
March, 2015

IRI-TR-15-02

Staübli work-cell:
Embedded controller

Sergi Hernandez Juan

Abstract

This technical report describes the design (both hardware and software) of an embedded con-
troller for the Staüli work-cell available at the Perception and Manipulation Laboratory at IRI.
This system is based on a commercial embedded computer (Beaglebone Black [3]) and it is
capable of managing all the work-cell devices. This includes a custom planar XY robot, two
simple grippers at the end effector of each Staübli robot, a six degrees of freedom force and
torque sensor and optionally the two Staülbi robots themselves.
This embedded system also monitors all the safety features integrated into the work-cell to
provide updated information about the current state of the work-cell to all the device drivers
and control programs. The safety features available at the Staübli work cell include several
emergency stop buttons, a laser curtain surrounding the perimeter of the work-cell and two
mechanical fuses at the last joint of the Staübli robot. See [6] for a more detailed description of
the Staübli work-cell.
This document is intended as a complete reference manual of the embedded system, both from a
software and a hardware points of view, for maintinance purposes and also to alow the addition
of new features and upgrades in the future.

Institut de Robòtica i Informàtica Industrial (IRI)
Consejo Superior de Investigaciones Cient́ıficas (CSIC)

Universitat Politècnica de Catalunya (UPC)
Llorens i Artigas 4-6, 08028, Barcelona, Spain

Tel (fax): +34 93 401 5750 (5751)

http://www.iri.upc.edu

Corresponding author:

Sergi Hernandez Juan
tel: +34 93 401 0857

shernand@iri.upc.edu

http://www.iri.upc.edu/staff/shernand

Copyright IRI, 2015

Section 1 Introduction 1

1 Introduction

The Perception and Manipulation Laboratory at IRI has a work-cell build around two Staübli
RX60 serial manipulators with six degrees of freedom each. This work-cell has been extended
over the years with a custom two degrees of freedom planar XY robot build on top of the whole
cell, two simple grippers placed at the last joint of each of the Staübli robots and a six degrees
of freedom force and torque sensor that can be placed in any manipulator.

The safety features integrated into the work-cell include a laser curtain that covers all the
perimeter of the work-cell, two mechanical fuses at the end effector of each Staübli robot to cut
power in case of excessive force and also several emergency stop buttons to be used by human
operators: one for each robot and another one for the whole work-cell.

One of the main problems to set this work-cell in working order was that most of the devices
listed before were not operational or were not even installed, and the ones that were, had some
software and hardware requirements that made it very difficult to integrate them into the current
software framework used at the Institute (the ROS middleware [7]).

So, it was decided to develop a new controller system capable of managing all the work-cell
devices (robots, sensors, actuators and safety features), and integrate them in a homogeneous
framework that made it easy for any one at IRI to use them. This work has been divided into
two technical reports, this one which covers the design and development of an expansion board
for an existing embedded controller, and [6] which covers the work-cell structure and integration
of all the devices.

Fig 1 shows a block diagram of the different modules of the expansion board described in this
technical report. The Beaglebone Black works as the central processing unit and runs ROS over
an Ubuntu Linux distribution. This embedded computer can work in a standalone configuration
for simple applications, or connect to a much larger ROS network over the Ethernet interface.
Its main features and design considerations are described in detail in section 3.

Figure 1: Block diagram of the different modules of the expansion board.

The expansion board described in this technical report has been designed in such a way that
it has a wider range of features than the ones strictly required by the application. These include

2 Staübli work-cell: Embedded controller

(a) Top view of the developed expansion
board

(b) Top view of the developed expansion
board

Figure 2: Top and bottom views of the expansion board for the Staübli work-cell

a programmable output dynamic range for the analog outputs, a wide input dynamic range for
the analog inputs and high voltages tolerant digital inputs and outputs. Fig 2a and 2b show the
top and bottom view of the developed expansion board respectively.

Interfacing the gripper controllers to the embedded computer proved to be the most chal-
lenging part of the design, because both analog and digital electronics are needed. The design
of each of the required modules to interface to the gripper controllers is presented in section 4.
Next, section 5 describes the interface to monitor the work cell safety features to provide up-
dated information about the current state of the system. Finally, section 6 covers the interface
to control the XY robot and get data from the force sensor.

2 Power supplies

The expansion board has quite heterogeneous power supply requirements. Table 1 summarizes
the voltages and maximum currents required for each of the modules presented later in the fol-
lowing sections. The values presented in Table 1 are worst case maximums, and the actual power
requirements of the system will be well below these values on normal operational conditions.

Table 1: Summary of the power requirements of all the modules on the expansion board.

5 V 3.3 V +15 V −15 V 24 V

Grippers 36mA 9mA 63mA 30mA 160mA

Beaglebone Black 1A 0 0 0 0
XY robot
Force sensor

0 negligible 0 0 0

monitor 0 0 0 0 negligible

The Beaglebone board already provides a 3.3 V rail with a maximum output current of
500 mA which is shared with some internal devices. Even though, it is more than enough to
provide the required power to the modules on the expansion board. All other voltages are
generated outside of the expansion board due to space limitations, and supplied to it through
an external connector (J1). Fig. 3 shows the position and pinout of this connector.

The 24V supply voltage is taken directly from the 24V power rail powering the whole Staübli
work cell (see technical report [6] for more details). The other power supplies are generated by
a dedicated switched power supply, the TMP 15515C from TracoPower, which provides up to
2A for the 5V supply and up to 150mA for each of the ±15V supplies. Fig. 4 shows a diagram
of the power supply architecture.

Section 3 Beaglebone Black 3

Figure 3: Pinout and position on the expansion board of the power connector (J1).

Figure 4: General sketch of the power supply architecture for the expansion board.

It is convenient to use the 3.3 V power supply from the Beaglebone Black to reduce the
expansion board size and component count, but it is also dangerous, because this voltage supply
is also used internally by vital parts of the Beaglebone Black board (such as the Flash memory).
Unexpected surges on this power rail, due to short circuits or accidental connections, may
damage the Beaglebone Black board beyond repair.

3 Beaglebone Black

The Beaglebone Black is a low cost, small form factor embedded computer based on a 32 bits
ARM architecture. Its main features are summarized in Table 2.

The board provides two 46 pins expansion headers to give access to several connectivity
interfaces (such as USART, SPI and I2C) and general purpose inputs and outputs. The expan-
sion boards connected to this expansion headers are known as capes. Each cape may have an
I2C EEPROM memory which provides information to the embedded system of the resources
required by each of them, to avoid conflicts when several capes are used together (up to four
capes can be stacked together). See section 3.6 for more details.

The Beaglebone black board uses the Device Tree framework ([1]) to initialize all the on-board
components. The Device Tree is a data structure for describing hardware that is load at boot
time. Before the Device tree was used, each embedded board without a BIOS needed a custom
Linux kernel to properly initialize all its specific hardware components, which was difficult to
develop and maintain. Now, it is possible to develop somewhat generic Linux distributions that

4 Staübli work-cell: Embedded controller

Table 2: Main features of the Beaglebone Black board.

Feature Value

Processor Sitara AM3358BZCZ100 @ 1GHz (dual core)

RAM 512 MB DDR3L @ 800 MHz

Storage
4 GB MMC
SD-Card

Peripherals

1 USB Host
1 USB device
1 Serial port
1 HDMI display
1 Ethernet port

use the Device Tree to properly initialize the specific hardware of each board.
The expansion board makes extensive use of the communication devices and GPIO’s available

at the expansion connectors as shown in Fig. 1. The next few sections describe in detail the
configuration and use of these communication devices.

3.1 I2C bus

The I2C (inter-integrated circuit) is a multi-master, multi-slave, single-ended, half-duplex, serial
computer bus used for attaching low-speed peripherals to computer motherboards and embed-
ded systems ([9]). There exist several specifications regarding speed (up to 5 MHz), but the
Beaglebone Black only supports the 100KHz and 400 kHz versions.

As shown in Fig. 5, this bus is used to connect the GPIO expander to handle the digital inputs
and outputs of the grippers (see section 4.1.1 for more details), and the digital potentiometers
used to electronically change the dynamic output range of the analog outputs for the gripper
module (see section 4.1.2 for more details). Fig. 5 also shows the I2C slave addresses assigned
to each of the devices.

Figure 5: Devices connected to the I2C bus of the Beaglebone Black board with their addresses
on the bus.

All I2C addresses are hard coded and can not be changed. Therefore, it will not be possible
to connect more than one of these expansion boards to a single Beaglebone Board.

All theses devices are connected to the second I2C port (I2C1) of the Beaglebone Black
board, which is not initialized by default. Listing 1 shows the device tree overlay used to
initialize the desired I2C port. It is important to note that the Linux device name assigned to

Section 3 Beaglebone Black 5

it is i2c-2, because two other I2C ports have been previously initialized (i2c-0 used internally
by the Beaglebone board, and i2c-1 used for the cape memories).

