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Abstract 

Here we describe new families of multi-target directed ligands obtained by linking 

antioxidant cinnamic-related structures with N-benzylpiperidine (NBP) or N,N-

dibenzyl(N-methyl)amine (DBMA) fragments. Resulting hybrids, in addition to their 

antioxidant and neuroprotective properties against mitochondrial oxidative stress, are 

active at relevant molecular targets in Alzheimer’s disease, such as cholinesterases 

(hAChE and hBuChE) and monoamine oxidases (hMAO-A and hMAO-B). Hybrids 

derived from umbellic – NBP (8), caffeic – NBP (9), and ferulic – DBMA (12) 

displayed balanced biological profiles, with IC50s in the low-micromolar and 

submicromolar range for hChEs and hMAOs, and an antioxidant potency comparable to 

vitamin E. Moreover, the caffeic – NBP hybrid 9 is able to improve the differentiation 

of adult SGZ-derived neural stem cells into a neuronal phenotype in vitro. 
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1. Introduction 

The current therapeutic arsenal against Alzheimer’s disease (AD) is composed by 

three acetylcholinesterase (AChE) inhibitors (donepezil, rivastigmine, and galantamine) 

and one antagonist of the N-methyl-D-aspartate (NMDA) receptor, named memantine 

[1]. These marketed drugs modestly alleviate some symptoms, like memory 

impairment, but they do not stop neuronal degeneration or repair brain damage [2]. 

Nowadays it is widely accepted that neuronal loss in AD and other 

neurodegenerative diseases is the outcome of a wide variety of factors highly 

interconnected. In the core of such complex scenario, oxidative stress emerges as an 

important actor that could trigger many pathological cascades [3]. The oxidative stress 

hypothesis states that toxicity exerted by free radical species is in the basis of many 

abnormal signalling pathways that finally lead to neuronal death. Reactive entities are 

able to interact with lipids in cellular membranes, altering their composition, function 

and permeability. By-products from peroxidation of unsaturated fatty acids include 

highly reactive and toxic species such as 4-hydroxynonenal, malondialdehyde and 

acrolein, which seems to be especially increased in AD. Moreover, other vital 

biomolecules are affected by free radicals. Arachidonic acid and docosahexaenoic acid, 

two important molecules whose concentrations reach the highest levels in brain, are 

susceptible to be oxidized under oxidative conditions [4-6].  

Despite of the effective system of the human body to counteract the harmful effects 

of oxidative metabolism (e.g., superoxide dismutase, aldehyde dehydrogenase, and 

glutathione peroxidase), during aging the brain becomes particularly sensitive to 

oxidative damage due to its great requirement of oxygen, its high levels of unsaturated 

fatty acids and its relatively low levels of antioxidant enzymes [7]. 
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Several investigations have demonstrated a correlation between the severity of AD 

and the levels of free radicals. Moreover, the AD-hallmark beta-amyloid peptide (βA) 

and subsequent amyloid plaques deposition has been proven to induce the production of 

hydrogen peroxide by reduction of metals such as iron and copper [8]. Simultaneously, 

βA is able to stimulate glial cells, enhancing the production of an oxidative environment 

and pro-inflammatory molecules [9-11]. Pathologic Aβs are the consequence of an 

abnormal cleavage of the amyloid precursor protein by beta-site amyloid precursor 

protein cleaving enzyme 1 (BACE-1) and several clinical studies have demonstrated a 

correlation between low levels of BACE-1 and an effective protection against AD and 

cognitive decline in the elderly [12]. Thus, in the last years BACE-1 inhibitors have 

been developed as potential drugs for AD [13]. 

Monoamine oxidases (MAO) are metabolic enzymes whose levels are increased in 

neurodegenerative diseases, such as AD and Parkinson disease. These high levels of 

MAOs correlate with the exacerbated production of reactive oxygen species (ROS), 

which are responsible of the toxic environment characteristic of neurodegeneration [14]. 

Consequently, MAO inhibitors have been explored as a complementary alternative in 

the search for new drugs for AD treatment, both to reduce ROS in the case of MAO-B, 

and to treat concomitant depression of AD patients, in the case of MAO-A [15]. 

Recently, neurogenic agents have emerged as innovative arms to combat AD and 

other neurological diseases [16]. The adult brain preserves a vestigial neurogenic 

activity in two stem-cells niches: the subventricular zone (SVZ) of the lateral ventricle 

and the subgranular zone (SGZ) in the hippocampus. Neurogenesis has been related to 

auto-repair processes in the brain and different molecular targets and signalling 

pathways involved in such processes have been identified. As a consequence, different 

drugs have been tested in neuronal plasticity [17]. For instance, it has been 
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demonstrated that several antioxidants promote the transition of pluripotent stem-cells 

to a fully reprogrammed phenotype and increase the number of connections between 

neurons [18,19]  

According to the oxidative stress hypothesis, antioxidants could play an important 

role in prevention and therapy of AD. Among the most investigated natural 

antioxidants, there are some derivatives of the cinnamic acid (e.g., ferulic, caffeic, p-

coumaric and umbellic acids) and natural molecules containing its structure, such as 

curcumin derivatives [20-25] (Figure 1). 

 

 

 

Figure 1. Structures of natural antioxidants containing the cinnamic acid structure (p-

coumaric, caffeic, umbellic, and ferulic acids, curcumin), donepezil, AP2238, and new 

cinnamic – N-benzylpiperidine (NBP) (1-9) and cinnamic – N,N-dibenzyl(N-

methyl)amine (DBMA) hybrids (10-17). 
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However, antioxidant molecules per se might not be sufficient to treat such highly 

complex pathologies like AD, as shown by the ambiguous results obtained from several 

clinical trials with this kind of compounds [26]. In this sense, multi-target directed 

ligands (MTLs) that combine antioxidant properties and other activities in additional 

targets of interest for AD (e.g, AChE, BACE, MAO) may greatly improve the treatment 

of the disease. In the last years, several MTLs have been developed [27,28], such as 

ladostigil [(R)-3-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-inden-5-yl 

ethyl(methyl)carbamate] [29]. This dual AChE-MAO inhibitor enhances the expression 

of neurotrophic factors and reverses neuronal damage by promoting endogenous 

neurogenic processes. 

Continuing with our interest in AD-directed drugs, which some of them displayed 

interesting neurogenic properties [30-35], in this work we planned to obtain new 

cinnamic-based antioxidants endowed with other fragments with AChE and MAO 

inhibition. For this purpose, we selected N-benzylpiperidine (NBP) and N,N-

dibenzyl(N-methyl)amine (DBMA) fragments, which are present in the well-known 

AChE inhibitors donepezil and 3-(4-((benzyl(methyl)amino)methyl)phenyl)-6,7-

dimethoxy-2H-chromen-2-one (AP2238), respectively [36-38] (Figure 1). 

In this work, we describe the synthesis of new cinnamic – N-benzylpiperidine (1-9) 

and cinnamic – N,N-dibenzyl(N-methyl)amine (10-17) hybrids and their biological 

evaluation, which includes inhibition of human cholinesterases (hChEs) and 

monoamino oxidases (MAOs), a study of their oxygen radical absorbance capacity 

(ORAC) and their neuroprotective effects against death provoked by mitochondrial 

oxidative stress in the human neuroblastoma cell line SH-SY5Y. Finally, we explored 

the neurogenic effects of a selected hybrid using primary SGZ stem-cells from adult 

mice.   
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2. Results and discussion 

Synthesis of hybrids 1-17. Scheme 1 illustrates the synthetic routes to obtain cinnamic-

NBP (1-9) and cinnamic-DBMA hybrids (10-17) from commercially available 

cinnamic-derived acids and amines carrying the NBP or the DBMA fragments. 2-(1-

Benzylpiperidin-4-yl)ethan-1-amine is commercially available, whereas 3- and 4-

((benzyl(methyl)amino)methyl)aniline were obtained as previously described (see 

Supplementary Information for further details). In a microwave oven operating at 120 

ºC, activation of the corresponding acid was performed with 1,1'-carbonyldiimidazole 

(CDI) in THF during 7 minutes and the subsequent reaction with the proper amine 

during 10 or 40 minutes depending on its character, aliphatic or aromatic. Derivatives 1-

5 and 10-15 were isolated in yields comprised between 60 and 95% (Scheme 1).  

Deprotection of methoxy groups was carried out under mild conditions by 

overnight treatment with boron tribromide (BBr3) at room temperature, giving hybrids 

6-9,16,17 in moderate to excellent yields (60-97%). It is worth mentioning that 

increased yields were obtained when we used 1 equiv of BBr3 per ether group to be 

cleavage, plus an additional equiv per each heteroatom included in the molecule, due to 

the well-known complexation tendency of boron with free electron pairs, which 

decreases the effective amount of reactive BBr3 [39,40].  

