Time-dependent heat flow in interacting quantum conductors

Guillem Rosselló,1,2 Rosa López,2 and Jong Soo Lim3
1Institut für Theorie der Statistischen Physik, RWTH Aachen University, D-52056 Aachen, Germany
and J-Future Information Technologies, Aachen, Germany
2Institut de Física Interdisciplinària i de Sistemes Complexos IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain
3School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
(Received 12 November 2014; revised manuscript received 21 July 2015; published 4 September 2015)

We derive the frequency-resolved heat current expression in the linear-response regime for a setup composed of a reservoir, an interacting central site, and a tunneling barrier under the action of a time-dependent electrical signal. We exploit the frequency parity properties of response functions to obtain the heat current expression for interacting quantum conductors. Importantly, the corresponding heat formula, valid for arbitrary ac frequencies, can describe photon-assisted heat transport. In particular, we analyze the heat transfer for an interacting multilevel conductor (a carbon nanotube quantum dot) coupled to a single reservoir. We show that the electrothermal admittance can reverse its sign by properly tuning the ac frequency.

DOI: 10.1103/PhysRevB.92.115402 PACS number(s): 72.10.Bg, 72.15.Jf, 73.63.Kv

I. INTRODUCTION

The expeditious advance of circuit miniaturization requires the knowledge of heat flow in quantum devices in response to electrical fields [1]. Due to this necessity thermoelectrical transport in quantum devices is a research field that has vigorously relaunched nowadays [2]. Nevertheless, so far, the activity has focused on driving electrical currents by oscillatory forces [3,4] for charge qubit manipulation [5], quantum emitter generation [6,7], or quantum tomography purposes [8]. Low-frequency measurements of the electrical admittance in quantum RC circuits provide information about the spectroscopic (C_G quantum capacitance) and resistive (R_G relaxation resistance) properties of coherent conductors [9–11] in which R_G = h/2e^2 takes an universal value [12–16]. Interactions, such as charging effects [17] or Kondo correlations [18,19], do not alter the universality of R_G, measured experimentally, in quantum capacitors [9–11,20,21], carbon nanotubes [22], superconducting junctions [23], and quantum dots [24].

In contrast, time-resolved heat transport has been poorly investigated [25–27]. Solely, stationary or time-averaged heat flows have been analyzed in more detail [28]. The understanding of time-dependent heat currents opens an avenue for creating circuit architectures where heat absorption or emission events are finely tunable via electrical and thermal time-dependent signals. Recently, the linear response for the charge and heat fluxes to electrical and thermal ac signals was computed for a quantum capacitor showing that heat flows can be delayed or elapsed with respect to the ac pulse depending on the dot gate position [26]. Later on, Ludovico et al. [27] showed, for a slow ac modulation and noninteracting conductors, that time-dependent heat flow J_h(t) needs to explicitly consider the energy stored and relaxed at the tunnel coupling region when a tunnel Hamiltonian description is employed. The goal that we face consists of the calculation of the heat flux in a completely different regime. We derive the time-dependent heat flow for interacting and multiorbital conductors and arbitrary ac frequencies. Since our heat formula holds for arbitrary high frequencies, it is able to describe photon-assisted tunneling processes occurring in the heat transport. Our only limitation is that we are restricted to the linear-response regime, i.e., low ac driving amplitudes. We confine our interests to the Coulomb blockade regime and do not consider higher-order correlations, such as the Kondo effect, we implicitly assume a temperature higher than the Kondo scale (T_K), i.e., T ≫ T_K. For our calculations, we employ the nonequilibrium (Keldysh) Green’s function formalism [29] which allows us to include electron-electron interactions, charging effects, in a feasible way within the so-called Hartree-Fock (HF) regime.

To address these issues, we focus on a prototypical interacting multiorbital quantum circuit—a quantum capacitor—formed by a carbon nanotube quantum dot that is coupled to a single terminal being modulated by an ac voltage as shown in Fig. 1. Carbon nanotubes exhibit charging effects due to the formation of quantum dots inside the tube [30]. The valley degrees of freedom, corresponding to the K and K’ Dirac points in graphene in addition to the spin indices, lead to a fourfold energy-level degeneracy. Such a degeneracy can be lifted by the presence of an external magnetic field B [31]. Furthermore, the nanotube curvature yields a spin-orbit interaction resulting in split time-reversal dot level pairs. Therefore, carbon nanotube quantum dots act as multiorbital interacting conductors where Coulomb interactions give rise to Coulomb blockade phenomena. Even more importantly, carbon nanotube quantum dots have been demonstrated to be perfect platforms to investigate the frequency-resolved transport when they are embedded in electromagnetic cavities [22], precisely the issue that our paper addresses.

