The Microwave-assisted Organocatalyzed Rearrangement of Propargyl Vinyl Ethers to Salicylaldehyde Derivatives: A Combined Experimental and Theoretical Study.

Abstract: Herein we describe the microwave-assisted imidazole-catalyzed transformation of propargyl vinyl ethers (PVEs) into multisubstituted salicylaldehyde motives. The reaction is instrumentally simple, scalable and tolerates a diverse grade of substitution at the propargylic position of the starting PVE. The generated salicylaldehyde motives incorporate a broad range of topologies, spanning from simple aromatic monoyclics to complex fused polycyclic systems. The reaction is highly regioselective and operates under symmetry-breaking conditions. The preparative power of this reaction has been demonstrated in the first total synthesis of morintrifolin B (19), a benzophenone metabolite isolated from the small tree Morinda citrifolia L. A computational DFT study of the reaction has been accomplished, with full agreement between calculated values and observed experimental results. The theoretically calculated values support a domino mechanism comprising a propargyl Claisen rearrangement, a [1,3]-H shift, a [1,7]-H shift (enolization), a 6π-electrocyclization and an aromatization reaction.

Introduction

Propargyl vinyl ethers 1 (PVEs) constitute a privileged group of small size, densely functionalized and readily accessible linear scaffolds. The main key to the chemical reactivity encoded in these structures is the [3,3]-sigmatropic rearrangement (propargyl Claisen rearrangement) shown in Scheme 1A,[1,2] which takes place irreversibly and under thermodynamic control to generate the allene 2.[2] Since the first seminal thermally-driven rearrangement achieved by Black and Landor in 1965,[3] which served to determine that propargylic systems could be accommodated into the Claisen rearrangement, a vast number of propargyl Claisen rearrangements have been successfully performed.[1,3] The main drawback of these rearrangements relied on the high temperatures required to proceed which forced the use of high boiling solvents and harsh conditions. These experimental difficulties had prevented their use in preparative organic synthesis, in sharp contrast to its counterpart involving allyl vinyl ethers.[4] However, this scenario dramatically changed in the last decade with the emergence of milder metal-catalyzed protocols[5] and the replacement of conventional heating with laboratory microwave equipment.[1] Under microwave heating, allenes 2 rearrange to the more stable diene derivatives 3 through a pseudo pericyclic [1,3]-H shift (Scheme 1A). Overall, this tandem rearrangement transforms a C1-O-C2 linear structure, easily assembled through C-O bond forming chemistry, into an all sp3-linear C5 carbogenic block[6] armed with a reactive carbonyl group (aldehyde or ketone), an ester group, and a doubly conjugated diene. An exception to this outcome is featured by the activated allenes 5 (EWG = ester or secondary amide),[7] which directly rearrange to the furan derivatives 6 through a tandem enolization /O-cyclization/H-transfer process (Scheme 1B).[8]

Scheme 1. The μ-assisted propargyl Claisen rearrangement of propargyl vinyl ethers 1.
A particularly striking reactivity profile arises from monosubstituted PVEs 7 (R² = H; hereinafter referred to as secondary PVEs) bearing a linear chain at the propargylic position (Scheme 1C). In these cases, the rearrangement affords a roughly equimolar mixture of salicylaldehyde 9 and the trisubstituted olefin 10.[10] The formation of salicylaldehyde 9 can be formally rationalized through a tandem enolization / 6-π-electrocyclization / aromatization process with the net generation of a methanol molecule per molecule of salicylaldehyde. On the other hand, the stereoselective formation of the trisubstituted olefin 10 should be mediated by the formation of the hemiacetal 13 to launch an internal redox process involving a [1,5]-H shift. Overall, the manifold constitutes a divergent chemical process able to produce two well differentiated products from the same reactive intermediate and through two interconnected pathways (the product of one pathway launches the other). Remarkably, the manifold could be selectively funneled toward each one of these two products with a careful design of the experimental conditions. Thus, salicylaldehydes 9 could be cleanly obtained in 60-80% yield by microwave irradiation of a xylene solution of PVEs 7 in the presence of molecular sieves (MS) 4Å (300 mg/mol substrate).[9] Although initially we used MS 4Å as additive, we later discovered that pyridine (200 mol-%) could replace the MS rendering the process homogenous and easier to perform.[10] It was assumed that the beneficial action of the two additives was related to a reduction of the activation barrier for the enolization process, otherwise the limiting step of the process. Although this is an uncommon reactivity for molecular sieves, there are some precedents for its use in enolization processes.[11] On the other hand, the microwave irradiation of a methanolic solution of PVEs 7 exclusively afforded the olefin derivatives 10 in good-to-excellent yields (75-95%) and complete stereoselectivity (the two alkyl chains are placed in trans-position).[12]