Listing 1: Device Tree overlay for the I2C1 bus of the Beaglebone Black

fragment@0 {
t a r g e t = <&am33xx pinmux>;

o v e r l a y {

b b i 2 c 1 p i n s : p inmux bb i2c1 p ins {
p i n c t r l−s i n g l e , p ins = <

0x158 0x72 /∗ i 2 c1 sda , SLEWCTRL SLOW ∗/
/∗ INPUT PULLUP ∗/
/∗ MODE2 ∗/

0x15c 0x72 /∗ i 2 c 1 s c l , SLEWCTRL SLOW ∗/
/∗ INPUT PULLUP ∗/
/∗ MODE2 ∗/

>;
} ;

} ;
} ;

fragment@4 {
t a r g e t = <&i2c1 >;

o v e r l a y {
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb i2c1 p in s >;

/∗ t h i s i s the c o n f i g u r a t i o n part ∗/
c lock−f r equency = <100000>;
#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;
} ;

} ;

The fragment@0 code in Listing 1 is only the part of the whole code associated to the
initialization of the I2C signals. The fragment@4 code initializes the I2C port itself, assigning
a clock frequency of 100 kHz. Refer to the appendix A for the whole device tree overlay for the
expansion board.

Linux provides a simple library to allow access to I2C devices. On Ubuntu distributions it
can be easily installed executing the following command:

sudo apt-get install i2c-tools

This library also installs some tools that are useful to handle I2C devices. Specially the
i2cdetect tool can be used to check that the on-boards devices are properly detected before
launching any control application.

In order to use the I2C ports from the user space, it is necessary to add an udev rule to the
linux system. For simplicity, the group name used in this section and the ones that follow is

6 Staübli work-cell: Embedded controller

staubli. Any user should belong to this group in order to be able to use the I2C ports. Listing
2 shows the udev rule used to give read and write permissions to any I2C bus on the system to
the members of the staubli group.

Listing 2: Udev rule to give access to all I2C ports to the staubli user

KERNEL==”i2c −∗”, GROUP=”s t a u b l i ” , MODE=”0660”

The udev rule presented here is only executed when a new device is created, which only
happens at boot time or when a new Device Tree is loaded. Therefore, it will be necessary to
reboot the system for the changes to take effect.

3.2 SPI bus

The Serial Peripheral Interface (SPI) bus is a synchronous serial communication interface spec-
ification used for short distance communication, primarily in embedded systems ([10]). SPI
devices communicate in full duplex mode using a master-slave architecture with a single master.
Multiple slave devices are supported through selection with individual chip select lines.

As shown in Fig. 6, this bus is used to connect both the Analog to digital converter to
get the current position of the gripper jaws and the digital to analog converter to control the
position, force and speed of the gripper jaws (see sections 4.1.2 and 4.1.3 for more details). Fig.
6 also shows the chip select lines used or each converter.

Figure 6: Devices connected to the SPI bus of the Beaglebone Black board with their chip select
lines.

Although any GPIO pin can be used to select which device is accessed in the SPI bus, it is
better to use the dedicated chip select lines of the peripheral to improve performance. Because
the chip select lines are dedicated signal, it will not be possible to connect more than one
expansion board on a single Beaglebone Black. However it will still be possible to connect other
SPI devices to the same bus using other chip select signals available.

The Only available SPI bus on the expansion headers of the Beaglebone Black is the SPI1,
which is not initialized by default. In this case, some of the signals required for the SPI interface
are used by the HDMI module, which is initialized by default. So first, it is necessary to disable
this module. To do that, first mount the boot partition to a temporary folder (the folder must
exist prior to the execution of the following command).

sudo mount /dev/mmcblk0p1 /mnt/card

Then, edit the uEnv.txt file with your favorite text editor and add the following line:

Section 3 Beaglebone Black 7

optargs=quiet capemgr.disable partno=BB-BONELT-HDMI,BB-BONELT-HDMIN

After saving the file and rebooting the system, the HDMI module should no longer be loaded
at boot time, and the necessary signals are freed for the SPI interface. Listing 3 shows the device
tree overlay used to initialize the desired SPI port.

Listing 3: Device Tree overlay for the SPI1 bus of the Beaglebone Black

fragment@0 {
t a r g e t = <&am33xx pinmux>;

o v e r l a y {

b b s p i 1 p i n s : p inmux bb spi1 p ins {
p i n c t r l−s i n g l e , p ins = <

0x190 0x33/∗ mcasp0 sp i 1 s c l k INPUT PULLUP ∗/
/∗ MODE3 ∗/

0x194 0x33/∗ mcasp0 spi1 d0 INPUT PULLUP ∗/
/∗ MODE3 ∗/

0x198 0x13/∗ mcasp0 spi1 d1 OUTPUT PULLUP ∗/
/∗ MODE3 ∗/

0x19c 0x13/∗ mcasp0 sp i1 cs0 OUTPUT PULLUP ∗/
/∗ MODE3 ∗/

0x164 0x12/∗ mcasp0 sp i1 cs1 OUTPUT PULLUP ∗/
/∗ MODE2 ∗/

>;
} ;

} ;
} ;

fragment@1 {
t a r g e t = <&spi1 >;

o v e r l a y {
#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb sp i1 p in s >;
cs−gp io s = <&gpio4 17 0>, <&gpio1 7 0>;

channel@0{
#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;
compatible = ” sp idev ” ;
reg = <0>;
sp i−max−f r equency = <1000000>;

} ;
channel@1{

#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;

8 Staübli work-cell: Embedded controller

compatible = ” sp idev ” ;
reg = <1>;
sp i−max−f r equency = <1000000>;

} ;
} ;

} ;

The fragment@0 code in Listing 3 is only the part of the whole code associated to the
initialization of the SPI signals. Refer to the appendix A for the whole device tree overlay for
the expansion board. The fragment@1 code initializes the SPI bus itself. Notice that two
channels are specified, each one will use a different chip select signal, and a separate Linux
device will be created for each one, spidev1.0 for channel 0 and spidev1.1 for channel 1.

The Linux operating system does not provide any special interface to program the SPI
devices, but they can be accessed as any file or device with the open, close, read and write
functions. Listing 4 shows the udev rule used to give read and write permissions to any SPI
device on the system to the members of the staubli group.

Listing 4: Udev rule to give access to all SPI devices to the staubli user

KERNEL==”spidev ∗” , GROUP=”s t a u b l i ” , MODE=”0660”

3.3 Serial ports

Three standard serial ports are required by the expansion board, two to control the custom XY
robot, and another one to handle the force and torque sensor. The Beaglebone Black board
provides up to 5 serial ports through the expansion headers, but none of them are initialized by
default, except for the /dev/ttyO0, which is used as the default terminal, that is configured at
boot time.

Listing 5 shows the device tree overlay used to initialize the serial ports 1,2 and 4 of the
Beaglebone Black. It is important to note that the Linux device name assigned to these serial
ports do not coincide with the physical port number: /dev/ttyO1 is assigned to the uart2
peripheral, /dev/ttyO2 is assigned to uart3 and /dev/ttyO4 is assigned to uart5.

Listing 5: Device Tree overlay for the three serial ports needed

fragment@0 {
t a r g e t = <&am33xx pinmux>;

o v e r l a y {
bb uar t1 p in s : p inmux bb uart1 pins {

p i n c t r l−s i n g l e , p ins = <
0x184 0x00
0x180 0x20

>;
} ;
bb uar t2 p in s : p inmux bb uart2 pins {

p i n c t r l−s i n g l e , p ins = <
0x154 0x01
0x150 0x21

>;
} ;
bb uar t4 p in s : p inmux bb uart4 pins {

p i n c t r l−s i n g l e , p ins = <

Section 3 Beaglebone Black 9

0x070 0x26
0x074 0x06

>;
} ;

} ;
} ;
fragment@2 {

t a r g e t = <&uart2 >; /∗ r e a l l y uart1 ∗/
o v e r l a y {
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb uart1 p ins >;

} ;
} ;
fragment@3 {

t a r g e t = <&uart3 >; /∗ r e a l l y uart2 ∗/
o v e r l a y {
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb uart2 p ins >;

} ;
} ;
fragment@5 {

t a r g e t = <&uart5 >; /∗ r e a l l y uart4 ∗/
o v e r l a y {
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb uart4 p ins >;

} ;
} ;

The fragment@0 code in Listing 1 is only the part of the whole code associated to the
initialization of the serial port signals. Refer to the appendix A for the whole device tree overlay
for the expansion board. Each of the fragments 2, 3 and 5 in Listing 1 initialize a single serial
port. The specific configuration of each port is given when the serial port is opened inside an
application.

The selection of these serial ports instead of any other was mainly based on simplifying the
routing process of the final PCB. No udev rule is needed for the serial ports, but all the users
that must have access to them must be added to the dialout group, in this case only the staubli
user.

Any serial port can be assigned to any function, but Table 3 shows the default and recom-
mended configuration.

