Cell mediated immune response of the Mediterranean sea urchin *Paracentrotus lividus* after PAMPs stimulation.

A Romero, B Novoa, A Figueras *

Marine Research Institute - CSIC. Eduardo Cabello 6, 36208 Vigo, Spain.

*Corresponding author:

Tlf: 34 986 21 44 63

Fax 34 986 29 27 62

E-mail: antoniofigueras@iim.csic.es

aromero@iim.csic.es, virus@iim.csic.es

Submitted to: DCI

January 2016
Abstract

The Mediterranean sea urchin (*Paracentrotus lividus*) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm’s immunological defense mechanisms reported so far have used the sea urchin *Strongylocentrotus purpuratus* as a model, and information on the immunological defense mechanisms of *Paracentrotus lividus* and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in *P. lividus* coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in *P. lividus* and their modulation after PAMP stimulation.

Keywords:

Sea urchin; *P. lividus*; immune response; coelomocytes; flow cytometry; gene expression.
1. Introduction

Echinodermata is an ancient phylum of marine invertebrates which includes approximately 7000 living species and about 13,000 extinct species according to the fossil record. It is the largest phylum that does not include freshwater or terrestrial species (Brusca and Brusca, 2003). Echinoderms play a key role in the maintenance of seaweed communities by influencing the relative abundance of fish and other benthic invertebrates (Hereu et al., 2005; Guidetti and Dulčić, 2007). Among the echinoderms some species of sea urchins, such as the Chilean *Loxechinus albus* and several species of the genus *Strongylocentrotus*, are also important for their economic value in aquaculture (Andrew et al., 2002). In Europe, *Paracentrotus lividus* is distributed throughout the Mediterranean Sea and in the North-Eastern Atlantic Sea, from Scotland and Ireland to Southern Morocco and the Canary Islands (Andrew et al., 2002; Boudouresque and Verlaque, 2001). These species have a high commercial value in the sea food market because their gonads are considered a delicacy. Despite the wide distribution and potential economic relevance for the European aquaculture of *P. lividus*, few studies have been conducted to explain how this species interacts with pathogens and the cellular immune mechanisms it uses to overcome disease.

The immune system in echinoderms involves humoral and cellular components (Chia and Xing, 1996). The immune effector cells are a heterogeneous cell population called coelomocytes that move freely in all coelomic spaces (Smith et al., 2010). There is not a single standard classification of coelomocytes for all echinoderms since the cells are heterogeneous in morphology and size. Moreover, the cell type proportion varies with the species and the physiological conditions of each individual. Changes have been described in response to environmental factors, pollutants, pathogens or accidental injuries (Matranga et al., 2000; Pinsino et al., 2007; Ramírez-Gómez et al., 2010). Based
on morphological criteria, coelomocytes have been classified into at least four cell types: amoebocytes, vibratile cells, and colourless and red spherule cells (Edds, 1993; Ramírez-Gómez and García-Arrarás, 2010; Deveci et al., 2015). The immune functions of each type of coelomocyte are still not totally understood, but it has been postulated that amoeboid-phagocytic cells and spherule cells are the only cellular components of the immune system (Ramírez-Gómez and García-Arrarás, 2010). Amoeboid-phagocytic cells share similar functional properties with vertebrate macrophages and granulocytes (Ito et al., 1992) as they are implicated in many immune processes such as encapsulation, aggregation, graft rejection (Matranga et al., 2000), phagocytosis and production of reactive oxygen and nitrogen species (ROS and NO, respectively) (Beck et al., 2001; Coteur et al., 2002b; Ito et al., 1992), inflammatory reactions (Smith et al., 2010), complement production (Gross et al., 1999), and antibacterial and cytotoxic activity (Haug et al., 2002; Lin et al., 2001). Cell cooperation between amoebocytes and spherulocytes has been reported to contribute to cell clumping (Canicatti and D’Ancona, 1989) and to the enhancement of the cytotoxic activity (Arizza et al., 2007a). The immune response can be induced by exposure to different pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS), b1-3-glucan or dsRNA (Terwilliger et al., 2007) and also to immunostimulants as chitosan, yeast polysaccharide, burdock oligosaccharide, seaweed polysaccharide, Lentinus edodes polysaccharide and poly (I: C) (Li et al., 2009).