All cinnamic-based hybrids (1-17) were purified using an automatic 

chromatographic apparatus (IsoleraOne, Biotage) in silica gel cartridges and were 

characterized by their analytical (HPLC, HRMS) and spectroscopic data (
1
H NMR, 

13
C 

NMR). Complete NMR assignment of their hydrogen and carbon atoms (see 

Experimental Part for details) were made by 
1
H – 

13
C two-dimensional diagrams, 

mainly HSQC (heteronuclear single quantum correlation) and HMBC (heteronuclear 

multiple bond correlation).  
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Scheme 1. Reagents and conditions: (a) CDI, THF, MW, 7 min, 120 °C; (b) 2-(1-

benzylpiperidin-4-yl)ethan-1-amine, MW, 10 min, 120 °C; (c) 3- or 4-

((benzyl(methyl)amino)methyl)aniline, MW, 40 min, 120 °C; (d) BBr3, THF, rt, 

overnight. 

 

 

Biological Evaluation. The preliminary biological evaluation of new cinnamic-based 

hybrids comprised: (i) Inhibition of recombinant human cholinesterases (hAChE and 

hBuChE), using donepezil as reference and following the spectrophotometric method 

described by Ellman et al. [41]. (ii) Inhibition of recombinant human monoamine 

oxidases (hMAO-A and hMAO-B), expressed in baculovirus infected BTI insect cells, 

using three known MAO inhibitors as references (selegiline, iproniazid, and 

moclobemide) and following a described method [42]. (iii) Assessment of the radical 

scavenger ability, using trolox (an analogue of vitamin E) as internal standard and 
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following the oxygen radical absorbance capacity method (ORAC), as previously 

described [43,44]. Results are gathered in Table 1. 

Regarding hAChE and hBuChE, the NBP series displayed a moderate inhibition of 

both isoforms, with IC50 in the micro- and sub-micromolar range, and in general, with a 

slight preference for hAChE. Methoxy derivatives showed just a little better inhibition 

than their hydroxy counterparts. The best hChEs inhibitor of the NBP series is 5 that 

unexpectedly exhibited the inversed preference than the rest of its congeners, with an 

IC50 = 76 nM towards hBuChE. Replacement of the NBP part with a DBMA fragment 

maintained the hAChE inhibition in the low-micromolar range, but reduced drastically 

the potency towards hBuChE. Thus, the cinnamic – DBMA hybrids showed a better 

hAChE-selectivity than the cinnamic – NBP series. 

In relation to hMAO-A and hMAO-B inhibition, both series displayed almost the 

same pattern. Methoxy derivatives were found to be inactive and only hybrids bearing a 

p-hydroxy group in the cinnamic fragment showed a meaningful inhibitory activity in 

the micromolar range, with a slight preference for the hMAO-A isoform. In contrast, 

when the hydroxy group was located at position meta- the resulting derivative was 

almost inactive, as it can see in the couple 17 (7-OH, active) and 16 (6-OH, not active). 

Maintaining the p-hydroxy group, introduction of a second hydroxy functionality in 

position ortho- or meta- increased the inhibitory potency towards both isoforms. In fact, 

8 (5,7-diOH) and 9 (6,7-diOH) were the most potent inhibitors of hMAO-A and hMAO-

B described in this work, displaying one-digit-micromolar IC50s values for both 

enzymes. These inhibitory activities are comparable with iproniazide, a drug that has 

been clinically used for treating depression in humans [45] and that was employed in 

our MAO experiments for comparative purposes (Table 1). 



11 

Concerning ORAC assay, methoxy derivatives were almost inactive. On the 

contrary, hydroxy substituted hybrids exhibited good antioxidant capacity in both series 

with ORAC values between 1.0 and 3.2 trolox equivalents. This means they were up to 

3.2-fold more potent than trolox, the aromatic part of vitamin E and the responsible for 

the radical scavenger capacity. Thus, cinnamic-based hybrids bearing one or two 

hydroxy groups could be considered as good antioxidant agents. In contrast with 

hMAOs in which a p-methoxy group is essential to find inhibition, for the radical 

capture activity, cinnamic hybrids bearing one m-hydroxy group were superior. Hybrids 

6 and 16 (6-OH) exhibited the best results with ORAC values of 2.2 and 3.2 in the NBP 

and DBMA series, respectively. Simultaneously, they inhibited both hChEs in the low-

micromolar range, but were unable to inhibit any isoform of hMAO. Finally, hybrids 

bearing one hydroxy group in the p-cinnamic position or two in o,p- or m,p-positions 

showed also good antioxidant activities, ranging from the same than trolox to 1.8-fold 

more potent (Table 1).  

  



12 

Table 1. Inhibition of human cholinesterases (hAChE and hBuChE) and monoamine 

oxidases (hMAO-A and hMAO-B) (IC50, µM); oxygen radical absorbance capacity 

(ORAC, trolox equiv.) a 

Compd. hAChE
 

hBuChE
 

MAO-A
 

MAO-B ORAC 

1 0.26±0.04 0.69±0.10 >100 45-55%
b
 0.4±0.04 

2 0.75±0.10 0.98±0.12 45-55%
b
 >100 n.a. 

3 0.49±0.06 0.76±0.20 45-55%
b
 45-55%

b
 n.a. 

4 0.63±0.08 4.39±0.86 >100 >100 n.a. 

5 0.39±0.05 0.076±0.01 11.4±0.7 13.1±0.8 1.8±0.2 

6 1.12±0.10 1.02±0.21 45-55%
b
 >100 2.2±0.1 

7 1.01±0.08 0.93±0.16 57.5±3.8 >100 1.7±0.1 

8 0.99±0.10 0.26±0.08 5.5±0.3 8.3±0.5 1.3±0.6 

9 1.75±0.12 0.69±0.12 3.5±0.2 6.0±0.4 1.0±0.1 

10 8.73±0.92 >10 >100 >100 0.5±0.1 

11 3.98±0.29 >10 n.d. n.d. 0.4±0.08 

12 5.99±0.49 5.89±0.48 4.5±0.3 7.7± 0.5 1.4±0.11 

13 33%
c
 45%

c
 n.d. n.d. 1.5±0.18 

14 4.67±0.31 35%
c
 >100 >100 0.6±0.06 

15 5.76±0.40 25%
c
 >100 >100 n.a. 

16 3.49±0.31 46%
c
 45-55%

c
 45-55%

c
 3.2±0.2 

17 46%
c
 30%

c
 29.7 ± 1.9 29.0 ±1.9 1.8±0.14 

Donepezil 0.010±0.002 2.50±0.07 n.d. n.d. n.d. 

AP2238 0.044
d
 48.9

d
 n.d. n.d. n.d. 

R-(-)-deprenyl n.d. n.d. 68.7 ± 4.2 0.017 ± 0.0019 n.d. 

Iproniazide n.d. n.d. 6.6 ± 0.8 7.5 ± 0.4 n.d. 

Moclobemide n.d. n.d. 361 ± 19 >1000 n.d. 

Trolox n.d. n.d. n.d. n.d. 1.0 

 

a
Results are expressed as mean ± SEM (n =5). 

b 
Inhibition percentage at 100 µM 

(highest concentration tested). 
c
Inhibition percentage at 10 µM. 

d
Taken from ref. 

[38] n.a.: not active at 10 µM. n.d.: not determined 
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A joint analysis of the above results points out that three hybrids belonging to the 

NBP series showed interesting multitarget profiles. The ferulic-based compound 5 

showed a potent antioxidant capacity of 1.8 trolox equivalents, nanomolar and sub-

micromolar inhibition of hBuChE and hAChE (76 nM and 0.39 µM, respectively), and 

moderate non-selective inhibitory activity towards hMAO-A and hMAO-B in the 

micromolar range (11 μM and 13 μM, respectively). Interestingly, dihydroxy substituted 

hybrids derived from umbellic acid 8 (5,7-diOH) and caffeic acid 9 (6,7-diOH) 

exhibited more balanced profiles, with IC50s in the one-digit-micromolar and sub-

micromolar range for enzymatic targets (hChEs and hMAOs) and an antioxidant 

potency comparable to vitamin E. Similar balanced multifunctional profile was found in 

the ferulic – DBMA hybrid 12, which showed one-digit-micromolar IC50’s in all tested 

targets (hAChE: 6.0 μM; hBuChE: 5.9 μM; hMAO-A: 4.5 μM; hMAO-B: 7.7 μM) and 

a radical scavenger activity 1.5-fold more potent than vitamin E. 

