CREATING A DIMENSION OF INFINITE POSSIBILITIES

ICN ANNUAL REPORT 2010

Institut Català de Nanotecnologia
During 2010, two new research groups were created. The experimental group Quantum Nanoelectronics, led by Prof. A. Bachtold and the theoretical group Theoretical and Computational Nanoscience, led by new ICREA researcher, Prof. S. Roche. This significantly boosted ICN’s research capacity in physical properties (in particular, transport properties) of carbon nanotubes and graphene.

Three new research support and development divisions were created; Electronic Microscopy, led by Dr B. Ballesteros, Nanofabrication, led by Dr N. Kehagias, and Nanoscience Instrument Development, led by Dr G. Ceballos who also oversees the other divisions and all common technical services. In addition to offering scientific-technical support, the Divisions have the mission to develop new techniques and processes in their respective areas. This internal commitment to support research has been accompanied with participation in infrastructure platforms at the European level, for example Q-Nano in respect of safety tests for nanomaterials.

2010 saw continued growth in personnel, mainly via research projects, resulting in an overall increase of 12% over last year. Of note, some 43% are students and, as per the Institute’s founding philosophy of internationalisation, 50% of members are of foreign origin representing 30 different nationalities.

ICN continues to be a pole for attracting projects, with a recent report listing ICN amongst the highest ranking Spanish institutions with competitive funds secured under the EU’s 7th Framework Program. We have also secured projects of significant national scope, such as the new Consolidator project led by ICN’s Prof. C. Sotomayor.

This success is also reflected in scientific publications which increased (16%) over 2009. Most importantly the average impact factor also grew (12%), reaching an extraordinary 5.77, due to the regular publication of works in international journals of highest prestige. This success in the publications was accompanied and ratified by the prestige by which our researchers are held in their respective fields; of 102 works presented in international conferences, some 50% were invited talks. 2010 also saw ICN organise its first international conferences, as further detailed in this Annual Report.

In technology transfer we have also been active, filing four new patents, whilst in parallel actively pursuing knowledge transfer to private industry via collaboration agreements and R&D contracts. Particularly promising is the successful industrial scale-up of the encapsulation of various chemicals.

Asides from purely scientific tasks, our researchers expanded their dissemination and outreach activities, teaching at various levels such as undergraduates, masters, international schools, and capacity building networks, and also engaging with society as exemplified by the publication by Prof. V. Puentes of Balancing the Promises, and the awarding of various photographic prizes to ICN researchers.

I am pleased to say that this was a very satisfying year for ICN, showing continued growth and development of cutting-edge research in various fields of nanotechnology and in which new frontiers were opened in both research and support activities.

Jordi Pascual
Director
2.1 Organisation
The Catalan Institute of Nanotechnology (ICN) is a non-profit international research institute located in Barcelona, Spain. It was created in July 2003 by the Ministry of Universities, Research and Information Society of the Catalan Government (DIUE) and the Autonomous University of Barcelona (UAB).

The ICN is led by its Director, Dr. Jordi Pascual, who reports to the Board of Patrons and is advised by the Scientific Advisory Board, which consists of a number of distinguished international scientists.

Research activities are directed by Research Group Leaders, senior scientists of international repute, who lead research teams focused on their respective areas of expertise, and are supported by specialised laboratory engineers, technical and administrative staff.

In 2010 the ICN increased its research lines from six to eight core Groups and one Emerging Group:
- Atomic Manipulation and Spectroscopy Group
- Inorganic Nanoparticles Group
- Magnetic Nanostructures Group
- Nanobioelectronics & Biosensors Group
- Phononic and Photonic Nanostructures Group
- Physics and Engineering of Nanoelectronic Devices Group
- Quantum Nanoelectronics Group
- Theoretical and Computational Nanoscience Group
- Supramolecular Nanochemistry and Materials (Emerging Group)

Also during the year, three technical platforms were created: the Electron Microscopy division, the Nanofabrication division and the Nanoscience Instrument Development division.

2.2 Organisational Chart

2.3 Board of Patrons
PRESIDENT
Josep Huguet i Biosca,
Minister of Education and Universities, Government of Catalonia.

VICE-PRESIDENT
Ana Ripoll,
Chancellor of the Universitat Autònoma de Barcelona (UAB).

MEMBERS
Joan Roca i Acín,
General Director of Research of the Ministry of Innovation, Universities and Enterprises.

Ramón Moreno,
Director of CERCA Research Centers Programme.

Jordi Marquet Cortés,
Vice Chancellor for Strategic Projects of the Autonomous University of Barcelona (UAB).

Miquel Salmerón,
Principal Researcher in the Lawrence Berkeley Laboratory, Berkeley, California, U.S.A.

M. Dolors Baró,
Professor of Physics at the Universitat Autònoma de Barcelona (UAB).

2.4 Scientific Advisory Board 2010
PRESIDENT
Prof. Miquel Salmerón,
Principal Researcher in the Lawrence Berkeley Laboratory, Berkeley, California, U.S.A.

MEMBERS
Prof. Jeff Bokor,

Prof. Fernando Briones,
Professor of Research in the Microelectronics Institute of Madrid (IMM - CSIC), Madrid, Spain.

Prof. Carlos Bustamante,
Researcher of the Howard Hughes Medical Institute, University of California, Berkeley, U.S.A.

Prof. Manuel Cardona,
Co-founder and emeritus professor of the Max Planck Institut, Stuttgart, Baden-Württemberg, Germany.

Prof. Sylvia Daunert,
Department of Chemistry. University of Kentucky. College of Arts and Sciences. Prof. of Chemistry. Pharmaceutical Sciences, Biological and Biocatalytic Chemistry.

Prof. Bengt Kasemo,
Professor of Physics at the Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.

Prof. Jean-Pierre Launay,
Professor at the Université Paul Sabatier and at the Institut Universitaire de France. Director of CEMES.

Prof. Ernst Meyer,
Professor of the Institut für Physik, University of Basel, Basel, Switzerland.

Prof. Peter Vettiger,
2 ORGANISATION AND PEOPLE

IBM Zurich Research Laboratory.

2.5 People of the ICN

ICN is defined by its people. From senior researchers through to administration staff, ICN works as a team, committing creativity, energy, dedication and hard work to build and establish the Institute. ICN also prides itself on being an attractor of talent, seeking to provide an environment and an image of excellence that attracts talented scientists, technicians and support personnel from all over the world. Evidence of success in attracting talent, aside from the high level of scientific output achieved, is given by the high numbers of ICN staff with top-level competitive recognition.

In 2010 the strong growth in competitive funding drove a significant increase in scientific staff, and facilitated the incorporation of additional support personnel in administration. In total, staff numbers at the ICN grew from 121 in 2009 to 135 by the end of 2010.

ICN is an equal opportunity employer and seeks to encourage a workforce diverse in age, race, nationality and gender. In 2010, ICN personnel came from 30 different countries and over one third were female.

3 RESEARCH

3.1 Atomic Manipulation and Spectroscopy Group

Led by ICREA Prof. Pietro Gambardella, the Atomic Manipulation and Spectroscopy Group investigates fundamental concepts in magnetism and molecular electronics, in order to control the interplay of the structural, electronic, and magnetic properties of nanosized systems. The Group combines scanning tunnelling microscopy techniques, synchrotron radiation spectroscopy, and electron transport measurements in order to link microscopic phenomena to macroscopic observables that are relevant for the understanding and design of new materials and devices.

NEW PROJECTS & MILESTONES

In 2010, the Group secured competitive funding for 2 new projects:

Materials for Enhanced Spin-Orbit Effects in Spintronics (MESO-ES), Spanish Ministry of Science and Innovation.

