Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial
carbon cycling and diversity

Christian Lønborga,b*, Mar Nieto-Cidc, Victor Hernando-Moralesd, Marta Hernández-Ruizd
Eva Teirad and Xosé Antón Álvarez-Salgadoc

a Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia
b Centre for Sustainable Aquatic Research, College of Science, Wallace Building, Swansea University SA2 8PP, United Kingdom
c CSIC, Instituto de Investigaciónes Mariñas, Eduardo Cabello 6, 36208 Vigo, Spain
d Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36200 Vigo, Spain

*Corresponding author:
Australian Institute of Marine Science
PMB 3, Townsville MC, QLD 4810
Australia
Phone: 0061 (0) 7 4753 4382
Fax: 0061 (0) 7 4772 5852
Email: clonborg@gmail.com
Abstract

The impact of solar radiation on dissolved organic matter (DOM) derived from three different sources (seawater, eelgrass leaves and river water) and the effect on the bacterial carbon cycling and diversity was investigated. Seawater with DOM from the sources was first either kept in the dark or exposed to sunlight (4 days), after which a bacterial inoculum was added and incubated for 4 additional days. Sunlight exposure reduced the coloured DOM and carbon signals, which was followed by a production of inorganic nutrients. Bacterial carbon cycling was higher in the dark compared to the light treatment in seawater and river samples, while higher levels were found in the sunlight exposed eelgrass experiment. Sunlight pre-exposure stimulated the bacterial growth efficiency in the seawater experiments, while no impacts were found in the other experiments. We suggest that these responses are connected to differences in substrate composition and the production of free radicals. The bacterial community that developed in the dark and sunlight pre-treated samples differed in the seawater and river experiments. Our findings suggest that impact of sunlight exposure on the bacterial carbon transfer and diversity depends on 1) the DOM source and 2) the sunlight induced production of inorganic nutrients.

Keywords: Dissolved organic matter, solar radiation, bacterial diversity, bacterial carbon demand, bacterial growth efficiency
Glossary

ARISA: Automated rRNA intergenic spacer analysis

aCDOM(λ): CDOM absorption coefficient at wavelength λ

a*CDOM(340): Carbon specific CDOM absorption coefficient at 340 nm

BB: Bacterial biomass

BCD: Bacterial carbon demand

BCD_avg: BCD averaged over the 4 days incubation

BCD_int: Integrated BCD over the incubation

BDOC: Bio-available DOC

BGE: Bacterial growth efficiency

BGE_avg: BGE averaged over the 4 days incubation

BGE_int: Integrated BGE over the 4 days

BP: Bacterial production

BP/BB: Instantaneous specific growth rate

BR: Bacterial respiration

CDOM: Coloured dissolved organic matter

DIN: Dissolved inorganic nitrogen

DIP: Dissolved inorganic phosphorus

DOM: Dissolved organic matter

DOC: Dissolved organic carbon

FDOM: Fluorescent dissolved organic matter

HPO_4^{2-}: Phosphate

NH_4^+: Ammonium

peak-A*: Carbon specific fluorescence of general humic substances

peak-C*: Carbon specific fluorescence of terrestrial humic substances

peak-M*: Carbon specific fluorescence of marine humic substances

peak-T*: Carbon specific protein like fluorescence

S: CDOM spectral slope

SR: The CDOM spectral slope ratio

SUVA: Carbon specific CDOM absorption coefficient at 254 nm
Introduction

Microbial activity in aquatic systems is mainly regulated by the energy and nutrients contained within the dissolved organic matter (DOM) pool (Hedges, 2002). Coastal waters are the most productive and biogeochemically active marine ecosystems and they therefore play key roles in the production and degradation of DOM (Wollast, 1998; Lønborg & Álvarez-Salgado, 2012). DOM in coastal waters originates from either autochthonous or allochthonous sources; autochthonous DOM is produced within the system, primarily by macrophytes (Søndergaard, 1981) and plankton organisms (Kawasaki & Benner, 2006; Lønborg et al., 2009), whereas allochthonous DOM is mainly of terrestrial origin (Sobczak et al., 2005). The combined effects of both photochemical and microbial processes have been considered the main responsible for the degradation of natural DOM (Tranvik & Bertilson, 2001). In addition, both processes are also able to produce recalcitrant DOM with lifetimes of years to millennia (Miller & Moran, 1997; Benner & Biddanda, 1998; Obernosterer et al., 1999). Therefore, DOM in coastal waters is a complex mixture of exudates, leachates, degradation and condensation products that vary widely in elemental composition and molecular structure and, consequently, in reactivity.

Given that heterotrophic bacteria are the major biological DOM sink, they regulate whether the degraded compounds are used for biomass or energy production. The ratio between bacterial production (BP) and the sum of BP and bacterial respiration (BR) has been termed the bacterial growth efficiency (BGE). This ratio varies widely (from <1 to 90%) depending on the bacterial community composition (Reinthaler et al., 2005), nutrient and DOM bioavailability (e.g. Rivkin & Anderson, 1997; Apple & del Giorgio, 2007; Lønborg et al., 2010a), water temperature (Rivkin & Legendre, 2001) and UV-light exposure (Lønborg et al., 2013). The heterotrophic bacterial community consists of members from various phylogenetic lineages, with the distribution and abundance of these species being controlled.
by both biological and chemical factors (Fuhrman et al., 2006; Giovannoni & Vergin, 2012).

However, much less is known about how shifts in community structure may influence the microbial carbon cycling.

Photochemical reactions induced by solar radiation, especially in the UV range of the spectrum (UV-B (280–315 nm), UV-A (315–400 nm)), are particularly important in coastal waters with high loads of coloured allochthonous DOM, where they have been shown to transform DOM into labile inorganic (mainly NH$_4^+$ and HPO$_4^{2–}$) and organic (e.g. amino acids) compounds which can support bacterial respiration and biomass production (e.g. Moran & Zepp, 1997; Obernosterer & Benner, 2004). In addition, photochemical processes have also been shown to enhance the cross-linking, humification, and polymerization of labile biomolecules into more recalcitrant compounds (Kieber et al., 1997; Benner & Biddanda 1998; Obernosterer et al., 1999). These sunlight induced reactions can be seen as the abiotic counterpart of the microbial carbon pump, which suggests that the microbial utilization of organic matter is related to the release of recalcitrant compounds that accumulates in the ocean (Jiao et al., 2010). Solar radiation has also been found to mineralize DOM directly to inorganic carbon species (CO$_2$ or CO), free radicals and reactive oxygen species (ROS, e.g. H$_2$O$_2$) (e.g. Cooper et al., 1989; Miller & Zepp, 1995). These combined photochemical reactions have been demonstrated to have a complex impact on the microbial community activity resulting in enhanced, negative, mixed or no effect (see Mopper et al., 2015 for overview). Some studies hypothesize that these variable responses to sunlight exposure are linked with the DOM origin with recently produced autochthonous DOM getting less and allochthonous DOM more bioavailable to bacteria upon irradiation, while others have found the contrary (e.g. Benner & Ziegler, 2000; Sulzberger & Durisch-Kaiser, 2009). While numerous studies have addressed the link between DOM photochemistry and bacterial growth, only few (if any) investigated how changes in DOM sources and sunlight
exposure influence the bacterial activity and diversity in coastal waters. Since the impact of
photochemistry on DOM and bacterial activity depends on the chemical composition,
changes in the exposure to sunlight and DOM source could impact the microbial community
differently.

In this study, we assessed the impact of photo-alteration on DOM derived from specific
aquatic sources (seawater, eelgrass and river water) and the subsequent impact of this
exposure on the bacterial carbon cycling and community structure. We hypothesize that the
bacterial community response will vary depending on the DOM source and sunlight
exposure. This hypothesis was tested using laboratory incubations where sun-light altered
DOM was added to surface seawater from the coastal upwelling area of the Ría de Vigo (NW
Iberian Peninsula) and changes in CDOM optical properties and bacterial abundance, activity
(production and respiration) and diversity were measured over a period of 4 days.