In Sec. II, we describe the theoretical model for an interacting multiorbital quantum capacitor and the Hartree-Fock decomposition of an electron-electron interaction. We derive the time-dependent heat flux for the reservoir in the linear-response regime and obtain the electrothermal admittance. For completeness we also discuss the electrical admittance. In Sec. III, we start by proving that our formalism can exhibit Coulomb blockade phenomena. The observations for a single orbital quantum dot are briefly discussed, and then results for a multiorbital one are presented. Here, we consider a four-level degenerated carbon nanotube quantum dot which splits due
to the presence of a magnetic field and spin-orbit interaction. For this system, we show the RC parameters and investigate the electrical and electrothermal admittances. Our findings are summarized in Sec. IV.

II. TIME-DEPENDENT TRANSPORT FORMULATION

The purpose is to derive the linear-response heat current for an interacting conductor coupled to a reservoir that oscillates with an ac voltage signal in the Coulomb blockade regime. We first propose a model Hamiltonian describing a multiorbital quantum capacitor which is attached to a single reservoir. Using the Keldysh formalism for nonequilibrium Green’s functions, we have the linear-response heat flux at the reservoir subject to an oscillating electrical signal. Remarkably, the heat flux can be cast in terms of the conductor Green’s function.

A. Model of Hamiltonian

The starting point of our derivation is the tunnel Hamiltonian description of a quantum capacitor. The quantum capacitor Hamiltonian \mathcal{H} is split into three parts, namely, the reservoir part (\mathcal{H}_R), the dot contribution (\mathcal{H}_D), and the tunneling term (\mathcal{H}_T), i.e.,

$$\mathcal{H} = \mathcal{H}_R + \mathcal{H}_D + \mathcal{H}_T. \quad (1)$$

More concretely, the reservoir part reads

$$\mathcal{H}_R = \sum_{k,\sigma} (\epsilon_{k\sigma} - [\mu + eV(t)]) c_{k\sigma}^\dagger c_{k\sigma}, \quad (2)$$

where $\mu = E_F + eV_{dc}$ is the chemical potential, $e > 0$ is the unit charge, and $V(t)$ is the electrical voltage modulation [see Fig. 1(b)]. As shown in Fig. 1, notice that this description is equivalent to the situation where the ac voltage is applied to the dot since a gauge transformation connects both situations and we thus employ two situations interchangeably. Without loss of generality, we set $V_{dc} = 0$. The operator $c_{k\sigma}^\dagger (c_{k\sigma})$ creates (annihilates) an electron with wave vector k and spin σ in the reservoir. For the dot contribution describing an interacting system with n levels, we have

$$\mathcal{H}_D = \sum_{n,\sigma} \epsilon_{n\sigma} d_{n\sigma}^\dagger d_{n\sigma} + E_C [N_d + \dot{N}(t)]^2, \quad (3)$$

where $d_{n\sigma}^\dagger (d_{n\sigma})$ corresponds to the creation (annihilation) operator for a dot electron in the nth level with spin σ, $\epsilon_{n\sigma}$ denotes the single-particle energies, and $E_C = e^2/2C$ is the electrostatic charging energy (C is the dot geometrical capacitance). Here, the dot occupation operator reads $N_d = \sum_{n,\sigma} d_{n\sigma}^\dagger d_{n\sigma}$. Finally, the tunneling term hybridizes the reservoir and the dot subsystems according to

$$\mathcal{H}_T = \sum_{n,k,\sigma} t_{n,k\sigma} (c_{k\sigma}^\dagger \epsilon_{n\sigma} + \text{H.c.}), \quad (4)$$

where $t_{n,k\sigma}$ denotes the tunneling amplitude.

When a charge is injected in the dot by an external source $V(t)$, a polarization charge is created to keep the dot as a neutral charge object. In a simple electrostatic picture, we model such a polarization charge with a capacitance C leading to [32]

$$eN_d(t) = C U(t), \quad (5)$$

in which $U(t)$ is the internal potential of the dot giving rise to a time-dependent potential inside the dot. Then, the dot Hamiltonian in Eq. (3), up to linear order in $U(t)$, can be written as

$$\mathcal{H}_D = \sum_{n,\sigma} (\epsilon_{n\sigma} + eU(t)) d_{n\sigma}^\dagger d_{n\sigma} + E_C N_d^2, \quad (6)$$

Since $N_d^2 = \sum_{m,\sigma} \sum_{n,\sigma'} d_{m\sigma}^\dagger d_{m\sigma} d_{n\sigma'}^\dagger d_{n\sigma'}$ is a quartic operator, the Hamiltonian cannot be solved without introducing some proper approximation.