Moreover, cinnamic – DBP and cinnamic – DBMA hybrids were tested as 

inhibitors of the human recombinant beta-secretase (hBACE-1), using a fluorescence 

resonance energy transfer (FRET)-based assay as previously described [40,46]. 

Cinnamic – DBMA hybrids 12-15 were capable to inhibit poorly this enzyme with 

percentages around 23-33% at 10 μM (data not shown). 

To evaluate the behaviour of new hybrids at the cellular level, their neuroprotective 

capacity against mitochondrial oxidative stress were tested, using the human 

neuroblastoma cell line SH-SY5Y and a toxic insult composed by the mixture of 

rotenone and oligomycin A at concentrations of 30 and 10 μM, respectively. The 

combination of such toxics blocks complexes I and V of the mitochondrial electronic 

chain, generating a great amount of free radicals that finally provoke mitochondrial 

dysfunction and cell death [47,48]. Therefore, this assay is considered a good model of 
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mitochondrial oxidative stress. Compounds were co-incubated at four concentrations 

(0.1, 0.3, 1, and 3 μM) with a mixture of rotenone and oligomycin A, and maintained 

for 24 h period in cell culture. Afterwards, the percentage of cell viability was measured 

as MTT reduction [49]. The best antioxidant hybrid 16 (ORAC = 3.2 trolox equiv), the 

most potent hChE inhibitor 5 (IC50 = 76 nM) and ferulic-DBMA hybrid 12 with a well-

balanced target profile in the micromolar range (hAChE: 6.0 μM; hBuChE: 5.9 μM; 

hMAO-A: 4.5 μM; hMAO-B: 7.7 μM) were chosen for this neuroprotective assay. 

Melatonin was used as a positive reference [32], and results are shown in Figure 2. 

Tested compounds protected around 30-35% of cells at a concentration of 0.3 μM, 

although a dose-dependent relationship was not observed in these experiments. 

Nevertheless, in any case they did not potentiate the toxicity exerted by 

rotenone/oligomycin A, which could be assumed as a lack of toxicity of our newly 

obtained hybrids. 
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Figure 2. Effect of compounds 5 (A), 12 (B), and 16 (C) at 0.1, 0.3, 1.0, and 3.0 µM on 

cell death induced by the combination of rotenone (30 µM) and oligomycin A (10 µM). 

Melatonin (10 nM) is used as positive control in all experiments. Cell viability was 

measured as MTT reduction and data were normalized as % of control. Data are 

expressed as the means ± SEM of triplicate of at least three different cultures. All 

compounds were assayed at increasing concentrations (0.1-3 µM). ***P< 0.001, **P< 

0.01, *P<0.05, with respect to control group. Comparisons between drugs and control 

group were performed by one-way ANOVA followed by the Newman–Keuls post-hoc 

test. 
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Finally, caffeic – NBP hybrid 9 with a balanced multifunctional profile in hChEs, 

hMAOs and ORAC (hAChE: 1.75 μM; hBuChE: 0.69 μM; hMAO-A: 3.5 μM; hMAO-

B: 6.0 μM; ORAC: 1.0 trolox equiv), was chosen to evaluate the ability of new 

cinnamic-based hybrids in promoting the differentiation of neural stem-cells towards a 

neuronal phenotype. To that purpose, neural stem cells (NSC) isolated from one of the 

main neurogenic niches in the adult, the subgranular zone (SGZ) of the dentate gyrus, 

were used as described in the experimental section. NSC were grown as neurospheres in 

the presence of hybrid 9 (10 µM) during 7 days and later on allowed for 3 days to 

differentiate when adhered on a substrate in the presence of serum and compound. At 

this point, immunocytochemical analysis was performed to evaluate the ability of tested 

compound to promote neuronal differentiation. Our results summarized in figure 3 

showed that the new caffeic-based hybrid 9 clearly induced the differentiation of adult 

SGZ-derived NSC into a neuronal phenotype. After treatment with compound 9 a 

significant increase in the number of β-III-tubulin (early neurogenesis marker) and 

MAP-2 (microtubule-associated protein expressed in mature neurons) expressing cells 

in the neurospheres in shown. These results suggest that the new caffeic – NBP hybrid 9 

has the ability to induce the differentiation of adult neural stem cells into neurons, 

promoting its maturation in vitro and showing a great neurogenic effect.  
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Figure 3. Caffeic-based hybrid 9 promotes neuronal differentiation in vitro. Adult 

murine neural stem cells isolated from the neurogenic niche of the SGZ of the 

hippocampus were grown as neurospheres (NS) during 7 days in the presence of 

compound 9 (10 µM). Then, NS were allowed to differentiate on a substrate for another 

3 days in the presence of tested compound. Immunocytochemical analysis shows the 

expression of two well-known neuronal markers: β-III-tubulin (TuJ clone; green) and 

MAP-2 (red) inside the NS (inner part) and in the distal area (outer part). DAPI was 

used for nuclear staining. Scale bar, 200µm. 
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3. Conclusions 

The combination of antioxidant cinnamic-related structures with NBP and DBMA 

fragments gave new hybrids with interesting in vitro biological activities. At micro- and 

sub-micromolar range they inhibited human AChE, BuChE, MAO-A, and MAO-B, and 

showed antioxidant, neuroprotective, and neurogenic properties. In relation to hChEs 

inhibition, NBP-based hybrids were more potent than DBMA derivatives and methoxy 

derivatives showed better inhibition than their hydroxy counterparts. Regarding hMAOs 

the presence of a p-hydroxy group in the cinnamic fragment was essential for getting 

inhibition, and introduction of a second hydroxy functionality in position ortho- or 

meta- increased the inhibitory potency towards both hMAO-A and hMAO-B shifting 

IC50s to one-digit-micromolar values. For the radical capture activity, both NBP and 

DBMA hybrids bearing one m-hydroxy group in the cinnamic fragment displayed better 

ORAC values than methoxy derivatives and even, better than diphenolic derivatives. In 

addition, a selection of hybrids protected the human neuroblastoma cell line SH-SY5Y 

against damage provoked by mitochondrial free radicals. 

Among the different molecules investigated, we found that hybrids derived from 

umbellic – NBP (8), caffeic – NBP (9), and ferulic – DBMA (12) displayed balanced 

biological profiles, with IC50s in the low-micromolar and submicromolar range for 

hChEs and hMAOs, and an antioxidant potency comparable to vitamin E. Last but not 

least, the caffeic – NBP hybrid 9 stimulated the differentiation of adult SGZ-derived 

neural stem cells into a neuronal phenotype, showing a great neurogenic effect.  

Thus, it is expected that these new cinnamic-based hybrids could increase patient 

memory, decrease free radical levels, protect neurons from mitochondrial oxidative 

stress, and promote brain auto-repair processes. This biological profile highlights these 

new cinnamic-based hybrids as useful multi-target prototypes in the search for new 
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protective and regenerative drugs for the potential treatment of AD and other 

neurodegenerative diseases. 
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4. Experimental 

4.1. Chemistry. General Methods 

Reagents and solvents were purchased from common commercial suppliers, mostly 

Sigma-Aldrich, and were used without further purification. Analytical thin-layer 

chromatography (TLC) was carried out using Merck silica gel 60 F254 plates, and the 

compounds were visualized under UV-light ( = 254 or 365 nm) and/or stained with 

phosphomolybdic acid 10% wt. in ethanol. Automatized chromatographic separation 

was carried out in an IsoleraOne (Biotage) equipment, using different silica Biotage ZIP 

KP-Sil 50μ cartridges. High-performance liquid chromatography was performed on a 

Waters analytical HPLC-MS (Alliance Watters 2690) equipped with a SunFire C18 4.6 x 

50 mm column, a UV photodiode array detector ( = 214–274 nm) and quadrupole 

mass spectrometer (Micromass ZQ). HPLC analyses were used to confirm the purity of 

all compounds (≥ 95%) and were performed on Waters 6000 equipment, at a flow rate 

of 1.0 mL/min, with a UV photodiode array detector ( = 214–274 nm), and using a 

Delta Pak C18
 
5 µm, 300 Å column. The elution was performed in a gradient mixture of 

MeCN/water. 