Table 3: Default assignment of the serial ports

serial port function

/dev/ttyO1 XY robot, X axis

/dev/ttyO2 XY robot, Y axis

/dev/ttyO4 Force and Torque sensor

10 Staübli work-cell: Embedded controller

3.4 GPIO

Some modules of the expansion board have control and/or status signals that are handled by
general purpose inputs and outputs (GPIO) of the Beaglebone Black board. Linux provides a
simple and flexible way to access and configure GPIO signals through the file system interface
(sysfs). By default, only the root user is capable of doing so, but it is also possible to grant
access to standard users.

To do so, first, it is necessary to give read and write access to the desired user (staubli in
this case) to the files export and unexport in folder /sys/class/gpio. These files are used to
create new instances of GPIO signals and delete existing ones respectively. To do so, edit the
/etc/rc.local file using your favorite text editor, and add the following lines at the end:

chgrp -R staubli /sys/class/gpio
chmod -R g+rw /sys/class/gpio

Then, the udev rule shown in Listing 6 is required to give access to the desired user to the
newly created GPIO instances. These instances are dynamically created and destroyed, so the
udev mechanism is the only way to modify them so that standard user may access them.

Listing 6: udev rule to give access to the GPIO instances

SUBSYSTEM==”gpio ” , DEVPATH==”/dev i c e s / v i r t u a l / gpio / gpio ∗” , ACTION==”add” ,
PROGRAM=”/bin /sh −c ’ chown −R s t aub l i : s t a ub l i / sys / dev i c e s / v i r t u a l / gpio / gpio%n ’”
SUBSYSTEM==”gpio ” , DEVPATH==”/dev i c e s / v i r t u a l / gpio / gpio ∗” , ACTION==”add” ,
PROGRAM=”/bin /sh −c ’ chmod g+w / sys / dev i c e s / v i r t u a l / gpio / gpio%n/∗ ’”
SUBSYSTEM==”gpio ” , DEVPATH==”/dev i c e s / v i r t u a l / gpio / gpio ∗” , ACTION==”add” ,
PROGRAM=”/bin /sh −c ’ chown −R s t aub l i : s t a ub l i / sys / c l a s s / gpio / gpio%n/∗ ’”

A C++ class has been developed around the file system interface to the GPIO signals in
order to simplify their use. This class provides the main features listed next, and it is described
in more detail in its documentation page (see [5]).

• The desired GPIO port and GPIO pin are selected when the object is created, and can
not be modified afterwards.

• Configure any GPIO either as input or output.

• As an output, select the desired output value.

• As an input, read the current input value and also create and configure an event to notify
the user on occurrence of a desired transition.

Although simple, this kind of interface to the GPIO signals can not be used when the required
toggling frequencies are above a few kilohertz (around 7kHz). In these cases, other methods may
be used, such as the mmap (direct memory mapping of processor registers) or the development
of a kernel driver. However, all these alternatives are far more complex than the file system
interface, and they are not required for this application.

Table 4 summarizes the GPIO pins of the Beaglebone Black used by the expansion board.
The direction shown in Table 4 are viewed from the Beaglebone Black side.

3.5 Expansion board pinout

Fig. 7 shows the pinout of the two connector used to interface with the expansion headers of
the Beaglebone Black (J3 and J6).

Section 3 Beaglebone Black 11

Table 4: GPIO used by the expansion board

Name Port Bit Direction Description

nRESET GPIO1 18 output Resets the DAC

nLDAC GPIO1 17 output Updates the output values of
the DAC

ADC START GPIO2 22 output Starts a conversion of the
ADC

ADC BUSY GPIO2 23 input Current state of the ADC con-
version

INT A GPIO2 24 input Interrupt signal for port A

INT B GPIO2 25 input Interrupt signal for port B

CELL CHAIN GPIO2 5 input Work-cell operating status

ES CELL GPIO0 27 input Work-cell emergency stop
button status

LIGHT CURTAIN GPIO1 14 input Work-cell light curtain status

LEFT MECH FUSE GPIO1 12 input Left mechanical fuse status

RIGHT MECH FUSE GPIO0 23 input Right mechanical fuse status

MODE GPIO1 15 input Work-cell operating mode

ROBOT XY CHAIN GPIO0 26 input XY robot operating status

LEFT STAUBLI CHAIN GPIO1 13 input Left Staübli operating status

RIGHT STAUBLI CHAIN GPIO1 13 input Right Staübli operating status

3.6 Cape EEPROM memory

Although it is not mandatory, an I2C EEPROM can be used to store information identifying the
cape and the resources it requires. This EEPROM is read at start-up time, and its information
is used by the cape-manager program to load the specific Device Tree overlay needed to initialize
and reserve the necessary resources (communication ports, software drivers, etc.).

This memory is connected to the second I2C port of the Beaglebone Black board. Only
four I2C addresses are supported for the cape memory, and in order to allow the use of other
capes, the specific I2C address can be selected by soldering/unsoldering some resistors. Table
5 specifies the required populated resistors to select each of the I2C addresses.

Table 5: Resistors to be populated to configure the desired I2C addresses for the cape memory.

I2C address R8 R9 R10 R11 R12 R44

0x50 X X X

0x51 X X X

0x52 X X X

0x53 X X X

0x54 X X X

0x55 X X

0x56 X X X

0x57 X X X

Only addresses 0x54 through 0x57 are used for the cape-manager to load cape information.
The other addresses can be used when the memory is only intended to store user non-volatile
data.

This memory can not be removed and therefore has to be programmed in-system, but in

12 Staübli work-cell: Embedded controller

Figure 7: Pinout of the expansion connectors J3 and J6.

order to avoid corruption of its contents during normal operation due to some erroneous write,
its write protect feature is enabled by default. A jumper (J4) may be used to temporarily enable
it and allow write access to the memory to update its contents.

The manual of the Beaglebone Black (see [2], pages 101 through 105) describes the format
of the contents of the EEPROM memory.

4 MEG50EC grippers

The grippers used in the Staübli work-cell are the MEG50EC from Schunk. The gripper itself
has no embedded controller, so an external one is used. This controller is the MEG-C also
from Schunk which allows to control the stroke, force and speed of the jaws by means of analog
signals. It also provides digital inputs to control the gripper functions (such as open, close and
calibration), and digital outputs to report the status of the gripper. The current position of the
jaws is reported also as an analog signal.

The gripper can operate in two different modes: in position mode the jaws move to the
desired position at the desired speed until the goal position is reached or the maximum desired
force is exceeded. In force mode, the jaws either open or close the the maximum or minim
position respectively until the maximum desired force is exceeded.

Section 4 MEG50EC grippers 13

The gripper does not have any encoders (it uses a stepper motor) which make it necessary
to perform a calibration procedure before it can be used in position mode. Otherwise, the
behavior of the gripper will change depending on the initial position. However, it can be used in
force mode without calibrating. The calibration procedure consists on moving the jaws to the
maximum or minimum position until the maximum force is exceeded.

The main feature of the MEG50EC grippers are shown in Table 6. See the product manual
for more detailed information ([8]).

Table 6: Main features of the MEG50EC gripper.

Feature Value

Power supply 24 V

Position range 8mm

Force range 110N

Speed range 6mm/s to 32mm/s

The need to deal with analog signals increases the complexity of the system. The first
approach was to use National Instruments DAQ cards: the NI PCI 6220 for analog input and
the NI PCI-6722 for analog output and digital input and output. Although its use simplified
the hardware design, the software integration was much more difficult. Only the former card is
supported by the Comedi [4] project, which provides open-source drivers, tools, and libraries for
data acquisition in Linux.

Therefore, it was necessary to use the Linux drivers provided by the manufacturer, which, at
the time of developing this project, were only available for an obsolete Suse Linux distribution.
The defacto software platform used at the Institute is an Ubuntu Linux distribution with the
ROS framework, and the task of either using the manufacturer drivers on Ubuntu or using ROS
on the Suse distribution proved to be too complex.

Given the relatively low resolution required for the stroke, force and speed signals for the
target applications, a simpler and cheaper custom data acquisition system was proposed. This
new data acquisition system, could not reach the levels of performance of the National Instru-
ments cards, but it fulfills all the requirements, and also it has been easily integrated into the
Ubuntu and ROS software framework.

First, the hardware design of the different modules is presented in section 4.1, and an overview
of the low level C++ software drivers and the corresponding ROS wrappers are presented later
in section 4.2.

4.1 Hardware design

Mainly, the resources needed to fully control each gripper are:

• 4 digital outputs with a maximum output level of 24 V to reset the controller, and start
the the opening, closing and calibration motions.

• 3 digital inputs with a maximum input level of 24 V to monitor the status of the gripper
(position reached, calibration done and gripper stopped).

• 1 analog input signal with a dynamic range of 5 V for the position feedback signal.

• 3 analog output signals with a dynamic range of 10V to control the stroke, force and speed
of the jaws.

14 Staübli work-cell: Embedded controller

4.1.1 GPIO

The two grippers require a total of 8 digital outputs and 6 digital inputs. The Beaglebone Black
board has more than enough GPIO pins available, but an external GPIO expander device was
used instead. The reason behind this decision was that a GPIO pin of the Beaglebone Board, if
damaged, can not be easily replaced, and also, exposing pins of the processor to external signals
may cause damage to other parts of the board, rendering it useless. An external GPIO expander
can be easily replaced if damaged, and the processor may remain intact in case of any problem.