Most of the immunological defense mechanisms in echinoderms have been described for the sea urchin S. purpuratus (Smith et al., 2010), and information in other sea urchins is scarce. Due to the wide diversity of species included in this taxonomic group, these results cannot be extrapolated to P. lividus without further research.
In the present study, we explored several cellular immune responses in the Mediterranean *P. lividus*. We used flow cytometry technology to evaluate cell cooperation, phagocytic activity and the production of ROS after stimulation with different PAMPs. Flow cytometry technology has been used for the classification and characterization of the coelomocytes in the starfish *Asterias rubens* and in the sea cucumber *Apostichopus japonicus* (Coteur et al., 2002a; Xing et al., 2008), but, to our knowledge, it is the first time it has been used in the Mediterranean sea urchin *P. lividus*. Moreover, neither the modulation of the phagocytic activity, nor the production of ROS and NO after treatment with different PAMPs, nor the expression of immune genes have been explored before in *P. lividus*.

2. Materials and Methods

2.1. Animals

Healthy sea urchins *Paracentrotus lividus* were collected at low tide from the intertidal zone on rocky beaches in Vigo (NW, Spain). Animals were transferred to 120 l fibre-glass tanks filled with filtered and aerated running sea water, and fed algae and mussels. The sea urchins were acclimatized for at least 1 week before the experiments.

2.2. Coelomic fluid collection

Perivisceral coelomical fluid (CF) was carefully collected from the oral region through the *peristomal membrane*. Up to 15 ml of the CF was drawn from a single animal using a sterile 1 ml syringe and a 25-gage needle. The needle was introduced diagonally to the *peristomal coelom* without perforating the gonads or the digestive
tube. To prevent clotting, coelomocytes were diluted 1:1 in an ice-cold solution (50 mM 2-mercaptoethanol, 30 mM EDTA, pH 7.4) prepared in filtered seawater (FSW) (Bertheussen and Seijelid, 1978). In order to describe the different coelomocyte populations, 500 µl of CF (diluted 1:1 in anti-clotting solution) were placed on 8-wells culture slides (BD Falcon) and allowed to settle. After incubation at 15 °C for 15 min, the supernatants were removed and the cells were observed under DIC microscopy using an Eclipse 80i light microscope (Nikon), and classified according to their size and morphology (Ramírez-Gómez and García-Arrarás, 2010). Digital micrographs were taken by a digital camera DXM 1200 (Nikon). Moreover, the cell concentration was calculated in a Neubauer chamber. Coelomocyte populations were defined by flow cytometry through the analysis of FSC-H /SSC-H density plots. Coelomocytes were analyzed immediately after the extraction (diluted 1:1 in anti-clotting solution) and after an incubation period of 1h at 15 °C to enrich the samples with adherent cells. The non-adherent cells were almost totally removed by washing twice with 500 µl FSW. One hundred and fifty thousand cells were analysed in a FACSCalibur flow cytometer (Beckton and Dickinson).

2.3. Phagocytosis assay by flow cytometry

In all the experiments, the CF (diluted 1:1 in ice-cold anti-clotting solution) was incubated with one of the following fluorescein-labelled (FITC) particles (Molecular Probes): 1.3 µm latex beads, *E. coli* K-12 strain particles or zymosan A particles. The number of coelomocytes was estimated by counting cells in a Neubauer-counting chamber. Particles were added at a 100:1 particle:coelomocyte ratio. Control cells were incubated with FSW. After incubation in the dark at 15 °C for 2 hours, uninternalized
particles were removed by washing twice with 500 μl FSW. The attached cells were finally resuspended in 500 μl FSW using a rubber cell scraper. Fifty microliters of 0.4 % trypan blue solution (Sigma) in FSW were added to each sample to quench the fluorescence of adhered but non-phagocyted particles. One hundred and fifty thousand cells were analyzed in a FACSCalibur flow cytometer (BD). Phagocytosis was analysed in the whole cell population, and it was expressed as the percentage of cells that internalized at least one fluorescent particle (positive cells). Coelomocytes were observed using a Nikon Eclipse TS-100 fluorescent microscope, and photographed.

2.4. Cell cooperation between coelomocytes on the phagocytic activity

To analyse the influence that the presence of other cell types has in the phagocytic activity of the amoeboid-phagocytic cells, the phagocytic rates of samples enriched with adherent cells (amoebocytes) were compared with those obtained from whole coelomocyte preparations. In order to obtain samples enriched in amoebocytic cells (fractionated coelomocytes) the CF was dispensed into 24-wells cell culture plates (BD) and cells were allowed to settle and spread for 1 h at 15°C. The non-adherent cells were removed by washing twice with 500 μl FSW. Cells were incubated with FITC-labeled particles at a 100:1 particle:coelomocyte ratio. Phagocytic activity of whole coelomocyte preparations was measured by mixing the FITC-labeled particles with the CF immediately after the extraction. The percentage of phagocytic cells that internalized at least one fluorescent particle was measured after 2 h of incubation as previously described. The experiment was repeated three times and 6 animals were used in each experiment.
2.5. Modulation of the phagocytic activity after PAMPs stimulation

