 

second catalytic runs, together with the corresponding TOF at 50% conversion; TOF 

was calculated with the initial Rh loading.  

 

 



 

Figure  7. Cyclohexene conversion versus time and TOF (at 50% conversion), in two consecutive 

catalytic runs (5 vol% cyclohexene in methanol, 10 bar H2, 333 K).  

 

Data in Figure 7 show that both catalysts are fully recyclable with a certain increase of 

the catalytic activity in the second run compared with the first one. The difference in 

activity between catalysts is kept in the second run. 

 

Determination of the amount of Rh in the used catalysts shows that leaching in both 

catalysts is low (below 4%).  

 

The used catalysts were also analyzed by XPS and the obtained results can be 

summarized as follows: (i) in catalyst CX3Ox-Rh, Rh is present as Rh(I) (BE (Rh 3d5/2) 

= 309.9 eV) (60%) and Rh(0) (BE (Rh 3d5/2) = 307.8 eV) (40%), with no significant 

change of the F factor; (ii) in catalyst M-CNFOx-Rh, the Rh signals were too weak for a 

proper analysis;  (iii) in both cases the BE of N1s is 400.9 eV, unveiling the presence of 

amines. These data indicate that a partial reduction of the metal complex takes place in 

catalyst CX3Ox-Rh, also expected in the case of M-CNFOx-Rh, and that in this last 

case Rh species have likely migrated to a more inner location becoming thus less 

accessible to the X-ray radiation.  

 

TEM analysis of the used catalysts shows the presence of small metal particles in both 

of them (Figure 8), in agreement with the partial reduction of the supported metal 
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complex under reaction conditions shown by XPS. Size measurement of more than one 

hundred particles gives the data shown in Figure 9. 

 

 

 

Figure 8. TEM images of used catalysts: a) and b) CX3Ox-Rh and c) and d) M-CNFOx-Rh. 

 



 

Figure 9.  Particle size distribution based on a particle count of at least 100 elements. 

 

These data show that the development of metal particles is different on both supports: 

they are clearly smaller in catalyst M-CNFOx-Rh. This fact can be the consequence of a 

different interaction of the Rh complex with the two supports. This is in agreement with 

previous results showing that the support has a strong influence in the properties of the 

hybrid catalyst [22]. In the mentioned work it was found that the surface of carbon 

xerogels contributes to the stabilization of the small metallic particles, whereas 

significant sintering takes place on some massive carbon nanofibers. In the present case, 

the smallest particles are developed on the carbon nanofibers, which are not massive but 

with a fishbone structure. However it is not possible to confirm any difference regarding 

the degree of reduction of the metal complex in both catalysts. According to the XPS 

data commented above, the active species in catalyst CX3Ox is a mixture of the 

supported complex Rh(NN)Si and small metallic Rh particles. In the case of catalyst M-

CNFOx-Rh something similar can be assumed.  

 

The development of small metal particles could explain the increase of the catalytic 

activity in the second run, although, as previously suggested, some modifications of the 

metal complex can also lead to more active species. The most reliable proposed 

modification is a change in the metal coordination sphere by hydrogenation of the 

cyclooctadiene ligand [33].  

 

The obtained results show that catalysts M-CNFOx-Rh and CX3Ox-Rh are noticeably 

more active than the homogeneous Rh complex, stable against leaching and reusable. 
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They are, as well, more active than similar catalysts prepared previously with other 

carbon xerogels of different porous texture and with massive carbon nanofibres [22].  

 

Moreover, catalyst M-CNFOx-Rh shows further advantages like the easy handling, the 

immediate recovery and removal from the reaction media avoiding the need of a 

filtration step, good mechanical strength and the potential to fix the catalyst to operate 

in continuous mode with low pressure drop. 

 

4. Conclusions 

 

Hybrid catalysts were prepared by anchoring covalently an Rh diamine complex in two 

very different structured carbon materials: a ceramic monolith coated with carbon 

nanofibres and a mesoporous carbon xerogel. The morphology of these catalysts allows 

an easy separation from the reaction media. The obtained catalysts are noticeably more 

active than the homogeneous Rh complex and they are stable against leaching. After a 

first use, a partial reduction of the Rh complex takes place and nanometric Rh particles 

are developed, which increases the catalyst activity. The catalyst prepared with the 

ceramic monolith coated with carbon fibres shows noteworthy advantages like easy 

handling, immediate recovery and removal from the reaction media, and good 

mechanical strength. 
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Figure S1. Location in the reactor and removal from it, of catalyst M-CNFOx-Rh. 

 