B. Hartree-Fock approximation

We thus perform the Hartree-Fock approximation in the dot Hamiltonian. For the Hartree approximation, N_d^2 is decoupled in the form

$$[N_d^2]_{\text{Hartree}} = 2 \sum_{m,\sigma} \sum_{n,\sigma'} d_{m\sigma}^\dagger d_{m\sigma} d_{n\sigma'}^\dagger d_{n\sigma'}, \quad (7)$$

whereas for the Fock approximation one has

$$[N_d^2]_{\text{Fock}} = -2 \sum_{m,\sigma} \sum_{n,\sigma'} d_{m\sigma}^\dagger d_{m\sigma} d_{n\sigma'}^\dagger d_{n\sigma'}. \quad (8)$$

Considering HF approximations together, the dot Hamiltonian then becomes

$$\mathcal{H}_D = \sum_{m,n,\sigma} \tilde{\epsilon}_{m,n\sigma} (t) d_{m\sigma}^\dagger d_{n\sigma}, \quad (9)$$

where

$$\tilde{\epsilon}_{m,n\sigma} (t) = \delta_{m,n} \left(\epsilon_{m\sigma} + eU(t) + 2E_C \sum_{l,s,\sigma'} (d_{l\sigma}^\dagger d_{l\sigma}^\dagger) \right)$$

$$- 2E_C (d_{m\sigma}^\dagger d_{m\sigma}), \quad (10)$$

with $\tilde{\sigma} = \downarrow/\uparrow$ for $\sigma = \uparrow/\downarrow$.

115402-2
An important observation is in order when Eq. (9) is considered. For illustration, we assume that there is only a single orbital (\(\epsilon_{\sigma} = \epsilon_{d\sigma} \)). We allow the presence of a small external magnetic field \(\epsilon_{d\sigma} = \epsilon_d + \sigma \Delta Z\) (\(\Delta Z\) is the Zeeman energy) in order to break explicitly spin degeneracy, i.e., \(N_{d\sigma} \neq N_{d\bar{\sigma}}\). For a single orbital, since the exchange interaction is absent between electrons with the same spins the Fock term disappears such that the dot’s energy level can be simplified as

\[
\tilde{\epsilon}_{d\sigma}(t) = \epsilon_d + \sigma \Delta Z + eU(t) + 2E_C\langle d^\dagger \sigma d\sigma \rangle.
\]

We envision the level is occupied by the spin \(\sigma\) electron with energy \(\epsilon_{d\sigma} + eU(t)\). When another electron with opposite spin \(\bar{\sigma}\) enters the level, its energy is increased by the charging energy \(2E_C\). Therefore, as a function of the Fermi energy \(E_F\) the dot occupation then does not change continuously but shows plateaus and discontinuous jumps. These jumps are clear evidence of the Coulomb blockade phenomenon. We illustrate how HF approximation captures charging effects by considering a single orbital quantum dot and plotting its total occupation \(N_d\) when the Fermi energy varies in Fig. 2. We consider the absence of an ac signal. The dot occupation shows a plateau of \(N_d \approx 1\) in the Coulomb gap region, i.e., \(\epsilon_d \lesssim E_F \lesssim \epsilon_d + 2E_C\). This result corroborates the fact that our HF description can reproduce charging effects and thus Coulomb blockade properly. We emphasize that our results are not equivalent or expected when they are compared with previous findings using noninteracting models.

C. Heat current

Our main interest is focused on the rate of heat at the reservoir. For such purposes, we evaluate the time derivative of each component of the Hamiltonian which is given by

\[
Q_S = \frac{d}{dt}\langle H_S \rangle = \frac{i}{\hbar} \left\{ [H, H_S] + \frac{\partial H_S}{\partial t} \right\}.
\]

where \(S = \{R, D, T\}\) is referred to as the \(R\) reservoir, \(D\) dot, and \(T\) tunneling terms. Notice that in Eq. (12) the last term is the power supplied by an external source and must be subtracted from the definition of the heat rate \(Q_S(t)\) (see below). Besides, since the Hamiltonian operator \(\hat{H}\) commutes with itself it is fulfilled

\[
\frac{i}{\hbar} [\hat{H}, \hat{H}] = Q_R + Q_D + Q_T = 0.
\]

As mentioned, our goal is to compute \(Q_R\). When the Coulomb interaction is taken into account, we obtain the rate of heat at the reservoir \(Q_R\) in terms of interacting dot Green’s functions. Since the direct calculation of \(Q_R\) is cumbersome, our strategy is first to compute the energy change rates at the dot and tunnel barriers using Eq. (13),

\[
Q_R = -(Q_D + Q_T).
\]

We recall that our calculation applies only for the linear-response regime and thus we keep only the leading-order contributions in the fields \(V(t)\) and \(U(t)\). We employ the nonequilibrium Keldysh Green’s function formalism for the calculation of the energy change rates in time [29]. We start with the time derivative of \(\hat{H}_D\) first,

\[
\frac{d}{dt}\langle \hat{H}_D(t) \rangle = \sum_{m,n,\sigma} [\tilde{\sigma} \epsilon_{mn\sigma}(t)] \langle d_{m\sigma}^\dagger(t) d_{n\sigma}(t) \rangle + \sum_{m,n,\sigma} \tilde{\epsilon}_{mn\sigma}(t) \langle d_{m\sigma}^\dagger(t) d_{n\sigma}(t) \rangle.
\]

The first term on the right-hand side denotes the power developed by the ac source and does not contribute to the heat flow. The second term represents the energy flux going into the dot which can be written in terms of the dot Green’s function,

\[
Q_D(t) = -i \text{Tr}[\tilde{\sigma} \epsilon_{d\sigma}(t) \hat{d}_m \hat{G}^{<}_{d\sigma,d\sigma}(t,t')]\].