Twelve mL of CF (diluted 1:1 in ice-cold anti-clotting solution) were extracted from one healthy sea urchin. The CFs (1 mL per sample) were mixed immediately after the extraction with FITC-labelled particles diluted in anti-clotting solution containing lipopolysaccharide (LPS, Sigma L2630), lipoteichoic acid (LTA, Sigma L2515), or polyinosinic:polycytidylic acid (Poly I:C, Sigma P9582) (at a final concentrations of 25 or 50 µg/mL). Controls were treated with FSW. Samples were dispensed into 24-wells cell culture plates (BD) and the phagocytic rates were measured after 2 h of incubation as previously described. The experiment was repeated three times and 6 animals were used in each experiment. Results were shown as the mean ± standard deviation of the percentage of cells that ingested at least one fluorescent particle. ANOVA followed by the Tukey multiple comparison test was carried out using the GraphPad Prism 5 software (p<0.05).

2.6. Production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) after PAMPs stimulation

The production of reactive oxygen species and nitrogen radicals was measured after cell stimulation with different PAMPs. Six animals were used in each experiment. Ten mL of CF were extracted from an individual sea urchin, diluted 1:1 in ice-cold anti-clotting solution and dispensed into 24-well cell culture plates (BD). After 30 min at 15 ºC in the dark, the non-adhered cells were removed by washing twice with 500 µl FSW, and the remaining cells were incubated for 3 h at 15 ºC with 500 µl of different solutions containing LPS, LTA, Poly I:C, Zymosan A (Sigma Z4250) or Phorbol 12-myristate 13-acetate (PMA, Sigma) (at final concentration of 25 and 50 µg/mL).
The ROS production was analyzed by flow cytometry. After PAMP stimulation, cells were rinsed twice and 300 μl of FSW containing 0.4% DMSO and 5 μg/ml of the 2′,7′-dichlorodihydrofluorescein diacetate probe (H2DCF-DA, Molecular Probes) were added per well. Cells were incubated for 10 min on ice in the dark, washed twice and resuspended in 500 μl FSW. The percentage of cells producing oxygen radicals was measured by flow cytometry through the FL-1 channel. The mean fluorescence index was calculated as the ratio of stimulated samples to the control.

The concentration of extracellular NO$_2^-$ radicals was quantified in the cell supernatants using a method based on the Griess reaction (Green et al., 1982). Briefly, after PAMP stimulation 50 μl of the supernatants were transferred to a new 96-well plate. One hundred μl of 1% sulphanilamide (Sigma) and other 100 μl of 0.1% N-naphthyl-ethylenediamine (Sigma) both prepared in 2.5% phosphoric acid were added to each well. The optical density (OD) was determined using a multiscan spectrophotometer (Labsystems) at 540 nm. The nitrite concentration (μM) in the sample was determined from standard curves generated using known concentrations of sodium nitrite.

Results are shown as the mean ± standard deviation of the data obtained in the five independent trials. Data were analysed using ANOVA followed by the Tukey multiple comparison test with GraphPad Prism 5 software (p<0.05).

2.7. Selection and description of immune related genes

Sequences from a public *P. lividus* ESTs database were automatically downloaded and reannotated (http://www.echinobase.org/Echinobase/).
http://goblet.molgen.mpg.de/cgi-bin/webapps/paracentrotus2008.cg) by using the Blast2GO software (Conesa et al., 2005). Cell mediated immune genes with a minimum eValue of 10e6 were searched. One sequence similar to a LPS-induced TNF-\(\alpha \) factor (\(Pl\)-LITAF) (GenBank accession number KX083580) and two sequences similar to a macrophage migration inhibitory factor (\(Pl\)-MIFs and \(Pl\)-MIF\textsubscript{I}) (GenBank accession numbers KX083581 and KX083582) were selected. The sequences were translated using the ExPASy Proteomics Server tools and were compared with the sequences available in the GeneBank database using the BLAST tool and the ClustalW2 software. The compute pl/Mw program (Gasteiger et al., 2005) was used to determine their molecular weights and isoelectric points. The description of protein domains, families and functional sites was done using the PROSITE database and the Pfam software (Finn et al., 2010). Secondary structures were predicted according to the PSIPRED Server.

The phylogenetic analysis of the LITAF and MIF proteins was based on the entire \(P. \) lividus amino acid sequence, and 14 and 21 additional sequences of the LITAF and MIF family, respectively from vertebrates and invertebrates downloaded from the GenBank. As out-groups, a homologous LITAF sequence from \emph{Streptococcus} spp. and a MIF sequence from plants were used. All sequences were aligned using MAFFT software (Katoh et al., 2005). Phylogenetic trees were constructed by the neighbor-joining method (Saitou and Nei, 1987) through MEGA software (Tamura et al., 2007). Nodal support was estimated using the same program with 10,000 bootstrap replicates.