Melting points (uncorrected) were determined in a MP70 apparatus (Mettler 

Toledo). 
1
H NMR and 

13
C NMR spectra were recorded in CDCl3 or CD3OD solutions 

using the following NMR spectrometers: Varian INOVA-300, Varian INOVA-400, 

Varian Mercury-400 or Varian Unity-500. Chemical shifts are reported in δ scale (ppm) 

relative to internal Me4Si. J values are given in hertz, and spin multiplicities are 

expressed as s (singlet), broad signal (bs), d (doublet), t (triplet), q (quartet), or m 

(multiplet). High Resolution Mass Spectra (HRMS) were obtained by using an Agilent 

1200 Series LC system (equipped with a binary pump, an autosampler, and a column 

oven) coupled to a 6520 quadrupole-time of flight (QTOF) mass spectrometer. 
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Acetonitrile:water (75:25, v:v) was used as mobile phase at 0.2 mL min-1. The 

ionization source was an ESI interface working in the positive-ion mode. The 

electrospray voltage was set at 4.5 kV, the fragmentor voltage at 150 V and the drying 

gas temperature at 300 °C. Nitrogen (99.5% purity) was used as nebulizer (207 kPa) and 

drying gas (6 L min
−1

). 

 

4.2. General procedure for the synthesis of cinnamic-based hybrids 1-5 and 10-13.  

The corresponding acid (1 mmol) and CDI (1.15 mmol) were mixed into a 

microwave tube under nitrogen atmosphere. The tube was sealed up and 3 mL of 

anhydrous THF were added using a syringe to dissolve the mixture (CO2↑). This 

solution was heated into a microwave reactor at 120 ⁰C during 7 min to complete the 

acid activation. Afterward, a solution of 1.2 mmol of the corresponding amine in 2 mL 

of THF was added with a syringe into the tube; this mixture was heated at 120 ⁰C 

during 10 minutes for NBP derivatives and 40 min for DBMA hybrids. After solvent 

evaporation under reduced pressure, the crude was re-dissolved in 25 mL of EtOAc and 

washed with water (3x5 mL) and brine (3x5 mL), dried over magnesium sulfate and 

concentrated under reduced pressure. The crude was purified by column 

chromatography using EtOAc:MeOH (9:1) or hexane/EtOAc (0→70%) as eluent. 

 

4.2.1. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(3,4-dimethoxyphenyl)acrylamide (1) 

From 3,4-dimethoxy cinnamic acid (0.100 g, 0.48 mmol) and 2-(1-benzylpiperidin-

4-yl)ethan-1-amine (0.126 g, 0.58 mmol), hybrid 1 was obtained (0.170 g, 87%) as a 

light yellow solid of mp: 108.1-110.5 ºC. 
1
H NMR (500 MHz, MeOD) δ 7.46 (d, J = 

15.7 Hz, 1H, H3), 7.32 (s, 2H, Hm), 7.31 (s, 2H, Ho), 7.29 – 7.24 (m, 1H, Hp), 7.14 (d, J 
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= 2.0 Hz, 1H, H5), 7.12 (ddd, J = 8.2, 2.0, 0.5 Hz, 1H, H9), 6.96 (d, J = 8.2 Hz, 1H, H8), 

6.47 (d, J = 15.7 Hz, 1H, H2), 3.86 (s, 3H, H71), 3.85 (s, 3H, H61), 3.51 (s, 2H, H), 3.35 

– 3.32 (m, 2H, H), 2.90 (dt, J = 12.1, 3.5 Hz, 2H, H2’eq), 2.05 – 1.99 (m, 2H, H2’ax), 

1.76 – 1.71 (m, 2H, H3’eq), 1.50 (dt, J = 7.9, 6.6 Hz, 2H, Hβ), 1.37 (dddd, J = 16.4, 9.7, 

6.4, 3.5 Hz, 1H, H4’), 1.28 (qd, J = 12.1, 3.5 Hz, 2H, H3’ax). 
13

C NMR (126 MHz, 

MeOD) δ 168.86 (C1), 152.20 (C6), 150.70 (C7), 141.56 (C3), 138.19 (Ci), 130.92 (Co), 

129.36 (C4), 129.26 (Cm), 128.43 (Cp), 123.16 (C9), 119.67 (C2), 112.71 (C8), 111.31 

(C5), 64.34 (C), 56.42 (C61), 56.40 (C71), 54.64 (C2’), 38.10 (C), 37.10 (Cβ), 34.44 

(C4’), 32.72 (C3’). HRMS [ESI+] m/z =408.2407 [M]
 +

, Calcd for [C25H32N2O3]
 +

 

408.2413. HPLC purity 99%. 

 

4.2.2. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(3-methoxyphenyl)acrylamide (2) 

From 3-methoxy cinnamic acid (0.250 g, 1.40 mmol) and 2-(1-benzylpiperidin-4-

yl)ethan-1-amine (0.360 g, 1.61 mmol) derivative 2 was obtained (0.430 g, 81%) as a 

white amorphous solid of mp: 68-70 ºC. 
1
H NMR (300 MHz, MeOD) δ 7.48 (d, J = 

15.8 Hz, 1H, H3), 7.39 – 7.21 (m, 6H, Ph, H7), 7.18 – 7.06 (m, 2H, H5,9), 6.94 (ddd, J = 

8.2, 2.6, 1.0 Hz, 1H, H8), 6.58 (d, J = 15.8 Hz, 1H, H2), 3.82 (s, 3H, H61), 3.51 (s, 2H, 

H), 3.38 – 3.32 (m, 2H, H), 2.90 (d, J = 11.4 Hz, 2H2’eq), 2.02 (t, J = 11.3 Hz, 2H, 

H2’ax), 1.74 (d, J = 12.2 Hz, 2H, H3’eq), 1.51 (q, J = 6.8 Hz, 2H, Hβ), 1.42 – 1.19 (m, 3H, 

H3’ax, 4’). 
13

C NMR (75 MHz, MeOD) δ 168.47 (C1), 161.53 (C6), 141.51 (C3), 138.28 

(Ci), 137.68 (C4), 130.92 (C7), 130.90 (Co), 129.25 (Cm), 128.40 (Cp), 122.16 (C2), 

121.32 (C9), 116.48 (C8), 113.83 (C5), 64.37 (C), 55.73 (C61), 54.66 (C2’), 38.13 (C), 

37.06 (Cβ), 34.46 (C4’), 32.75 (C3’). HRMS [ESI+] m/z =378.2304 [M]
 +

, Calcd for 

[C24H30N2O2]
 +

 378.2307. HPLC purity 100%. 



23 

 

4.2.3. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(4-methoxyphenyl)acrylamide (3) 

From 4-methoxy cinnamic acid (0.250 g, 1.40 mmol) and 2-(1-benzylpiperidin-4-

yl)ethan-1-amine (0.360 g, 1.70 mmol) derivative 3 was obtained (0.424 g, 77%) as a 

white amorphous solid of mp: 103-105 ºC. 
1
H NMR (500 MHz, MeOD) δ 7.49 (d, J = 

8.5 Hz, 2H, H5), 7.45 (d, J = 15.7 Hz, 1H, H3), 7.34 – 7.28 (m, 4H, Ho, m), 7.28 – 7.23 

(m, 1H, Hp), 6.93 (d, J = 8.5 Hz, 2H, H6), 6.44 (d, J = 15.7 Hz, 1H, H2), 3.81 (s, 3H, 

H71), 3.50 (s, 2H, H), 3.32 – 3.30 (m, 2H, H, H), 2.89 (dt, J = 12.2, 3.5 Hz, 2H, H2’eq), 

2.01 (td, J = 11.8, 2.4 Hz, 2H, H2’ax), 1.73 (d, J = 12.3 Hz, 2H, H3’eq), 1.50 (q, J = 6.9 

Hz, 2H, Hβ), 1.37 (dtq, J = 13.9, 6.9, 3.5 Hz, 1H, H4’), 1.27 (qd, J = 12.2, 3.5 Hz, 2H, 

H3’ax). 
13

C NMR (126 MHz, MeOD) δ 168.95 (C1), 162.56 (C7), 141.34 (C5), 138.25 

(Ci), 130.92 (Co), 130.37 (C5), 129.25 (Cm), 128.87 (C4), 128.41 (Cp), 119.30 (C2), 

115.33 (C6), 64.37 (C), 55.82 (C71), 54.65 (C2’), 38.10 (C), 37.10 (Cβ), 34.45 (C4’), 

32.74 (C3’). HRMS [ESI+] m/z =378.2304 [M]
 +

, Calcd for [C24H30N2O2]
 +

 378.2307. 

HPLC purity 100%. 