Hereafter, boldface symbols denote matrices such that their \((m,n)\) components are

\[
[\tilde{\sigma} \epsilon_{d\sigma}(t)]_{m,n} = \tilde{\epsilon}_{mn\sigma}(t),
\]

\[
[\hat{G}^{<}_{d\sigma,d\sigma}(t,t')]_{m,n} = i \langle d_{m\sigma}^\dagger(t') d_{n\sigma}(t) \rangle.
\]

The trace means summations over energy levels and spin indices, i.e., \(\text{Tr} = \sum_{m,n} \sum_{\sigma}\). Second, from the definition of \(\dot{\hat{H}}_T\), it can be shown that

\[
\dot{\langle \hat{H}_T \rangle} = -i \text{Tr}[\hat{t}^{\dagger} \hat{G}^{<}_{c\sigma,c\sigma}(t,t') \hat{t}^{\dagger} \hat{G}^{<}_{d\sigma,d\sigma}(t,t')]\]

and thus the time variation of energy stored or relaxed at tunneling barrier \(Q_T(t) = \hat{t}_k \dot{\langle \hat{H}_T \rangle}\) is given by

\[
Q_T(t) = -i \hat{t}_k \text{Tr}[\hat{t}^{\dagger} \hat{G}^{<}_{c\sigma,c\sigma}(t,t') + \hat{G}^{<}_{d\sigma,d\sigma}(t,t')]\].

Here, the reservoir-dot and dot-reservoir Green’s functions are given, respectively, by

\[
[\hat{G}^{<}_{c\sigma,d\sigma}(t,t')]_{k,n} = i \langle c_{k\sigma}^\dagger(t') d_{n\sigma}(t) \rangle,
\]

\[
[\hat{G}^{<}_{d\sigma,c\sigma}(t,t')]_{n,k} = i \langle c_{k\sigma}(t') d_{n\sigma}^\dagger(t) \rangle,
\]

and \([\hat{t}^{\dagger}]_{k,n} = t^{\dagger}_{nk} \) and \(\text{Tr} = \sum_{k,n,\sigma}\).
Using the standard technique of equation of motion, the reservoir-dot Green’s function $G_{ee,do}^\infty(t,t)$ can now be recast in terms of solely the dot Green’s functions as follows:

$$t'_o G_{ee,do}^\infty(t,t) = \int \frac{dt_1}{\hbar} \left[\Sigma^\infty_o(t,t_1) G_{ee,do}^\infty(t_1,t) + \Sigma^\infty_o(t,t_1) G_{ee,do}^\infty(t_1,t) \right].$$

(21)

Here, we have defined

$$\Sigma^\infty_o(t,t_1) = -\frac{i}{2} \hbar \Gamma i \delta(t-t_1),$$

$$\Sigma^\infty_o(t,t_1) = i \hbar e^{-i\phi_V(t,t_1)} f(t_1 - t_2),$$

(22)

as the retarded and lesser self-energies [17] that contain the time-dependent fields. We have assumed a momentum-independent tunneling amplitude t_{do} leading to hybridization strength given by $\Gamma_{m,n} = 2\pi n_0^{\text{res}} t_{do}$ with $n_0 = 1/2D$ as the density of states of the reservoir and D as the reservoir bandwidth. In such self-energies,

$$\phi_V(t_1,t_2) = \int_{t_2}^{t_1} dt \frac{d}{\hbar} eV(t)$$

(23)

is defined as the time-dependent phase due to the ac external potential and

$$f(t_1 - t_2) = \int \frac{d\epsilon}{2\pi} e^{-i\epsilon(t_1-t_2)/\hbar} f(\epsilon)$$

(24)

where $f(t_1 - t_2)$ is the Fermi-Dirac distribution function in the time domain. Similarly, the dot-reservoir Green’s function $G_{do,ee}^\infty(t,t_1)$ is given by

$$G_{do,ee}^\infty(t,t_1) = \int \frac{dt_1}{\hbar} \left[G_{do,ee}^\infty(t,t_1) \Sigma^\infty_o(t_1,t) + G_{do,ee}^\infty(t_1,t) \Sigma^\infty_o(t_1,t) \right].$$

(25)

Employing Eqs. (21) and (25), we find Q_T is also expressed only in terms of the dot Green’s functions.