Material and methods

Site description and sample treatments. In order to determine the impact of sunlight on
specific DOM sources and the subsequent effects of the addition of these materials on the
bacterial community of the Ría de Vigo, we collected DOM from 3 different sources: marine
surface water, river water and DOM leached from leaves of the eelgrass *Zostera marina*.

Surface seawater was collected in the coastal upwelling system of the Ría de Vigo. This
coastal embayment is influenced by wind-driven upwelling and downwelling episodes, with
northerly winds resulting in upwelling, which prevail during our sampling period (late
spring). The seawater sample was collected on the 30th of May 2012 in the middle of the Ría
de Vigo, a suitable site for evaluating the influence on the whole embayment (*Nogueira et al.,*
1997). The water was collected at 5 m depth using a 12-L acid-cleaned Niskin bottle and
combined into a 50 L acid-washed and aged polyethylene container. After collection, the
sample water was kept in the dark until processed at the base laboratory. Water temperature
was measured immediately after collection, while aliquots for the analysis of salinity were collected and measured in the laboratory using an Autosal 8400A. Material for chlorophyll a (Chl a) determination was collected by filtering seawater (200 mL) through a GF/F filter and analysed after 90% acetone extraction with a Turner Designs 10000R fluorometer.

Seawater filtrations started within 1 hour after collection. One part was filtered through pre-combusted (450°C for 4 h) GF/C filters to establish a microbial culture to be used in all experiments, which was kept in the dark at 15°C until used. The storage at the later used incubation conditions (dark and 15°C) ensured that the added microbial community was adapted to the incubation conditions, ensuring that the impact we detect is only due to the organic matter sources and/or sunlight exposure. The other part of the seawater was gravity filtrated through a dual-stage (0.8/0.2 µm) filter cartridge (Pall-Acropak Supor membrane), which had been pre-washed with Milli-Q (>10 L). The seawater was hereafter used both as the control treatment and to dilute the DOM obtained from the river water and eelgrass leaves.

In total 20 L of river water were collected in the main tributary to the Ría de Vigo, River Oitabén-Verdugo. This river is not significantly affected by industrial or sewage waste, it has a drainage area of 350 km² and receives a rainfall of 2500 mm per year, which results in an average flow of 15 m³ s⁻¹ (Gago et al., 2005). The water samples were taken in the upstream limit of the freshwater-seawater interface. After collection the sample water was kept in the dark until filtration commenced at the base laboratory, about 2 h later. The river water was gravity filtered through a dual-stage (0.8/0.2 µm) filter cartridge (Pall-Acropak supor Membrane) and thereafter concentrated in a proportion of 1:10 using a metal-free tangential flow ultrafiltration system, provided with a GH2540F30 membrane (GE Power & Water – Water & Process Technologies). Only the DOM material with a molecular weight >1 kDa (representing 72% of the total pool) was used in this study.
Fresh leaves of the eelgrass *Zostera marina* were collected during low tide in the San Simon bay, in the innermost part of the Ría de Vigo. Within an hour of collection, the leaves were brought back to the base laboratory and rinsed thoroughly with the 0.2 µm filtered seawater collected in the middle of the Ría de Vigo. The eelgrass derived DOM was thereafter extracted by adding approx. 5 g of wet leaves to a glass bottle containing 1 L of the 0.2 µm filtered seawater. After extraction (48 hours in the dark) the water was firstly filtered through a pre-combusted (450°C for 4 h) GF/D filter and secondly through a dual-stage (0.8/0.2 µm) filter cartridge (Pall-Acropak Supor membrane).

Experimental design. The DOM derived from river water and eelgrass leaves were added to 10 L polyethylene carboys, containing 7 L of seawater, in order to reach a DOC increase of about 40 µmol C L⁻¹, while the control seawater did not receive any addition. The samples were thereafter divided into two experimental treatments; dark (termed “dark”) and full sun light treatment (termed “UV”). The dark treatments were established by placing the sample water into UVR transparent LDPE incubators (3.5 litres in each) that were covered with aluminium foil and dark plastic bags, while the UV samples were distributed into UVR transparent LDPE incubators that were left uncovered. No headspace was left in either dark or UV treatments. The samples were thereafter placed in a recirculation water bath (water depth: 25 cm) in the terrace of the laboratory and exposed to 100% natural sunlight for 4 days encompassing the natural light/dark cycle. Incident irradiance during the UV treatments was taken from the meteorological observatory on the terrace of the base laboratory, showing that over the 4 days the UV samples were exposed to 20 MJ m⁻² d⁻¹ of total solar radiation.

Before and after sunlight exposure, subsamples were collected for the analysis of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN: NH₄⁺, NO₂⁻, NO₃⁻) and phosphate (DIP: HPO₄²⁻) and DOM optical properties (absorption and induced fluorescence). After the 4 days of sunlight exposure the water samples were within 15 min combined into different
(dark and UV) carboys and the seawater microbial community was added in a ratio of 1 part of microbial culture, established from seawater collected in the Ría de Vigo on the 30th of May 2012, to 9 parts of exposed water. The water was thereafter transferred into fifteen 500 mL glass bottles per treatment (ninety bottles in total) and incubated in the dark at a constant temperature of 15ºC, with three replicate bottles being used for sub-sampling at incubation times 0, 1, 2, 3 and 4 days. The processing of the samples at initial time point started approximately 1 hour after completion of the sunlight exposure. Unfiltered water from these bottles was used to follow changes in bacterial abundance (BA), diversity (using automated rRNA intergenic spacer analysis (ARISA)), production (BP) and respiration (BR). Samples for the analysis of DOC, DIN, DIP and CDOM absorption and fluorescence were collected after filtration through 0.2 µm filters (Pall Supor membrane Disc), which were placed in an acid-cleaned all-glass filtration system under low N₂ flow pressure. All glassware used was acid washed in 10% HCl and rinsed with Milli-Q and sample water prior to use.

Sample analysis. Samples for BA were fixed with 25% glutaraldehyde (0.5% final concentration) for 30 min at 4°C, flash frozen in liquid nitrogen and stored at -80°C until analysed. Thawed samples were diluted up to 10-fold in autoclaved 0.2 µm filtered TE buffer (10:1 Tris–EDTA, pH 8.0) and stained with the nucleic acid-specific dye SYBR Green I (Invitrogen-Molecular Probes) for 15 min in the dark and analysed using a FACSCalibur flow cytometer. Bacterial biomass (BB) was calculated from BA, using a carbon conversion factor of 12 fg C cell⁻¹, which is representative for coastal bacterial assemblages (Fukuda *et al.*, 1998).

BP was measured by [³H] thymidine incorporation (Fuhrman & Azam, 1980). Three replicate 9.9-mL samples and 2 trichloroacetic acid killed samples were added an aqueous stock solution of [³H - methyl] thymidine (20 nmol final concentration). The samples were incubated in the dark at 15°C for 1 h, 10 mL of ice-cold trichloroacetate (TCA) was thereafter
added and samples were filtered onto 0.2 \, \mu m \, polycarbonate filters (pre-soaked in non-
labelled thymidine), washed with 95\% ethanol and autoclaved Milli-Q water. The filters were
hereafter dried at room temperature (24 h) and mixed with 10 mL of scintillation fluid
(Sigma-Fluor). The radioactivity incorporated into cells was counted using a Wallac
scintillation counter. The disintegrations per minute (DPM) of the TCA-killed blank were
subtracted from the DPMs of the samples. Thymidine incorporated into bacterial biomass
was converted to carbon production using the theoretical conversion factors, 2 \times 10^{18} \, \text{cells mol}^{-1} \, \text{thymidine (Fuhrman & Azam 1980)} and using the same cell-to-carbon conversion
factor as for BA.