The latency of all inputs and outputs is not crucial for the correct operation of the grippers,
so a low speed communication interface may be chosen. The MCP23017 with an I2C interface
and two 8 bit independent ports has been selected. As presented before in section 3.1, this
GPIO expander is connected to the second I2C port of the Beaglebone Black and has a fixed
I2C address of 0x40.

Each pin of each port can be configured as either input or output, but in order to simplify
the level translation stage required to interface with the digital signals of the gripper, PORT A
can only be used for outputs, and PORT B can only be used for inputs.

The GPIO expander used also provides two signals (INTA and INTB) to notify an external
device of any activity on the input ports. Both signals are connected to the Beaglebone Black
to avoid having to continuously poll the inputs over the I2C bus to detect changes. See Table
4 for the specific GPIO pins used.

As presented in section 4.1, the digital inputs and outputs need to operate at least in the
24 V voltage range. Most digital systems use logic levels from 2.5 V to 5 V , so a level translator
will be needed in both inputs and outputs.

The ADG3123 from Analog devices has been chosen for the output level translator because
it provides a low impedance outputs for both high and low logic levels, which make it possible
to easily connect them to almost any device. The external side power supply is connected to the
VCC EXT pin of connector J1 shown in Fig. 3. The maximum supply voltage for the external
side of the level translator is 35 V .

For the input level translator a simple MOS transistor in inverter configuration has been
used for each pin (see Fig. 8). With this circuit, the logic level read at the gpio expander will
be complementary of the real digital input, but this can be easily handled by software.

Figure 8: Schematic of the digital input interface

This input interface is independent of the The VCC EXT power supply used, but the max-
imum voltage at the input is limited by the maximum gate-source voltage supported by the
2N7002 transistors, which is 30 V .

Resistor R2 in Fig. 8 is used to force a default input voltage at the input of the transistor
when it is left unconnected. Otherwise, interferences and capacitive effects from other parts of
the circuit or the environment itself may arbitrary change the input value readings, and generate
spurious interrupts to the Beaglebone Black board processor.

Section 4 MEG50EC grippers 15

The value of this resistor is quite important because it will create a voltage divider with
the output impedance of the connected device, which may degrade the logic levels at the input.
Since the outputs of the gripper controller are isolated by an open collector opto-coupler with
a low value pull-up resistor (470 Ω), the value of the R2 resistor is set to 1 kΩ to ensure valid
logic levels.

Fig. 9 shows the position of the input (J6) and the output (J7) connectors on the expansion
board, as well as the pinout of each connector for the gripper control. If used for an other
application, Fig. 9 also shows the GPIO expander pin assigned to each output pin. In this case,
the only constraint is that connector J7 can only be used for outputs, and connector J6 can only
be used for inputs.

Figure 9: Pinout of the input (J6) and output (J7) connectors of the expansion board.

Appendix B summarizes the overall electrical and timing specifications of the expansion
board.

4.1.2 Digital to Analog Converter

The two grippers require a total of 6 analog outputs with a dynamic range of 10 V as presented
in section 4.1. To generate analog signal from a digital circuit, a Digital to Analog Converter is
needed. Such devices, normally use an SPI interface because it offers a better data bandwidth,
and so does the AD5668 from Analog devices selected for this application. The main features
of this converter are listed in Table 7.

Both the resolution and the bandwidth provided by this converters are more than enough to

16 Staübli work-cell: Embedded controller

Table 7: Main features of the AD5668 Digital to Analog Converter.

Feature Value

Power supply 2.7 V - 5.5 V

Internal reference 1.25 V

Interface SPI

Resolution 16 bits

Bandwidth 320 kHz

Max. output voltage 2Vref
Num. channels 8

handle the position, speed and force control signals of the grippers, but these parameters allow
to widen the scope of use of the designed expansion board.

Although the desired output data values are transmitted using the SPI interface, to actually
get the desired voltage at the outputs, it is necessary to use a control signal (nLDAC). Check
Table 4 for the specific Beaglebone Black GPIO pin used. As shown in table 4, another GPIO
pin is used to reset the converter to its default configuration (nRESET).

In order to achieve the desired output voltage range, a variable gain, non-inverting amplifier
is used at the output stage (shown in Fig. 10. This amplifier also includes a first order low pass
filter to reduce as much as possible the output voltage noise.

Figure 10: Schematic of the circuit used for each of the analog outputs of the expansion board.

The variable gain is implemented using digital potentiometers which allow to change the
gain of the amplifier programatically, instead of manually adjusting a traditional potentiometer.
The main features of the AD5263 digital potentiometer from Analog Devices selected for this
application are shown in Table 8.

Despite its advantages, digital potentiometers present some limitations compared to their
analog counterparts. First, their bandwidth is quite limited, normally below the 1MHz value.
However, in this case the bandwidth of both the Digital to Analog Converter and the digital
potentiometer match (as shown in tables 7 and 8), which means that no device will limit the
other.

The second main limitation, is that the range of voltages in which digital potentiometers
can operate is limited by their power supply. Again, in this case, the maximum desired output
voltage is 15 V , which coincides with the maximum power supply for the digital potentiometer,

Section 4 MEG50EC grippers 17

Table 8: Main features of the AD5263 digital potentiometer.

Feature Value

Interface I2C

Max. Power supply 15 V

Num. Potentiometers 4

Resolution 8 bits (78.125 Ω)

Max. Resistance 20 kΩ

Bandwidth 300 kHz

as shown in Table 8.

In order to be able to independently adjust the gain on each of the 8 available analog outputs,
two of these digital potentiometers are needed, with addresses 0x59 and 0x5A as shown in Fig.
5.

The operational amplifier used is the AD823 from Analog Devices. The main features of this
amplifier are summarized in Table 9.

Table 9: Main features of the AD823 operational amplifier.

Feature Value

Bandwidth 16MHz

Slew rate 22 µV/s

Max. Power supply 36 V

The output voltage of the amplifier stage as a function of the Digital to Analog Converter
output and the value of the digital potentiometer (R2) is:

Vout =

1
R1||R2C1

+ s

1
R2C1

+ s
VDAC . (1)

From Eq. 1 is simple to get the DC gain and the zero and pole frequencies as:

GDC = 1 +
R2

R1
, ωpole = R2C1, ωzero = R1||R2C1 (2)

It is easy to see that, with the values shown in Fig. 10 and Table 8, the output voltage range
can be modified from 2.5 V to a little over 13 V , which is enough for the desired application.

Since the operational amplifier used has both an output and input rail-to-rail features, it is
not necessary to use a symmetric power supply to get a 0 V output value. The gain-bandwidth
product and the slew rate features of the amplifier are also suitable for the gripper control
application.

As shown in Eq. 1, the filter implemented by this circuit actually has a zero in addition
to the desired pole, which limits the attenuation at high frequencies. Also, both the pole and
the zero frequencies depend on the value of the digital potentiometer, which will change the
frequency response of the amplifying stage depending on the gain.

Fig. 11 shows the position of the analog output connector (J5) on the expansion board, as
well as its pinout for the gripper control. If used for an other application, Fig. 11 also shows
the Digital to Analog Converter channels assigned to each output pin.

Appendix B summarizes the overall electrical and timing specifications of the expansion
board.

18 Staübli work-cell: Embedded controller

Figure 11: Pinout of the analog output connector (J5) of the expansion board.

4.1.3 Analog to Digital Converter

The two grippers require a total of 2 analog inputs with a dynamic range of 5 V as presented in
section 4.1. The main features of the Analog to Digital Converter used are shown in Table 10.

Table 10: Main features of the ADS8558 Analog to Digital Converter.

Feature Value

Power supply 2.7 V - 5.5 V

Internal reference 0.5 V to 3 V

Interface SPI

Sampling Freq. 530 kSPS

Bandwidth 320 kHz

Max. input voltage ±12 V

Num. channels 6

The input voltage range of the converter can be configured by software to adjust it to the
desired input signal, making it possible to maximize the resolution of the converter depending
on the application. This Analog to Digital converter has 3 independent SAR converters with
a selectable single differential or two single ended inputs. Each converter can be configured
independently.

In order to isolate the converter from the external environment, an operational amplifier in
voltage follower configuration is used at each input, as shown in Fig. 12. Also a first order
low pass filter is inserted between the amplifier and the converter to limit the bandwidth of the
input signal and avoid aliasing problems.

The operational amplifier used is the AD823, and its main features are shown in Table 9.
In this case the amplifier uses a symmetric power supply to allow bipolar signals to reach the
Analog to Digital converter. This first stage provides a high input impedance to the input
signals, and also isolates the converter from the output impedance of the connected device,
which may negatively affect quality of the conversion.

The cut-off frequency of the low pass filter of Fig. 12 is:

fc =
1

2πR1C1
, (3)

which is the one recommended by the manufacturer.

Section 4 MEG50EC grippers 19

Figure 12: Schematic of the circuit used for each of the analog inputs of the expansion board.