Methods to manipulate the magnetization of ferromagnets by means of local current-injection allow for the design of integrated spintronic devices with reduced dimensions and energy consumption compared to conventional magnetic field actuation. Recently, intrinsic current-induced magnetic fields have been observed in magnetic structures lacking inversion symmetry due to the relativistic coupling between the conduction electron spin and orbital motion. This project aims at investigating the growth, structural, and magnetic properties of thin films and nanostructures characterized by enhanced spin-orbit (Rashba and Dresselhaus) interactions. The synthesis of new layered compounds is proposed as a means to increase spin-orbit effects at the interface between ferromagnetic and nonmagnetic materials, leading to strong coupling between elec-
tric currents and magnetization at room temperature. A final goal is to observe current-induced torques in such compounds and examine the relationship between magnetocrystalline anisotropy, Rashba, and Dresselhaus interface energy terms as a function of composition and interface structure. These studies have direct implications on the design of devices that store and process magnetic information.

NANOWAVE - Nanowire Based Microwave Emitters for Use in Monolithic Microwave Integrated Circuits. Spanish Ministry of Science and Innovation. The project involves the use of a unique self-assembled planar nanowire array configuration to investigate dc current-induced spin wave mediated microwave generation in nanoneedles. The key novel aspect of the project is in the use of a planar array of ferromagnetic nanowires formed by means of a self-assembly-like technique. The second ferromagnetic layer is applied to form contacts Ferromagnet-Normal Metal Spacer-Ferromagnet along the nanowires. The geometry of the nanonoodle is substantially different to other structures employed for studies of microwave generation by spin torque. The unique geometry allows probing of experimental configurations that cannot be probed in conventional spin-torque experiments. This will facilitate a much deeper understanding of the phenomenon and in particular the issue of coherent (phase locked) coupling between Spin Torque Oscillators (STO).

Key Publications and Invited Talks 2010

Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, I. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, Jan Vogel and P. Gambardella, Nature Mater. 9, 230 (2010).

Spin-spin and spin-orbital coupling effects at metallic interfaces, P. Gambardella, Passion for Knowledge-Workshop on Chemical Physics at Interfaces, Donostia, Spain, Sept. 27 - Oct. 1 (2010). Invited Talk

ICN ANNUAL REPORT 2010

3 RESEARCH

3.2 Inorganic Nanoparticles Group

KEY PUBLICATIONS AND INVITED TALKS 2010

When the synthesis is over. Assessing the full cycle of inorganic nanoparticles, V. Puntes, NaNaX4: Nanoscience with Nanocrystals, Tutzing - Munich, Germany, April 13, 2010.

OTHER ACTIVITIES 2010

First prize in the Microscale Category in the 8th National Scientific Photography Contest (FOTOCiENCIA) was awarded to the Inorganic Nanoparticles Group. Title of the photography: Van Gogh's Starry Night.

Published “Balancing the Promises”, an e-book exploring the issues around the potential benefits and dangers of nanotechnology, based on contributions to the Nanowiki forum during the previous year.

3.3 Magnetic Nanostructures Group

NEW PROJECTS & MILESTONES

In 2010, the Group worked on two different projects:

Using magnetic interactions to tailor the magnetic properties of nanostructured systems, MEC

The objective of the research is to investigate different types of magnetic interactions in patterned magnetic nanostructures and nanoparticles to tailor and improve the magnetic properties of magnetic composite nanostructured systems by making use of the extra degrees of freedom introduced by the interactions.

In particular, the Group focussed on the correlation between structural (e.g., size, shape, distance, microstructure) and magnetic parameters (e.g., types of materials, anisotropies). For example, it was demonstrated that the magnetization reversal of ferromagnetic/antiferromagnetic lithographed structures and nanoparticles can be controlled by shape and interface exchange interaction.

Led by ICREA Prof. Josep Nogués, the Magnetic Nanostructures Group investigates different types of magnetic nanostructures with the aim of improving their functional properties. The Group combines state of the art lithographic or chemical synthesis methods with structural, morphological and magnetic characterisation to focus on three areas: magnetic properties of lithographed magnetic nanostructures, magnetic nanoparticles, and other magnetic systems.
Further, the Group studied other effects such as the generation of magnetism in non-magnetic materials by ion irradiation.

ONDA - Ordered hetero- and Nano-structures with Epitaxial Dielectrics for magnetic and electronics Applications

The project brings together Spanish, French and Italian groups with two Russian institutes to study ultrathin nanostructured dielectric materials for advanced electronic applications. In particular, our group is involved in the study of magnetically ordered nano-heterostructures on epitaxial antiferromagnetic fluoride surfaces.

KEY PUBLICATIONS AND INVITED TALKS 2010

OTHER ACTIVITIES

Member of the editorial review board of IEEE Magnetics Letters

RESEARCH

3.4 Nanobioelectronics and Biosensors Group

Led by ICREA Prof. Arben Merkoçi, the Nanobioelectronics & Biosensors Group works on the design of novel sensors and biosensors based on nanomaterials and their applications in fields like clinical analysis, environmental monitoring and other industries. Metallic nanoparticles modified with antibodies or DNA are used as electroactive labels to follow immunoreactions or hybridizations with interest for immunosensors and DNA sensors. In addition carbon nanotubes are also used as building blocks for sensing applications.

NEW PROJECTS & MILESTONES

In 2010, the Group secured competitive funding for 3 new projects:

Nanosystems for early diagnosis of neurodegenerative diseases (NADINE). Funded by European Commission.
Multifunctional nanoplatforms for high sensitive pollution control and purification of water. Spanish-Japan collaboration funded by MICINN.

Evaluación del receptor sensor de calcio como potencial nuevo gen supresor de tumores y diana terapéutica en neuroblastoma. Funded by CELLEX foundation.

KEY PUBLICATIONS AND INVITED TALKS

2010

OTHER ACTIVITIES

Arben Merkoçi, member of “Nanotech 2010 Scientific Committee” in ‘Nanotech 2010’, CA, USA (June 21-25, 2010).

http://www.europapress.es/catalunya/noticia-descubren-una-tecnica-mejora-el-diagnostico-20100118142629.html
http://www.abc.es/agencias/noticia.asp?noticia=239459

Organizer of I Workshop Spain-Japan ‘NANUASP 2010’: Nanomaterials based biosensors and biosystems. Improving the quality and security of citizen’s life, Barcelona (Spain), 29-30 November 2010.

3 RESEARCH
3.4 Nanobioelectronics and Biosensors Group

3.5 Phononic and Photonic Nanostructures Group

Led by ICREA Prof. Dr. Olivia M. Sotomayor Torres, the Phononic and Photonic Nanostructures Group investigates the interaction of photons, phonons and electrons in nano-scale condensed matter underpinned by research in nanofabrication, especially nanoimprint lithography and nanometrology. The long term aim is to develop new information technology concepts where information processing is achieved with non-charged state variables. The dynamics of the photoexcited electron-hole pairs has been proven in graphene from the two-phonon Raman processes, allowing to determine the ratio of electron-phonon coupling parameters as well as to monitor the electron-electron scattering contribution with increasing charge concentration.

RESEARCH

NEW PROJECTS & MILESTONES

In 2010, the Group secured the start of 8 new projects:

ACPHIN: Study Of Confined Acoustic Phonons in Fabricated Nanostructures: Research on their spectrum, dispersion relations and impact on electrical, electronic and optical properties.