 

4.2.4. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(2,4-dimethoxyphenyl)acrylamide (4)  

From 2,4-dimethoxy cinnamic acid (0.300 g, 1.44 mmol) and 2-(1-benzylpiperidin-

4-yl)ethan-1-amine (0.370 g, 1.73 mmol) hybrid 4 was obtained (0.517 g, 88%) as a 

beige solid of mp: 90-93 ºC. 
1
H NMR (300 MHz, MeOD) δ 7.74 (d, J = 15.8 Hz, 1H, 

H3), 7.44 (d, J = 8.2 Hz, 1H, H9), 7.36 – 7.28 (m, 4H, Ho, m), 7.29 – 7.18 (m, 1H, Hp), 

6.62 – 6.48 (m, 3H, H2, H6, H8), 3.87 (s, 3H, H51), 3.82 (s, 3H, H71) 3.49 (s, 2H, H), 

3.37 – 3.26 (m, 2H, H), 2.97 – 2.78 (m, 2H, H2’eq), 2.00 (t, J = 11.2 Hz, 2H, H2’ax), 1.80 

– 1.62 (m, 2.5 Hz, 2H, H3’eq), 1.49 (q, J = 6.9 Hz, 2H, Hβ), 1.39 - 1.19 (m, 3H, H4’, 
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H3’ax). 
13

C NMR (75 MHz, MeOD) δ 169.64 (C1), 163.96 (C7), 161.03 (C5), 138.27(Ci), 

136.98 (C3), 130.91 (Co), 130.83 (C9), 129.24 (Cm), 128.39 (Cp), 119.53 (C2), 117.83 

(C4), 106.69 (C6), 99.23 (C8), 64.37 (C), 56.01 (C51), 55.91(C71), 54.66 (C2’), 38.08 

(C), 37.13 (Cβ), 34.44 (C4’), 32.74 (C3’). HRMS [ESI+] m/z =408.2416 [M]
 +

, Calcd for 

[C25H32N2O3]
 +

 408.2413. HPLC purity 99%. 

 

4.2.5. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(4-hydroxy-3-

methoxyphenyl)acrylamide (5) 

From ferulic acid (0.100 g, 0.50 mmol) and 2-(1-benzylpiperidin-4-yl)ethan-1-

amine (0.135 g, 0.6 mmol) ferulic – NBP hybrid 5 was obtained (0.193 g, 95%), as a 

bright yellow solid of mp: 83.1-84.5 ºC. 
1
H NMR (500 MHz, MeOD) δ 7.43 (d, J = 15.7 

Hz, 1H, H3), 7.35 – 7.31 (m, 4H, Ho, m), 7.30 – 7.24 (m, 1H, Hp), 7.12 (d, J = 2.0 Hz, 

1H, H5), 7.03 (dd, J = 8.2, 2.0 Hz, 1H, H9), 6.80 (d, J = 8.2 Hz, 1H, H8), 6.42 (d, J = 

15.7 Hz, 1H, H2), 3.89 (s, 3H, H61), 3.54 (s, 2H, H), 3.35 – 3.33 (m, 2H, H), 2.92 (dt, J 

= 11.9, 3.5 Hz, 2H, H2’eq), 2.05 (td, J = 11.9, 2.5 Hz, 2H, H2’ax), 1.75 (dt, J = 13.0, 2.5 

Hz, 2H, H3’eq), 1.51 (q, J = 7.0 Hz, 2H, Hβ), 1.39 (dtt, J = 13.5, 6.6, 3.5 Hz, 1H, H4’), 

1.30 (td, J = 12.5, 3.5 Hz, 2H, H3’ax). 
13

C NMR (126 MHz, MeOD) δ 169.11 (C1), 

149.90 (C7), 149.30 (C6), 141.97 (C3), 138.01 (Ci), 130.97 (Co), 129.29 (Cm), 128.51 

(Cp), 128.23 (C4), 123.16 (C9), 118.70 (C2), 116.49 (C8), 111.52 (C5), 64.29 (C), 56.36 

(C61), 54.63 (C2’), 38.06 (C), 37.10 (Cβ), 34.39 (C4’), 32.67 (C3’). HRMS [ESI+] m/z 

=394.2260 [M]
 +

, Calcd for [C24H30N2O3]
 +

 394.2256. HPLC purity 99%. 

 

4.2.6. (E)-N-(4-((Benzyl(methyl)amino)methyl)phenyl)-3-(2,4-

dimethoxyphenyl)acrylamide (10) 



25 

Reaction of 2,4-dimethoxy cinnamic acid (0.150 g, 0.72 mmol) and 4-

((benzyl(methyl)amino)methyl)aniline (0.195 g, 0.86 mmol) yielded hybrid 10 (0.180 g, 

60%) as a white amorphous solid of mp: 105-107 ⁰C. 
1
H NMR (300 MHz, MeOD) δ 

7.90 (d, J = 15.8 Hz, 1H, H3), 7.65 (d, J = 8.2 Hz, 2H, H2’), 7.51 (d, J = 8.7 Hz, 1H, H9), 

7.35 – 7.23 (m, 7H, Ph, H3’), 6.77 (d, J = 15.7 Hz, 1H, H2), 6.62 – 6.49 (m, 2H, H8,6), 

3.91 (s, 3H, H51), 3.85 (s, 3H, H71), 3.52 (s, 2H, Hβ), 3.50 (s, 2H, H), 2.18 (s, 3H, H). 

13
C NMR (75 MHz, MeOD) δ 167.83 (C1), 164.21 (C7), 161.26 (C5), 139.69 (Ci), 

139.33 (C1’), 138.31 (C3), 135.31 (C4’), 131.19 (C9), 130.84 (C3’), 130.40 (Co), 129.30 

(Cm), 128.25 (Cp), 121.05 (C2’), 119.82 (C2), 117.83 (C4), 106.81 (C6), 99.27 (C8), 62.61 

(Cβ), 62.21 (C), 56.05 (C51), 55.93 (C71), 42.31 (C). HRMS [ESI+] m/z = 416.2099 

[M]
 +

, Calcd for [C26H28N2O3]
 +

 416.2100. HPLC purity 100%. 

 

4.2.7. (E)-N-(4-((Benzyl(methyl)amino)methyl)phenyl)-3-(3,4-

dimethoxyphenyl)acrylamide (11)  

3,4-Dimethoxy cinnamic acid (0.050 g, 0.24 mmol) and 4-

((benzyl(methyl)amino)methyl)aniline (0.065 g, 0.28 mmol) were reacted as described 

in general procedure to obtain 11 (0.060 g, 60%) as a white amorphous solid of mp: 

107-110 ºC. 
1
H NMR (300 MHz, MeOD) δ 7.68 – 7.57 (m, 3H, H3,2’), 7.38 – 7.24 (m, 

7H, Ph, H3’), 7.22 – 7.13 (m, 2H, H5, 9), 6.98 (d, J = 8.0 Hz, 1H, H8), 6.67 (d, J = 15.5 

Hz, 1H, H2), 3.89 (s, 3H, H61), 3.87 (s, 3H, H71), 3.52 (s, 2H, H), 3.50 (s, 2H, Hβ), 2.17 

(s, 3H, H). 
13

C NMR (75 MHz, MeOD) δ 166.97 (C1), 152.44 (C7), 150.73 (C6), 142.78 

(C3), 139.66 (Ci), 139.18 (C1’), 135.47 (C4’), 130.88 (C3’), 130.40 (Co), 129.36 (C4), 

129.31 (Cm), 128.26 (Cp), 123.43 (C9), 121.03 (C2’), 119.98 (C2), 112.74 (C8), 111.43 
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(C5), 62.62 (C), 62.20 (Cβ), 56.44 (C61), 56.42 (C71), 42.31 (C). HRMS [ESI+] m/z 

=416.2112 [M]
 +

, Calcd for [C26H28N2O3]
 +

 416.2100. HPLC purity 100%. 

 

4.2.8. (E)-N-(3-((Benzyl(methyl)amino)methyl)phenyl)-3-(4-hydroxy-3-

methoxyphenyl)acrylamide (12) 

From ferulic acid (0.100 g, 0.50 mmol) and 3-

((benzyl(methyl)amino)methyl)aniline (0.14 g, 0.60 mmol) ferulic – DBMA hybrid 12 

was obtained (0.184 g, 89%), as a bright yellow solid of mp: 72 – 74 ºC. 
1
H NMR (400 

MHz, MeOD) δ 7.64 (s, 1H, H2’), 7.56 (s, 1H, H6’), 7.56 (d, J = 15.7 Hz, 1H, H3), 7.36 – 

7.21 (m, 6H, Ph, H5’), 7.15 (d, J = 2.0 Hz, 1H, H5), 7.10 – 7.05 (m, 2H, H9, 4’), 6.80 (d, J 