The bacterial respiration (BR) was estimated using the reduction of 2-(4-iodophenyl)-3-(4-
nitro-phenyl)-5-phenyl tetrazolium chloride (INT) following Martínez-García et al, (2009). In
brief, the activity was measured using 1 h incubations of 3 replicate samples (10 mL) and 1
formaldehyde-killed control. The incubations were terminated by adding formaldehyde and
filtering onto 0.2 \, \mu m \, polycarbonate filters. The filters were hereafter stored frozen (-20°C)
until further processing. The respiration rates derived from INT reduction (BR, in \mu mol \text{O}_2
L^{-1} \, \text{h}^{-1}) were obtained by multiplying the in vivo INT reduction rate (in \mu mol \text{INTF} \, L^{-1} \, \text{h}^{-1})
by an empirically derived conversion factor of 12.8.

The instantaneous bacterial carbon demand (BCD) was calculated as the sum of C-
converted BP and BR:

\[\text{BCD} = \text{BP} + \text{BR} \quad (1) \]

The instantaneous bacterial growth efficiency (BGE) was calculated as BP divided by the
sum of BP and BR:

\[\text{BGE} = \frac{\text{BP}}{\text{BP} + \text{BR}} \quad (2) \]

The integrated BCD (BCD_{int}) over the incubation period was calculated as the bioavailable
DOC (BDOC):
The integrated BGE over the 4 days (BGE\textsubscript{int}) was calculated as the net growth in bacterial biomass between day 0 and maximum abundance (BG; BG = BB\textsubscript{max} - BB\textsubscript{min}) divided by BDOC:

\begin{equation}
\text{BGE}_{\text{int}} = \frac{\text{BG}}{\text{BDOC}} \quad (4)
\end{equation}

The DOC samples were collected into pre-combusted (450°C, 12 h) glass ampoules and preserved with 50 µL 25% H\textsubscript{2}PO\textsubscript{4} to 10 mL sample. DOC was measured using a Shimadzu TOC analyser (Pt–catalyst) and three to five replicate injections of 150 µL were performed per sample. Concentrations were determined by subtracting a Milli-Q blank and dividing by the slope of a daily standard curve of potassium hydrogen phthalate. Using the deep ocean reference provided by Prof. D.A. Hansell, University of Miami (Sargasso Sea deep water, 2600 m) we obtained a concentration of 46.0 ± 2.0 µmol C L−1 (average ± SD), with the DOC value provided by the reference laboratory being 44.0 ±1.5 µmol C L−1. The difference between the initial (DOC\textsubscript{0}) and minimum DOC (DOC\textsubscript{min}) concentration over the 4 days incubation was here defined as the bioavailable DOC (BDOC).

DIN and DIP samples were collected into 50 mL acid washed polyethylene bottles and measured using standard segmented flow analysis (SFA) as described in Hansen & Koroleff, (1999).

Absorption spectra (250–600 nm) of CDOM were measured on a Beckman Coulter DU 800 spectrophotometer using Milli-Q water as a blank. Before analysis samples were warmed to room temperature and absorbance was measured with 1 nm increments using a 10 cm quartz cuvette. The absorption coefficient at any wavelength, \(a_{\text{CDOM}}(\lambda)\) (m−1), was calculated as:

\begin{equation}
a_{\text{CDOM}}(\lambda) = 2.303 \cdot \left[\text{Abs}(\lambda) - \text{Abs}(600–750) \right]/0.1 \quad (5)
\end{equation}
Where $\text{Abs}(\lambda)$ is the absorbance at wavelength λ, and $\text{Abs}(600–750)$ is the average absorbance between 600 and 750 nm, which corrects for the residual scattering by fine size particle fractions, micro-air bubbles or colloidal material present in the sample, or refractive index differences between the sample and the reference (m$^{-1}$), the factor 2.303 converts from decadic to natural logarithms and the denominator (0.1) is the cell path-length in metres.

The estimated detection limit of this spectrophotometer is 0.001 absorbance units or 0.02 m$^{-1}$.

As the treatments had different DOC concentrations, we standardize the CDOM absorption by calculating the C-specific absorption coefficient CDOM absorption spectra ($a^*_{\text{CDOM}}(\lambda)$). The C-specific absorption coefficient at 254 nm, known as SUVA (Weishaar et al., 2003), was calculated by dividing the decadic $a_{\text{CDOM}}(254)$ by the DOC concentration and expressed in L mg C$^{-1}$ m$^{-1}$.

The CDOM spectral slope (S) of the C-specific absorption spectra was modelled as:

$$a^*_{\text{CDOM}}(\lambda) = a^*_{\text{CDOM}}(375) \cdot e^{-S \cdot (\lambda - 375)}$$ \hspace{1cm} (6)

Where $a^*_{\text{CDOM}}(\lambda)$ is the carbon specific absorption coefficient at wavelength λ, $a^*_{\text{CDOM}}(375)$ is the C-specific absorption coefficient at the reference wavelength of 375 nm, and S is the spectral slope coefficient of the absorption curve calculated over the range from 250 to 600 nm. The CDOM spectral slopes were also calculated over two narrow wavelength ranges, $S(275–295)$ and $S(350–400)$, using linear regressions of the natural log-transformed $a_{\text{CDOM}}(\lambda)$ spectra. These slopes were used to calculate the CDOM spectral slope ($S(275–295)/S(350–400)$) ratio (S_R) (Helms et al., 2008). CDOM fluorescence emission excitation matrices (EEMs) and single-point measurements were performed on a Perkin Elmer LS 55 luminescence spectrophotometer equipped with a xenon discharge lamp, equivalent to 20 kW for 8 µs duration. Measurements were performed at a constant temperature of 20°C in a 1 cm quartz fluorescence cell. The EEMs were generated by combining 22 fluorescence emission spectra from 300 to 560 nm at excitation wavelengths ranging from 240 to 450 nm at 10 nm.
intervals. Point Excitation/Emission (Ex/Em) measurements were performed at wavelengths characteristic of peak-A (general humic-like substances, average Ex/Em, 250 nm/435 nm), peak-C (terrestrial humic-like substances, at Ex/Em wavelengths of 340 nm/440 nm), peak-M (marine humic-like substances, average Ex/Em, 320 nm/410 nm) and peak-T (protein-like substances, average Ex/Em, 280 nm/320 nm) (Coble, 1996; Lønborg et al., 2010b). Milli-Q water was used as a reference and the fluorescence measurements are here reported in quinine sulphate units (QSU), by calibrating the LS 55 Perkin Elmer at Ex/Em: 350 nm/450 nm against a quinine sulphate dihydrate (QS) standard dissolved in 0.05 mol L\(^{-1}\) sulphuric acid. As the treatments had different DOC concentrations, we standardize the FDOM values by calculating the carbon specific FDOM as the FDOM signal divided by the DOC concentration. The limit of detection, calculated as 3 × the standard deviation of the blank, was 0.03 QSU for peak-A, 0.05 QSU for peak-C and 0.02 QSU for peak-M and peak-T.