Once the heat energy rates for the dot and the tunneling parts (Q_D and Q_T) are expressed in terms of the dot Green’s function, the next step consists of computing such Green’s functions in the presence of the time-dependent ac signal. For the dot’s retarded/advanced Green’s function, we have [17]

$$G_{do,ee}^{r/a}(t,t') = e^{-i\phi_V(t,t')} G_{do,ee}^{r/a}(t-t'),$$

(26)

where $\phi_V(t,t') = \int (dt_1/\hbar)eU(t_1)$ and $G_{do,ee}^{r/a}(t_1-t_2)$ denotes the dot’s retarded/advanced Green’s function in equilibrium, i.e., in the absence of an ac signal. Finally, the dot’s lesser Green’s function is obtained by means of

$$G_{do,do}^{r/a}(t,t') = \int \frac{dt_1}{\hbar} \frac{dt_2}{\hbar} G_{do,do}^{r/a}(t,t_1) \Sigma^\infty_o(t_1,t_2) G_{do,do}^{r/a}(t_2,t').$$

(27)

Inserting Eqs. (21)–(27) into Eqs. (16) and (19), it can be shown, after some cumbersome algebra, that to linear order in V and U the energy change rates in the frequency domain become

$$Q_D(\omega) = i e \omega \text{Tr} \left\{ \int \frac{d\epsilon}{2\pi} \bar{\epsilon}_d \Sigma^\infty_0(\epsilon,\hbar\omega)[V(\hbar\omega) - U(\hbar\omega)] \right\},$$

(28a)

$$Q_T(\omega) = i e \omega \text{Tr} \left\{ \int \frac{d\epsilon}{2\pi} \bar{\epsilon}_d (\hbar\omega + 2\epsilon - 2\bar{\epsilon}_d) \Sigma^\infty_0(\epsilon,\hbar\omega) \times [V(\hbar\omega) - U(\hbar\omega)] \right\},$$

(28b)

where $V(\hbar\omega)$ and $U(\hbar\omega)$ are the Fourier transforms of $V(t)$ and $U(t)$, respectively. Here,

$$\Sigma^\infty_0(\epsilon,\hbar\omega) = \frac{\text{Tr}}{\hbar \omega} \left[\frac{\epsilon}{\bar{\epsilon}_d} F(\epsilon,\hbar\omega) \right],$$

$$F(\epsilon,\hbar\omega) = \frac{f(\epsilon + \hbar\omega) - f(\epsilon)}{\hbar \omega}$$

(29)

with

$$\bar{\epsilon}_d = \delta_{m,n} \left(\epsilon_{mn} + 2E_C \sum_{l,s,\phi,m,\sigma} \langle d_{m,l}^\dagger d_{n,s} \rangle - 2E_C \langle d_{m,s}^\dagger d_{n,l} \rangle \right).$$

(30)

The dot’s retarded/advanced Green’s function in equilibrium and in the frequency domain is given by

$$G_{do,do}^{r/a}(\epsilon) = \frac{1}{\epsilon - \bar{\epsilon}_d(\epsilon) \pm i\Gamma/2},$$

(31)

with

$$[\bar{\epsilon}_d]_{m,n} = \delta_{m,n} \left(\epsilon_{mn} + 2E_C \sum_{l,s,\phi,m,\sigma} \langle d_{m,l}^\dagger d_{n,s} \rangle - 2E_C \langle d_{m,s}^\dagger d_{n,l} \rangle \right).$$

(32)

Although Eq. (31) has the same structure with its noninteracting retarded/advanced Green’s function, the charging energy is included in the denominator such that it can describe the Coulomb blockade effect as mentioned above. To completely determine the dot Green’s function, the diagonal and off-diagonal dot occupations need to be self-consistently calculated using

$$\langle d_{n,m} d_{m,n}^\dagger \rangle = \frac{1}{2t_1} \int d\epsilon [G_{do,do}(\epsilon)]_{m,n}.$$

(33)

Finally, from Eqs. (28) and (14), we obtain the expression for the energy change rate at the reservoir,

$$Q_R(\omega) = -(Q_D + Q_T) = -i e \omega \text{Tr} \left\{ \int \frac{d\epsilon}{2\pi} \bar{\epsilon}_d \Sigma^\infty_0(\epsilon,\hbar\omega)[V(\hbar\omega) - U(\hbar\omega)] \right\}.$$

(34)