The salicylaldehyde motif constitutes an important building block for the preparation of numerous pharmacologically relevant coumarins,[13a] flavonoids,[13b] chromenes,[13c,d] catechols,[13e] and several mycotoxins,[13f] as well as chiral catalysts based on Schiff base transition metal complexes (salen-catalysts).[14] Salicylaldehydes are commonly prepared by direct formylation of the corresponding phenol derivatives[15] using the classic Reimer-Tiemann conditions (CHCl₃-KOH)[15a] or the Duff procedure (hexamethylenetetramine-acetic-sulfuric acid).[15b,c] Interestingly, the 3,6-disubstitution pattern present in the salicylaldehydes 9 cannot be easily accessed using these standard protocols. Among other drawbacks, these reactions present regioselectivity problems when the ortho and para positions to the hydroxyl functionality are not conveniently blocked.[16]

The efficiency and instrumental simplicity of this reaction together with the importance of the salicylaldehyde motive prompted us to undertake a systematic study of this reaction aimed to transform it into a general, robust, and preparative protocol for accessing salicylaldehyde-based structural motives. The transformation of this reaction into a standard synthetic protocol with preparative value (academic and industrial) required the implementation of a catalytic version incorporating the following reaction values: 1) the use of a cheap and easy handled catalyst (additive); 2) high tolerance to broad and diverse substitution patterns on the PVE; and 3) bench-friendly reaction processing. We report herein how these conditions could be met using imidazole (10 mol-%) as a basic catalyst and how this catalytic manifold could be used for the construction of salicylaldehyde motives supported on a broad range of topologies, which spanned from simple aromatic monomeric to complex fused polycyclic systems. We have also performed a theoretical study of this reaction which is in full agreement with the observed experimental results. Finally, the preparative power of this reaction has been demonstrated in the first total synthesis of morintrifolin B (19).[17] a benzophenone metabolite isolated from the small tree Morinda citrifolia L.

Results and Discussion

The catalytic synthesis of 3,6-disubstituted salicylaldehydes from secondary propargylic vinyl ethers. Although pyridine had proved to be a convenient additive for this transformation,[10] the large excess required (200 mol-%) precluded its use in large scale preparative reactions. Guided by the current principles of sustainable chemistry,[18] we searched for new additives to be used as true catalysts. For this study, we chose the transformation of the PVE 7a into salicylaldehyde 9a (Table 1).

We had observed in earlier studies,[9,10] that the substitution pattern adorning this PVE was one of the worst tolerated by this reaction either using MS 4Å (43%)[9] or pyridine (53%).[10] Because the use of pyridine improved the efficiency of the reaction in a net 10%, we envisioned that this reaction could be a convenient benchmark for the assay of other basic additives better suited than pyridine to catalyze the required enolization of dienal 8 to the intermediate 11 (Scheme 1C). With this idea in mind, we assayed the bases shown in Table 1 (entries 1-15).

Additionally, we assayed a set of common acids of moderate strength to see if they could also be suitable additives for this reaction (entries 16-18). The reactions were performed using our previously established conditions [xylene (1 mL), T, 360 watt, 200 0C, and closed vessel], 1h) and using a catalytic amount (10 mol-%) of additive. Imidazole and 4-(N,N-dimethylaminopyridine) proved to be the best additives (entries 5 and 7), with the highest yields (84% and 78% combined yield), respectively, and 9a:10a ratios of 1.7 and 2.1, respectively. The yields and ratios were in both cases similar to those obtained using excess of pyridine (entry 4) and substantially better than those obtained with MS 4Å (90% combined yield, 1:1 ratio, entry 19). Practical reasons (price and availability) made imidazole the preferred catalyst for this reaction. The use of acid additives had the reverse effect, generating the olefin 10a as the main product although with moderate efficiency (entries 16-18).

The scope and efficiency of the catalytic manifold was first studied with the transformation of the secondary PVEs 7a-g into the corresponding salicylaldehydes 9a-g (Table 2).[19] In general, the reaction delivered the corresponding salicylaldehydes 9a-f in moderate-to-good yields (54-72%) depending on the substitution pattern of the PVE. Esters, isolated double bonds, and protected...
The use of cyclic ketones bearing an electron-rich alkyne in its structure could be also transformed into the corresponding hydroxylated salicylaldehyde 9g (38%). In spite of this moderate-low yield, the importance of hydroxylated aromatic platforms²⁰ and the potential use of hydroxyalted salicylaldehydes as convenient building blocks for accessing biological relevant molecules¹³,²¹,²² ensures a preparative value to this transformation. In addition, the ease and direct access to secondary PVEs containing the ethoxyacetylene motive (ethoxyacetylene is commercial available) allows for the fast access to a broad number of 3-substituted 6-ethoxy-salicylaldehyde platforms.