SEAL, Semiconductor Equipment Assessment Leveraging Innovation: in the area of semiconductor manufacturing equipment, SEAL combines efforts, resources and expertise to assess novel equipment supported by cross-cut R&D.

LAMAND, Large Area Molecularly Assembled Nanopatterns for Devices: aims to provide a manufacturable and verifiable process using functionalised macromolecular systems over large substrate areas for beyond state-of-the-art applications in the ICT sector.
NANOPOWER, Nanoscale Energy Management for Powering ICT devices: targets energy efficiency research to identify new directions for energy-harvesting technologies at the nanometre and molecular scale for integration in autonomous nanoscale systems.

NANOFUNCTION, Beyond CMOS Nanodevices for Adding Functionalities to CMOS: the aim is to integrate research laboratories to strengthen scientific and technological excellence in the field of novel nanoelectronic materials, devices and circuits in More than Moore domain.

Towards a phonon source based on opto-mechanical crystals: The goal of this project is to create a phonon source or phonon emitter using optomechanical crystals. The interaction of light with matter will be tailored using a common cavity for light, a photonic crystal, and for phonons, a phononic crystal. In this way we can drive and select the mechanical vibrations of our nanofabricated structures.

NANO-TEC, ECOSYSTEMS TECHNOLOGY and DESIGN for NANOELECTRONICS: aims to build a community to enable discussions, exchanges and joint work coordinating excellent research among academic and research organisations in the field of Beyond CMOS.

NanoTHERM: Tailoring electronic and phononic properties of nanomaterials: Towards ideal Thermoelectricity. This CONSOLIDER project has the objective of the nanoTHERM project is to study novel nanoscale-controlled materials and structures to acquire a better understanding of the underlying physics of the connection between the thermal and electrical transports, in order to optimize the design of thermoelectric materials.

KEY PUBLICATIONS AND INVITED TALKS 2010

BOOK CHAPTER:

ARTICLES:

TALKS:
Phonon Engineering, C M Sotomayor Torres and P. Olivier Chapuis, Summer school on Energy harvesting and noise in dynamical systems at micro and nanoscale, La Tenuta di Ciclamini, Avigliano Umbro (Italy), August 1-6, 2010
Sensitivity of Sub-wavelength diffraction metrology to three dimensional imprinted line profile, T Kehoe, NNT2010 9th International Conference on Nanoimprint and Nanoprint Technology, Copenhagen, October 13-15 2010 (invited talk)

Nanometrology: enabling applications of nanotechnology, C. M. Sotomayor Torres, T. Kehoe, V. Reboud, N. Kehagias and D. Dudek, Trends in Nanotechnology, 10th September 2010, Braga, Portugal (invited Keynote)

OTHER ACTIVITIES

Prof. Dr. Sotomayor Torres directed the 2010 ICREA workshop on Phonon Engineering, held in Sant Feliu de Guíxols, Girona, from 24 to 27 May 2010.

Dr. Damian Dudek from the P2N won the art section of the 2010 Raith Micrograph Award with the SEM picture titled “Time space banding on nanoimprinted polymer”.

From l. to r: I. Neumann, M. Costache, S. D. Valenzuela and G. Bridoux
Absent: J. Van De Vondel

NEW PROJECTS & MILESTONES

In 2010, Dr. Germán Bridoux became member of the Group and competitive projects on several spintronic topics were tackled:

Spin-resolved tunnelling spectroscopy [EXPLORA (MICINN)]
The project aims at developing novel characterization techniques to study and enhance the spin polarization of electrons through tunnelling barriers. The results have implications in the performance of magnetic random access memories (MRAM).

Spin transport and magnetization dynamics in nanostructures (MICINN)
The project covers the interaction between the magnetization of nanomagnets and spin-polarized currents and spin transport in non-conventional spintronic materials. In particular, the project studies the degree of spin current absorption by a nanomagnet and the generation of spin injection via spin pumping from a processing nanomagnet magnetization. The Group is also developing a novel spin detection method for semiconductors, and low conductivity materials in general such
as graphene, with an efficiency that is largely immune to the interface properties between the semiconductor and the detector.

Within this project the Group has realised the first demonstration of a spin ratchet, as reported in Science. In analogy to a ratchet wrench, which provides uniform rotation from oscillatory motion, such ratchets achieve directed spin transport in the presence of a signal or perturbation without a bias.

Beyond CMOS Nanodevices for Adding Functionalities to CMOS (NANOFUNCTION, FP7-EU)
The project explores thermoelectric devices based on ferromagnetic nanostructures, where the thermoelectricity results from the conversion of a spin electrochemical potential difference to a voltage.

KEY PUBLICATIONS AND INVITED TALKS 2010

X Meeting on nanostructures materials and surfaces, Bariloche, Argentina. May 12-14, 2010. Invited talk - Plenary

International workshop on spin current and spin caloritronics, Institute for Materials Research (IMR), Tohoku University, Sendai, Japan. February 8-10, 2010. Invited Talk

VI Spanish meeting on solid state physics, Zaragoza, Spain. February 3-5, 2010

OTHER ACTIVITIES

IMDEA Nanociencia, Madrid, Spain. April 20th, 2010

Universidad Complutense de Madrid, Madrid, Spain. April 19th, 2010

Quantum nanoelectronics seminar, CNRS, Grenoble, France. March 9th, 2010

Led by Prof. Adrian Bachtold, the Quantum NanoElectronics Group specialises in the electrical and mechanical properties of carbon nanotubes and graphene. These structures are so tiny that quantum effects start to play a dominant role. For example the energy levels are quantised, just like in atoms and molecules. Interestingly, these structures are large and robust enough to be implemented in a variety of different microfabricated devices, which allow the tuning of their quantum properties.

In 2010, the Group focused on the EURYI Quantum proves based on carbon nanotubes project and the Marie Curie project Quantum Devices based on Carbon Nanotubes.

Throughout the year, the Group secured one new project:

RODIN - Suspended Graphene Nanostructures, which seamlessly integrates experimental, industrial and theoretical work, is organized around the concept of suspended single-and few-layer graphene nanostructures and annealed diamond-like carbon films. These structures are ideal for accessing and engineering the intrinsic material properties of graphene. In particular this project will focus on engineering and measuring the mechanical and electromechanical properties. This
will be done through sculpting of the suspended structures to desired shapes as well as using thermal post-processing methods. Initially, the graphene will be obtained using standard prototype techniques such as exfoliation and plasma assisted chemical vapor deposition.

KEY PUBLICATIONS AND INVITED TALKS 2010

OTHER ACTIVITIES

ElectroMechanical by A. Bachtold at the INOCE - The Sixth International Nanotechnology Conference on Communications and Cooperation. Grenoble, Switzerland. May 2010. Invited Talk.

Led by ICREA Prof. Stephan Roche, the Theoretical and Computational Nanosciences Group theoretically explores exotic quantum transport phenomena in low dimensional structures and complex materials including carbon nanotubes, DNA, graphene, organic crystals and topological insulators. Targets of interest include the investigation of the effect of chemical and topological disorders, as well as electron-phonon coupling and spin-orbit interaction on quantum interferences, localization phenomena, decoherence mechanisms, electromechanical coupling between charges flow and vibrations of systems. Methodological developments target innovative quantum transport approaches to describe charge, spin, phonon or polaron dynamics in complex matter.

NEW PROJECTS & MILESTONES

The challenges that the Group aims to tackle, within the context of charge, spin, phonon or polarons dynamics in complex states of matter and low dimensional structures are twofold. First, it tackles quantum (transport) phenomena beyond conventional semiclassical treatments and mean field approaches. And second, it develops multiscale computational strategies, keeping the accuracy of state-of-the-art ab initio methods, but allowing the calculation of physical observables in realistic models.