2.8. Modulation of the \(Pl\)-LITAF and \(Pl\)-MIF\textsubscript{s} genes after PAMPs stimulation

Fifteen mL of CF were extracted from an animal, diluted 1:1 in ice-cold anti-clotting solution and dispensed into 24-well plates (BD). After 30 min at 15 °C in the
dark, the non-adherent cells were removed and the remaining cells were incubated at 15 °C with 500 µl of solutions containing LPS, LTA, Poly I:C or Zymosan A (Sigma) at a final concentration of 100 µg/mL. Control animals were treated with FSW. After 3, 6 and 24 h, cells were washed twice with FSW and collected in 1 mL of Trizol reagent (Invitrogen). Adherent coelomocytes extracted from eight animals were used in the experiment.

Total RNA was extracted using Trizol reagent (Invitrogen) according to the manufacturer’s protocol and treated with DNase I (Ambion). RNA (1 µg) was reverse transcribed into cDNA using SuperScript™ III Reverse Transcriptase (Invitrogen). Specific primers for qPCR were designed using the Primer3 program (Rozen and Skaletsky, 2000) according to qPCR restrictions (Table 1). Dimer and hairpin formation was checked using the Oligo Analyzer 1.0.2 software. The efficiency of each primer pair was analyzed with seven serial five-fold dilutions of cDNA, and the slope of the regression line of the quantification cycle versus the relative concentration of cDNA was calculated (Pfaffl, 2001). A melting curve analysis was also performed to verify that only specific amplification occurred. Real-Time PCR was performed with an Abi7300 Real Time PCR System (Applied Biosystems) using 1 µl cDNA with 12.5 µl SYBR green PCR master mix (Applied Biosystems) and 0.5 µl (10mM) of each specific primer. The relative expression levels of the genes were normalized using the ribosomal protein L17 (Pl-RPL17) gene as a reference gene (GeneBank accession number KX083583), which was constitutively expressed and not affected by the treatments, and analyzed following the Pfaffl method (Pfaffl, 2001). Results were expressed as the mean ± SD of the results obtained in the eight samples. Data were analysed using an ANOVA followed by the Tukey multiple comparison test (p<0.05).
3. Results and Discussion

3.1 Coelomocyte populations

Four main coelomocyte types were identified in *P. lividus*, the same result found by Gerardi et al., 1990; Pinsino et al., 2008; Deveci et al., 2015 in almost all sea urchin species. Petaloid cells (Figure 1, upper A) suffered a morphological transformation and developed multiple cytoplasmatic prolongations when spread on a glass substratum (Figure 1, right A). Two classes of spherule cells were easily differentiated, since they were either obviously red or colourless (Figure 1, middle A). The vibratile cells were propelled through the fluid by a single long flagellum (Figure 1, down A). The cell concentration in the CF of *P. lividus* (2.4 ± 0.35x10⁶ cells ml⁻¹) was similar to the one of other sea urchin species under healthy conditions (Bertheussen and Seljelid, 1978; Matranga et al., 2005). By flow cytometry, two main cell populations were distinguished (Figure 1, upper B), showing a FSC/SSC distribution similar to those of the starfish (*Asterias rubens*) (Coteur et al., 2002a) and the sea cucumber (*Apostichopus japonicus*) (Xing et al., 2008). The biggest and those who had more granules in their cytoplasm were included in the region 1 (R1) and represented a 63 % (± 5.4) of the total cell population. Cells included in the region 2 (R2) represented a 32 % (± 4.4) of the total cells. When coelomocytes were allowed to settle and spread and the non-adherent cells were removed, the number of cells in the R1 region increased up to 74 % (± 5.3) (Figure 1, down B). This result suggests the presence of amoeboid-phagocytes within the R1 region, since they are the only cell type with the ability to attach to surfaces (Ramírez-Gómez and García-Arrarás, 2010) and the presence of vibratile and spherule cells within the R2 region (Figure 1B).
3.2. Phagocytic activity and cell cooperation between coelomocytes

Phagocytosis plays an important role in the immunity of echinoderms (Smith et al., 2010). In echinoderms, phagocytosis has typically been analysed by optical microscopy, by counting the number of cells with phagocytic vesicles and the number of phagocytic vesicles per cell (Burke et al., 1991; Ito et al., 1992; Arizza et al., 2013). In the present work, flow cytometry technology has been applied to analyse the phagocytic activity in *P. lividus* as well as the cell cooperation between coelomocytes. To our knowledge, this is the first report describing the use of this technology in sea urchins.