The catalytic synthesis of 3,4,6-trisubstituted salicylaldehydes from tertiary propargylic vinyl ethers. Once the catalytic version of the reaction could be standardized, we next studied its extension to PVEs 1 bearing two substituents at the propargylic position (R² and R³ ≠ H; hereinafter referred to as tertiary PVEs). The main advantages associated with the incorporation of tertiary PVEs to the reaction manifold are related to: 1) skeletal complexity: the use of cyclic ketones (mono or polycycles, simple or fused) should increase the power of the manifold to generate structural complexity and topological diversity; 2) reactivity: the presence of two substituents on the propargylic position of the tertiary PVE should favor both the propargyl Claisen rearrangement¹ and the enolization process (see Figure 1C), what should translate in a net increase in the reaction efficiency. With these ideas in mind, we prepared an extensive set of tertiary PVEs¹ incorporating a wide array of substituents and molecular topologies (Table 3). These PVEs were conveniently prepared from the corresponding tertiary propargyl alcohols and methyl propiolate according to our recently reported protocol.²⁴

In general, tertiary PVEs proved to be excellent substrates for this catalytic reaction affording the corresponding aromatic derivatives in good average yield. The PVEs 1a-d²⁵ derived from acyclic ketones, delivered the corresponding aromatic derivatives 14a-d in good average yield and incorporating a varied substitution pattern at the aromatic ring, including alky, aryl or oxygen-containing functionalities. Remarkably, the latter functionalities are introduced with high efficiency (14a, 73%) and in a chemo-differentiated manner (one as a free OH, the another as a protected OH). This property enables the orthogonal manipulation of each hydroxyl group at the aromatic ring without taking special precautions or using special reagents. A very interesting aspect of this reaction is the breakage of the symmetry observed when symmetrical disubstituted PVEs (ketones) are used (CH₂-⁻² = R²). In these cases, the reaction places the R⁵ substituent at the C6-position of the ring, delivering the R² substituent (the sec-alkyl chain) at the corresponding C6-position. This is a very important property and it allows the final differentiation of the otherwise identical PVE’s propargyl substituents, increasing the diversity generation power of the reaction manifold. The derivative 14d is a nice example of this symmetry-breaking chemical differentiation (R² = Et; R³ = Me).

The tertiary PVEs 1e-u²¹ derived from symmetric monocyclic ketones, were also convenient substrates for the

- Table 1. Optimization of the additive for the micro-wave-assisted synthesis of salicylaldehyde 9a.

<table>
<thead>
<tr>
<th>entry</th>
<th>Additive</th>
<th>pKᵢ [¹]</th>
<th>9a+10a (%)</th>
<th>ratio</th>
<th>9a/10a [²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DABCO</td>
<td>2.97</td>
<td>64</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aniline</td>
<td>4.63</td>
<td>35</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DMBA</td>
<td>4.68</td>
<td>36</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pyridine</td>
<td>5.2</td>
<td>87</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Imidazole</td>
<td>6.9</td>
<td>84</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Collidine</td>
<td>7.4</td>
<td>68</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DMAP</td>
<td>9.2</td>
<td>72</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DIPEA</td>
<td>10.8</td>
<td>64</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Quinuclidine</td>
<td>11</td>
<td>44</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DBU</td>
<td>12</td>
<td>62</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>tBuOK</td>
<td>17</td>
<td>37</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Indole</td>
<td>21¹²</td>
<td>34</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Pyrrole</td>
<td>23¹³</td>
<td>34</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Urea</td>
<td>26.9¹⁴</td>
<td>42</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TMP</td>
<td>37d</td>
<td>74</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C₆H₄CO₂H</td>
<td>4.2</td>
<td>58</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>C₂H₅NH₂·H₂O</td>
<td>8.7</td>
<td>56</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Phenol</td>
<td>9.95</td>
<td>55</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>MS 4A¹⁵</td>
<td>90</td>
<td>90</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

[a] In H₂O. [b] Determined by NMR. [c] 200 mol-%. [d] In DMSO. [e] 300 mg/mmol. Abbreviations: DMBA: 1,3-Dimethyl barbituric acid; DMPA: 4-dimethylaminopyridine; DIPEA: N,N-diisopropyl-ethylamine; DBU: 1,8-diazabicyclo[5,4,0]undec-7-ene; TMP: 2,2,6,6-tetramethylpiperidine.

- Table 2. Imidazole-catalyzed synthesis of salicylaldehydes 9 from secondary propargyl vinyl ethers 7.