Within this Group’s main research lines, such as: Graphene Electronics and Spintronics, Carbon Nanotubes and Nanoresonators and Topological Insulators-TI and Multiscale Quantum Simulation of Nanodevices, funding has been secured through the award of two projects:

TRAIN - Transpyrenees Action on Advanced Infrastructures for Nanosciences and Nanotechnologies, whose objective is to position the southwest of Europe as a competitive region by pooling existing infrastructures, at two levels: nanomaterials preparation and characterization.

PICASSO Multiscale Simulation of Graphene Field Effect Transistors. France/Spanish Joint Call.

KEY PUBLICATIONS AND INVITED TALKS 2010

Engineering carbon chains from mechanically stretched graphene-based materials, E. Erdogan, I. Popov, C. G. Ro-
When chemistry meets nanoelectronics: graphene, a new playground for science and innovation by S. Roche at

Transport properties of doped, functionalized and damaged graphene based materials by S. Roche at the EMRS2010

247, Nos. 1112, 29622967 (2010)

OTHER ACTIVITIES

Member of the Electromol 2010 (MNATEC 6-13/12, 2010), http://www.electromol.com/

Member of the Scientific Board of the “Graphene and Nanotubes: science and applications” (“GNT”) group, a national research group (GDR 3217) and an international coordination network (GDR3) cross-linking research on nanotubes and graphene; http://www.graphene-nanotubes.org/

Led by Dr. Belén Ballesteros, the Electron Microscopy Division was formed in 2010 and focuses on the use of electron microscopy techniques for nanoscience and nanotechnology research and applications. The main aim of the Division is to provide scientific-technical support to the ICN research lines and to neighbouring research centres, as well as developing and implementing novel related techniques. The laboratory has been selected by FEI as a Centre of Reference for development of joint experiments and workshops related with electron microscopy.

RESEARCH ACTIVITIES & MILESTONES

Electron microscopy has become a key characterisation tool since it provides structural, chemical and morphological information of a wide range of nanomaterials and nanostructures. Recent developments in both scanning and transmission electron microscopes have dramatically improved their image and nanoanalysis capabilities, making feasible for instance the day-to-day study of crystallographic periodicity of structures at the atomic level and the study of high-vacuum incompatible specimens by SEM working in environmental mode, among others.

In this context during 2010, the Division focused on:
- High resolution imaging (SEM, TEM, Z-contrast STEM)
- Chemical analysis at the nanoscale (EDS, EELS, EFTEM)
- Structural characterisation by electron diffraction
- Electron tomography

SERVICES

The Division’s facilities were acquired during 2010 and are detailed below:

- FEI Tecnai G2 F20 S-TWIN HR(S)TEM is a 200kV field emission gun (FEG) high resolution and analytical TEM/STEM. The field emission source means this microscope is ideal for applications requiring high coherency, high brightness at high magnification, or small focused probes. It is a versatile and flexible microscope and combines high performance in TEM, EFTEM and STEM modes with ease of operation in a multi-user research environment. The analytical capabilities are provided by an EDAX system for EDS and a last generation Gatan Imaging Filter (GIF Quantum) for EELS and EFTEM analysis. High-resolution electron tomography is performed using a dedi-
cated high-tilt tomography sample holder.

- **FEI Magellan 400L XHR SEM** is a Field Emission Scanning Electron Microscope equipped with a newly developed electron column with UC (UniColore) Technology. This microscope features excellent capabilities in the more traditional high energy (15-30 kV) SEM and STEM imaging, but also has an outstanding performance at low beam energies with subnanometer resolution for unmatched surface sensitive imaging.

- **FEI Quanta 650FEG ESEM** is a versatile field scanning electron microscope which provides high resolution imaging at low-vacuum and also extended vacuum (environmental) for the characterization of all type of samples (conductive and non-conductive) and performing in-situ dynamic experiments. This microscope features a large chamber compatible with 8 inches wafers.

KEY PUBLICATIONS AND INVITED TALKS 2010

RESEARCH ACTIVITIES & MILESTONES

The key to progress in nanoscience and nanotechnology is the ability to design and fabricate samples for the experimental work. In order to understand the fundamentals of the science fabrication of nanostructures in a variety of materials with accuracy in the nanometer scale and sometimes in the molecular scale is essential. To this effect the ICN Nanofabrication Division has infrastructure for different lithography methods, including lithography based on electron beams and focus ion beams, thermal and UV light-assisted nanoimprint lithography, self assembly techniques, metal evaporation techniques and etching processes. The ICN Nanofabrication Division supports the Institute’s research groups in: nanoelectronics, nanophononics, nanophotonics, spintronics, nanobioelectronics and biosensors.

In this context during 2010, the Division has focused on 3 main research lines:
- Novel nanopatterning methods.
- Flexible processing.
- Collaboration with national and international entities.

Throughout the same year, Dr. Kehagias started research for the LAMAND – Large Area Molecularly Assembled Nanopatterns for Devices Project, awarded to his division in the year 2009 and funded by the European Commission. The concept of the project is to provide a manufacturable and verifiable process whereby functionalised macromolecular systems can act as a molecular factory for the placement of functional nanomaterials of precise dimension and structure over large substrate areas for the delivery of beyond state-of-the-art applications in the ICT sector. In addition to the mentioned EU project Dr. Kehagias has established a joint research collaboration with a private company. This Project focuses on the development of conductive transparent electrode structures on flexible substrates which could be used for photovoltaic and/or light emitting displays. The fabrication processes focuses on nanoimprint based methods with the aim to scale up by employing roll to roll based techniques.

Besides the participation in the above mentioned projects the Division has strong collaborations with world leading companies and entities, among them: Intel (Ireland), Fiat Research Centre
KEY PUBLICATIONS AND INVITED TALKS 2010

Combined top-down and bottom-up lithography techniques for the realisation of highly uniform polymeric nano-structures, N. Kehagias, R. A. Farrell, V. Reboud, M. Zelsmann, J. D. Holmes, M. A. Morris and C. M. Sotomayor Torres, INTERNATIONAL WORKSHOP: SOLID STATE LASERS. 50 YEARS AFTER, Tamaronega, Spain, 17-20 March 2010. Talk

RESEARCH ACTIVITIES & MILESTONES

The development of scientific instruments is indispensable for scientific research. Over 70% of the Nobel Prizes in physics, chemistry, biology and medicine were achieved with the help of different kinds of advanced instruments. The advance of modern science and in particular nanotechnology will depend more and more on the development of scientific instruments and the ICN Nanoscience Instrument Development Division devotes efforts into this purpose.

Research activities include:
• Collaboration with the major research lines of the ICN.
• Collaboration with the Spanish Synchrotron Light Source (ALBA) and other neighboring research institutions.
• Further instrumental development.

SERVICES

The Division, once it has reached its final conformation, will offer a scientific and technical assistance based on a high qualified team of experts in applied physics, precision instrumentation, micro engineering, nanotechnology, metrology, scientific computing, and 3D-design of precision devices to address challenging instrumental projects both for basic nanoscience research as well as for applied technology.

KEY PUBLICATIONS AND INVITED TALKS 2010

5.1.1 Daniel Maspoch
Functional Metal-Organic Nanotubes: Controlling the Composition, Dimensions and Shape through Template Synthesis.