The phagocytic activity of coelomocytes was registered as an increment in the FL1-H fluorescence levels, which is proportional to the number of ingested particles; the higher number of engulfed particles, the higher were the fluorescence levels (Figure 2A). The amoeboid-phagocytes included in the region R1 (the biggest and the most granulated cells) were the most active in the ingestion of particles (Figure 2B). A similar response was reported in starfish where the biggest and those who had more granules in their cytoplasm ingested the fluorescent bacteria (Coteur et al., 2002a; Xing et al., 2008). Phagocytic coelomocytes were able to ingest latex beads, *E. coli* and zymosan particles. Interestingly, cells ingested *E. coli* and zymosan particles preferentially over latex beads. Fifty percent (50%) of the cells engulfed Zymosan particles while less than 15% of the cells ingested latex beads (Figure 2C). Phagocytic coelomocytes were able to ingest up to 5 FITC-latex beads as observed by fluorescent microscopy (Figure 2C insert).

Cooperation between amoeboid-phagocytes and spherulocytes has been described in *P. lividus* resulting in an enhancement of the cytotoxic activity (Arizza et
In order to explore if the cooperation between both cell types also affected the phagocytic activity, the phagocytic rates of samples that had been enriched in adherent cells (fractionated coelomocytes) were compared with those obtained using whole coelomocyte preparations (Figure 2D). The values of the phagocytosis obtained were significantly higher when we used whole coelomocyte populations than when we used fractionated samples (Figure 2D). A significant increase of zymosan and *E. coli* uptake (from 30 to 43 % and from 17 to 30 %, respectively) was observed. This result suggests that the cooperation between these two cellular types (amoeboid-phagocytes and spherulocytes) induces a higher phagocytic response. We could not rule out that the presence of compounds with opsonic activity in the coelomic fluid could be the cause of this increment of the phagocytic activity, as it was reported in the sea urchin *S. nodus* (Ito et al., 1992), in the sea star *A. forbesi* (Beck et al., 1993) and the sea cucumber *Holothuria leucospilota* (Xing and Chia, 2000).

3.3. Modulation of the phagocytic activity

The phagocytic process can be modulated by yeast and bacterial components such as glucans or CpGs, as it was reported in the sea cucumber *Apostichopus japonicus* (Gu et al., 2010; Li et al., 2009). In the *P. lividus*, gender differences in the phagocytic activity have been reported (Arizza et al., 2013). Also a decrease of this activity has been observed after an experimental cadmium exposure (Arizza et al., 2007b). In the present study, the treatment of coelomocytes from *P. lividus* with the different PAMPs induced significant changes in the relative percentage of phagocytic cells (Figure 3), reflecting the extremely complexity of the phagocytic process and the previous specific identification of non-self via specific TLR receptors (Russo et al., 2015).
Cells treated with LPS showed a significant increment in the uptake of latex beads and zymosan particles (Figure 3A), as it has been already described in LPS-stimulated coelomocytes from the sea cucumber *H. glaberrima* (Ramírez-Gómez et al., 2010). Interestingly LPS treatment also reduced the ingestion of *E. coli* particles. The treatment of cells with LTA increased the number of cells ingesting latex beads (Figure 3B) but also significantly reduced the phagocytosis of zymosan particles. Finally, Poly I:C treatment reduced the ingestion of latex beads (Figure 3C). The reduction of the phagocytic activity after stimulation suggests a possible competence for the surface receptors between the stimuli and the particles in agreement to the differential modulation of the *Pl-Tlr* gene after LPS or Poly I:C treatment (Russo et al., 2015).

3.4. Production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO)

The production of reactive oxygen (ROS) is closely related to the phagocytic activity of coelomocytes in echinoderms (Coteur et al., 2002b, Sun et al., 2008). In holothurians, phagocytic coelomocytes produce ROS (Dolmatova et al., 2003) and in the sea urchin *P. lividus* the reactive oxygen species were mainly produced by cells included in the R1 region. An 82 % (± 5.7) of the FL-1 positive cells was located within this region (Figure 4A) suggesting that adherent amoeboid-phagocytes were the most active ROS producers in *P. lividus*. The soluble PMA did not affect the ROS production, similar to the response described in starfish and sea cucumber (Coteur et al., 2002b, 2005, Gu et al., 2010) (Figure 4B). The production of ROS was significantly increased in the presence of bacterial components. Cells treated with LPS and LTA showed a significant increase of ROS production, to double the production registered in the control group (Figure 4C and D). Interestingly, the stimulation with Zym and Poly
I:C induced a significant but lower production of ROS by coelomocytes (Figure 4E and 4F). Although the induction of ROS production by treatment with Poly I:C, a compound that mimics a viral infection, has been described in vertebrates (Yang et al., 2013), this response had not been previously reported in echinoderms.