<table>
<thead>
<tr>
<th>R²</th>
<th>R¹</th>
<th>Imidazole (10 mol-%)</th>
<th>Xylene (1ml)</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>nBu</td>
<td>4.63</td>
<td>200 °C, 1h</td>
<td>9a (54%)</td>
</tr>
<tr>
<td>9b</td>
<td>nPr</td>
<td>5.2</td>
<td>200 °C, 1h</td>
<td>9b (60%)</td>
</tr>
<tr>
<td>9c</td>
<td>Me</td>
<td>6.9</td>
<td>200 °C, 1h</td>
<td>9c (54%)</td>
</tr>
<tr>
<td>9d</td>
<td>Ph</td>
<td>7.4</td>
<td>200 °C, 1h</td>
<td>9d (72%)</td>
</tr>
<tr>
<td>9e</td>
<td>TBDMOSO</td>
<td>9.2</td>
<td>200 °C, 1h</td>
<td>9e (62%)</td>
</tr>
<tr>
<td>9f</td>
<td>OEt</td>
<td>10.8</td>
<td>200 °C, 1h</td>
<td>9f (55%)</td>
</tr>
<tr>
<td>9g</td>
<td>OEt</td>
<td>11.0</td>
<td>200 °C, 1h</td>
<td>9g (38%)</td>
</tr>
</tbody>
</table>
Table 3. Imidazole-catalyzed synthesis of salicylaldehydes 14 from tertiary propargyl vinyl ethers 1.

reaction, providing a wide set of fused bicyclic salicylaldehyde derivatives featuring varied aromatic functionalization. Thus, the PVEs 1e-o, armed with a cyclohexane motive, delivered the corresponding 1-hydroxy-5,6,7,8-tetrahydronaphthalene-2-carbaldehydes 14e-o adorned with a wide array of substituents at the C3-position. The substituents ranged from simple hydrogen, the worst case 14k, 17% to heteroatoms including silicon (14j, 85%), bromine (14l, 47%), oxygen (14m, 77%) or nitrogen (14o, 93%). The low yield of derived 14k is in accordance with our previous results using MS 4Å [9] or pyridine [10] and confirms that the substitution at the terminal alkyne position (R1 ≠ H) is necessary to favor the formation of the enol intermediate 11 (see Scheme 1C). In this line of thinking, it is remarkable the high efficiency of this reaction when a bulky tert-butyl group is allocated at the terminal position of the triple bond in the parent PVE (14h, quantitative). The substitution of this group by less steric-demanding groups (n-butyl or methyl) lowered the yield (54% and 55%, respectively). On the other hand, the generation of the salicylaldehyde 14p (31%) incorporating a fused cyclobutene ring is outstanding and reflects the potential of this catalytic reaction to generate molecular topologies not easily accessible by other methods [25].

Other topologies based on the bicyclo[n.4.0] motive (n = 3, 5, and 10) were explored. The reaction proved to be general with regard to the size of the non-aromatic ring size (14p-s). An interesting case was offered by the derivative 14s, incorporating a C12-membered ring in its structure. These topologies incorporating sp3-rich macrocycles are highly appreciated and under exploited structural motifs for drug discovery [26]. The reaction also allowed the efficient access to C2-substituted 8-hydroxy-1,2,3,4-tetrahydroisoquinoline-7-carbaldehydes (14t, 78%) and to 1-hydroxy-5,6,7,8-tetrahydronaphthalene-2-
carboxaldehydes bearing a protected ketone at C11 as a convenient handle for further ring functionalization (14u, 86%). Both structures constitute interesting scaffolds for medicinal chemistry. Salicylaldehydes 14v-z represent examples of fused tricyclic structures with natural-product like topologies. Interestingly, in these cases, the formation of salicylaldehydes 14 is accompanied by the formation of the corresponding benzaldehyde derivatives 15, which could stem from the 6π-electrocyclization/aromatization processes of another diene 2 conformation arising from the ketone-ester groups interchange (vide infra). The subtle influence of the ketone skeleton on the selectivity of the reaction was apparent from the somehow surprising formation of the benzaldehyde derivative 15n, the only benzaldehyde detected in the mono- and bicyclic series. An also subtle electronic effect was observed in the reactions involving fused bicyclic ketones. Whereas the formation of the 9H-fluorene derivatives 14x-z showed a clear deterioration of the reaction efficiency with the electronic richness of the aromatic ring (compare 14x with 14y and 14z), the presence of an oxygen atom at the 9-position of the 9,10-dihydrophenanthrene core was irrelevant in terms of efficiency, but not in terms of selectivity (compare 14v/15v and 14w/15w).