The team’s research interests are focused on controlling the supramolecular assembly of molecules, biomolecules and nanoscale building blocks at the nanometer scale for the design and synthesis of novel functional architectures. The use of supramolecular chemistry to control the fabrication of new nanomaterials is a key aspect for the future of Nanoscience and Nanotechnology. The team is interested in developing new technologies that enables the synthesis of clusters of gold with very high catalytic activity.

HIGHLIGHTS 2010

HIGHLIGHTED PUBLICATIONS

FUNDED PROJECTS
Long-lasting disinfectants, funded by MICINN – TRACE, agreement number: TRA2009-0370_01
NANO-SCENT, controlled release fragrances, funded by MICINN-TRACE, agreement number TRA2009-0325
NANOAQUA, use of nanospheres as a vehicle for the administration of immunostimulants in species of interest to aquaculture, funded by Projectos Ramón Areces

CONTRACTS WITH COMPANIES
Encapsulation of biocides in in micro- and nanosystems to prolong the biocidal activity.
Encapsulation of fungicidal micro- and nanosystems, with a private company
Encapsulation of fragrances for textile applications.
First technology transfer contract related to the “Micro- and Nanoencapsulation Technology for Fragrances” signed in February 20th of 2010 through which a private company and the Catalan Institute of Nanotechnology (ICN) establish a long-term research collaboration in the micro- and nanoencapsulation field.

5.1.2 Ernest Mendoza
During 2010 further research on the functionalisation of carbon nanotubes as well as their utilisation as electrochemical immunosensors was conducted. In addition, the first virus sensor based on autoassembled peptide nanotubes was developed. Collaborations were also undertaken in the development of a method for the micro/nanofabrication using wet lithography and in the study of the destiny of metallic nanoparticles in living organisms. Finally, a method for the synthesis of clusters of gold with very high catalytic activity was developed and patented.

Projects developed during 2010 were:
• Advanced Analysis Microsystems development by integrating micro/nano sensors and optic detectors, funded by MEC.
• Production of a recombinant hormone for veterinary application, funded by MEC.
• Synthesis scale-up gold clusters for catalysis applications, funded by ACC1Ó.
• Integrated Lab on a Chip Platforms for Medical Diagnosis, funded by MEC.

HIGHLIGHTS 2010
Bioinspired target-specific crystallization on peptide nanotubes for ultrasensitive Pb ion detection, R. Di la Rca, E. Mendoza and H. Matsui. SMALL, 6, 1735. 2010.

Co-chairman at the nanobioelectronics session from electronics, biology to medicine. Nanomedicine 2010 congress. (Peqiu, Xina)

Dr. Ernest Mendoza left the ICN in 2010 to join the Centre de Recerca en Nanoenginyeria, UPC.
how with Li atoms. A combined STM and XMCD study showed electronic and magnetic structure by doping single molecules MPcs, the study extended to manipulation of their electronic properties of metal phthalocyanines by alkali doping:

- Modification of the electronic and magnetic properties of metal phthalocyanines by alkali doping:

 - Electronic and magnetic properties of metal phthalocyanines: The electronic and magnetic properties of individual MPcs adsorbed in metallic surfaces were studied. The results provided essential information on spin coupling and relaxation channel mechanisms at molecular interfaces.
 - Modification of the electronic and magnetic properties of metal phthalocyanines by alkali doping: Following the systematic investigation carried out with MPcs, the study extended to manipulation of their electronic and magnetic structure by doping single molecules with Li atoms. A combined STM and XMCD study showed how magnetism in these molecules could be switch on and off, depending on the metal ion of the molecule.

Understanding the electronic and magnetic properties of metalorganic adsorbates with scanning tunneling spectroscopy, Laboratoire Matériaux et Phénomènes Quantiques, Université Paris-Diderot, Paris (France), 20th May 2010.

Synchrotron experiments: Molecular exchange bias, ID8 beamline at ESRF, June 6-15, 2010.

Member of the scientific committee of: VII Congreso de Fuerzas y Túnel, September 27-29, 2010, Tamagawa (Spain).
Wetting phenomena are related to the contact between liquids and solids. The properties of the liquid-solid interface determine to a large extent the way the whole system interacts with the environment. Any surface under ambient conditions is covered by a thin film of water, from a monolayer to many molecular layers depending on the conditions and the substrate. The main objective of the project is to study the effects of these liquid films on the surface properties of different materials. One part of the project focuses on the study of water adsorption effects on ionic crystals. Various tools and methodologies (MD, SPFM, KPM, etc.) have been used to study the molecular mechanisms that could explain the experimental observations. Another part of the project applied SPFM/KPM to two important questions in different scientific areas: the study of surface segregation on alkali halide solutions and the importance of the network parameters in ionic crystals.

Stabilization of ice structures on BaF2(111) and CaF2(111): the role of steps and lattice mismatch in the stabilization of ice-like structures by M. Cardellach, A. Verdaguer, J.J. Segura and J. Fraxedas at the XXVII ECOSS Conference. Groningen, Holland. (2010) Poster

Thin water films grown at ambient conditions on BaF2(111) and CaF2(111): the role of steps and lattice mismatch in the stabilization of ice-like structures by M. Cardellach, A. Verdaguer, J.J. Segura and J. Fraxedas at the XXVII ECOSS Conference. Groningen, Holland. (2010) Poster

Thin water films grown at ambient conditions on BaF2(111) and CaF2(111): the role of steps and lattice mismatch in the stabilization of ice-like structures by M. Cardellach, A. Verdaguer, J.J. Segura and J. Fraxedas at the XXVII ECOSS Conference. Groningen, Holland. (2010) Poster

Stabilization of ice structures on BaF2(111) and CaF2(111): the role of steps and lattice mismatch in the stabilization of ice-like structures by M. Cardellach, A. Verdaguer, J.J. Segura and J. Fraxedas at the XXVII ECOSS Conference. Groningen, Holland. (2010) Poster

Through the CIN2 collaboration with CSIC, the ICN has placed quite a number of young researchers in Groups led by senior CSIC scientists. This form of collaboration serves to augment the capabilities of the research groups and enables the researchers to take advantage of the resources made available by both organisations.

In 2010, three of our ICREA professors, two ICN funded Ramón y Cajal researchers, 3 doctoral students and a doctored technician were collaborating with the following CSIC Research Groups:

- Nanobiosensors and Bioanalytical Applications, led by Dr. Laura M. Letchuga.
- Nanostructured Functional Materials, led by Dr. Daniel Ruiz-Molina.
- Small Molecules on Surfaces in Ambient and Pristine Conditions, led by Dr. Jordi Fraxedas.
- PLD & Nanoionics, led by Dr. Jose Santiso
- Theory and Simulation, led by Dr. Pablo Ordejón
6.1 Publications

The number, quality and relevance of publications produced by the researchers that form the ICN continue to grow strongly year upon year as can be seen in the following graphs:

<table>
<thead>
<tr>
<th>Ranking Position</th>
<th>Journal</th>
<th>Number of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Science</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Science Materials</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Science Direct Materials</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Science</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Physical Review Letters</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Physical Review Letters</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Nature Materials</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Nature Nanotechnology</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Materials Today</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Nano Letters</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Journal of the American Chemical Society</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Advanced Materials</td>
<td>1</td>
</tr>
</tbody>
</table>

Number of Indexed Publications: 89

Impact Factor Average: 5.771

6.2 Events Participation

During 2010 ICN researchers participated at various levels in 102 events related to Nanotechnology.

- **ICREA WORKSHOP ON PHONON ENGINEERING 2010**, Sant Feliu de Guixols, Girona, Spain – May 24 -27, 2010
 - 68 Participants, 28 Oral contributions and 28 Posters.