Importantly, neither $Q_D(\omega)$ nor $Q_T(\omega)$ have a well-defined parity when the ac frequency is reversed, and therefore, within linear-response theory, these two magnitudes do not represent physical quantities [see Sec. III]. Based on these
Due to current conservation, the displacement current is equal to the tunneling current I_T [17] for a quantum capacitor,
\begin{equation}
I_T(\omega) = g(\omega)[V(\hbar\omega) - U(\hbar\omega)],
\end{equation}
where (see Ref. [17] for its explicit derivation)
\begin{equation}
g(\omega) = ie^2\omega \text{Tr}\left\{ \frac{d\epsilon}{2\pi} A(\epsilon,\hbar\omega) \right\}.
\end{equation}
The internal potential is obtained when we impose current conservation $I_D = I_T$, then $U(\hbar\omega)$ reads
\begin{equation}
U(\hbar\omega) = \frac{g(\omega)V(\hbar\omega)}{-i\omega C + g(\omega)}.
\end{equation}
Inserting Eq. (41) into Eq. (36) completely characterizes the linear response of the heat current to a time-dependent voltage, i.e., the electrothermal admittance,
\begin{equation}
\mathcal{M}(\omega) = m(\omega)\frac{-i\omega C}{[-i\omega C + g(\omega)]},
\end{equation}
with $m(\omega) = ie\omega \text{Tr}\left\{ \int\frac{d\epsilon}{2\pi} \left(\frac{\hbar\omega}{2} + \epsilon \right) A(\epsilon,\hbar\omega) \right\}$.

Similarly, the thermoelectrical admittance is defined as
\begin{equation}
\mathcal{L}(\omega) = \frac{I_T(\omega)}{T(\omega)},
\end{equation}
with $T(\omega)$ being the Fourier transform of a time-modulated temperature $T(t)$. Remarkably, the thermoelectrical and the electrothermal admittances are reciprocally related due to the microreversibility principle,
\begin{equation}
\mathcal{M}(\omega) = T\mathcal{L}(\omega).
\end{equation}
Notice that the microreversibility principle only holds at linear order in $V(t)$ and $U(t)$. Finally, a second-order expansion in the ac frequency for $m(\omega)$,
\begin{equation}
m(\omega) = -i\omega C_M + \omega^2 C_M^2 R_M
\end{equation}
allows us to obtain the RC electrothermal parameters. For comparison, we also calculate the electrical admittance defined by
\begin{equation}
\mathcal{G}(\omega) = \frac{I_T}{V(\hbar\omega)} = g(\omega)\frac{-i\omega C}{[-i\omega C + g(\omega)]}.
\end{equation}
The corresponding second-order expansion of $g(\omega)$ in frequency,
\begin{equation}
g(\omega) = -i\omega C_G + \omega^2 C_G^2 R_G
\end{equation}
always yields positive RC parameters, i.e., I_T is always delayed with respect to $V(\omega)$. This is in clear contrast to the electrothermal admittance case in which both C_M and R_M can be either positive or negative. The heat flow response is elapsed or delayed with respect to the electrical signal depending on the system parameters. Note however that the product of both quantities, the RC time, is kept always positive as expected. Similar results were obtained in Ref. [26].
III. RESULTS

Previously, we have derived the formal expressions for the reservoir heat flow and the corresponding electrothermal admittance. Now, we apply these formulas to the case of an interacting multiorbital conductor. However, before addressing the multiorbital case, for illustration purposes we first investigate a single orbital interacting quantum capacitor under the influence of an ac potential. Later on, we will analyze a prototype of a multiorbital conductor, a carbon nanotube quantum dot attached to a single reservoir. In both cases, we show results for the electrical and electrothermal transports.

A. Single orbital quantum capacitor

We consider an interacting quantum dot with just one orbital contacted to a single reservoir. The reservoir has an electrical potential that oscillates in time. In accordance with our previous theoretical considerations, the prefactor $g(\omega)$ of the electrical admittance $\mathcal{G}(\omega)$ can be expanded in powers of the ac frequency up to second order as shown in Eq. (48).

A very well-known result establishes that $R_G = \hbar/(2Qe^2)$ becomes universal with Q as the number of transport channels. Our example as shown in Fig. 3 considers the presence of a Zeeman field to explicitly break spin degeneracy. R_G takes the value of $\hbar/2e^2$ when just one of the two spin-resolved levels ($\varepsilon_d\uparrow/\downarrow = E_F \pm \Delta_Z/2$) participates in transport, whereas it becomes $\hbar/4e^2$ when the opposite spin channel also contributes. Clearly, the two main peaks observed in R_G are separated roughly by $2E_C$ the charging energy ($2E_C \gg \Delta_Z$). Our results for R_G indicate the presence of charging effects and the Coulomb blockade phenomenon.