The reaction proved to be highly regioselective when asymmetrically substituted tertiary PVEs (ketones) were used (Scheme 2). Thus, PVE 1aa bearing two different alkyl substituents at the propargylic position (R1 = Et, R2 = Me) delivered the salicylaldehyde 14aa in 63% yield (19:1 isomeric ratio). The reaction manifold selectively incorporated the more substituted homopropargylic carbon atom into the final aromatic ring. Exquisite regioselectivity was also observed in the synthesis of the derivative 14ab (86%, 50:1 isomeric ratio), showing a clear preference for the benzylic position over the alternative one. The observed regioselectivity could be explained by the relative stabilities of the isomeric trienol intermediates (vide infra) (Scheme 2, inset figure), which in turns relies on the relative stability of the terminal double bonds.

Application toward the first total synthesis of morintrifolin B. The easy access to these multisubstituted salicylaldehydes scaffolds brought us the opportunity to use them as convenient starting materials for the synthesis of more complex structures embodying the parent aromatic ring. Among all of the possible structures, we choose benzophenones because their chemical and biological relevance. Natural benzophenones constitute a more than 300-member family of compounds, which span great structural diversity and bioactive properties including antifungal, anti-HIV, antimicrobial, antioxidant, and antiviral activity.

Morintrifolin B (19) is a naturally occurring benzophenone isolated from the small tree Morinda citrifolia L. (Rubiaceae), commonly known as “noni” and widely distributed in southern Asia and the Pacific islands. The plant has found popular medicinal use for the treatment of asthma, bone fractures, cancer, cholecystitis, dysentery, lumbago, menstrual cramps, urinary difficulties, and many other ailments. In spite of the pharmacological potential offered by the constituents of the plant, there are no reports to date about the synthetic or biological study for morintrifolin B. Because our interest in this kind of compounds, we undertook a short synthesis of this benzophenone metabolite from the salicylic acid derivative 16 (Scheme 3), readily available from the salicylaldehyde 9c by simple phenol protection (BrBn, K2CO3, acetone, 93%) and aldehyde oxidation (NaClO2, sulphamic acid, THF-H2O, 87%). The trifluoroacetic anhydride-mediated reductive coupling with the 2-methoxy-resorcinol derivative 17 assembled the benzophenone core of 19, which was suddenly submitted to selective deprotection (H2, Pd/C) to give the intermediate 18 (49% for two steps) featuring the same hydroxylated pattern than the target natural product. Finally, the acid controlled transesterification of this intermediate with ethylene glycol afforded the morintrifolin B (19) in 80% yield. The five-step synthesis delivered morintrifolin B in an overall 32% yield from the corresponding propargyl vinyl ether 7c. The synthetic extension to other structurally related benzophenones and the studies of their biological activity are in progress in our lab and

![Scheme 2](image1)

Scheme 2. Regioselectivity in the imidazole-catalyzed reaction.

![Scheme 3](image2)

Scheme 3. Short synthesis of morintrifolin B.
Computational studies on the reaction mechanism. In order to provide new insight into the reaction mechanism for the rearrangement of the propargyl vinyl ethers, we have performed a computational DFT study using a simplified model denoted as R in Scheme 4, where \(R^1 = R^2 = R^3 = H \) and \(R^3 = CH_2 \). It is worth noting that some hydrogen transfer processes (enolization and [1,3]-H shifts) show unrealistically high free energy barriers (ca. 55 kcal/mol). In these cases one imidazole molecule can act as a catalyst taking advantage of its amphoteric character. The names of these stationary points end with “-Imz” to indicate the use of a molecule of imidazole as a suitable additive. All stationary points on the potential surface have been fully optimized with the hybrid density functional B3LYP method,[30] employing the 6-311+G(d,p) basis set.[34] Harmonic analyses were calculated at this level of theory to verify the nature of the corresponding stationary points (minima or transition states), as well as to provide the zero-point vibrational energy (ZPE) and the thermodynamic contributions to the enthalpy and free energy for \(T=298 \) K. Moreover, intrinsic reaction coordinate[35] calculations were performed to ensure that the transition states connect the reactants and products belonging to the reaction coordinate under study. The final energies were obtained by performing single-point M06-2X[36] calculations using also the 6-311+G(d,p) basis set at the optimized B3LYP geometries. The average difference between the B3LYP and M06-2X increments of energy is 3.1 kcal/mol. The raw data obtained with the B3LYP and M06-2X results are reported in the Supporting Information (SI), (see Tables S1-S5) along with the Cartesian coordinates of each stationary point (see Table S6). The values discussed in the text and the values reported in the Schemes are relative free energies evaluated at the M06-2X/6-311+G(d,p)//B3LYP/6-311+G(d,p) level. All quantum chemistry calculations in this work have been carried out with the Gaussian 09 program package.[37] The complete list of energy results is reported in the Tables S1-S5 of the SI. In addition, exhaustive potential energy surface scans with all the reaction mechanisms studied and selected geometrical parameters are displayed in the Figures S1-S15 of the SI. The transition states and intermediates of the studied domino rearrangement present several conformers with very similar energetic values (e.g. rotation about sp\(^3\) carbon atoms and isomerization process of double bonds).