- **NANOJASP 2010**, Nanomaterials based Biosensors and Biosystems. Improving the quality and security of citizen’s life.
 - Workshop SPAIN-JAPAN, Barcelona – November 29 -30, 2010
 - 65 Participants, 24 Oral contribution and 38 Posters.

- **IV Jornada AIN – Aplicaciones Industriales de la Nanotecnologia**
 - Casa Llotja de Mar, Barcelona – June 9th, 2010
 - 298 Participants, 14 Oral contributions, 39 Posters, 5 AIN Award proposals presented and 4 Debates.
Competitive research funding is vital not only for the financial viability of the ICN but also as an indicator of the quality and international competitiveness of its research activities.

The ICN measures project funding growth using Average Annualised Funding, which is the sum of the total funds awarded in a project divided by each project lifespan, in order to account for fluctuations in grant concessions and varying project length. As can be seen in the chart, this funding continued to grow in 2010, with most new funding coming from a series of new national research projects.

Particularly pleasing was the continued strong growth in competitive funding secured for commercialisation projects, to help transfer ICN-developed technologies from the laboratory into a commercial setting.

<table>
<thead>
<tr>
<th>Year</th>
<th>EU</th>
<th>National</th>
<th>Commercial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>223.720</td>
<td>334.097</td>
<td>1.623.810</td>
<td>1.972.229</td>
</tr>
<tr>
<td>2007</td>
<td>334.097</td>
<td>572.189</td>
<td>1.351.993</td>
<td>1.659.785</td>
</tr>
<tr>
<td>2008</td>
<td>474.044</td>
<td>572.189</td>
<td>1.351.993</td>
<td>2.398.226</td>
</tr>
<tr>
<td>2009</td>
<td>474.044</td>
<td>572.189</td>
<td>1.351.993</td>
<td>2.398.226</td>
</tr>
<tr>
<td>2010</td>
<td>2.955.708</td>
<td>3.7</td>
<td>3.4</td>
<td></td>
</tr>
</tbody>
</table>

The management and services team of the ICN performs a wide range of functions and provides numerous support services to the Research Groups. Management is led by the ICN Manager, Matias Pueyo, supported by the Strategy and Development Manager, Boaz Kogon, and comprises several departments:

- **Finance** – responsible for daily accounting activities and travel bookings.
- **IT** – responsible for all IT services both for ICN and CIN2.
- **General Services** – responsible for building services and general maintenance both for ICN and CIN2.
- **Communication** – responsible for internal and external communication and marketing activities.
- **Project Management** – responsible for administrative management of competitive projects.
- **Technology Transfer** – responsible for commercial relationships and patents.
- **HR** – responsible for managing personnel contracts, training and related issues.

During 2010 the ICN grew from 121 to 135 people, with a corresponding increase in activity across all administrative areas. Systems development continued, with further modules of SAP brought online, a new website launched, and projects initiated to select intranet and CRM platforms.

CIN2

The collaboration with CSIC is managed by Ramon Cosialls, and the CIN2 management team includes a number of other ICN personnel covering administrative and communication roles.

External Services

During 2010, thanks to the new capabilities provided by the SAP system, the ICN made significant progress in internalising a number of financial functions that were previously externalised. Also, in order to cope with the increasing complexity and number of legal issues, external legal services were shifted from the FUAB to highly specialised legal bureaus in the areas of technology commercialisation, human resources and public sector contracting.
9.1 Financial accounts 2010

The financial statements for 2010 are written in accordance with the Spanish General Accounting Plan 2007.

The operating budget of ICN is composed of revenues from contributions from public administrations and agencies, Competitive Grants and income from companies (technology transfer).

These revenues fund the operational activities of the Institute. The main items are personnel costs, general operating expenses and depreciation.

The annual result was a surplus of 89,822€.

9.2 International competitiveness

A key objective of the ICN is to be highly competitive at the international level, both in the quality of science produced and the levels of competitive funding secured. To date the ICN has secured competitive funding from a number of entities, including the European Commission, ACCIÓ, Spanish Ministry of Science and Innovation (MICINN), The Catalan Agency of Support for Universities and Research (AGAUR).

ICN has to date signed 5 contracts for technology transfer with private companies. The total funding committed from both competitive research projects and technology transfer reached €8,2 million in 2010.

9.3 Income

The total revenue for 2010: €6,252,227, from 4 main sources.

Ordinary income: Funds that finance management structure and services of the institute.

Competitive Income: Funds that finance research projects, which have been obtained in competitive funding from the European Union, ministries and regional governments.

Strategic Investment: Funds from the EU, or Generalitat, which finance the institute’s technological infrastructure.

Private Companies: Funds from technology transfer, events, and activities funded by private companies.
9.4 Expenses

Total expenditures for the year were €6,162,405. These are classified as follows:

Project expenses: Expenses necessary to implement research and technology transfer; these include current expenses, staff costs and depreciation of equipment and installations.

Ordinary expenses: Expenses that fund management structure and services, the composition of spending is current expenditure, staff costs and depreciation.

<table>
<thead>
<tr>
<th>Expenses</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Expenses:</td>
<td>€2,154,366</td>
</tr>
<tr>
<td>Current expenses</td>
<td>€620,531</td>
</tr>
<tr>
<td>Personnel</td>
<td>€1,352,030</td>
</tr>
<tr>
<td>Depreciation</td>
<td>€181,806</td>
</tr>
<tr>
<td>Ordinary Expenses:</td>
<td>€4,008,039</td>
</tr>
<tr>
<td>Current expenses</td>
<td>€1,106,125</td>
</tr>
<tr>
<td>Personnel</td>
<td>€2,041,644</td>
</tr>
<tr>
<td>Depreciation</td>
<td>€860,270</td>
</tr>
</tbody>
</table>

During 2010, the ICN initiated investment of €2.1 million in scientific infrastructure and common services via the European Union funded PO FEDER Catalunya 2007-2013 program.

The amount was dedicated to establishing a state-of-the-art Electron Microscopy facility with four FEI microscopes, together with the purchase of a MOKE measuring system, an HE3 cryostat and a liquid helium system, among other.

The contracts were awarded following a lengthy public tender process which began in 2009.

Evolution of ICN investments in scientific equipment

![Graph showing the evolution of ICN investments in scientific equipment from 2004 to 2010.](image-url)
The ICN TTO (Technology Transfer Office) grew in 2010 with the incorporation of a TT Officer. During 2010 the following actions were taken:

- A new Spanish patent was filed and three French patents were filed in co-ownership with CNRS.
- 6 new technologies were evaluated, of which four proceeded to patent filings, one was withdrawn and one continued in feasibility study.
- A Spanish patent was granted on July 28th 2010.
- The first Know-How licensing agreement was signed on March 1st 2010, related to the encapsulation for textile applications. A long-term R&D agreement was also signed to apply the technology to other products of the company.
- Significant efforts were devoted to the assessment of new technologies and the commercialisation of existing ones. As a result, ICN actively participated in several congresses, workshops and partnering events: Nanospain (Malaga), BIO (Chicago), Gennesys (Barcelona), Nanofutures (Gijón), Nanotech NSTI (Anaheim), European Biotechnology Meeting (Montpellier) and Biocat Forum (Barcelona).
- 11 oral presentations and 6 posters were presented.
- 16 NDA contracts were signed.
- 15 collaboration projects with companies and institutions were formalised.
- Contacts with international institutions were initiated: Canadian University of Victoria, National Cancer Institute (NCI), Korean Institute of Science and Technology (KIST) and the University of California, Los Angeles-California NanoSystems Institute (UCLA-CNSI).
- 4 AGAUR VALOR project applications were submitted, one of them granted in collaboration with UAB.
- A RECERCAIXA project was applied for and granted.
- 7 previously granted ACC1Ó-AGAUR VALTEC and VALOR projects continued activity during 2010.
- 4 R&D contracts with private companies were signed, 3 new and 1 extension.
- Organised and hosted the 4th AIN workshop (Industrial Applications of Nanotechnology) on June 9th, in collaboration with INA (Nanoscience Institute).
Personnel (by department)