= 8.1 Hz, 1H, H8), 6.60 (d, J = 15.6 Hz, 1H, H2), 3.88 (s, 3H, H61), 3.51 (s, 2H, Hβ), 

3.49 (s, 2H, H), 2.16 (s, 3H, H). 
13

C NMR (101 MHz, MeOD) δ 167.27 (C1), 150.16 

(C7), 149.33 (C4), 143.25 (C3), 140.66 (C3’), 140.18 (Ci), 139.70 (C1’), 130.40 (Co), 

129.78 (Cp), 129.32 (Cm), 128.27 (C5’), 128.18 (C4), 126.08 (C4’), 123.42 (C9), 121.97 

(C2’), 120.06 (C6’), 119.04 (C2), 116.54 (C8), 111.65 (C5), 62.74 (Cβ), 62.62 (C), 56.36 

(C61), 42.41 (C). HRMS [ESI+] m/z =402.1934 [M]
 +

, Calcd for [C25H26N2O3]
 +

 

402.1943. HPLC purity 98%. 

 

4.2.9. (E)-N-(4-((Benzyl(methyl)amino)methyl)phenyl)-3-(4-hydroxy-3-

methoxyphenyl)acrylamide (13) 

From ferulic acid (0.100 g, 0.50 mmol) and 4-

((benzyl(methyl)amino)methyl)aniline (0.140 g, 0.60 mmol), ferulic – DBMA hybrid 13 

was obtained (0.177 g, 86%), as a bright yellow solid of mp: 80 – 83 ºC. 
1
H NMR (500 

MHz, MeOD) δ 7.63 (d, J = 8.5 Hz, 2H, H2’), 7.57 (d, J = 15.6 Hz, 1H, H3’), 7.36 – 7.31 
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(m, 6H, Ph, H3’), 7.29 – 7.23 (m, 1H, Hp), 7.17 (d, J = 2.1 Hz, 1H, H5), 7.08 (dd, J = 8.2, 

2.2 Hz, 1H, H9), 6.82 (d, J = 8.2 Hz, 1H, H8), 6.61 (d, J = 15.6 Hz, 1H, H2), 3.90 (s, 3H, 

H61), 3.56 (s, 2H, Hβ), 3.55 (s, 2H, H), 2.20 (s, 3H, H). 
13

C NMR (126 MHz, MeOD) δ 

167.23 (C1), 150.16 (C6), 149.33 (C7), 143.26 (C3), 139.44 (Ci), 136.29 (C1’), 134.77 

(C4’), 131.03 (C3’), 130.54 (Co), 129.40 (Cm), 128.48 (C4), 128.19 (Cp), 123.43 (C9), 

121.05 (C2’), 119.00 (C2), 116.55 (C8), 111.67 (C5), 62.50 (C), 62.09 (Cβ), 56.38 (C61), 

42.12 (C). HRMS [ESI+] m/z =402.1902 [M]
 +

, Calcd for [C25H26N2O3]
 +

 402.1943. 

HPLC purity 97%. 

 

4.2.10. (E)-N-(4-((Benzyl(methyl)amino)methyl)phenyl)-3-(3-methoxyphenyl)acrylamide 

(14) 

(E)-3-(3-Methoxyphenyl)acrylic acid (0.150 g, 1.00 mmol) and 4-

((benzyl(methyl)amino)methyl)aniline (0.220 g, 1.00 mmol), were reacted as described 

in the general procedure b to obtain 14 (0.255 g, 79%) as a white amorphous solid of 

mp: 90-93 ºC. 
1
H NMR (300 MHz, MeOD) δ 7.68 – 7.60 (m, 3H, H3, 2’), 7.38 – 7.25 (m, 

8H, Ph, H8, 3’), 7.21 – 7.12 (m, 2H, H5, 9), 6.97 (dd, J = 8.1, 2.6 Hz, 1H, H7), 6.79 (d, J = 

15.7 Hz, 1H, H2), 3.84 (s, 3H, H61), 3.52 (s, 2H, Hβ), 3.50 (s, 2H, H), 2.17 (s, 3H, H). 

13
C NMR (75 MHz, MeOD) δ 166.55 (C1), 161.56 (C6), 142.70 (C3), 139.70 (Ci), 

139.07 (C1’), 137.60 (C4), 135.67 (C4’), 130.99 (C8), 130.87 (C3’), 130.39 (Co), 129.30 

(Cm), 128.25 (Cp), 122.55 (C2), 121.48 (C9), 121.08 (C2’), 116.72 (C7), 113.98 (C5), 

62.64 (Cβ), 62.20 (C), 55.75 (C61), 42.32 (C). HRMS [ESI+] m/z =386.1998 [M]
 +

, 

Calcd for [C25H26N2O2]
 +

 386.1994. HPLC purity 99%. 
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4.2.11. (E)-N-(4-((Benzyl(methyl)amino)methyl)phenyl)-3-(4-methoxyphenyl)acrylamide 

(15) 

4-Methoxy cinnamic acid (0.150 g, 0.84 mmol) and 4-

((benzyl(methyl)amino)methyl)aniline (0.220 g, 1.00 mmol) were reacted as described 

in the general procedure b to obtain hybrid 15 (0.230 g, 70%) as a white amorphous 

solid of mp: 131-134 ºC. 
1
H NMR (300 MHz, MeOD) δ 7.70 – 7.60 (m, 3H, H3,2’), 7.57 

(d, J = 8.6 Hz, 2H, H5), 7.39 – 7.27 (m, 7H, Ph, H3’), 6.99 (d, J = 8.6 Hz, 2H, H6), 6.67 

(d, J = 15.6 Hz, 1H, H2), 3.86 (s, 3H, H71), 3.54 (s, 2H, Hβ), 3.52 (s, 2H, H), 2.19 (s, 

3H, H).
 13

C NMR (75 MHz, MeOD) δ 167.09 (C1), 162.80(C7), 142.58(C3), 139.70(Ci), 

139.20(C1’), 135.51(C4’), 130.87(C3’), 130.59(Co), 130.39(C5), 129.31(Cm), 128.85(C4), 

128.26(Cp), 121.08(C2’), 119.65(C2), 115.42(C6), 62.64(Cβ), 62.21(C), 55.85(C71), 

42.32(C). HRMS [ESI+] m/z =386.2000 [M]
 +

, Calcd for [C25H26N2O2]
 +

 386.1994. 

HPLC purity 99%. 

 

4.3. General procedure for deprotection of methoxy substituted hybrids.  

To the corresponding methoxy derivative (0.1 mmol) dissolved in 3 mL of anhydrous 

THF, was added slowly under magnetic stirring, 1 equivalent of BBr3 per each 

heteroatom present in the molecule; air was displaced by N2 and the mixture was 

allowed to react overnight at room temperature. Reaction was quenched with methanol 

(MeOH) (dropwise until end of effervescence) and the solvent evaporated under 

reduced pressure to eliminate the remaining BBr3, this process was repeated several 

times depending on the quantity of BBr3 used, until no fumes were observed when 

adding MeOH. When necessary, purification was carried out by column 

chromatography using a gradient of EtOAc/MeOH 0→10% as eluent 
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4.3.1. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(3-hydroxyphenyl)acrylamide (6) 

From 2 (0.1 g, 0.26 mmol) and BBr3 (7 mmol), hybrid 6 was obtained (93 mg, 

97%), as a light brown amorphous solid of mp: 190-193 ºC. 
1
H NMR (500 MHz, 

MeOD) δ 7.53 – 7.50 (m, 2H, Ho), 7.48 – 7.46 (m, 3H, Hm, p), 7.42 (d, J = 15.7 Hz, 1H, 

H3), 7.18 (t, J = 7.8 Hz, 1H, H8), 6.99 (dt, J = 7.8, 1.2 Hz, 1H, H9), 6.95 (t, J = 2.0 Hz, 

1H, H5), 6.78 (ddd, J = 7.9, 2.5, 1.0 Hz, 1H), 6.55 (d, J = 15.7 Hz, 1H, H2), 4.29 (s, 2H, 

H), 3.49 – 3.45 (m, 2H, H2’eq), 3.37 – 3.33 (m, 2H, H), 3.01 (td, J = 13.0, 3.0 Hz, 2H, 

H2’ax), 2.05 – 1.99 (m, 2H, H3’eq), 1.74 – 1.61 (m, 1H, H4), 1.53 (q, J = 6.9 Hz, 2H, Hβ), 

1.50 – 1.40 (m, 2H, H3’ax). 
13

C NMR (126 MHz, MeOD) δ 168.74 (C1), 159.01 (C6), 

141.96 (C3), 137.49 (C4), 132.43 (Co), 131.22 (Cp), 130.95 (C6), 130.38 (Ci), 130.32 