Although the configuration of the converter and the transmission of the data is done through
the SPI interface, the Analog to Digital Converter requires an external signal to start the con-
version (ADC START). The converter also provides a second external signal (ADC BUSY) to
indicate its internal state, either busy converting data or idle. These two signals are directly
handled by GPIO’s of the Beaglebone Black (See Table 4 for the specific GPIO pins used).

Fig. 13 shows the position of the analog input connector (J2) on the expansion board, as
well as its pinout for the gripper control. If used for an other application, Fig. 11 also shows
the Analog to Digital Converter channels assigned to each input pin.

Figure 13: Pinout of the analog input connector (J2) of the expansion board.

Appendix B summarizes the overall electrical and timing specifications of the expansion
board.

4.2 Software design

Fig. 14 shows the general software structure and dependencies for the gripper driver. As shown
in Fig. 14, the software is mainly divided in three layers: the lower most layer deals with the
hardware itself, implementing the communication protocols needed to configure, control and
exchange information with the expansion board devices.

The middle layer uses the modules on the previous layer to actually implement the gripper
control by binding together the operation of all the low level drivers. Finally, the upper most
layer creates a wrapper around the gripper driver to easily interface it to a ROS network.

20 Staübli work-cell: Embedded controller

Figure 14: General software structure and dependencies for the gripper. From low level Linux
drivers to the ROS framework.

Due to fact that both grippers share most of the hardware resources (analog to digital and
digital to analog converters, digital potentiometers and the GPIO expander) the gripper driver
in the middle layer, and also the ROS wrapper, controls both grippers, providing an interface
that allow the user to choose on which gripper to perform the desired action. Nonetheless, the
operation of both grippers is completely independent from each other.

4.2.1 Hardware interface drivers

As shown in Fig. 14, there exist a separate Linux low level driver for each of the main hardware
modules presented in section 4.1. Although not complete, these modules try to expose as much
of the features of the underlying device as possible through their API’s, so that they can be used
in a more general setup.

In this section, only the main features of these modules are presented. The detailed descrip-
tion for the CGPIO modules has already been presented in section 3.4. For the CGPIOExpander
modules see [5], for the CDAC module see [5], for the CADC module see [5] and for the CDigi-
talPot modules see [5].

The main features provided by the public API of the CGPIOExpander module are listed
below. The features provided by this module are quite similar to the one provided by the
CGPIO class.

• The GPIO ports and the GPIO pins used by the two external interrupt signals of the device

Section 4 MEG50EC grippers 21

can be selected when the object is created, but they can not be modified afterwards.

• Configure the general operation of the device, which includes the external interrupt polarity
and output type, the I2C signals slew rate control and the internal registers addressing
mode.

• Configure each GPIO pin as either an input or an output. The polarity of each signal and
an optional pull up resistor can also be configured for each GPIO pin.

• Create and delete events associated to specific transitions on the input signal for each of
the GPIO pins.

• Set the output value when configured as an output pin, and read the input value when
configured as an input pin.

The CGPIOExpander class has an internal thread that continuously monitors the external in-
terrupt signal of the device and access its internal registers to generate the desired internal
events.

The main features provided by the public API of the CDAC module are listed below:

• Configure the operation of the device, which includes the voltage reference used to perform
the conversion and the default value of the outputs at power up.

• Enable and disable the output channels. Each channel can be individually enabled, but it
is only possible to disable all the channels at once.

• Update the output value for each channel independently. The update process is split in
two: a first stage where the desired output value is stored in internal memory, and a second
stage where the value is actually loaded into the output. A separate function exists for
each stage, and also a single function which performs all the operations, depending on the
case of use.

• Get the current output voltage present at each channel.

The main features provided by the public API of the CDigitalPot module are listed below:

• Set the desired resistance between the two terminals. The maximum resistance allowed is
configured when the object is created and can not be modified afterwards.

• Shutdown unused potentiometers to reduce power requirements.

The main features provided by the public API of the CADC module are listed below:

• The GPIO ports and GPIO pins used for the START and BUSY signals can be selected
when the object is created, but they can not be modified afterwards.

• Configure the desired input voltage range for each of the internal SAR converters inde-
pendently and the global voltage reference used for the conversion.

• Enable or disable the operation of each of the internal SAR converters individually.

• Start and stop the execution of an internal thread that periodically gets the current voltage
at the inputs. The sampling period is set to 10 Hz and can not be modified. It is
only possible to get new samples when the internal thread is running, otherwise, the last
converted value will be always returned.

Although the hardware device allows it, this class does not provide the possibility of working
with differential signals. It can still be achieved by computing the difference between the two
single ended channels of a single SAR converter.

22 Staübli work-cell: Embedded controller

4.2.2 Gripper driver

The gripper driver CMEG50ecGripper combines most of the features of the low level driver
modules presented in the previous section to generate the control signals and monitor the status
signals of the gripper in order to effectively manage it. In this section, only the main features
of the gripper driver are presented. For a more detailed description see [5].

Due to the great many parameters needed to properly configure the gripper operation (device
names, I2C addresses, GPIO ports and pins, DAC and ADC channels, etc), an XML file is used
to provide a simple an easy way to configure the grippers. The format of this XML file is
presented in Appendix C, together with the specific configuration values required to operate the
gripper on the expansion board.

As introduced in section 4, the gripper con operate in either position or force mode. Although
most of the public functions are common to both modes, a specific API is provided for each
one. The main features provided by the public API of the CMEG50ecGripper module are listed
below:

• Load the configuration parameters either from an XML file or from a properly initialized
C data structure.

• Monitor the current state of the jaws. Whether they are opening, closing or moving in
general.

• Set the desired maximum force (in N) the jaws would apply before stopping and the desired
speed of the jaws (in mm/s).

• Stop the motion of the jaws at any time.

• Get the current position of the gripper. This position is half the distance between the two
jaws.

• Configure the gripper operation in either position or force mode.

• In position mode, set the desired position of each gripper (mm). This has no effect in force
mode.

• In force mode, command the gripper to open or close to the maximum or minimum position
respectively, or until the configured maximum force is exceeded. This has no effect in
position mode.

As introduced in section 4.2, a single driver operates the two grippers in the Staübli work-
cell, so most of the API functions need a parameter to specify on which gripper to perform the
desired operation.

The CMEG50ecGripper driver has two internal threads that are managed internally. The
first thread waits for changes on the digital outputs of the gripper to generate three internal
events: when the jaws have stopped due to force limits, when the reference motion has completed
to calibrate the gripper and when the target position has been reached. The second thread,
periodically monitors the analog output of the gripper which encodes the actual position of the
jaws, and updates the internal values.

None of the command functions of the gripper are blocking, except for the calibration function
that wait for the reference motion to complete. There exist two different mechanisms to know
the current state of the gripper: continuously poll the status functions (is opening(), is closing()
or is moving()) or use asynchronous notification through events.

Section 4 MEG50EC grippers 23

4.2.3 ROS wrapper

Fig. 15 shows the topics, services and actions implemented in the ROS wrapper of the gripper
driver.

Figure 15: ROS communication interface of the ROS wrapper of the gripper driver

Published topics: right current pos and left current pos

These topics publish a JointState.msg type message with the current position of the grippers
so that the robot state publisher can update the gripper model in rviz. The joint type is linear
and the position is encoded in meters. The values published by these topics are not valid until
the grippers have been calibrated.

Service servers: right calibrate and left calibrate

These are servers for an Empty.srv type service. When the service request is received, the gripper
starts the calibration procedure to set the gripper in a known position. The service does not
return until the calibration process has finished.

Action servers: right force and left force

These are servers for a gripper force.action type action. The goal, feedback and result fields for
this action are shown in Listing 7.

Listing 7: gripper force.action action definition

#goa l d e f i n i t i o n

24 Staübli work-cell: Embedded controller

bool c l o s e
f l o a t 3 2 speed
f l o a t 3 2 f o r c e l i m i t
−−−
#r e s u l t d e f i n i t i o n
f l o a t 3 2 f i n a l p o s i t i o n
−−−
#feedback
f l o a t 3 2 c u r r e n t p o s i t i o n

When received, this action sets the corresponding gripper in force mode, and performs the
action specified by the goal (either open or close) until the gripper reaches a motion limit or the
specified force limit is exceeded.

When the action is active, the current position of the jaws is periodically published thought
the feedback topic, and when the action finishes, it reports the actual final position reached by
the gripper.

Action servers: right position and left position

These are servers for a gripper pos.action type action. The goal, feedback and result fields for
this action are shown in Listing 8.

Listing 8: gripper pos.action action definition

#goa l d e f i n i t i o n
f l o a t 3 2 p o s i t i o n
f l o a t 3 2 speed
f l o a t 3 2 f o r c e l i m i t
−−−
#r e s u l t d e f i n i t i o n
f l o a t 3 2 f i n a l p o s i t i o n
bool f o r c e l i m i t
−−−
#feedback
f l o a t 3 2 c u r r e n t p o s i t i o n

When received, this action sets the corresponding gripper in position mode, and starts moving
the grippers to the desired position until it is reached or the specified force limit is exceeded.