<table>
<thead>
<tr>
<th>Department</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOMIC MANIPULATION AND SPECTROSCOPY GROUP</td>
<td></td>
</tr>
<tr>
<td>Pietro Gambardella</td>
<td>ICREA Research Professor and Group Leader</td>
</tr>
<tr>
<td>Santos Francisco Alvarado</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Gerard Aníjo</td>
<td>Student</td>
</tr>
<tr>
<td>Timofey Balashov</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Kevin Garello</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Jerald Kavich</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Cornelius Krull</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Alberto Lodi Rizzini</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Jie Luan</td>
<td>Student</td>
</tr>
<tr>
<td>Joan Martínez</td>
<td>Student</td>
</tr>
<tr>
<td>Sonia Matencio</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Mihai Miron</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Cornelio Nistor</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Sergey Odintsov</td>
<td>Student</td>
</tr>
<tr>
<td>Marc Olé</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Stefan Schmaus</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>INORGANIC NANOPARTICLES GROUP</td>
<td></td>
</tr>
<tr>
<td>Victor Franco</td>
<td>ICREA Research Professor and Group Leader</td>
</tr>
<tr>
<td>Martí Busquets</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Eudald Casals</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>David Casas</td>
<td>Student</td>
</tr>
<tr>
<td>Joan Comenge</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Lorena García</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Edgar Emír González</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Stephanie Lim</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Xicotenciát López</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Zoe Anna Megson</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Isaac Ojea</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Miriam Varón</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>MAGNETIC NANOSTRUCTURES GROUP</td>
<td></td>
</tr>
<tr>
<td>Josep Noguès</td>
<td>ICREA Research Professor and Group Leader</td>
</tr>
<tr>
<td>Marta Estraper</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Alberto López</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>NANOBIOELECTRONICS AND BIOSENSORS GROUP</td>
<td></td>
</tr>
<tr>
<td>Arben Merkoçi</td>
<td>ICREA Research Professor and Group Leader</td>
</tr>
<tr>
<td>Gemma Aragay</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Luis Miguel Baptista</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Miquel Cadevall</td>
<td>Student</td>
</tr>
<tr>
<td>Welter Cantanhede</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Serdar Çevik</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Wilanée Chunglok</td>
<td>Student</td>
</tr>
<tr>
<td>Alfredo de la Escosura</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Marisol Espinosa</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Maria Gutiérn</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Nicolas Klovoulou</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Adonis Maria López</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Marisa Maria V. Malletz</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Sergio Marín</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Carmen Clotilde Mayorga</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Mariana Medina</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Sandrine Miserere</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Helena Montón</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Claudio Parolo</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Briza Pérez</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Maelle Perlezou</td>
<td>Student</td>
</tr>
<tr>
<td>Tiziana Piacido</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Lourdes Joselifina Rivas</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>PHONONIC AND PHOTONIC NANOSTRUCTURES GROUP</td>
<td></td>
</tr>
<tr>
<td>Clivia M. Sotomayor</td>
<td>ICREA Research Professor and Group Leader</td>
</tr>
<tr>
<td>Francesc Àlzina</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Joel Betorzin</td>
<td>Student</td>
</tr>
<tr>
<td>(Pierre-) Olivier Chapuis</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Emigdio Chávez</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Cristian Glassens</td>
<td>Student</td>
</tr>
<tr>
<td>John Cuffe</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Damian Dudek</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Yamila García</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Jordi Górnis</td>
<td>Post-doctoral researcher</td>
</tr>
</tbody>
</table>
Personnel (by department)

<table>
<thead>
<tr>
<th>Department</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS AND ENGINEERING OF NANODEVICES - ICREA Prof. Sergio O. Valenzuela</td>
<td></td>
</tr>
<tr>
<td>Sergio Valenzuela</td>
<td>ICREA Research Professor and Group Leader</td>
</tr>
<tr>
<td>German Bridoux</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Marius Costache</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Ingmar Neumann</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Joris Van De Vondel</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>QUANTUM NANO ELECTRONIC DEVICES GROUP - Prof. Dr. Adrian Bachtold</td>
<td></td>
</tr>
<tr>
<td>Adrian Bachtold</td>
<td>ICN Professor</td>
</tr>
<tr>
<td>Ali Afshar</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Julien Chaete</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Alexander Eichler</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Joel Moser</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>Stephanie Pons</td>
<td>Student</td>
</tr>
<tr>
<td>Giuseppe Schiavone</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Marianna Sedzinska</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Ioannis Tsoutsios</td>
<td>Doctoral student</td>
</tr>
<tr>
<td>Mariusz Zdrojek</td>
<td>Post-doctoral researcher</td>
</tr>
<tr>
<td>THEORETICAL AND COMPUTATIONAL NANOSCIENCE GROUP - ICREA Prof. Stephan Roche</td>
<td></td>
</tr>
<tr>
<td>Stephan Roche</td>
<td>ICREA Research Professor and Group Leader</td>
</tr>
<tr>
<td>ELECTRON MICROSCOPY DIVISION</td>
<td></td>
</tr>
<tr>
<td>Belén Ballesteros</td>
<td>Technical Engineer</td>
</tr>
<tr>
<td>NANOFABRICATION DIVISION</td>
<td></td>
</tr>
<tr>
<td>Nikolaos Kehagias</td>
<td>Technical Engineer</td>
</tr>
<tr>
<td>NANOSCIENCE INSTRUMENT DIVISION</td>
<td></td>
</tr>
<tr>
<td>Gustavo Ceballos</td>
<td>Technical Engineer</td>
</tr>
<tr>
<td>RESEARCHERS IN COLLABORATIVE GROUPS</td>
<td></td>
</tr>
<tr>
<td>Javier Ariñez</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Juan Antonio Asensio</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Antonia Maria Cano</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Carlos Carbonell</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Mar Cardellach</td>
<td>Small molecules on surfaces in ambient and pristine conditions</td>
</tr>
<tr>
<td>Arnau Carné</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Ana Belen González</td>
<td>Nanobiosensors and Bioanalytical Applications</td>
</tr>
<tr>
<td>Lidia Pinilla</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Kevin Ponce</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Leonor Rodrigues</td>
<td>Nanobiosensors and Bioanalytical Applications</td>
</tr>
<tr>
<td>Galia Rouas</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Marta Rubio</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Àngels Ruyra</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
<tr>
<td>Javier Saiz</td>
<td>Nanostructured Functional Materials</td>
</tr>
<tr>
<td>Isabel Solé</td>
<td>Supramolecular NanoChemistry & Materials</td>
</tr>
</tbody>
</table>
Most relevant publications (by impact factor)

CUSNANOCAT 2010
EU & INTERNATIONAL PROJECTS 2010

Project title: LAMAND - Large area molecularly assembled nanomaterials for devices
Principal Researcher: Dr. Nikolaos Kehagias
Funding: European Comission

Project title: Microscopic role of magnetism in high temperature superconductivity
Principal Researcher: ICREA Prof. Pietro Gambardella
Funding: National Science Foundation (USA)