The domino reaction starts with a thermally allowed [3,3]sigmatropic process of R to yield Int1 (Scheme 4). This propargyl Claisen rearrangement shows an activation free energy barrier (TS1) of 32.9 kcal/mol, which is the highest activation energy along the alternative reaction paths (vide infra). As expected, TS1 involves the cleavage and formation of a C-O and a C-C bond, respectively, as well as the conversion of a propargyl and an enol group into an allene and a carbonyl group, respectively (Figures 1 and S1). Allenyl intermediate Int1 lies ca. 14 kcal/mol below R. Several conformations of Int1 can be considered and in this work we have calculated six of them (Int1a - Int1f), with very similar relative energies (differences smaller than 2 kcal/mol, see the SI).

The next step of the domino process consists of conversion of allene Int1 into unsaturated ester Int3 (Scheme 4). This process formally corresponds to a thermal antarafacial [1,3] sigmatropic shift involving hydrogen atom H\(^1\) and allyl scaffold C-\(\alpha \)-C-\(\beta \). The direct process is not thermodynamically favoured since the activation energy for this direct process is of ca. 63 kcal/mol (see the SI). However, our calculations indicate that this 1,3-prototropy is feasible under imidazole assistance. Thus, imidazole can remove H\(^1\) proton from Int1 via TS2-Imz and transfer it to C\(\alpha \) through TS3-Imz (see Figure 1 and the SI for additional details) with overall activation energy of ca. 20 kcal/mol, since the intermediate ionic pair is almost isoenergetic with respect to TS3-Imz. An alternative route involving the corresponding enol-allenes intermediates Int2 via tautomeric equilibria involving one molecule of imidazole can be also considered (see TS4, TS5, and TS4-Imz in Figures S3 and S6 in SI).

Scheme 4. Reaction pathway for the domino process leading to the formation of salicylaldehyde derivative P1. Transition state descriptors noted by TS-Imz refer to saddle points assisted with a molecule of imidazole (see text). Relative free energies are given in kcal/mol.

Oxatriene Int3 can be transformed into triene Int4 via a thermally allowed antarafacial [1,7] sigmatropic shift. It is noteworthy that the geometry of saddle point TS6 associated with this latter process permits to discard an alternative pseudopericyclic process[38] involving one of the lone pairs of the sp\(^2\)-hybridized oxygen atom of Int3 (Figure 2). The activation energy of this sigmatropic shift is lower than the activation energy associated with the first suprafacial [3,3] pericyclic reaction via TS1 (vide supra).
From Int4 the reaction proceeds through a thermal disrotatory electrocyclization to yield 1,3-cyclohexadiene intermediate Int5 (Scheme 4). The features of saddle point TS7 associated with this pericyclic step are those expected for a [\(\pi_6\)] process, in which the hydroxy group OH\(^2\) formed in the previous step is necessarily inward (pseudoaxial) with respect to the C-C bond being formed (Figure 2). It results in destabilizing four-electron torque electronic interactions and steric congestion for this transition structure.\(^{[99]}\) As a consequence, this step shows a relatively high activation energy, the second highest found in our calculations along the whole reaction coordinate. It is likely that this step and the first one associated with the [3,3] sigmatropic shift via TS1 (vide supra) are responsible for the necessity of dielectric heating to complete these reactions. However, the effect of R\(^2\) substituents in more complex substrates (see Scheme 2) is not critical, since these groups will always occupy the outward position in the corresponding [\(\pi_6\)] transition structures (see the blue asterisks in Figure 2).\(^{[40]}\)

Finally, Int5 can be subjected to an aromatization process to produce salicylaldehyde, P1, and the concomitant release of a methanol molecule (see Scheme 4 and Figures 1, S4, and S7 of the SI). In this reaction mechanism step, the assistance of one molecule of imidazole is required to achieve a feasible activation energy (\(\Delta G^\ddagger=24.1\) kcal/mol, TS8-imz). This final step is strongly exergonic and irreversible, as it would be expected from the large resonance energy of the phenyl group generated in the course of the elimination-aromatization reaction.