More importantly, our major interest resides in the behavior of the electrical and electrothermal admittances at arbitrary ac frequencies. Figure 4 shows the real [Fig. 4(a)] and imaginary [Fig. 4(b)] parts of the prefactor $g(\omega)$ in the expression for the electrical admittance $\mathcal{G}(\omega)$ [see Eq. (47)]. We observe that $\text{Re} \ g(\omega) = \text{Re} \ g(-\omega)$ and $\text{Im} \ g(\omega) = -\text{Im} \ g(-\omega)$. The factor $\sim -i\omega C/[1 - i\omega C + g(\omega)]$ in Eq. (47) then does not change the parity property of $\mathcal{G}(\omega)$ with respect to ω such that for simplicity we consider $g(\omega)$. Excitations occur when the ac frequency matches with the resonant condition $\pm\hbar\omega \approx |\varepsilon_d - E_F|$. We recall that ε_d is the spin-dependent dot energy level renormalized by electron-electron interactions according to

$$\tilde{\varepsilon}_d = \varepsilon_d + \sigma \Delta_Z + 2E_C\langle d^\dagger d \rangle.$$ (49)

For the parameters used in Fig. 4, we obtain $\tilde{\varepsilon}_d \approx 0.3\Gamma, 2.1\Gamma$, which agrees with the resonant behavior found in $g(\omega)$ with peaks at $\pm\hbar\omega \approx 0.3\Gamma$ and $\pm\hbar\omega \approx 2.1\Gamma$.

Similar features are observed in the electrothermal admittance shown in Fig. 5. Interestingly, the imaginary part of $m(\omega)$ for $\omega > 0$ takes either positive or negative values by tuning the ac frequency, which indicates that time-heat current can be either delayed or elapsed with respect to the ac electrical time-dependent signal.

FIG. 3. (Color online) Charge relaxation resistance for a single orbital quantum capacitor versus the Fermi energy. Parameters: $\varepsilon_d = 0$, $\Delta_Z = 0.5\Gamma$, $2E_C = 10\Gamma$, and $k_B T = 0.04\Gamma$.

FIG. 4. (Color online) (a) Real and (b) imaginary parts of $g(\omega)$ for a single orbital quantum capacitor as a function of the ac frequency. Photon-assisted excitations occur at the transition rate energies $\pm\hbar\omega \approx |E_F - \varepsilon_d|$ when $k_B T \ll \Gamma$. Parameters: $\varepsilon_d = 0$, $\Delta_Z = 0.625\Gamma$, $2E_C = 10\Gamma$, $E_F = 0$, and $k_B T = 0.04\Gamma$.

FIG. 5. (Color online) (a) Real and (b) imaginary parts of $m(\omega)$ for a single orbital quantum capacitor versus the ac frequency. Photon-assisted excitations occur at the resonant conditions. Parameters: $\varepsilon_d = 0$, $\Delta_Z = 0.625\Gamma$, $2E_C = 10\Gamma$, $E_F = 0$, and $k_B T = 0.04\Gamma$.

115402-6
Now, we discuss the parity property of the response functions $g(\omega)$ and $m(\omega)$ [thus $G(\omega)$ and $M(\omega)$]. We write $g(\omega)$ in the form
\[g(\omega) = \text{Re} g(\omega) + i \text{Im} g(\omega), \tag{50} \]
and express the real/imaginary parts as
\[\text{Re} g(\omega) = \frac{1}{2} [g(\omega) + g^*(\omega)] = \frac{1}{2} \int_{-\infty}^{\infty} dt e^{i\omega t} [g(t) + g(-t)], \tag{51} \]
\[\text{Im} g(\omega) = \frac{1}{2i} [g(\omega) - g^*(\omega)] = \frac{1}{2i} \int_{-\infty}^{\infty} dt e^{i\omega t} [g(t) - g(-t)]. \tag{52} \]
Here, we used the fact that the response function $g(t)$ must be real to have a real expectation value for the current $I_T(t)$. From Eq. (52), it is quite easy to show that
\[\text{Im} g(-\omega) = \frac{1}{2i} \int_{-\infty}^{\infty} dt e^{i\omega t} [g(-t) - g(t)], \tag{53} \]
which implies $\text{Im} g(\omega) = -\text{Im} g(-\omega)$. Using a similar line of reasoning, we can also prove that $\text{Re} g(\omega) = \text{Re} g(-\omega)$. This argument also works for $m(\omega)$. It is worth noting that this parity property comes from the fact that we have included the contribution due to the tunnel Hamiltonian in our definition for the heat flow as shown in Eq. (35). Furthermore, this parity argument goes beyond the simple site partitioning scheme explained in Ref. [33].