When the action is active, the current position of the jaws is periodically published thought
the feedback topic, and when the action finishes, it reports the actual final position reached by
the gripper, and a flag indicating if the maximum force was exceeded.

Parameters

The node has only two parameters, to specify the path and filename of the XML file needed to
properly configure the gripper.

• config path(string,default: “./”): Path to the desired configuration file.

• config file(string,default: “meg50ec config.xml”): Name of the desired configuration file.

Section 5 Work-cell monitor 25

5 Work-cell monitor

The Staübli work-cell has several safety features. A few of the safety features are common
to the whole work-cell, and halt the normal operation of all the robots. These general safety
features include a laser curtain that surrounds the whole perimeter of the work-cell and a general
emergency stop button.

The other safety features are associated to one of the robots. Each of the Staübli manipula-
tors have a mechanical fuse at the last joint, just before the end effector, and an emergency stop
button in the control pendant. Regarding the XY robot, the only safety feature of this robot is
an emergency stop button.

Check the technical report [6] for detailed information on how these safety features are
connected together to generate the safety chain of the whole work-cell and the ones for each
particular robot. All these safety features generate 24 V signals that should be monitored in
order to know the current state of each of the elements of the work-cell at any time.

It is possible to operate the work-cell in two different modes: one (called cell mode) in which
all robots work together in cooperation and another one (called independent mode) in which
each robot can be operated independently from the others.

The selected operation mode changes somewhat how the safety features of the work-cell
affect the operation of each robot. While in cell mode the activation of any safety feature halt
the normal operation of all the robots, in independent mode, only the safety features associated
to each robot halt the normal operation of the corresponding robot.

5.1 Hardware design

This part of the design was a later addition that was included after the board had been designed
and built. Therefore it has been implemented as a second expansion board, on top of the one
presented in this document. In this case, instead of using a GPIO expander integrated circuit
as has been done for the gripper control, the Beaglebone Black GPIO pins have been used.

The Staübli work-cell safety signals monitored by this modules, together with a brief de-
scription, are presented in Table 11.

All these signals have a high voltage value of 24 V when the corresponding device is in
operation condition, and a value of 0 V otherwise. To translate the voltage level to the 3.3 V
range supported by the Beaglebone Black GPIO pins, a simple resistive voltage divider is used
as shown in Fig. 16.

Figure 16: Resistive voltage divider used to translate the safety features voltage level.

26 Staübli work-cell: Embedded controller

Table 11: Safety features monitored by the expansion board presented in this document.

Feature Description

cell chain This signal reports the state of the whole cell. A high level
indicates the cell is in working condition, and a low level
indicates that one or more of the individual safety features
may not be active.

cell emergency stop This signal reports the state of the emergency stop button
for the whole cell. It will stop all robots in the work-cell
whatever the operating mode selected.

light curtain This signal reports the state of the laser light curtain sur-
rounding the work cell. It will stop all robots in the work-cell
whatever the operating mode selected.

left mechanical fuse This signal reports the state of the mechanical fuse at the
end effector of the left Staübli robot. Its behavior depends
on the operating mode selected.

right mechanical fuse This signal reports the state of the mechanical fuse at the
end effector of the right Staübli robot. Its behavior depends
on the operating mode selected.

operation mode This signal reports the current operating mode selected in
the control pendant. A high level indicates all robots work
cooperatively and a low level indicates that each robot works
independently.

robot xy chain This signal reports the state of the emergency stop button
for the XY robot. Its behavior depends on the operating
mode selected.

left staubli chain This signal reports the state of the emergency stop button
for the left Staübli robot. Its behavior depends on the op-
erating mode selected.

right staubli chain This signal reports the state of the emergency stop button
for the right Staübli robot. Its behavior depends on the
operating mode selected.

Note that, with the resistor values shown in Fig. 16, the logic high level voltage at the
output of the voltage divider is just over 3 V . This has been done intentionally to protect the
Beaglebone Black GPIO pins from possible voltage overshots present at the safety signals when
they switch.

In the future, clamping diodes to 3.3 V may be added to further protect the GPIO pins of
the Beaglebone Black board against voltage overshots. Also, a more complete and robust circuit
such as the one presented in section 4.1.1 for the gripper outputs may be used instead.

Fig. 17 shows the position of the monitor signals connector on the expansion board, as well
as its pinout for the safety features monitor application. If used for an other application, Fig.
17 also shows the Beaglebone Black GPIO pins assigned to each input pin.

5.2 Software design

Fig. 18 shows the general software structure and dependencies for the gripper driver. As shown
in Fig. 18, the software is mainly divided in three layers: the lower most layer deals with
the hardware itself, implementing the interface to the GPIO puns through the CGPIO class
presented in section 3.4.

Section 5 Work-cell monitor 27

Figure 17: Pinout of the safety features monitor connector of the expansion board.

The middle layer periodically checks the state of the each of the safety features signals and
reports their status. Finally, the upper most layer creates a wrapper around the gripper driver
to easily interface it to a ROS network.

5.2.1 Monitor driver

The CMonitor driver uses several CGPIO class objects to check the status of the Staübli work-
cell safety features. In this section, only the main features of the monitor driver are presented.
For a more detailed description see [5].

To simplify the configuration process, an XML file is used to provide the GPIO port and
GPIO pin value pairs for each of the monitored safety features signals. The format of this
XML file is presented in Appendix D, together with the specific configuration values required
to operate the monitor module on the expansion board.

The main features provided by the public API of the CMEG50ecGripper module are listed
below:

• Load the configuration parameters either from an XML file or from a properly initialized
C data structure.

• Configure the rate at which the safety features are monitored.

• Get the current status of all the monitored safety features.

28 Staübli work-cell: Embedded controller

Figure 18: General software structure and dependencies for the monitor. From low level Linux
drivers to the ROS framework.

The CMonitor driver has an internal thread which is started only when the object has been
properly configured with the appropriate GPIO ports and pins. This thread gets the current
value of all GPIO pins (a high level means the safety feature is operational and a low level means
something is wrong), and stores them in internal memory until the information is requested by
some other application.

5.2.2 ROS wrapper

The ROS wrapper for the Staübli work-cell monitor driver is very simple as shown in Fig. 19.
The name of the node is taken from the name of the work-cell, which is the blacksmith character
of the Asterix comics.

Figure 19: ROS communication interface of the ROS wrapper of work-cell monitor driver.

Section 6 XY robot and force sensor 29

Published topics: status

This topic publishes an esautomatix status.msg message (see Listing 9 for its format), which
reports the status of the whole work-cell at the desired rate. A value of 0 in one of the chain
fields of the message indicates that the associated robot is not is operating condition. The safety
feature field or fields that have a value of 0 will indicate the cause. Any value different from 0
indicate that everything is okay.

Listing 9: esautomatix status.msg message definition

u int8 c e l l c h a i n
u int8 c e l l e m e r g e n c y s t o p
uint8 l i g h t c u r t a i n
u int8 l e f t m e c h a n i c a l f u s e
u int8 r i g h t m e c h a n i c a l f u s e
u int8 operat ion mode
uint8 robot xy cha in
u int8 l e f t s t a u b l i c h a i n
u int8 r i g h t s t a u b l i c h a i n

A value of 0 in the operating mode field indicates that each robots operate independently
from each other, and any other value indicates indicates that all robots work cooperatively.

Parameters

The node has only two parameters, to specify the path and filename of the XML file needed to
properly configure the gripper.

• config path(string,default: “./”): Path to the desired configuration file.

• config file(string,default: “monitor config.xml”): Name of the desired configuration file.

• sampling rate(int,default: 100): Desired publish rate in Hertz.

6 XY robot and force sensor

The force and torque sensor used is the FTC50L from Schunk, which has three degrees of freedom
to measure forces and three more to measure torques, and also, it is capable of measuring the
deformation of the sensor due to external action. Both data acquisition and sensor configuration
is done through a high speed serial port interface with RS-232 logic levels. The maximum speed
of this interface is just under 1 Mbps (921600 bps to be exact), so special care should be taken
to guarantee the maximum bandwidth.

The XY robot is a custom robot build at IRI which has two independent degrees of freedom,
each controlled by a DC motor. Each motor has an optical incremental encoder of 500 pulses
per revolution to close the control loop, and forward, reverse and home limit switches in order to
initialize and control the motion of each axis. Each axis is controlled by an MCDC2805 motor
controller which integrates the motor power stage, the encoder and limit switch interfaces and
the PID control loop in a single device. This controller provides a standard low speed serial
interface (maximum 19200 bps) to configure its operation and also to send motion commands
and get information about its behavior.

Both systems require a serial interfaces with RS-232 voltage levels. Since the serial ports
provided by the Beaglebone Black use a 3.3 V logic levels, a level translator is required. Care

30 Staübli work-cell: Embedded controller

should be taken when choosing the RS-232 transceiver because not all available devices support
the relatively high transmission speeds required by the Force and Torque sensor.