Coelomocytes are also capable of producing and releasing NO upon stimulation with several microbial products (Beck et al., 2001; Romano et al., 2011). In our study, coelomocytes from the sea urchin P. lividus maintained a low basal level of NO (less than 5 μM), a situation previously described in starfish (Beck et al., 2001). Interestingly, the treatment of coelomocytes with PAMPs did not modify this production (data not shown), although similar treatments were able to increase the NO production in sea star and sea cucumber at 72 h post-treatment (Beck et al., 2001; Gu et al., 2010).

3.5. Selection and description of cell mediated immune response related genes

Since the publication of the genome of the sea urchin S. purpuratus (Sodergren et al., 2006) a lot of genomic and transcriptomic information has being generated from different echinoderm species and is available from public databases (http://www.echinobase.org/Echinobase/). Using the public P. lividus EST database (http://goblet.molgen.mpg.de/cgi-bin/webapps/paracentrotus2008.cgi) two cell mediated immune genes were selected and their regulation in coelomocytes was analyzed after PAMP stimulation. We selected a macrophage migration inhibitory factor (MIF) gene because it regulates the pro-inflammatory functions of immune cells in mammals during diseases, cell proliferation, tumor angiogenesis and development (Calandra and Roger, 2003; Javeed et al., 2008). Moreover, the novel transcription factor called LPS-induced TNF-α factor gene (LITAF) that regulates the expression of TNF-α and various
inflammatory cytokines in response to LPS in vertebrates (Myokai et al., 1999; Tang et al., 2005) was also selected.

3.5.1. Structural characterization of MIF and LITAF genes

MIF genes have been detected in most animals (mammals, birds, fish, amphibians, mollusks, nematodes, arthropods) and also in plants (Alexandrov et al., 2009; Buonocore et al., 2010; Huang et al., 2016; Kim et al., 2010; Marson et al., 2001; Paralkar and Wistow, 1994; Suzuki et al., 2004; Wang et al., 2009). In echinoderms, the genome of the sea urchin *S. purpuratus* presented 9 MIF-like genes (Hibino et al., 2006). In the present work, the analysis of the public Pliv-EST database revealed the presence of at least two MIF genes in *P. lividus*. The first one called *Pl*-MIFLong was 417 bp long and encoded a 138-residues, non-glycosylated protein of 15.3 kDa. The second sequence called *Pl*-MIFshort was 348 bp long and encoded a 115 amino acid protein of 12.7 kDa. MIF genes in *P. lividus* showed similar structural features than those found in other vertebrates and invertebrates (Paralkar and Wistow, 1994; Wang et al., 2009). SMART software predicted the presence of MIF domains located between residues 2 and 114. The amino-terminal proline residue (P2) which is crucial for the catalytic activity, the site of isomerase activity (K33) and two out three sites of oxido-reductase activity (C57 and C60) are conserved in *Pl*-MIFs. The prediction of secondary structure showed two alpha-helices and five beta-sheets in the *Pl*-MIFs. (Supplementary figure 1A)

To date, the LITAF gene has been cloned in mollusks (De Zoysa et al., 2010), arthropods (Wang et al., 2012), fish (Wang et al., 2013), birds (Hong et al., 2006), and mammals (Myokai et al., 1999). In echinoderms only one partial EST with high identity to LITAF gene has been reported in *S. purpuratus* (Nair et al., 2005). The *Pl*-LITAF
sequence comprises an open reading frame (ORF) of 618 bp encoding a polypeptide of 205 amino acids with a theoretical isoelectric point of 5.85 and predicted molecular weight of 21.62 kDa. A characteristic LITAF domain located between residues 135 and 204, a N-terminal CXXC motif, followed by a long (25 residues) hydrophobic region and a C-terminal (H)XCXXC motif were identified, which is consistent with previous reports (Hong et al., 2006; Myokai et al., 1999; Wang et al., 2013). There were eight conserved Cys residues in the LITAF family domain that formed three canonical disulfide bridges (Supplementary figure 1B).

To examine the relationship of Pl-MIFs and Pl-LITAF genes with similar sequences in other species, several phylogenetic trees were constructed. The fact that the MIF genes were found in all the species studied, from plants to mammals suggests that the MIF genes are evolutionary conserved, most probably because of its functional significance. The branching pattern of Pl-MIFs and Pl-LITAF found corresponded essentially with the evolutionary relationship among the species (Supplementary Figure 2).