Automated rRNA intergenic spacer analysis. Automated rRNA intergenic spacer analysis (ARISA) was conducted with DNA from the initial community and at the end of each experiment, for characterizing the initial and final microbial community for each treatment. For the initial community, samples were prefiltered through a 1.2 µm pore-size filter (Kleenpak Capsule HDCII) and subsequently, 2 L were filtered on a 0.2 µm pore-size polycarbonate filters (Nuclepore Whatmann, 47-mm filter diameter). At the end of the experiments 0.5–1 L from each treatment was filtered on a 0.2 µm pore-size polycarbonate filters (Nuclepore Whatmann, 47-mm filter diameter). Filters were then stored at -80°C until DNA extraction. Microbial community DNA was extracted using Ultra Clean Soil DNA isolation kit (MoBio Laboratories, Inc.) and quantified in a Nanodrop. Bacterial ARISA was performed using ITSf/ITSReub primer set (Thermo Scientific) previously described by Cardinale *et al.*, (2004). The PCR reaction (25 µL) contained final concentrations of 1x PCR
buffer (Genecraft), 2.5 mmol L$^{-1}$ MgCl$_2$ (Genecraft), 250 μmol L$^{-1}$ of each dNTP (Genecraft), 250 nmol L$^{-1}$ of universal primer ITSF (5'-GTCGTAACAAGGTAGCGTCA-3') and eubacterial ITSReub (5'-GCAAGGCATCCACC-3') (Cardinale et al., 2004), the former being labelled at the 5' end with the fluorescein amidite dye (6-FAM), 40 ng μL$^{-1}$ bovine serum albumin, 3.5 U of BioThermD™ Taq DNA Polymerase (GeneCraft) and approx. 0.13 ng μL$^{-1}$ of template DNA. The reaction mixture was held at 94°C for 2 min followed by 32 cycles of amplification at 94°C for 15 s, 55°C for 30 s and 72°C for 3 min, with a final extension of 72°C for 10 min. PCR samples were conducted by duplicates for each DNA extraction (this compensates for any anomalously running fragments both in the samples as well as in the standards). Amplification products were migrated by capillary electrophoresis on a 50-cm-capillary ABI Prism 3730XL DNA analyser (Applied Biosystems) at Genoscreen (www.genoscreen.fr/). The standardized migration cocktail contained 0.5 μL of amplification product, 0.25 μL of internal size standard LIZ 1200 (20-1200pb, Applied Biosystems) and 8.75 μL of deionized Hi-Di formamide (Applied Biosystems). The mixture was denatured 5 min at 95°C and kept on ice before being further processed by the sequencer. Capillary electrophoresis parameters were as following: 10 kV (run voltage), 1.6 kV (injection voltage), 22 s (injection time) and 63°C (oven temperature). Resulting electropherograms were analysed using the DAx software (Data Acquisition and Analysis Software, Van Mierlo Software). Internal size standards were built by using a second-order least-squares method and local Southern method. Profiles were double checked manually for perfect internal size standard fit and stable baselines. Baselines were then extracted, and subsequently, peak sizes heights and absolute areas were determined. The same process was done for the PCR negative sample. From the negative, the percentile 95 was calculated for the height measurement, and used as a threshold. Sample with peak
heights below percentile 95 were discarded (95 percentile of each duplicated PCR negative present values of 9 and 8.7 relative fluorescence intensity (RFI) respectively).

Profile peaks were binned and rearranged by OTUs (operational taxonomic unit) by using R automatic binning and interactive binning scripts (Ramette, 2009). Binning was carried out independently of the sample (peaks from all samples together). Only peaks on the range 200 to 1,200 bp and with peaks values above 0.09% of total RFI were taking in to account. Peaks from duplicates were manually checked using binned-OTU tables, to avoid erroneous OTU divisions due to rearrangement of all samples together.

Statistical analyses. In this paper t-tests were performed to test the significance of the differences observed in bacterial abundance and activity between dark and UV- irradiation incubations (Sokal & Rohlf, 1995). Confidence level was set at 95%, with all statistical analysis conducted in Statistica 6.0. Differences in ARISA fingerprints between initial and final community as well as among treatments were analysed by comparing Bray-Curtis similarities using the package Primer 6 and Permanova+. A Log X+1 transformation of ARISA relative abundance was used to reduce the dominant contribution by a small number of highly abundant species to Bray-Curtis (despite results were very similar with and without transformations). Similarity patterns among samples were then examined using a hierarchical cluster analysis. Dendograms were generated using the group average method and a similarity profile (SIMPROF) test (999 permutations) was applied to test for significantly similar clusters.

Results

Effects of sunlight on inorganic nutrients and dissolved organic matter

The recorded surface seawater salinity (35.4), temperature (17.4°C), Chl a (4.3 mg m⁻³) and nutrient levels (HPO₄²⁻: 0.04 ± 0.03 µmol P L⁻¹; NO₃⁻+NO₂⁻: 0.14 ± 0.02 µmol N L⁻¹; NH₄⁺:
1.21 ± 0.17 µmol N L\(^{-1}\)) were similar to typical late spring conditions in the Ría de Vigo
(Nogueira et al., 1997). In all incubations, exposure to sunlight resulted in increased NH\(_4^+\) concentrations relative to the dark control, while increased HPO\(_4^{2-}\) concentration were found in the seawater and eelgrass experiments (Table 1). The DOC concentrations before irradiation were 99 ± 1 µmol C L\(^{-1}\) in the seawater, 131 ± 4 µmol C L\(^{-1}\) in the eelgrass and 154 ± 2 µmol C L\(^{-1}\) in the river samples (Table 1). The light treatment caused a 5 ± 2% decrease in DOC concentrations in the seawater experiments, while 12 ± 8% and 9 ± 3% lower concentrations were found in the eelgrass and river samples, respectively (Table 1).

The UV exposure resulted in a lower concentration of bio-available DOC (BDOC) over the 4 days incubation compared with the dark treatment in the seawater (8 ± 1 vs. 17 ± 4 µmol C L\(^{-1}\)) and river experiments (19 ± 1 vs. 26 ± 1 µmol C L\(^{-1}\)), while increased BDOC levels were found in the eelgrass experiment (38 ± 2 vs. 20 ± 5 µmol C L\(^{-1}\)) (Table 1).

The initial C-normalized CDOM absorption spectra measured from 250 to 600 nm showed that the river DOM was more coloured than the seawater and eelgrass treatments (Fig. 1a-c). The largest differences between the dark and UV irradiated samples were found in the river samples, with the C-normalized absorption showing a minor increase between 280 and 600 nm in the seawater experiments, between 250 and 320 nm in the eelgrass, and decreasing over the whole measured spectrum in the river samples (Fig. 1d). The maximum photoproduction of CDOM was found at wavelengths below 260 nm in both the seawater and eelgrass experiments, while the largest loss of carbon-specific absorption for all analysed wavelength and treatments was found around 310 nm in the river experiments. The C-normalized spectral slope determined by fitting the absorption spectra to a single exponential decay function (Eq. 6), showed significantly higher slopes in the sunlight exposed eelgrass and river experiments (t-test, \(p < 0.05\)). The C-normalized absorption at 254 nm (SUVA) was here taken as a measure of the aromaticity and abundance of carbon double bounds in the
DOM (Weishaar et al., 2003) present in the dark and sunlight exposed samples. Sun-light exposure did not significantly impact the SUVA in any of the experiments. The spectral slope ratio (S_R) which is inversely correlated to the molecular weight, increases in all UV light exposed samples (Table 1), suggesting a photochemically induced decrease in the average molecular weight (Helms et al, 2008).

There were clear differences in the C-specific FDOM signals between treatments both before and after 4 days sunlight exposure especially in the river experiment, suggesting differences in the CDOM chemical composition (Fig. 2, Table 1). The initial seawater experiments had the generally lowest FDOM signals, eelgrass had intermediate and river samples the highest values (Fig. 2, Table 1). For the case of the protein-like fluorescence, the eelgrass showed the highest C-specific fluorescence, while the river samples had a generally higher humic contribution (Fig. 2, Table 1). The C-normalized fluorescence signals of the humic- and protein-like substances decreased in all sunlight exposed samples showing the largest impact on the humic substances in the river experiment (Fig. 2, Table 1).