(Cm), 121.56 (C2), 120.37 (C9), 118.00 (C7), 115.06 (C5), 61.78 (C), 53.73 (C2’), 37.55 

(C), 36.36 (Cβ), 32.33 (C4’), 30.36 (C3’). HRMS [ESI+] m/z =364.2150 [M]
 +

, Calcd for 

[C23H28N2O2]
 +

 364.2151. HPLC purity 98%. 

 

4.3.2. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(4-hydroxyphenyl)acrylamide (7) 

From 3 (0.1 g, 0.26 mmol) and BBr3 (7 mmol), hybrid 7 was obtained (83 mg, 

87%), as a white amorphous solid of mp: 164-166 ºC. 
1
H NMR (500 MHz, MeOD) δ 

7.50 – 7.46 (m, 5H, Ph), 7.44 (d, J = 15.7 Hz, 1H, H3), 7.40 (d, J = 8.7 Hz, 2H, H6), 

6.79 (d, J = 8.6 Hz, 2H, H5), 6.40 (d, J = 15.7 Hz, 1H, H2), 4.21 (s, 2H, H), 3.42 – 3.37 

(m, 2H, H2’eq), 3.34 (t, J = 7.0 Hz, 2H, H), 2.91 (m, 2H, H2’ax), 2.00 (d, J = 14.0 Hz, 

2H, H3’eq), 1.65 (bs, 1H, H4’), 1.55 (q, J = 7.0 Hz, 2H, Hβ), 1.48 – 1.44 (m, 2H, H3’ax). 

13
C NMR (126 MHz, MeOD) δ 167.84 (C1), 159.20 (C7), 140.48 (C3), 130.77 (Co), 

130.74 (Ci), 129.49 (Cp), 129.13 (C5), 128.80 (Cm), 126.14 (C4), 116.79 (C2), 115.30 
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(C6), 60.46 (C), 52.23 (C2’), 36.13 (C), 35.01 (Cβ), 31.04 (C4’), 29.08 (C3’).
 
HRMS 

[ESI+] m/z =364.2158 [M]
 +

, Calcd for [C23H28N2O2]
 +

 364.2151. HPLC purity 98%. 

 

4.3.3. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(2,4-dihydroxyphenyl)acrylamide (8)  

From 4 (0.1 g, 0.26 mmol) and BBr3 (7 mmol) the umbellic – NBP hybrid 8 was 

obtained (60 mg, 60%) as a white amorphous solid of mp: 254-257⁰C.
1
H NMR (500 

MHz, MeOD) δ 7.43 – 7.42 (m, 5H, Ph), 7.38 (d, J = 15.7 Hz, 1H, H3), 7.00 (d, J = 2.1 

Hz, 1H, H6), 6.90 (dd, J = 8.2, 2.1 Hz, 1H, H8), 6.77 (d, J = 8.2 Hz, 1H, H9), 6.34 (dd, J 

= 15.6, 1.3 Hz, 1H, H2), 3.98 (s, 2H, H), 3.37 – 3.32 (m, 2H, H), 3.26 – 3.18 (m, 2H, 

H2’eq), 2.61 (s, 2H H2’ax), 1.92 (d, J = 13.5 Hz, 2H, H3’eq), 1.57 – 1.50 (m, 3H, Hβ, 4’), 

1.45 – 1.32 (m, 2H, H3’ax). 
13

C NMR (126 MHz, MeOD) δ 169.28 (C1), 148.81 (C7), 

146.76 (C5), 142.26 (C3), 131.73 (Co), 130.08 (Ci), 129.91 (Cm), 128.22 (Cp), 122.08 

(C8), 118.24 (C2), 116.43 (C9), 114.99 (C6), 62.60 (C), 53.96 (C2’), 37.73 (C), 36.63 

(Cβ), 33.18 (C4’), 31.20 (C3’). HRMS [ESI+] m/z =380.2094 [M]
 +

, Calcd for 

[C23H28N2O3]
 +

 380.2100. HPLC purity 99%. 

 

4.3.4. (E)-N-(2-(1-Benzylpiperidin-4-yl)ethyl)-3-(3,4-dihydroxyphenyl)acrylamide (9) 

From 5 (0.1 g, 0.25 mmol) and BBr3 (7 mmol) the caffeic – NBP hybrid 9 was 

obtained (60 mg, 65%) as a white amorphous solid of mp: 164-166 ºC. 
1
H NMR (500 

MHz, MeOD) δ 7.48 – 7.40 (m, 5H, Ph), 7.37 (d, J = 15.7 Hz, 1H, H3), 7.01 (d, J = 2.1 

Hz, 1H, H5), 6.90 (dd, J = 8.2, 2.1 Hz, 1H, H9), 6.77 (d, J = 8.2 Hz, 1H, H8), 6.39 (d, J = 

15.7 Hz, 1H, H2), 4.00 (s, 2H, H), 3.34 (t, J = 6.9 Hz, 2H, H), 3.24 (d, J = 12.3 Hz, 

2H, H2’eq), 2.64 (t, J = 11.6 Hz, 2H, H2’ax), 1.95 – 1.82 (m, 2H, H3’eq), 1.56 (m, 1H, H4’), 

1.53 (q, J = 6.7 Hz, 2H, Hβ), 1.47 – 1.33 (m, 2H, H3’ax). 
13

C NMR (126 MHz, MeOD) δ 
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169.23 (C1), 148.77 (C7), 146.72 (C6), 142.15 (C3), 133.40 (Ci), 131.86 (Co), 130.13 

(Cp), 129.90 (Cm), 128.21 (C4), 122.15 (C9), 118.33 (C2), 116.44 (C8), 114.93 (C5), 

62.49 (C), 53.83 (C2’), 37.70 (C), 36.52 (Cβ), 32.99 (C4’), 31.01 (C3’). HRMS [ESI+] 

m/z =380.2104 [M]
 +

, Calcd for [C23H28N2O3]
 +

 380.2100. HPLC purity 99%. 

 

4.3.5. (E)-N-(4-((Benzyl(methyl)amino)methyl)phenyl)-3-(3-hydroxyphenyl)acrylamide 

(16) 

From 14 (0.1 g, 0.26 mmol) and BBr3 (7 mmol) hybrid 16 was obtained (69 mg, 

72%) as a light brown amorphous solid of mp: 156-158 ºC. 
1
H NMR (300 MHz, 

MeOD) δ 7.84 (d, J = 8.6 Hz, 2H, H2’), 7.62 (d, J = 15.7 Hz, 1H, H3), 7.56 – 7.44 (m, 

7H, Ph, H3’), 7.25 (t, J = 7.7 Hz, 1H, H8), 7.09 (d, J = 7.7 Hz, 1H, H9), 7.04 (t, J = 2.1 

Hz, 1H, H5), 6.85 (dd, J = 7.8, 2.2 Hz, 1H, H7), 6.85 (d, J = 15.6 Hz, 1H, H2), 4.50 (dd, 

J = 13.1, 10.3 Hz, 2H, H, β), 4.28 (d, J = 13.2 Hz, 2H, H, β),  2.73 (s, 3H, H). 
13

C 

NMR (75 MHz, MeOD) δ 166.91 (C1), 159.10 (C6), 143.60 (C3), 142.00 (C1’), 137.38 

(C4), 133.08 (Cm), 132.29 (Co), 131.33 (Cp), 131.02 (C8), 130.77 (Ci), 130.48 (C3’), 

125.82 (C4’), 121.76 (C2), 121.53 (C2’), 120.58 (C9), 118.33 (C7), 115.28 (C5), 60.72 

(CH2), 60.52 (CH2), 39.49 (C). HRMS [ESI+] m/z =372.1844 [M]
 +

, Calcd for 

[C24H24N2O2]
 +

 372.1838. HPLC purity 99%. 

 

4.3.6. (E)-N-(4-((Benzyl(methyl)amino)methyl)phenyl)-3-(4-hydroxyphenyl)acrylamide 

(17) 

From 15 (0.1 g, 0.26 mmol) and BBr3 (7 mmol) hybrid 16 was obtained (58 mg, 

60%) as a white amorphous solid of mp: 160-163 ºC. 
1
H NMR (300 MHz, MeOD) δ 

7.82 (d, J = 8.7 Hz, 2H, H2’), 7.63 (d, J = 15.6 Hz, 1H, H3), 7.55 – 7.45 (m, 5H, H5, 3’, p 
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), 7.20 (d, J = 8.5 Hz, 2H, Ho), 6.84 (d, J = 8.5 Hz, 2H, H6), 6.76 (d, J = 8.4 Hz, 1H, 

Hm), 6.63 (d, J = 15.6 Hz, 1H, H2), 4.35 (bs, 4H, H, β), 2.69 (s, 3H, H). 
13

C NMR (75 

MHz, MeOD) δ 167.51 (C1), 161.00 (C7), 143.65 (C3), 142.13 (C1’), 133.20 (Co), 

132.21 (C3’), 131.28 (Ci), 131.20 (C4’), 130.89 (C5’), 130.46 (Cp), 127.51 (C4), 121.46 

(C2’), 118.33 (C2), 116.84 (C6), 116.07 (Cm), 60.96 (CH2), 60.36 (CH2), 39.39 (C). 