3.6. Modulation of the Pl-LITAF and Pl-MIFs genes after PAMPs stimulation

In order to gain a better understanding of the biological role of the Pl-MIFs and Pl-LITAF genes, we evaluated their expression levels in coelomocytes stimulated with PAMPs at different times post-stimulation (Figure 5).

The modulation of the MIF gene expression in echinoderms had never been analyzed before. Pl-MIFs genes (MIF-long and MIF-short) showed a similar behaviour after PAMPs stimulation (Figure 5A). Treatments with bacterial LPS and LTA did not induce any significant variation in the levels of gene expression. Interestingly, in other
invertebrates such as bivalve molluscs, the MIF gene was up-regulated in scallop hemocytes after lipopolysaccharide (LPS), peptidoglycan (PGN) and β-glucan stimulation (Li et al., 2011). Moreover, *in vivo* infection of the pearl oyster *Pinctada fucata* and the small abalone *Haliotis diversicolor* with *Vibrio alginolyticus* and *V. parahaemolyticus* (Cui et al., 2011; Wang et al., 2009) also induced the up-modulation of this gene. In the sea urchin *P. lividus* only zymosan and poly I:C treatments induced a significant increase of expression after 24 h reaching values up to 4 times over the controls (Figure 5A), suggesting that these two MIF genes could play a critical role in the inflammatory response to yeast or to viral infection.

The Pl-LITAF gene was up-regulated in coelomocytes treated with LPS at 6 and 24h. Up to an 8-fold increase in its expression over the controls (Figure 5B) was detected. A similar gene induction was previously reported by macroarray analysis in the sea urchin *S. purpuratus* 3 days after *in vivo* stimulation with LPS (Nair et al., 2005). Interestingly, although this gene is stimulated by LPS in the coelomocytes of *P. lividus*, a proteomic analysis of the coelomic fluid from *S. purpuratus* after stimulation with LPS was not able to detect this protein (Dheilly et al., 2013). The Gram-positive bacterial component LTA was not able to induce the expression of the LITAF gene (Figure 5B). A similar lack of response was described in other invertebrate models, such as in scallop hemocytes after treatment with peptidoglycan (Yu et al., 2007). The other non-bacterial PAMPs used (zymosan and Poly I:C) were capable of inducing LITAF expression (Figure 5B). This response has not been described before in echinoderms but it was described in the disk abalone (*Haliotis discus discus*) after viral infection (De Zoysa et al., 2010). These results could suggest that only the recognition of foreign particles by specific TLRs are able to initiate a signal transduction cascade leading to
TNF-a production through LITAF activation, as it was suggested in vertebrates (Hong et al., 2006; Tang et al., 2006).

In conclusion, we used the Mediterranean urchin \textit{P. lividus} to explore some cellular immune mechanisms such as phagocytosis, cell cooperation, and ROS production using flow cytometry techniques. Moreover NO production and the induction of two cellular immune-related genes were evaluated after PAMP stimulation. Our results suggest that amoeboid-phagocytes are the most active immune cells involved in phagocytosis and ROS production. Moreover, the phagocytic response can be enhanced by cooperation between phagocytes and spherulocytes and is also modulated by PAMP stimulation. The coelomocytes are also activated by bacterial components as it is suggested by the high levels of expression of the MIF and LITAF genes detected by qPCR. Our results have helped us understand the cellular immune response mechanisms in the Mediterranean sea urchin \textit{P. lividus} and their modulation after PAMP stimulation.

\textbf{Acknowledgements}

This work has been funded by the National Project A/026000/09 AECID, 2010-2012 “Respuesta inmune de invertebrados marinos”. We would like to thank Rubén Chamorro for his technical assistance in the aquarium.

\textbf{Bibliography}

Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., Gunasekaran, P., Ceric, G., Forsslund, K., Holm, L., Sonnhammer, E.L., Eddy,

(LITAF) gene homologue from Zhikong scallop *Chlamys farreri*. Fish Shellfish Immunol. 23, 419-429.
Figure legends.

Figure 1: (A) Coelomocytes of the sea urchin *Paracentrotus lividus*. Petaloid amoebocyte (Upper A). Spread amebocyte with cytoplasmatic prolongations (Right A). Red and colourless spherule cells (Middle A). Vibratile cell (Down A). Scale bar 10 µm. (B) Separation of coelomocytes by forward and sideward scatter (FSC/SSC) flow cytometry. Density plots of CF samples diluted 1:1 in anti-clotting solution immediately after the extraction (Upper B). Density plots of samples enriched in adherent cells (Down B). 150,000 events were represented.