Bacterial response to DOM of different origin and the effect of solar radiation

Initial bacterial abundances (BA) were the same (~2 × 10^5 cell mL^{-1}) in all treatments (Fig. 3). Bacterial abundances increased in all experiments (Fig. 3) following the consumption of DOC (Table 1), reaching maximum abundances of 23 (dark) and 27 (UV) × 10^5 cell mL^{-1} in the seawater, 24 (dark) and 35 (UV) × 10^5 cell mL^{-1} in the eelgrass, and 17 (UV) and 19 (dark) × 10^5 cell mL^{-1} in the river incubations (Fig. 3). These increases in BA corresponded to an average bacterial biomass growth (BG) of 2.07 ± 0.05 (dark) and 2.44 ± 0.03 µmol C L^{-1} (UV) in the seawater, 2.22 ± 0.04 (dark) and 3.27 ± 0.04 µmol C L^{-1} (UV) in the eelgrass and 1.45 ± 0.04 (dark) and 1.72 ± 0.04 µmol C L^{-1} (UV) in the river experiments (Table 2). The BA was not significantly different in the dark and UV treatments in the three
experiments. The initial BP varied between 0.14 ± 0.09 µmol C L\(^{-1}\) (river-UV) and 1.47 ± 0.02 µmol C L\(^{-1}\) (seawater-UV), with higher initial levels in UV exposed seawater and eelgrass samples, whereas higher levels were found in the dark samples in the river incubations (Fig. 3, Table 2). The integrated BP was larger in the UV seawater (2.47 ± 0.55 (dark) vs. 2.89 ± 0.31 (UV) µmol C L\(^{-1}\)) and eelgrass incubations (1.61 ± 0.24 (dark) vs. 3.25 ± 0.55 (UV) µmol C L\(^{-1}\)), while lower levels were found in the river experiments (2.18 ± 0.42 (dark) vs. 1.29 ± 0.25 (UV) µmol C L\(^{-1}\)) (Table 2). The BP was significantly higher in the UV treatment in the eelgrass and in the dark for the river experiments (t-test, \(p < 0.05\), \(n = 4\)), while no significant difference was found in the seawater experiment. The instantaneous specific growth rate (\(\mu\)), calculated as the ratio between BP and BB (BP/BB), showed that the UV pre-exposure had contrasting effects on the initial \(\mu\), with an increase in the seawater (3.90 ± 0.01 (dark) vs. 5.41 ± 0.35 (UV) d\(^{-1}\)) and eelgrass experiments (1.96 ± 0.70 (dark) vs. 3.46 ± 1.26 (UV) d\(^{-1}\)) and a decrease in the river incubations (3.50 ± 1.40 (dark) vs. 0.65 ± 0.47 (UV) d\(^{-1}\)) (Table 2). The \(\mu\) decreased over the incubation period in all experiments reaching levels between 0.40 ± 0.09 (eelgrass-dark) and 0.88 ± 0.16 d\(^{-1}\) (river-dark) at day 4 (Table 2).

The initial BR was higher in the dark treatments in all incubations (Fig. 3, Table 2). In the seawater experiments, the BR increased after day 0 reaching maximum levels of 6.52 ± 0.41 µmol C L\(^{-1}\) d\(^{-1}\) in the dark and 3.49 ± 0.15 µmol C L\(^{-1}\) d\(^{-1}\) in the UV experiments (Fig. 3, Table 2). In the eelgrass UV incubations a dramatic increase was seen after the initial day reaching a maximum value of 19.50 ± 2.25 µmol C L\(^{-1}\) d\(^{-1}\), while more stable levels were found in the dark incubations with a maximum of 5.39 ± 0.18 µmol C L\(^{-1}\) d\(^{-1}\) (Fig. 3, Table 2). In the river dark treatment the BR remained at a constant higher level (max. 8.95 ± 0.50 µmol C L\(^{-1}\) d\(^{-1}\)) than the UV pre-treated samples (max. 7.86 ± 0.61 µmol C L\(^{-1}\) d\(^{-1}\)) until incubation day 3, where after equal BR were found in both experiments (Fig. 3, Table 2).
BR and integrated BR was significantly higher in the dark treatment in the seawater and river experiments, and significantly higher in the UV treated samples in the eelgrass experiment (t-test, \(p < 0.05, n = 4 \)). In all experiments the initial cell specific BR was lower in the UV pre-treated samples (Fig. 3j-f, Table 2). After the initial day in the seawater and river incubations the cell specific BR was generally higher in the dark compared with the UV treatments, while a higher activity was found in the UV exposed samples in the eelgrass experiments (Fig. 3j-f, Table 2).

The initial BCD was higher in the dark compared with the UV treatments in all experiments (Fig. 4a-c, Table 2). Thereafter a continued higher BCD was found in the dark samples in the seawater and river experiments, while in the eelgrass experiment higher levels were found in the UV pre-treated samples (Fig. 4a-c, Table 2). Overall the average BCD was significantly higher in the dark samples in the seawater and river experiments, while a significantly higher BCD was found in the UV pre-exposed samples in the eelgrass experiments (t-test, \(p < 0.04, n = 4 \)). The UV pre-treatment also decreased the integrated BCD in the seawater (23.7 ± 1.7 (dark) vs. 11.7 ± 1.1 (UV) \(\mu \text{M day}^{-1} \)) and river (32.3 ± 3.4 (dark) vs. 23.5 ± 1.9 (UV) \(\mu \text{M day}^{-1} \)) experiments, while an increase was found in the eelgrass (16.4 ± 1.0 (dark) vs. 62.8 ± 10.7 (UV) \(\mu \text{M day}^{-1} \)) experiment (Table 2).

The instantaneous BGE varied initially between 3 ± 1 (river-UV) and 58 ± 7% (seawater-UV) decreasing thereafter to values between 4 ± 1 (eelgrass-dark) and 14 ± 1% (seawater-UV) at incubation day 4 (Fig. 4d-f, Table 2). The initial BGE was significantly higher (t-test, \(p < 0.01 \)) in the UV pre-exposed seawater experiments, while equal levels for both treatments were found in the eelgrass and river incubations (Fig. 4d-f, Table 2). The integrated BGE (\(\text{BGE}_{\text{int}} \)) showed highest values in the UV-seawater samples (25 ± 6%) and lowest in the dark river samples (5 ± 1%), with no significant differences between the dark and UV pre-
treatments in any of the experiments (Table 2). The instantaneous BGE averaged over the 4
days incubation, showed similar levels as the BGE_{int} (Table 2).

The bacterial community composition at time zero and at the end of each experiment was
compared based on ARISA fingerprints (Fig. 5). At the end of the experiments the bacterial
community structure significantly differed from the initial community in all dark and UV pre-
treated experiments, sharing less than 40% of the Bray-Curtis similarity. A significant effect
of DOM origin was observed, with bacterial assemblages from the eelgrass experiments
greatly differing from those in the seawater and river experiments (Fig. 5). The effect of UV
pre-exposure strongly affected the structure of the bacterial communities in the seawater and
river experiments, whereas no significant differences in bacterial community composition
were found in the dark and UV treatments in the eelgrass experiment (Fig. 5). Similarly,
bacterial richness (number of distinct OTUs) was higher in dark than in the UV treatments in
the seawater and river experiments, whereas it was similar in the dark and UV treatments in
the eelgrass experiment (Table 2).

Discussion

The absorption of sunlight by CDOM depends on the intensity of solar radiation, water
transparency, and the DOM chemical structure and abundance of functional groups able to
absorb light. After absorption by CDOM sunlight initiates photochemically mediated
reactions, which can alter the DOM elemental and molecular composition by breaking down
large coloured macromolecules into smaller colourless compounds and/or directly remove
DOM by the production of carbon gasses (e.g. CO, CO₂) and inorganic nutrients (HPO₄^{2-};
NH₄^{+}) and by enhancing the cross-linking, humification, and polymerization of labile
biomolecules into more recalcitrant compounds (e.g. Moran & Zepp, 1997; Helms et al.,
2008; Rossel et al., 2013; Mopper et al., 2015).
In this study, using DOM derived from different natural sources, we found that sunlight exposure impacted the CDOM differently depending on their origin. The largest photodegradation impact were found on the river followed by the eelgrass and seawater derived DOM, with generally larger impacts on the humic-like compared with the protein-like fluorophores, suggesting that the influence of sunlight varies depending on the initial chemical composition, as also found previously (Moran et al., 2000; Stedmon et al., 2007; Gonsior et al., 2009). In all experiments the FDOM levels were different in the dark and sunlight exposed samples, while the C-specific CDOM absorption increased in the seawater and eelgrass experiments and decreased in the river experiment (Fig. 1 and 2). The increase in the CDOM spectral slope ratio (\(S_{R}\)) furthermore demonstrated that the sunlight pre-exposure induced a decrease in the average DOM molecular weight (Helms et al., 2008).