The MAX3237 from Maxim Semiconductors is used, which provides 3 drivers and 5 receivers
and it is normally used in applications when a complete serial port is required. It also operates
in the 3.3 V range. This level translator has a dedicated pin to enable a special operating mode
in which speeds of up to 1Mbps are possible.

Fig. 20 shows the position of the serial interface connector (J8) on the expansion board, as
well as its pinout for the force and torque sensor and the two degrees of freedom XY robot. If
used for an other application, Fig. 20 also shows the Beaglebone Black serial devices assigned
to each output pin.

Figure 20: Pinout of the serial interface connector (J8) of the expansion board.

The serial ports can be used as regular Linux devices and no special driver has been devel-
oped.

A Device Tree Overlay

Listing 10 shows the complete Device Tree Overlay used for the expansion board presented in
this technical report.

Listing 10: Complete Device Tree overlay for the expansion board

/ dts−v1 / ;
/ p lug in / ;

/ {
compatible = ” t i , beaglebone ” , ” t i , beaglebone−black ” ;

/∗ i d e n t i f i c a t i o n ∗/
part−number = ”BB−AD−DA−GPIO” ;
v e r s i on = ”00A0” ;

/∗ s t a t e the r e s o u r c e s t h i s cape uses ∗/
exc lu s i v e−use =

/∗ SPI p ins ∗/
”P9 .42” , /∗ SPI1 CS1 ∗/
”P9 .28” , /∗ SPI1 CS0 ∗/
”P9 .29” , /∗ SPI1 MISO ∗/

Section A Device Tree Overlay 31

”P9 .30” , /∗ SPI1 MOSI ∗/
”P9 .31” , /∗ SPI1 SCLK ∗/
/∗ uart 1 p ins ∗/
”P9 .24” , /∗ uart1 txd ∗/
”P9 .26” , /∗ uart1 rxd ∗/
/∗ uart 2 p ins ∗/
”P9 .21” , /∗ uart2 txd ∗/
”P9 .22” , /∗ uart2 rxd ∗/
/∗ uart 4 p ins ∗/
”P9 .13” , /∗ uart4 txd ∗/
”P9 .11” , /∗ uart4 rxd ∗/
/∗ i 2 c 1 p ins ∗/
”P9 .18” , /∗ i 2 c 1 s d a ∗/
”P9 .17” , /∗ i 2 c 1 s c l ∗/
/∗ Hardware IP co r e s in use ∗/
” sp i 1 ” ,
” uart1 ” ,
” uart2 ” ,
” uart4 ” ,
” i 2 c1 ” ;

fragment@0 {
t a r g e t = <&am33xx pinmux>;

o v e r l a y {
b b s p i 1 p i n s : p inmux bb spi1 p ins {

p i n c t r l−s i n g l e , p ins = <
0x190 0x33/∗ mcasp0 sp i 1 s c l k INPUT PULLUP ∗/

/∗ MODE3 ∗/
0x194 0x33/∗ mcasp0 spi1 d0 INPUT PULLUP ∗/

/∗ MODE3 ∗/
0x198 0x13/∗ mcasp0 spi1 d1 OUTPUT PULLUP ∗/

/∗ MODE3 ∗/
0x19c 0x13/∗ mcasp0 sp i1 cs0 OUTPUT PULLUP ∗/

/∗ MODE3 ∗/
0x164 0x12/∗ mcasp0 sp i1 cs1 OUTPUT PULLUP ∗/

/∗ MODE2 ∗/
>;

} ;
bb uar t1 p in s : p inmux bb uart1 pins {

p i n c t r l−s i n g l e , p ins = <
0x184 0x00
0x180 0x20

>;
} ;
bb uar t2 p in s : p inmux bb uart2 pins {

p i n c t r l−s i n g l e , p ins = <
0x154 0x01
0x150 0x21

>;
} ;

32 Staübli work-cell: Embedded controller

bb uar t4 p in s : p inmux bb uart4 pins {
p i n c t r l−s i n g l e , p ins = <

0x070 0x26
0x074 0x06

>;
} ;
b b i 2 c 1 p i n s : p inmux bb i2c1 p ins {

p i n c t r l−s i n g l e , p ins = <
0x158 0x72 /∗ i 2 c1 sda , SLEWCTRL SLOW ∗/

/∗ INPUT PULLUP ∗/
/∗ MODE2 ∗/

0x15c 0x72 /∗ i 2 c 1 s c l , SLEWCTRL SLOW ∗/
/∗ INPUT PULLUP ∗/
/∗ MODE2 ∗/

>;
} ;

} ;
} ;

fragment@1 {
t a r g e t = <&spi1 >;

o v e r l a y {
#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb sp i1 p in s >;
cs−gp io s = <&gpio4 17 0>, <&gpio1 7 0>;

channel@0{
#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;
compatible = ” sp idev ” ;
reg = <0>;
sp i−max−f r equency = <1000000>;

} ;
channel@1{

#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;
compatible = ” sp idev ” ;
reg = <1>;
sp i−max−f r equency = <1000000>;

} ;
} ;

} ;

fragment@2 {
t a r g e t = <&uart2 >; /∗ r e a l l y uart1 ∗/

o v e r l a y {
s t a t u s = ”okay ” ;

Section A Device Tree Overlay 33

p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb uart1 p ins >;

} ;
} ;

fragment@3 {
t a r g e t = <&uart3 >; /∗ r e a l l y uart2 ∗/

o v e r l a y {
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb uart2 p ins >;

} ;
} ;

fragment@4 {
t a r g e t = <&i2c1 >;

o v e r l a y {
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb i2c1 p in s >;

/∗ t h i s i s the c o n f i g u r a t i o n part ∗/
c lock−f r equency = <100000>;
#address−c e l l s = <1>;
#s i z e−c e l l s = <0>;
} ;

} ;

fragment@5 {
t a r g e t = <&uart5 >; /∗ r e a l l y uart4 ∗/

o v e r l a y {
s t a t u s = ”okay ” ;
p i n c t r l−names = ” d e f a u l t ” ;
p i n c t r l −0 = <&bb uart4 p ins >;

} ;
} ;

} ;

This Device Tree overlay, stored as a .dts files, must be compiled before it can be used by
the operating system. At the time of writing this technical report, the Device Tree compiler
available in Ubuntu distributions does not support all the necessary features. Therefore, it is
necessary to download and build a newer version. To upgrade to the newer version, execute the
following commands.

wget -c https://raw.githubusercontent.com/RobertCNelson/tools/master/pkgs/dtc.sh
chmod +x dtc.sh ./dtc.sh

Once upgraded, the following command will compile the Device Tree overlay, where <de-
vice tree overlay> is the name given to the overlay file. An arbitrary name can be used if the
overlay is to be loaded manually. However, i

34 Staübli work-cell: Embedded controller

dtc -O dtb -o <device tree overlay>.dtbo -b 0 -@ <device tree overlay>.dts

B Specifications

Table 12 summarizes the overall specifications of the expansion board.

Table 12: Electrical and timing specifications of all the modules of the expansion board.

Power Supply

Feature Min Typical Max

VCC 5 5 V

VCC 5 current 1A

VCC 15 15 V

VCC 15 current 10mA

VCC -15 −15 V

VCC -15 current 70mA

VCC EXT 12 V 35 V

Digital Outputs

Feature Min Typical Max

Number of ports 8

Output voltage VCC EXT

Output
impedance

10 Ω

Digital inputs

Feature Min Typical Max

Number of ports 8

Input voltage 30 V

Input impedance 1 kΩ

Analog Outputs

Feature Min Typical Max

Number of ports 8

Bandwidth 300 kHz

Output voltage 0 V 13 V

Analog inputs

Feature Min Typical Max

Number of ports 6

Bandwidth 320 kHz

Input voltage −12 V 12 V

Serial ports

Feature Min Typical Max

Number of ports 3

Baudrate 1Mbps

Section C Gripper XML Configuration file 35

C Gripper XML Configuration file

Listing 11 shows the XML template used to configure the CMEG50ecGripper driver. This
file has a common part devices config t which provides information on the I2C and SPI Linux
devices, and also the Beaglebone Black GPIO signals to handle the hardware modules. The
gripper config t data structure has all the information required to configure each gripper (left
and right), and a boolean value specifies whether the configuration for each gripper should be
loaded or not.