Figure 2: Evaluation of the phagocytic activity by flow cytometry. (A) Histogram showing the fluorescence levels (FL1-H) registered in cells after ingestion of FITC-labelled particles. (B) The phagocytic cells were mainly included in the region R1. (C) Percentage of cells ingesting zymosan, *E. coli* and latex beads. Example of amoebocyte engulfing different number of fluorescence latex beads after a 2 h incubation. Scale bar 25 µm. (D) Percentage of phagocitosis (mean ± standard deviation) using samples containing all coelomocyte populations (whole coelomocytes) or samples enriched in adherent cells (Fractionated coelomocytes). Data were analysed using Student’s t-test and differences were statistically significant at p<0.05. (*) Significant differences compared to the results obtained using fractionated coelomocyte samples.
Figure 3: Percentage of phagocytic cells engulfing different FITC-particles (latex beads, *E. coli* or zymosan) after 2 h of stimulation with 25 or 50 µg/mL of LPS (A), LTA (B) and poly I:C (C). Each bar represents the mean and standard error of six biological replicates. (*) Significant differences compared to the non-stimulated control group (p<0.05).

Figure 4: (A) Location of cells producing ROS within the overall cell population by flow cytometry. Measurement of ROS production after stimulation with PMA (B) LPS (C), LTA (D), Zymosan A (E) or Poly I:C (F) (25 and 50 µg/mL). Each bar represents the mean and standard error of six biological replicates. (*) Significant differences compared to the control group (p<0.05).

Figure 5: Changes in the expression of *Pl-MIFs* (A) and *Pl-LITAF* (B) genes after stimulation with LPS, LTA, Zymosan and Poly I:C. The RPL17 gene was used as the housekeeping control gene. Data represents the mean ± SD of eight individual samples, each assayed performed in triplicate. (*) Significant differences compared to the level of expression level obtained 3 h post-stimulation (p≤0.05).
Supplementary figure 1: (A) Multiple alignment of the MIF amino acid sequences from 13 different species. Important residues for catalytic activity, isomerase activity and oxido-reductase activity are black boxed. Residues believed to be involved in the tautomerase activity are highlighted in gray. The positions of alpha-helices and beta-sheets are indicated. (B) Amino acid alignment of PI-LITAF with known LITAF sequences. Identical amino acids are highlighted by black boxes and asterisks (*). The predicted LITAF domain, which contains two CXXC motifs, is indicated above the sequence.

Supplementary figure 2: Phylogenetic relationships of the MIF (A) and LITAF (B) proteins from different species. The trees were constructed using the Neighbour-Joining algorithm within MEGA (version 3.0). The degree of confidence for each branch point was determined by bootstrap analysis (10,000 repetitions).
<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>Ct slope</th>
<th>Contig Nº</th>
<th>GenBank Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITAF 1F</td>
<td>CGGATTGTGGTTCTTTTGCT</td>
<td>-3.23</td>
<td>7190</td>
<td></td>
</tr>
<tr>
<td>LITAF 1R</td>
<td>CACAGGGCATGTATGGACAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIFS 1F</td>
<td>AAGCAATTGGGAAAACCACAG</td>
<td>-3.34</td>
<td>11052</td>
<td></td>
</tr>
<tr>
<td>MIFS 1R</td>
<td>GTTGATCCCCGCAAACCTCAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIFl 1F</td>
<td>GCTCGCAGTATTTGTACAG</td>
<td>-3.40</td>
<td>10606</td>
<td></td>
</tr>
<tr>
<td>MIFl 1R</td>
<td>CGATGGAGTCTGTCGATAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPL17 1F</td>
<td>GGCTCCTACCTTCTGTCTCA</td>
<td>-3.31</td>
<td>7395</td>
<td></td>
</tr>
<tr>
<td>RPL17 1R</td>
<td>GCATGTGCTTGTGATAGCTGA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2

A

B

C

D

FITC-labeled particles □
Control □

SSC-H

FSC-H

R1

R2

% phagocytic cells

Zymosan E. coli Latex beads

% phagocytic cells

Latex beads E. coli Zymosan

□ Fractionated coelomocytes ■ Whole coelomocytes

Figure 3
Figure 5

A

![Graph A]

B

![Graph B]
Supplementary figure 1
Supplementary figure 2
Figure 5

PL-MIFs

Fold change (Delta Delta Ct)

- LPS
- LTA
- Zym
- Poly

Legend:
- 3 h
- 6 h
- 24 h

PL-MIF1

Fold change (Delta Delta Ct)

- LPS
- LTA
- Zym
- Poly

Legend:
- 3 h
- 6 h
- 24 h

B

PL-LITAF

Fold change (Delta Delta Ct)

- LPS
- LTA
- Zym
- Poly

Legend:
- 3 h
- 6 h
- 24 h

* denotes significant difference.