These differences indicates that the chemical composition and molecular size distribution of the precursor and produced material were different in the river experiment compared with the other experiments (Reitner et al., 2002; Rossel et al., 2013), which is not surprising considering that we only used high molecular weight fraction (>1 kDa) of the DOM to perform this experiment. The increases in CDOM absorption measured in the seawater and eelgrass experiments (positive values in Fig. 1d) suggests that a “photohumification” of the DOM pool was taking place, which is linked with the production of new aromatic compounds (Reitner et al., 2002; Rossel et al., 2013). In the past such photohumification processes have been linked with the photochemical degradation of tryptophan (Bianco et al., 2014; Biers et al., 2007; Reitner et al., 2002), as the CDOM production in the seawater and eelgrass was followed by a decrease in protein-like fluorescence, similar processes as described in these previous studies could also have taken place in our experiments. In all sunlight exposed samples the change in CDOM colour, was followed by a detectable DOC decrease and a release of \(\text{NH}_4^+\), with higher production in the CDOM richer incubations (eelgrass and river),
demonstrating that the coloured compounds are the likely sources of the nutrients produced (Vähätalo & Wetzel 2004; Vähätalo & Järvinen 2007). While the photochemical production of NH$_4^+$ has been demonstrated in numerous studies, the production of HPO$_4^{2-}$, found in the seawater and eelgrass has not been reported as often, our study therefore suggests that sunlight does not only impact the C and N biogeochemistry, but also potentially the P cycling in the Ría de Vigo.

Previous studies have demonstrated both decreases and increases in the DOM bioavailability after sunlight exposure (Mopper et al., 2015). Specifically, the increased DOM bioavailability has been linked with the production of new oxygen-rich compounds, and with the degradation of recalcitrant molecules into labile compounds such as e.g. amino acids and carbohydrates (Kujawinski et al., 2004). On the contrary, the decrease in DOM bioavailability is thought to be connected with the transformation of bioavailable substances into biorecalcitrant compounds and/or the production of reactive oxygen species (ROS) which can inhibit microbial activity (Obernosterer et al., 1999; Scully et al., 2003; Obernosterer & Benner, 2004). The variable results in previous studies has been linked with changes in the dominating source of DOM, with some studies suggesting that systems dominated by terrestrial material (allochthonous) will experience an increased microbial activity with sunlight exposure, while decreases should be found in plankton-dominated (autochthonous) systems (Kieber et al., 1989; Moran & Zepp, 1997; Benner & Biddanda, 1998; Obernosterer et al., 1999). Our results suggest that bacterial degradation of DOC from different sources is differently impacted by solar radiation. The seawater and river experiments showed lower bioavailable DOC related to lower microbial activity and carbon demand upon UV exposure, as it was also previously found for seawater collected during autumn and winter in the Ría de Vigo (Lønborg et al., 2013). Contrary, the eelgrass experiment showed enhanced bioavailable DOC levels and microbial activity and carbon
demand (Fig. 3 & 4, Table 2). These responses could be linked with the difference in chemical composition of the initial and photo-produced DOM, as indicated by the different response in FDOM signals and production of inorganic nutrients (HPO$_4^{2-}$ and NH$_4^+$) in the sunlight exposed samples. The response could also be connected with a difference in the conversion of bioavailable substrates to DIC and other C gases, production of substances inhibiting the microbes (e.g. ROS), release of toxic metals (e.g. Cd and Hg) from DOM complexes and the photochemical production of more recalcitrant compounds (Mopper et al., 2015). Humic substances and amino acids (e.g. tryptophan) are known to absorb and undergo photochemical degradation, which can provide a new source of ROS (Creed, 1984; Anesio et al., 2005; Biers et al., 2007; Mayer et al., 2009). While some ROS species (mainly OH radicals) can stimulate microbial activity by the production of labile substrates have others been shown to destroy biologically labile compounds and/or cause oxidative stress (Scully et al., 2003; Pullin et al., 2004; Lesser, 2006; Tedetti et al., 2009). In our study we found a reduction in the humic and protein-like fluorescence signals and a decreased BCD on the initial day in the sunlight pre-exposed samples, suggesting that a short lived inhibitor such as ROS was influencing our results. The sunlight induced changes in DOM bioavailability deserves more consideration as this could represent a source of recalcitrant material that accumulates in the ocean over longer time scales, and as such these processes could be an important abiotic equivalent to the microbial carbon pump (Jiao et al., 2010). As these photochemical mediated processes could represent an important source of recalcitrant material and our study was not designed to study these processes in detail, we suggest that future studies use a more detailed approach towards understanding the impact of these processes. The bacterial growth efficiency (BGE), which describes the relation between respiration and biomass production, has previously been reported to be unaffected, increased and also
decreased upon DOC sunlight exposure (e.g. Pullin et al., 2004; Smith and Benner, 2005; Abboudi et al., 2008; Lønborg et al., 2013). The initial and integrated BGE varied in this study between 3 ± 1% and 58 ± 7%, which is comparable to values previously reported for the Ría de Vigo (range 7–55%: Lønborg et al., 2011) and values found for marine systems in general (average 20%: del Giorgio & Cole, 1998). The initial BGE was on average higher in the sunlight exposed seawater and eelgrass samples while lower values were found in the river experiments (Table 2). In all experiments, changes in the instantaneous and integrated BGE were mainly driven by respiration relative to production, as also found in previous studies (Pullin et al., 2004; Smith & Benner, 2005; Amado et al., 2006). The lower integrated BGE found in the dark seawater and UV eelgrass samples suggest that the bacterial community in these incubations used more energy to produce the same biomass and that BP and BR responded differently to photo-altered DOM. These findings suggest that for coastal waters where the importance of different DOM sources varies spatially and with season (Cauwet, 2002), and the DOM chemical composition might change due to factors such as increased loads from the catchment (Lennon et al., 2013) and changes in upwelling intensity (Gago et al., 2011). Our results demonstrate that the bacterial transfer of energy and nutrients to the microbial food web will change depending on the DOM composition and whether these compounds are exposed to sunlight. The microbial community may react to differences in the substrate supply and composition by physiological acclimation and/or it might force a shift in the community structures (Abboudi et al., 2008; Piccini et al., 2009; Lønborg et al., 2013).

Here, we used ARISA as a genetic fingerprint to characterize the changes in bacterial diversity during our incubations. This technique uses the length heterogeneity of the PCR amplified highly variable intergenic spacer region between the 16S and 23S rRNA genes, and it therefore does not allow a complete characterization of the microbial community but it lets us to detect both dominant and moderately abundant marine planktonic bacteria taxa (Dorst et
In our experiments we found differences in the DOC utilization, bacterial production, respiration and growth efficiencies, between the DOM sources and treatments (dark and UV). This also resulted in bacterial richness and community composition changes associated to photoalteration of DOM in the seawater and river experiments but not for the eelgrass experiment. This indicates that the UV and dark exposure plays an important role in distinguishing the communities developed using DOM that is prevalent in the Ría de Vigo (from seawater and river sources). Nevertheless the effect of the UV radiation is secondary when the available DOM in the experiment (eelgrass extracts) is scarce, in this case microbial diversity is driven by the DOM origin. This contrasts with the important changes in metabolic rates after eelgrass derived DOM had been exposed to sunlight.

Previous studies have demonstrated shifts in the community structure in response to varying DOM source and photodegradation patterns, which might reflect different strategies and physiological differences in growth rates and enzyme activities (Abboudi et al., 2008; Calza et al., 2008; Piccini et al., 2009; Lønborg et al., 2013). This may suggest that, in the eelgrass DOM experiment, UV exposure promotes quantitative rather than qualitative changes in DOM and nutrient pools. By contrast photoalteration of seawater and river derived DOM appears to promote similar changes in bacterial community composition, which suggest that UV exposure promote important qualitative changes in DOM composition or inorganic nutrient pools that largely influence bacterial diversity. Surprisingly, the bacterial community developed in the dark treatments did not significantly differ between seawater and river experiments, despite the important quantitative and qualitative differences of the DOM pool. This suggests that the concentration of inorganic nutrients, which significantly increase after UV exposure of seawater and river DOM, could be a major driver of the bacterial community composition.
In conclusion, we suggest that 1) the bacterial transfer of energy and nutrients to the microbial food web in the Ría de Vigo depends on the dominating DOM source, showing that changes in the microbial response to photo-altered DOM is likely linked to differences in initial chemical composition and 2) the concentration of inorganic nutrients, which significantly increase after UV exposure of seawater and river DOM, could be a major driver of the bacterial community composition.