An intriguing aspect of these reactions is the formation of methyl benzoates \(15\) in several polycyclic systems (vide supra, Table 3). Our computational model indicates that methyl benzoate (P2 in Scheme 5) can be formed via oxatriene Int7, whose difference with respect to Int3 is the (E)-configuration of the C=CC double bond. Despite this difference, Int7 is almost isoenergetic with respect to Int3, but its imidazole-assisted formation via TS9-imz or (Z)-Int6 (which in turn involves saddle points TS10-imz and TS11, see Figures S9 and S12) is less favoured than in the previous case, which is in line with the minor formation of benzoates \(15\) in most cases (Table 3). Beyond Int7, the previously described antarafacial [1,7] sigmatropic shift leads to triene Int8, whose disrotatory electrocyclization leads in turn to cyclohexadienyl alcohol Int9.

The relatively high energy of this latter pericyclic reaction is that expected for a transition structure involving an inward OH\(^2\) group (see the optimized structure of TS13 in Figure 2). However, once again, R\(^2\) groups in more substituted systems should occupy outward positions, which in general should not jeopardize this reaction path. Finally, the imidazole-assisted elimination-aromatization step from Int9 leads to methyl benzoate P2.

![Figure 1. Fully optimized structures of saddle points TS1 associated with [3,3]propargylic Claisen rearrangement, TS2-imz and TS3-imz corresponding to [1,3]hydrogen shift, and TS8-imz associated with aromatization process (see Scheme 4). Bond distances are given in À.](image1)

![Figure 2. Fully optimized structures of saddle points TS6,12, associated with [1,7] sigmatropic shifts, and TS7,13, corresponding to [\(\pi_6\)] electrocyclizations (see Scheme 4 and 5). Bond distances are given in À. Blue asterisks indicate the position of R\(^2\) groups in more substituted transition structures (see Scheme 2).](image2)

![Scheme 5. Reaction mechanism for the domino process leading to the formation of methyl benzoate P2. Transition states including imz descriptor refer to saddle points assisted with a molecule of imidazole (see text). Relative free energies are given in kcal/mol.](image3)
benzoate P2 with an energy barrier significantly higher than those found for P1 (see Schemes 4 and 5). This result is in nice agreement with the experimentally found formation of benzoates 15 as minor products, especially in poly cyclic systems.

Conclusions

We have achieved the catalytic version of the microwave-assisted formation of poly substituted salicylaldehydes from propargyl vinyl ethers. The reaction manifold uses imidazole as the catalyst (10 mol-%) to deliver an array of topologically diverse salicylaldehyde scaffolds spanning from simple aromatic monoyclics to complex fused poly cyclic systems. The reaction is scalable and instrumentally simple to perform, highly regioselective and symmetry-disrupting: symmetrically substituted PVEs afforded asymmetrically (non-redundant) substituted salicylaldehydes. The preparative value of this transformation has been demonstrated in the five-step synthesis of the natural benzenophenone-derived morintrirol B. A computational DFT study using a simplified model has been performed. Calculations underpin a domino mechanism comprising a [3,3]Propargylic Cislen rearrangement/ [1,3]-hydrogen shift/ [1,7]-hydrogen shift / 6π-electrocyclization / aromatization process. The use of imidazole lowers the energy of the two more difficult steps, i.e., the 1,3-propotopic rearrangement and the final aromatization step, otherwise energetically very disfavoured.

Experimental Section

General remarks. 1H NMR and 13C NMR spectra of CDC13 solutions were recorded either at 400 MHz or at 500 and 125 MHz (Bruker Ac 200 and AMX2-500), respectively. Microwave reactions were conducted in sealed glass vessels (capacity 10 mL) using a CEM Discover microwave reactor. FT-IR spectra were measured in chloroform solutions using a PerkinElmer FT-IR Spectrum BX spectrophotometer. Mass spectra (low resolution) (EI/Cl) were obtained with a Hewlett-Packard 5995 gas chromatograph/mass spectrometer. High-resolution mass spectra were recorded with a Micromass Autospec mass spectrometer. Microanalyses were performed with a Fisons Instruments EA 1108 carbon, hydrogen, and nitrogen analyzer. Analytical thin-layer chromatography plates used were E. Merck Brinkman UV-active silica gel (Kieselgel 60 F254) on aluminium; Flash column chromatography was carried out with E. Merck silica gel 60 (particle size less than 0.020 mm) using appropriate mixtures of ethyl acetate and hexanes, or ethyl acetate and dichloromethane as eluents. All reactions were performed in oven using appropriate mixtures of ethyl acetate and hexane/EtOAc 95/5. For further column filled with silica gel using appropriate mixtures of ethyl acetate and hexane/EtOAc 60/40. Microwave reactions were carried out with E. Merck silica gel 60 (particle size less than 0.020 mm) to deliver an array of topologically diverse salicylaldehyde scaffolds spanning from simple aromatic monoyclics to complex fused poly cyclic systems. The reaction is scalable and instrumentally simple to perform, highly regioselective and symmetry-disrupting: symmetrically substituted PVEs afforded asymmetrically (non-redundant) substituted salicylaldehydes. The preparative value of this transformation has been demonstrated in the five-step synthesis of the natural benzenophenone-derived morintrirol B. A computational DFT study using a simplified model has been performed. Calculations underpin a domino mechanism comprising a [3,3]Propargylic Cislen rearrangement/ [1,3]-hydrogen shift/ [1,7]-hydrogen shift / 6π-electrocyclization / aromatization process. The use of imidazole lowers the energy of the two more difficult steps, i.e., the 1,3-propotopic rearrangement and the final aromatization step, otherwise energetically very disfavoured.