Listing 11: Gripper XML configuration file template

<?xml v e r s i o n =”1.0”?>

<xsd : schema xmlns : xsd=”http ://www. w3 . org /2001/XMLSchema”>

<xsd : simpleType name=”p o r t t”>
<xsd : r e s t r i c t i o n base=”xsd : s t r i n g”>

<xsd : enumeration value=”GPIO0”/>
<xsd : enumeration value=”GPIO1”/>
<xsd : enumeration value=”GPIO2”/>
<xsd : enumeration value=”GPIO3”/>

</xsd : r e s t r i c t i o n >
</xsd : simpleType>

<xsd : simpleType name=”p o r t e x p t”>
<xsd : r e s t r i c t i o n base=”xsd : s t r i n g”>

<xsd : enumeration value=”PORTA”/>
<xsd : enumeration value=”PORTB”/>

</xsd : r e s t r i c t i o n >
</xsd : simpleType>

<xsd : simpleType name=” d i g i t a l p o t t ”>
<xsd : r e s t r i c t i o n base=”xsd : s t r i n g”>

<xsd : enumeration value=”DPOT1”/>
<xsd : enumeration value=”DPOT2”/>
<xsd : enumeration value=”DPOT3”/>
<xsd : enumeration value=”DPOT4”/>

</xsd : r e s t r i c t i o n >
</xsd : simpleType>

<xsd : simpleType name=”dac t”>
<xsd : r e s t r i c t i o n base=”xsd : s t r i n g”>

<xsd : enumeration value=”DAC A”/>
<xsd : enumeration value=”DAC B”/>
<xsd : enumeration value=”DAC C”/>
<xsd : enumeration value=”DAC D”/>
<xsd : enumeration value=”DAC E”/>
<xsd : enumeration value=”DAC F”/>
<xsd : enumeration value=”DAC G”/>
<xsd : enumeration value=”DAC H”/>

</xsd : r e s t r i c t i o n >

36 Staübli work-cell: Embedded controller

</xsd : simpleType>

<xsd : simpleType name=”adc t”>
<xsd : r e s t r i c t i o n base=”xsd : s t r i n g”>

<xsd : enumeration value=”ADC A0”/>
<xsd : enumeration value=”ADC A1”/>
<xsd : enumeration value=”ADC B0”/>
<xsd : enumeration value=”ADC B1”/>
<xsd : enumeration value=”ADC C0”/>
<xsd : enumeration value=”ADC C1”/>

</xsd : r e s t r i c t i o n >
</xsd : simpleType>

<xsd : complexType name=”g p i o t”>
<xsd : sequence>
<xsd : element name=”port ” type=”p o r t t”>
</xsd : element>
<xsd : element name=”pin ” type=”xsd : unsignedByte”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : complexType name=”g p i o e x p t”>
<xsd : sequence>
<xsd : element name=”port ” type=”p o r t e x p t”>
</xsd : element>
<xsd : element name=”pin ” type=”xsd : unsignedByte”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : complexType name=”pot t”>
<xsd : sequence>
<xsd : element name=”pot ” type=” d i g i t a l p o t t ”>
</xsd : element>
<xsd : element name=”dev i ce ” type=”xsd : unsignedByte”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : complexType name=”i 2 c d e v t”>
<xsd : sequence>
<xsd : element name=”dev i ce ” type=”xsd : s t r i n g”>
</xsd : element>
<xsd : element name=”address ” type=”xsd : unsignedByte”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : complexType name=”g r i p p e r c o n f i g t ”>

Section C Gripper XML Configuration file 37

<xsd : sequence>
<xsd : element name=”stopped ” type=”g p i o e x p t”>
</xsd : element>
<xsd : element name=”re f mot ion done ” type=”g p i o e x p t”>
</xsd : element>
<xsd : element name=”t a r g e t p o s r e a c h e d ” type=”g p i o e x p t”>
</xsd : element>
<xsd : element name=”r e s e t ” type=”g p i o e x p t”>
</xsd : element>
<xsd : element name=”re f mot ion ” type=”g p i o e x p t”>
</xsd : element>
<xsd : element name=”open” type=”g p i o e x p t”>
</xsd : element>
<xsd : element name=”c l o s e ” type=”g p i o e x p t”>
</xsd : element>
<xsd : element name=”speed pot ” type=”pot t”>
</xsd : element>
<xsd : element name=”f o r c e p o t ” type=”pot t”>
</xsd : element>
<xsd : element name=”p o s i t i o n p o t ” type=”pot t”>
</xsd : element>
<xsd : element name=”speed dac ” type=”dac t”>
</xsd : element>
<xsd : element name=”f o r c e d a c ” type=”dac t”>
</xsd : element>
<xsd : element name=”p o s i t i o n d a c ” type=”dac t”>
</xsd : element>
<xsd : element name=”cur r en t po s adc ” type=”adc t”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : complexType name=” d e v i c e s c o n f i g t ”>
<xsd : sequence>
<xsd : element name=”gpio exp ” type=” i 2 c d e v t”>
</xsd : element>
<xsd : element name=”g p i o e x p i n t a ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”g p i o e x p i n t b ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”d i g i t a l p o t 1 ” type=” i 2 c d e v t”>
</xsd : element>
<xsd : element name=”d i g i t a l p o t 2 ” type=” i 2 c d e v t”>
</xsd : element>
<xsd : element name=”dac” type=”xsd : s t r i n g”>
</xsd : element>
<xsd : element name=”adc” type=”xsd : s t r i n g”>
</xsd : element>
<xsd : element name=”a d c s t a r t ” type=”g p i o t”>
</xsd : element>

38 Staübli work-cell: Embedded controller

<xsd : element name=”adc busy ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”heartbeat ” type=”g p i o t”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : complexType name=”meg50ec bbb con f ig t”>
<xsd : sequence>
<xsd : element name=”d e v i c e s ” type=” d e v i c e s c o n f i g t ”>
</xsd : element>
<xsd : element name=” l e f t g r i p p e r e n a b l e d ” type=”xsd : boolean”>
</xsd : element>
<xsd : element name=” l e f t c o n f i g ” type=” g r i p p e r c o n f i g t ”>
</xsd : element>
<xsd : element name=”r i g h t g r i p p e r e n a b l e d ” type=”xsd : boolean”>
</xsd : element>
<xsd : element name=” r i g h t c o n f i g ” type=” g r i p p e r c o n f i g t ”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : element name=”meg50ec bbb conf ig ” type=”meg50ec bbb conf ig t”>
</xsd : element>

</xsd : schema>

D Monitor XML Configuration file

Listing 12 shows the XML template used to configure the CMonitor driver.

Listing 12: Monitor XML configuration file template

<?xml v e r s i on =”1.0”?>

<xsd : schema xmlns : xsd=”http ://www. w3 . org /2001/XMLSchema”>

<xsd : simpleType name=”p o r t t”>
<xsd : r e s t r i c t i o n base=”xsd : s t r i n g”>

<xsd : enumeration value=”GPIO0”/>
<xsd : enumeration value=”GPIO1”/>
<xsd : enumeration value=”GPIO2”/>
<xsd : enumeration value=”GPIO3”/>

</xsd : r e s t r i c t i o n >
</xsd : simpleType>

<xsd : complexType name=”g p i o t”>
<xsd : sequence>
<xsd : element name=”port ” type=”p o r t t”>
</xsd : element>

REFERENCES 39

<xsd : element name=”pin ” type=”xsd : unsignedByte”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : complexType name=”mon i to r bbb con f i g t”>
<xsd : sequence>
<xsd : element name=” c e l l c h a i n ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”c e l l e m e r g e n c y s t o p ” type=”g p i o t”>
</xsd : element>
<xsd : element name=” l i g h t c u r t a i n ” type=”g p i o t”>
</xsd : element>
<xsd : element name=” l e f t m e c h a n i c a l f u s e ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”r i g h t m e c h a n i c a l f u s e ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”operation mode ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”robot xy cha in ” type=”g p i o t”>
</xsd : element>
<xsd : element name=” l e f t s t a u b l i c h a i n ” type=”g p i o t”>
</xsd : element>
<xsd : element name=”r i g h t s t a u b l i c h a i n ” type=”g p i o t”>
</xsd : element>

</xsd : sequence>
</xsd : complexType>

<xsd : element name=”moni tor bbb con f ig ” type=”mon i to r bbb con f i g t”>
</xsd : element>

</xsd : schema>

References

[1] Device tree wiki page. http://www.devicetree.org/Main_Page, Janaury 2014.

[2] beagleboard.org. Beaglebone black manual. https://github.com/CircuitCo/

BeagleBone-Black/blob/master/BBB_SRM.pdf?raw=true, May 2015.

[3] beagleboard.org. Beaglebone black porduct webpage. http://beagleboard.org/BLACK,
March 2015.

[4] Frank Mori Hess and Frank Mori Hess. Linux comedi project webpage. http://www.

comedi.org/.

[5] IRI. Cgpio class reference documentation. http://devel.iri.upc.edu/docs/

labrobotica/drivers/meg50ec_gripper_bbb, March 2015.

[6] Sergi Hernandez Juan. Staübli work-cell: General description and operation. Technical
report, IRI, 2015.

40 REFERENCES

[7] ros.org. Main ros webpage. http://www.ros.org/.

[8] SCHUNK. Meg50ec gripper manual. http://www.schunk.com/schunk_files/

attachments/OM_AU_MEG50-EC__EN.pdf.

[9] Wikipedia. I2c wikipedia page. http://en.wikipedia.org/wiki/I%C2%B2C, March 2015.

[10] Wikipedia. Spi wikipedia page. http://en.wikipedia.org/wiki/Serial_Peripheral_

Interface_Bus, March 2015.

IRI reports

This report is in the series of IRI technical reports.
All IRI technical reports are available for download at the IRI website
http://www.iri.upc.edu.