Acknowledgement

This study was partly funded by the Swansea University Research Fund, a EUROMARINE Fellowship and the Australian Institute of Marine Science. We also would like to thank J. Herrera Cortijo and J. Fernandez for their help collecting the seawater and to V. Vieitez and M.J. Pazó for their very skilful analysis of the fluorescence, inorganic nutrient and DOM samples. M.N.-C. was supported by the CSIC Program “Junta para la Ampliación de Estudios” co-financed by the ESF.

References

65: 74–82.

Gago J, Cabanas JM, Casas G, Miranda A (2011) Thermohaline measurements in the
continental shelf zone of the NW Iberian Peninsula. *Clim Res* 48: 219–229

335: 671–676.

Gonsior M, Peake BM, Cooper WT, Podgorski D, D’Andrilli J & Cooper WJ (2009)
Photochemically induced changes in dissolved organic matter identified by ultrahigh

Organic Matter* (Hansell DA & Carlson CA, eds), pp. 1–33. Academic, San Diego,
California.

spectral slopes and slope ratios as indicators of molecular weight, source, and

Microbiol.* 8: 593–599.

Lønborg C, Álvarez-Salgado XA, Martinez-García SE, Miller AEJ & Teira E (2010a)
Stoichiometry of dissolved organic matter and the kinetics of its microbial degradation in a

Lønborg C, Álvarez-Salgado XA, Davidson K, Martínez-García S & Teira E (2010b)
Assessing the microbial bioavailability and degradation rate constants of dissolved organic
matter by fluorescence spectroscopy in the coastal upwelling system of the Ria de Vigo.

Lønborg C, Álvarez-Salgado XA, Martinez-Garcia S & Teira E (2011) Carbon cycling and

Transport System activity: a method to estimate respiration in natural marine microbial

Miller WL & Moran MA (1997) Interaction of photochemical and microbial processes in the
degradation of refractory dissolved organic matter from a coastal marine environment.

Lett.* **22**: 417–420.

processes and impacts. *Biogeochemistry of Marine Dissolved Organic Matter (Second

Figure legends

Fig. 1. The carbon-specific absorption spectra of coloured dissolved organic matter (CDOM) after 4 days in the dark (dark) or exposed to natural sunlight (UV) in the a) seawater, b) eelgrass and c) river experiments. The difference (dark minus sunlight samples) in the carbon specific absorption spectra of CDOM in the seawater, eelgrass and river experiments are shown in figure d). Please note that in the case of the eelgrass and river samples, the blank subtracted was the seawater used to dilute the extracts.

Fig. 2. C-specific fluorescence excitation emission matrix of a) seawater dark and b) UV, c) eelgrass dark and d) UV, and the e) river dark and f) UV samples. C-specific fluorescence excitation emission matrix of g) seawater dark minus UV, h) eelgrass dark minus UV and i) river dark minus UV samples.

Fig. 3. Time course changes in bacterial abundance (BA; a, b, c), production (BP; d, e, f), respiration (g, h, i) and cell-specific respiration (Cell resp; j, k, l) during the 4 days incubations in the different experiments (seawater, eelgrass and river). Error bars represent standard deviations, where not visible error bars are within the symbol.

Fig. 4. Time evolution of bacterial carbon demand (BCD; a, b, c) and growth efficiency (BGE; d, e, f) during the seawater, eelgrass and river experiments. Error bars represent standard deviations.

Fig. 5. Dendrogram plot of the Hierarchical Cluster analysis (group average mode) based on the bacterial community similarities (Bray-Curtis) between samples at the beginning (T₀) and at the end of the seawater (SW), eelgrass (EEL) and river (RIV) experiments. Red dashed branches represent statistically significant clusters (p < 0.05) according to the SIMPROF test (999 permutations). Open symbols represent UV treatments and black symbols represent dark treatments.
Table 1. Concentrations of phosphate (HPO$_4^{2-}$), nitrate (NO$_3^-$), nitrite (NO$_2^-$) and ammonium (NH$_4^+$), the C-specific CDOM absorption coefficient at 254 nm (SUVA) and spectral slope in the 250-600 nm wavelength range (S), ratio of CDOM spectral slopes (S(275-295)/S(350-400) ratio (S_R)), C-specific general (peak-A*), terrestrial (peak-C*) and marine humic-like substances (peak-M*) and protein-like substances (peak-T*), initial concentrations of dissolved organic carbon (DOC) before and after 4 days in darkness (dark) or exposed to natural sunlight (UV) are shown. The DOC concentration at incubation day 0 (DOC$_0$) and the minimum concentration (DOC$_\text{Min}$) are also shown together with the bioavailable fraction (BDOC) before and after UV-light exposure. Values are averages ± standard deviation; –, not measured.