Representative procedure for the microwave-assisted synthesis of salicylaldehydes from the corresponding propargyl vinyl ethers. Synthesis of 1-Hydroxy-3-phenyl-5,6,7,8-tetrahydronapthalene-2-carbaldehyde (14v). Propargyl vinyl ether 1e (1.0 mmol) and imidazole (0.10 mmol) in dry xylene (1 mL) were placed in a microwave-special closed vial and the solution was irradiated for 1 hour in a single-mode microwave oven (300 Watt, 190 °C). After removing the solvent at reduced pressure the products were purified by flash column chromatography (silica gel, n-hexane/EtOAc 95/5) to yield 14e (229.6 mg; 91%). Amorphous solid. 1H NMR (400 MHz, CDCl3, 25°C): δ 1.71-1.75 (m, 4H), 2.62-2.65 (m, 2H), 2.68-2.71 (m, 2H), 6.52 (s, 1H), 7.24-7.26 (m, 2H), 7.30-7.35 (m, 3H), 9.67 (s, 1H), 12.27 (s, 1H) ppm; 13C NMR (100 MHz, CDCl3, 25°C): δ 22.13, 22.25, 22.39, 30.5, 115.3, 122.1, 125.3, 127.9, 128.2 (2C), 130.0 (2C), 137.8, 143.6, 147.3, 161.2, 196.6 ppm; IR (CHCl3): v = 2939.6, 1635.7, 1617.2, 1559.6, 1405.3, 1366.7, 1299.4 cm−1; LRMS (70 eV) m/z (%): 252 (100) [M]+, 251 (42), 234 (30), 233 (18), 223 (12), 165 (17). HRMS (EI-TOF) m/z: [M]+ Calcd for C14H12O2 252.1150; Found 252.1144.

Acknowledgements

This research was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (CTO2011-28417-C02-02 and CTO2013-45415-P), the UPV/EHU (UIF11/22 QOSYCY) and the Basque Government (Gv/EJ, grant IT-324-07). L.C. thanks Spanish MEC for a FPI grant and D.M.A. thanks CSIC for a JAE-intro grant. M.T.-S., M.O.-G., and F.P.C. thank the SGIII/OZ-
SGiker UPV/EHU and the DIPC for generous allocation of computational resources.

Keywords: salicylaldehydes • domino • organocatalysis • microwave • monotrinolfin B

[37] M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; B. Mennucci; G. A. Petersson; H. Nakatsuji; M. Caricato; X. Li; H. P. Hratchian; A. F. Izmaylov; J. Bloino; G. Zheng; J. L. Sonnenberg; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; J. A. Montgomery Jr.; J. E. Peralta; F. Ogliaro; M. Bearpark; J. J. Heyd; E. Brothers; K. N. Kudin; V. N. Staroverov; R. Kobayashi; J. Normand; K. Raghavachari; A. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; N. Rega; J. M. Millam; M. Klene; J. E. Knox; J. B. Cross; V. Bakken; C. Adamo; J. Jaramillo; R. Gomperts; R. E. Stratmann; O. Yazyev; A. J. Austin; R. Cammi; C. Pomelli; J. W. Ochterski; R. L. Martin; K. Morokuma; V. G. Zakrzewski; G. A. Voth; P. Salvador; J. J. Dannenberg; S. Dapprich; A. D. Daniels; Ö. Farkas; J. B. Foresman; J. V. Ortiz; J. Cioslowski; Fox, D. J.; Gaussian, Inc.: Wallingford CT, 2010.

[40] Another conceivable reaction mechanism involves the formation of a furan intermediate (see Scheme S1 and Figure S14 in the SI). This particular mechanism was discarded on the basis of its global free energy barrier of 57.5 kcal/mol with respect to R.
Complex and diverse: The microwave-assisted rearrangement of propargyl vinyl ethers in the presence of a catalytic amount of imidazole generates topologically complex salicylaldehyde derivatives adorned with a diverse and varied substitution pattern.