HRMS [ESI+] m/z =372.1846 [M]
 +

, Calcd for [C24H24N2O2]
 +

 372.1838. HPLC purity 

96%. 

 

4.4. Biochemical Studies  

4.4.1. Inhibition of Human AChE and BuChE 

Using human recombinant acetylcholinesterase (h-AChE) and butyrylcholinesterase 

from human serum (h-BuChE), the Ellman method [41] was followed according to the 

experimental details previously described [50].  

 

4.4.2. Inhibition of human monoamino oxidases (hMAO-A and hMAO-B).  

MAO inhibition measurements were evaluated following the general procedure 

previously described by us [42]. Briefly, test drugs and adequate amounts of 

recombinant hMAO-A or hMAO-B (Sigma-Aldrich Quıímica S.A., Alcobendas, Spain) 

required and adjusted to oxidize 165 pmol of p-tyramine/min in the control group, were 

incubated for 15 min at 37 ºC in a flat-black-bottom 96-well microtest plate (BD 

Biosciences, Franklin Lakes, NJ) placed in the dark fluorimeter chamber. The reaction 

was started by adding 200 mM Amplex Red reagent (Molecular Probes, Inc., Eugene, 

OR), 1 U/mL horseradish peroxidase, and 1 mM p-tyramine and the production of 

resorufin, was quantified at 37 ºC in a multidetection microplate fluorescence reader 
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(FLX800, Bio-Tek Instruments, Inc., Winooski, VT) based on the fluorescence 

generated (excitation, 545 nm; emission, 590 nm). The specific fluorescence emission 

was calculated after subtraction of the background activity, which was determined from 

wells containing all components except the hMAO isoforms, which were replaced by a 

sodium phosphate buffer solution.  

 

4.4.3. Oxygen Radical Absorbance Capacity Assay 

The ORAC method was followed, using a Polarstar Galaxy plate reader (BMG 

Labtechnologies GmbH, Offenburg, Germany) with 485-P excitation and 520-P 

emission filters [43].  

 

4.4.4. Human BACE1 Inhibition Assay.  

This experiment was carried out using fluorescence resonance energy transfer 

(FRET), according to the protocol described by the manufacturer (Invitrogen) [51].  

 

4.4.5. Effect of compounds 5, 12 and 16 on R/O-induced oxidative cell injury in SH-

SY5Y cells  

Human dopaminergic neuroblastoma SH-SY5Y cells were maintained in a 1:1 

mixture of nutrient mixture F-12 and Eagle´s minimum essential medium (EMEM) 

supplemented with 15 nonessential amino acids, sodium pyruvate (1 mM), 10% heat-

inactivated FBS, 100 units/ml penicillin, and 100 µg/ml streptomycin. Cultures were 

seeded into flasks containing supplemented medium and maintained at 37 ºC in a 

humidified atmosphere of 5% CO2 and 95% air. For assays, SH-SY5Y cells were 
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subcultured in 96-well plates at a seeding density of 8x10
4
 cells per well for 2 days. 

Cells were co-incubated with rotenone (30 µM) / oligomycin A (10 µM) (R/O) for 24 h 

to induce oxidative stress at concentrations of 0.1, 0.3, 1 and 3 µM in F-12/EMEM with 

1% FBS. A vehicle group containing 0.1% dimethyl sulfoxide (DMSO) was employed 

in parallel for each experiment. All SH-SY5Y cells used in this study were used at a low 

passage number (<13).  

 

4.4.6. Measurement of cell viability 

MTT reduction was performed as described [52]. Briefly, 50 µL of the MTT 

labeling reagent, at a final concentration of 0.5 mg/ml, was added. After incubation for 

2 h, in a humidified incubator at 37 ºC with 5% CO2 and 95% air (v/v), the supernatant 

was removed, the obtained purple formazan product was re-suspended in 100 μL of 

Dimethyl Sulfoxide (DMSO). Colorimetric determination of MTT reduction was 

measured in an ELISA microplate reader at 540 nm. Control cells treated with EMEM 

were taken as 100% viability. 

 

4.4.7. Neurogenic Assays 

Adult (3 months old) male C57BL/6 mice were used following the animal 

experimental procedures previously approved by the Ethics Committee for Animal 

Experimentation of the CSIC in accordance with the European Communities Council, 

directive 2010/63/EEC and National regulations, normative 53/2013. Special care was 

taken to minimize animal suffering. Neural stem cells were isolated from the SGZ of the 

dentate gyrus of the hippocampus of adult mice and cultured as NS according to 

previously published protocols [53,54]. Neural stem cells grown as NS were treated for 
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7 days in culture with compound 9 (10 µM). Now, NS were adhered onto 100 μg/mL 

poly-L-lysine-coated coverslips and treated for 3 additional days in the presence of 

serum but in the absence of exogenous growth factors to induce differentiation [55]. 

Finally, the expression of neuronal markers was analyzed by immunocytochemistry 

using antibodies linked to neurogenesis: β-III-tubulin polyclonal antibody (TuJ clone; 

Abcam), a protein expressed at early stages of neurogenesis and a monoclonal 

microtubule-associated protein type 2 (MAP-2) antibody, a classical marker of late 

neuronal maturation. To visualize primary antibodies Alexa-fluor-labeled secondary 

antibodies (Molecular probes) were used. Nuclei were stained with DAPI. Fluorescent 

representative images were acquired with a Nikon fluorescence microscope 90i coupled 

to a digital camera Qi. The microscope configuration was adjusted to produce the 

optimum signal-to-noise ratio. 
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List of captions 

 

Figure 1. Structures of natural antioxidants containing the cinnamic acid structure (p-

coumaric, caffeic, umbellic, and ferulic acids, curcumin), donepezil, AP2238, and new 

cinnamic – N-benzylpiperidine (NBP) (1-9) and cinnamic – N,N-dibenzyl(N-

methyl)amine (DBMA) hybrids (10-17). 

 

Scheme 1. Reagents and conditions: (a) CDI, THF, MW, 7 min, 120 °C; (b) 2-(1-

benzylpiperidin-4-yl)ethan-1-amine, MW, 10 min, 120 °C; (c) 3- or 4-

((benzyl(methyl)amino)methyl)aniline, MW, 40 min, 120 °C; (d) BBr3, THF, rt, 

overnight. 

 

Table 1. Inhibition of human cholinesterases (hAChE and hBuChE) and monoamine 

oxidases (hMAO-A and hMAO-B) (IC50, µM); oxygen radical absorbance capacity 

(ORAC, trolox equiv.)
 a
 

 

Figure 2. Effect of compounds 5 (A), 12 (B), and 16 (C) at 0.1, 0.3, 1.0, and 3.0 µM on 

cell death induced by the combination of rotenone (30 µM) and oligomycin A (10 µM). 

Melatonin (10 nM) is used as positive control in all experiments. Cell viability was 

measured as MTT reduction and data were normalized as % of control. Data are 

expressed as the means ± SEM of triplicate of at least three different cultures. All 

compounds were assayed at increasing concentrations (0.1-3 µM). ***P< 0.001, **P< 

0.01, *P<0.05, with respect to control group. Comparisons between drugs and control 

group were performed by one-way ANOVA followed by the Newman–Keuls post-hoc 

test. 
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Figure 3. Caffeic-based hybrid 9 promotes neuronal differentiation in vitro. Adult 

murine neural stem cells isolated from the neurogenic niche of the SGZ of the 

hippocampus were grown as neurospheres (NS) during 7 days in the presence of 

compound 9 (10 µM). Then, NS were allowed to differentiate on a substrate for another 

3 days in the presence of tested compound. Immunocytochemical analysis shows the 

expression of two well-known neuronal markers: β-III-tubulin (TuJ clone; green) and 

MAP-2 (red) inside the NS (inner part) and in the distal area (outer part). DAPI was 

used for nuclear staining. Scale bar, 200µm. 

 