B. Multiorbital quantum capacitor

We now investigate a single reservoir carbon nanotube quantum dot as an example of a multiorbital interacting conductor. We regard the nanotube quantum dot as a localized single-particle level described by two quantum numbers, the orbital quantum number σ associated with clockwise ($\sigma = +1$) and anticlockwise ($\sigma = -1$) semicircular orbits along the nanowire circumference (related with the K-valley degeneracy in graphene) and the spin degree of freedom τ. In the presence of a magnetic field along the nanotube axis, the dot energy level splits in the spin sector by the Zeeman field ΔZ and in the orbital sector by an amount Δ_{orb} that depends on the nanotube radius [31]. Besides, due to the nanowire curvature a non-negligible spin-orbit interaction is present, yielding a Kramers splitting of magnitude Δ_{so}. All together yield the following carbon nanotube dot energy level:
\[\epsilon_{d\sigma\tau} = \epsilon_d + \sigma \Delta Z + \tau \Delta_{\text{orb}} + \sigma \tau \Delta_{\text{so}} \tag{54} \]
In the following, we show results that correspond to the realistic parameters [31]: $\epsilon_d = 0$, $\Delta Z = 0.625 \Gamma$, $\Delta_{\text{orb}} = 5 \Delta Z$ (orbital magnetic moments can be 5–20 times larger than their spin counterpart [31]) and $\Delta_{\text{so}} = 0.5 \Delta Z$. The charging energy is $2E_C = 2\Gamma$, which lies in the strong interacting regime. We restrict ourselves to the low-temperature regime $k_B T < 0.05 \Gamma$.

First, we show our results for the electrical and electrothermal RC parameters in Fig. 6. In the low-temperature limit ($k_B T \ll \Gamma$) the RC parameters exhibit universal values [12–14]. We recall that in the low-frequency regime the RC parameters characterize the electrical and electrothermal admittances [see Eqs. (46) and (48)]. C_G and R_G are displayed
part of the electrical conduction with resonances roughly located at \(\pm \hbar \omega \approx |E_F - \varepsilon_{d1}| \). For the HF approximation, these resonances coincide with the dot level positions that are renormalized by interactions according to Eq. (10). These renormalized level positions (when \(E_F = 0 \)) are at \(\varepsilon_{d1} \approx -1.4\Gamma, -0.8\Gamma, 6.1\Gamma, 8.0\Gamma \) leading to the observed resonances in \(g(\omega) \). The resonant behavior of \(g(\omega) \) reflects the photon-assisted tunneling processes in which transport through the nanotube occurs by absorbing or emitting single photons. Furthermore, these resonances are broadened mainly by \(\Gamma \) at very low temperatures. The Re \(g(\omega) \) corresponds to the reactive part of the electrical conduction and has a similar resonant structure.

We turn to the analysis of the electrothermal admittance \(\mathcal{M}(\omega) \), which is given in Eq. (42). As before, it is convenient to examine \(m(\omega) \) defined in Eq. (43), and we thus plot it as a function of the ac frequency in Fig. 8. First, we observe \(m(\omega) \) displays the same parity property as \(g(\omega) \), which can be explained in the same way. Furthermore, the real and imaginary parts of \(m(\omega) \) are also characterized by features located at \(\pm \hbar \omega \approx |E_F - \varepsilon_{d1}| \). Remarkably, the observed peaks indicate single-photon absorption and emission processes for the transport of heat. It is worth emphasizing that our approach is able to capture such photon-assisted processes in contrast with other calculations restricted to ac frequencies smaller or similar to the tunnel coupling \(\Gamma \): The other calculations assume the ac frequency is small such that only a second-order expansion of \(m(\omega) \) in powers of \(\omega \) (characterized by the pairs \(C_M, R_M \)) can be justified. However, since we do not have such a restriction for the applied ac frequency, our results clearly exhibit photon-assisted processes for the heat transport.

Remarkably, \(m(\omega) \) (either its real or imaginary part) takes positive or negative values depending on the ac frequency regime. We observe Re \(m(\omega) \) < 0 for low and moderate \(\omega \)'s, whereas for high ac frequencies its sign is reversed. We stress the importance of such a result for the functionality of quantum circuits in which one could manipulate the sign of the heat flow spectrum by properly tuning the ac frequency.

IV. CONCLUSIONS

In closing, we have investigated the heat current spectrum in the linear-response regime for an interacting conductor coupled to a single reservoir and modulated by an electrical ac signal. Our results, valid for arbitrary ac frequencies, show that the heat current expression for the reservoir needs to consider the heat stored or relaxed at the barrier. We illustrate our findings with two prototypes of interacting conductors, namely, a single orbital quantum dot and a multiorbital conductor—a carbon nanotube quantum dot coupled to a single reservoir. We deal with the strong interacting limit where Coulomb blockade phenomena apply. We highlight that: (i) electrical and heat transports display photon-assisted transport features, and (ii) the electrothermal admittance can be positive or negative, and the sign can be chosen by adjusting properly the ac frequency. This is an important issue for engineering nanoelectronic circuits with optimal heat dissipation performances.

ACKNOWLEDGMENTS

We acknowledge J. Splettstoesser and D. Sánchez for critical reading and useful discussions. Work supported by MINECO Grant No. FIS2011-23526. We acknowledge financial support from the German Ministry of Innovation NRW.