<table>
<thead>
<tr>
<th></th>
<th>Seawater</th>
<th></th>
<th>Eelgrass</th>
<th></th>
<th>River</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before UV</td>
<td>Dark</td>
<td>UV</td>
<td>Before UV</td>
<td>Dark</td>
<td>UV</td>
</tr>
<tr>
<td>HPO$_4^{2-}$ (µM P)</td>
<td>0.06 ± 0.02</td>
<td>0.18 ± 0.08</td>
<td>0.37 ± 0.11</td>
<td>0.21 ± 0.08</td>
<td>0.21 ± 0.12</td>
<td>0.30 ± 0.08</td>
</tr>
<tr>
<td>NO$_3^-$ (µM N)</td>
<td>0.09 ± 0.01</td>
<td>0.08 ± 0.02</td>
<td>0.30 ± 0.01</td>
<td>0.08 ± 0.02</td>
<td>0.10 ± 0.02</td>
<td>0.09 ± 0.02</td>
</tr>
<tr>
<td>NO$_2^-$ (µM N)</td>
<td>0.06 ± 0.01</td>
<td>0.13 ± 0.10</td>
<td>0.22 ± 0.02</td>
<td>0.08 ± 0.01</td>
<td>0.14 ± 0.01</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td>NH$_4^+$ (µM N)</td>
<td>1.60 ± 0.17</td>
<td>1.28 ± 0.26</td>
<td>2.17 ± 0.33</td>
<td>0.62 ± 0.06</td>
<td>0.46 ± 0.30</td>
<td>2.61 ± 0.76</td>
</tr>
<tr>
<td>SUVA (L mg C$^{-1}$ m$^{-1}$)</td>
<td>0.95 ± 0.04</td>
<td>0.96 ± 0.04</td>
<td>1.03 ± 0.03</td>
<td>1.16 ± 0.03</td>
<td>1.17 ± 0.04</td>
<td>1.38 ± 0.04</td>
</tr>
<tr>
<td>S (nm$^{-1}$)</td>
<td>0.0171 ± 0.0001</td>
<td>0.0171 ± 0.0001</td>
<td>0.0167 ± 0.0001</td>
<td>0.0092 ± 0.0001</td>
<td>0.0092 ± 0.0001</td>
<td>0.0110 ± 0.0001</td>
</tr>
<tr>
<td>peak-A* (×108 L mg C$^{-1}$ m$^{-1}$)</td>
<td>1.59 ± 0.04</td>
<td>1.59 ± 0.05</td>
<td>1.98 ± 0.05</td>
<td>1.38 ± 0.04</td>
<td>1.38 ± 0.06</td>
<td>1.74 ± 0.12</td>
</tr>
<tr>
<td>peak-C* (×108 L mg C$^{-1}$ m$^{-1}$)</td>
<td>4.02 ± 0.09</td>
<td>4.97 ± 0.15</td>
<td>4.13 ± 0.09</td>
<td>3.66 ± 0.07</td>
<td>3.77 ± 0.08</td>
<td>3.81 ± 0.06</td>
</tr>
<tr>
<td>peak-M* (×108 L mg C$^{-1}$ m$^{-1}$)</td>
<td>1.66± 0.05</td>
<td>1.81 ± 0.01</td>
<td>1.50 ± 0.06</td>
<td>2.06 ± 0.07</td>
<td>1.92 ± 0.03</td>
<td>1.68 ± 0.04</td>
</tr>
<tr>
<td>peak-T* (×108 L mg C$^{-1}$ m$^{-1}$)</td>
<td>1.75± 0.11</td>
<td>1.82 ± 0.03</td>
<td>1.52 ± 0.03</td>
<td>1.93 ± 0.01</td>
<td>1.62 ± 0.03</td>
<td>1.50 ± 0.06</td>
</tr>
<tr>
<td>DOC (µM C)</td>
<td>99 ± 1</td>
<td>98 ± 2</td>
<td>94 ± 2</td>
<td>131 ± 4</td>
<td>130 ± 1</td>
<td>115 ± 1</td>
</tr>
<tr>
<td>DOC$_0$ (µM C)</td>
<td>–</td>
<td>96 ± 1</td>
<td>93 ± 1</td>
<td>–</td>
<td>117 ± 2</td>
<td>111 ± 1</td>
</tr>
<tr>
<td>DOC$_\text{Min}$ (µM C)</td>
<td>–</td>
<td>80 ± 1</td>
<td>85 ± 1</td>
<td>–</td>
<td>83 ± 3</td>
<td>73 ± 2</td>
</tr>
<tr>
<td>BDOC (µM C)</td>
<td>–</td>
<td>17 ± 4</td>
<td>8 ± 1</td>
<td>–</td>
<td>20 ± 5</td>
<td>38 ± 2</td>
</tr>
</tbody>
</table>
Table 2. Initial (BB₀, BP₀, BR₀) and final (BB₄, BP₄, BR₄) bacterial biomass (BB), production (BP), and respiration (BR) are shown together with the bacterial biomass (BG) and specific growth rate at day 0 (BP₀/BB₀) and 4 (BP₄/BB₄) for the dark and UV exposed samples in the 3 different experiments (seawater, eelgrass and river). Bacterial carbon demand (BCD) and growth efficiency (BGE) at incubation day 0 (BCD₀, BGE₀) and 4 (BCD₄, BGE₄), averaged (BCD_{Avg}, BGE_{Avg}) and integrated values (BCD_{Int}, BGE_{Int}) for the different experiments are also shown. Values are averages of 4 replicates ± standard error.

Bacterial richness (number of distinct OTUs) and bacterial evenness (inverse Simpson index) were estimated from ARISA fingerprinting analyses.

<table>
<thead>
<tr>
<th></th>
<th>Seawater Dark</th>
<th>Seawater UV</th>
<th>Eelgrass Dark</th>
<th>Eelgrass UV</th>
<th>River Dark</th>
<th>River UV</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB<sub>0</sub> (µM C)</td>
<td>0.27 ± 0.01</td>
<td>0.27 ± 0.01</td>
<td>0.23 ± 0.01</td>
<td>0.22 ± 0.01</td>
<td>0.21 ± 0.01</td>
<td>0.21 ± 0.02</td>
</tr>
<tr>
<td>BB<sub>4</sub> (µM C)</td>
<td>0.58 ± 0.04</td>
<td>0.89 ± 0.01</td>
<td>0.61 ± 0.02</td>
<td>1.00 ± 0.04</td>
<td>0.45 ± 0.03</td>
<td>0.47 ± 0.03</td>
</tr>
<tr>
<td>BG (µM C)</td>
<td>2.07 ± 0.05</td>
<td>2.44 ± 0.03</td>
<td>2.22 ± 0.03</td>
<td>3.27 ± 0.04</td>
<td>1.45 ± 0.04</td>
<td>1.72 ± 0.04</td>
</tr>
<tr>
<td>BB<sub>0</sub>/BP<sub>0</sub> (day<sup>-1</sup>)</td>
<td>1.06 ± 0.05</td>
<td>1.47 ± 0.02</td>
<td>0.45 ± 0.16</td>
<td>0.76 ± 0.26</td>
<td>0.73 ± 0.24</td>
<td>0.14 ± 0.09</td>
</tr>
<tr>
<td>BB<sub>4</sub>/BP<sub>4</sub> (day<sup>-1</sup>)</td>
<td>0.28 ± 0.05</td>
<td>0.52 ± 0.02</td>
<td>0.24 ± 0.04</td>
<td>0.88 ± 0.07</td>
<td>0.39 ± 0.05</td>
<td>0.27 ± 0.06</td>
</tr>
<tr>
<td>BP<sub>0</sub>/BB<sub>0</sub> (day<sup>-1</sup>)</td>
<td>3.90 ± 0.01</td>
<td>5.41 ± 0.35</td>
<td>1.96 ± 0.70</td>
<td>3.46 ± 1.26</td>
<td>3.50 ± 1.26</td>
<td>0.65 ± 0.47</td>
</tr>
<tr>
<td>BR<sub>0</sub> (µM C day<sup>-1</sup>)</td>
<td>4.23 ± 0.44</td>
<td>1.08 ± 0.24</td>
<td>4.06 ± 0.15</td>
<td>2.61 ± 0.18</td>
<td>8.20 ± 0.23</td>
<td>4.14 ± 0.33</td>
</tr>
<tr>
<td>BR<sub>4</sub> (µM C day<sup>-1</sup>)</td>
<td>4.90 ± 0.16</td>
<td>3.24 ± 0.07</td>
<td>5.39 ± 0.18</td>
<td>17.59 ± 0.65</td>
<td>5.44 ± 1.09</td>
<td>5.35 ± 0.83</td>
</tr>
<tr>
<td>BR<sub>Avg</sub> (µM C day<sup>-1</sup>)</td>
<td>10.37 ± 2.59</td>
<td>28.66 ± 8.87</td>
<td>14.55 ± 2.89</td>
<td>14.55 ± 2.89</td>
<td>7.80 ± 0.62</td>
<td>5.61 ± 0.65</td>
</tr>
<tr>
<td>BCD<sub>0</sub> (µM C day<sup>-1</sup>)</td>
<td>23.7 ± 1.7</td>
<td>11.7 ± 1.1</td>
<td>16.4 ± 1.0</td>
<td>62.8 ± 10.6</td>
<td>32.3 ± 3.4</td>
<td>23.5 ± 1.9</td>
</tr>
<tr>
<td>BGE<sub>0</sub> (%)</td>
<td>20 ± 3</td>
<td>58 ± 7</td>
<td>10 ± 4</td>
<td>23 ± 10</td>
<td>8 ± 3</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>BGE<sub>4</sub> (%)</td>
<td>5 ± 1</td>
<td>14 ± 1</td>
<td>4 ± 1</td>
<td>5 ± 1</td>
<td>7 ± 2</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>BGE<sub>Avg</sub> (%)</td>
<td>10 ± 3</td>
<td>29 ± 9</td>
<td>9 ± 3</td>
<td>8 ± 4</td>
<td>8 ± 3</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>BGE<sub>Int</sub> (%)</td>
<td>11 ± 2</td>
<td>25 ± 6</td>
<td>11 ± 2</td>
<td>6 ± 2</td>
<td>5 ± 1</td>
<td>7 ± 2</td>
</tr>
</tbody>
</table>

Bacterial Richness

70 39 66 55 87 54
Lønborg et al. Fig. 1.
Lønborg et al. Fig. 2.
Lønborg et al. Fig. 3.
Lønborg et al. Fig. 4.
Lønborg et al. Fig. 5.