Project title: NADINE - Nanosystems for the early diagnosis of neurodegenerative diseases
Principal Researcher: ICREA Prof. Arben Merkoci
Funding: European Comission

Project title: NANOFUNCTION - Beyond CMOS nanodevices for adding functionalities to CMOS
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: European Comission

Project title: Nano-ICT - Nano-scale ICT devices and systems coordination action
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: European Comission

Project title: suspension graphene nanotubes
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: European Comission

Project title: NANOPOWERS - Nanoscale energy management for powering ICT devices
Principal Researcher: Dr. Pierre Olivier Chapuis
Funding: European Comission

Project title: NANOTECK - Ecosystems technology and design for nanoelectronics
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: European Comission

Project title: NANTOES - Nanotechnology: training of experts in safety
Principal Researcher: ICREA Prof. Victor F. Puntes
Funding: European Comission

Project title: NANOPOS - Nanotechnology: training of experts in safety
Principal Researcher: ICREA Prof. Victor F. Puntes
Funding: European Comission

Project title: SEAL - Semiconductor equipment assessment leveraging innovation
Principal Researcher: Dr. Timothy Kehoe
Funding: European Comission

Project title: SEEDS - Semiconductor equipment assessment leveraging innovation
Principal Researcher: Dr. Timothy Kehoe
Funding: European Comission

Project title: SM-DNA-repair
Principal Researcher: Ramón y Cajal Researcher Dr. Fernando Moreno
Funding: European Comission

Project title: DESPRO NANO - Long lasting disinfectants
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspoch
Funding: European Comission

Project title: Development of novel nanomaterial based targeting approaches as emerging universal platforms with interest to develop biosensors
Principal Researcher: ICREA Prof. Arben Merkoci
Funding: European Comission

Project title: TAILPHOX - Tailoring phonon interaction in silicon phononic crystals
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: European Comission

Project title: OMDA - Ordered hetero- and nano-structures with epitaxial dielectrics for magnetic and electronics applications
Principal Researcher: ICREA Prof. Josep Nogues
Funding: European Comission

Project title: Quantum devices based on carbon nanotubes
Principal Researcher: Prof. Dr. Adrian Bachtold
Funding: European Comission

Project title: Quantum probes based on carbon nanotubes
Principal Researcher: Prof. Dr. Adrian Bachtold
Funding: European Comission

Project title: ACNOL – Study of Confined Acoustic Phonons in Fabricated Nanostructures
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: Ministry for Science and Innovation

Project title: Design of inorganic conjugated nanoparticles: new tools for cancer treatment
Principal Researcher: ICREA Prof. Victor F. Puntes
Funding: Ministry for Science and Innovation

Project title: Collaboration between CSIC and the University of Santiago de Chile
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: Ministry for Science and Innovation

Project title: ACHPIN – Study of Confined Acoustic Phonons in Fabricated Nanostructures
Principal Researcher: ICREA Prof. Dr. Olviero Chapuis
Funding: Ministry for Science and Innovation

APPENDIX 12.3 Projects

Principal Researcher: ICREA Prof. Arben Merkoci
Funding: European Comission

Project title: NOMAD - Nanoscale magnetization dynamic
Principal Researcher: ICREA Prof. Pietro Gambardella
Funding: European Comission

Project title: NOMAD - Nanoscale magnetization dynamic
Principal Researcher: ICREA Prof. Pietro Gambardella
Funding: European Comission

Project title: NADINE - Nanosystems for the early diagnosis of neurodegenerative diseases
Principal Researcher: ICREA Prof. Arben Merkoci
Funding: European Comission

Project title: NADINE - Nanosystems for the early diagnosis of neurodegenerative diseases
Principal Researcher: ICREA Prof. Arben Merkoci
Funding: European Comission

Project title: NOMADO - Nanoscale magnetization dynamic
Principal Researcher: ICREA Prof. Pietro Gambardella
Funding: European Comission
Merkoçi
Funding: Ministry of Science and Innovation

Project title: Diagnostic system for detecting breast cancer
Principal Researcher: ICREA Prof. Arben Merkoçi
Funding: ACC10 (Generalitat de Catalonia)

Project title: Graphene-based Molecular Spintronics Devices
Principal Researcher: ICREA Prof. Sergio O. Valenzuela
Funding: Ministry of Science and Innovation

Project title: ICREA workshop on phonon engineering
Principal Researcher: ICREA Prof. Dr. Olvia M. Sotomayor
Funding: Institució Catalana de Recerca i Estudis Avançats (ICREA)

Project title: Integrated Lab-On-Chip Platforms for Medical Diagnostics
Principal Researcher: Ramón y Cajal Researcher Dr. Ernest Mendoza
Funding: Ministry of Science and Innovation

Project title: MOLCHIP - Molecular chips
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspol
Funding: Ministry of Science and Innovation

Project title: Multifunctional nanoplatforms for high sensitive pollution control and purification of water
Principal Researcher: ICREA Prof. Arben Merkoçi
Funding: Ministry of Science and Innovation

Project title: NANOAUQIA, use of nano-spheres as vehicles for immunostimulant administration in aquaculture
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspol
Funding: Fundación Ramón Areces

Project title: NANOBIOMED Nanotechnologies in biomedicine
Principal Researcher: ICREA Prof. Arben Merkoçi
Funding: Ministry for Science and Innovation

Project title: Nanobiosensors for tumoral markers
Principal Researcher: ICREA Prof. Arben Merkoçi
Funding: Ministry of Science and Innovation

Project title: NANOCLEAN Determination of the potential of different functionalised inorganic nanoparticles
Principal Researcher: ICREA Prof. Víctor F. Puntes
Funding: Ministry of Environmental and Rural Development and Marine

Project title: NANO-SCENT - Controlled release of fragrances
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspol
Funding: Ministry of Science and Innovation

Project title: nanoTHERM - Tailoring electronic and phononic properties of nanomaterials: Towards ideal Thermoelectricity
Principal Researcher: ICREA Prof. Dr. Olvia M. Sotomayor
Funding: Ministry of Science and Innovation

Project title: NANOWAVE - Nanowire based Microwave Emitters for Use in Monolithic Microwave Integrated Circuits
Principal Researcher: ICREA Prof. Pietro Garmbandella
Funding: Ministry of Science and Innovation and National Science Foundation (USA)

Project title: New single molecule technologies for the study of DNA repair mechanisms
Principal Researcher: Ramón y Cajal Researcher Dr. Fernando Moreno
Funding: Ministry of Science and Innovation

Project title: Safety food - development of novel technologies based on phages for controlling salmonellosis
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspol
Funding: Obra Social La Caixa, Programa Recercaixa

Project title: SQR
Principal Researcher: ICREA Prof. Dr. Olvia M. Sotomayor
Funding: Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

Project title: Study of the optoelectromechanic properties of individual molecules and the effect of electrodes coupling and the interaction with other molecules in their integration into real devices
Principal Researcher: Ramón y Cajal Researcher Dr. Aitor Mugarza
Funding: Ministry of Science and Innovation

Project title: Synthesis and manipulation of two-dimensional molecular spin networks
Principal Researcher: ICREA Prof. Pietro Garmbandella
Funding: Ministry of Science and Innovation

Project title: Using magnetic interactions to control the magnetic properties of nanostructured systems
Principal Researcher: ICREA Prof. Josep Nogues
Funding: Ministry of Science and Innovation

Project title: WATER - Water risk management in Europe
Principal Researcher: ICREA Prof. Dr. Arben Merkoçi
Funding: Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

Project title: Water multifunctional processing system based on nanoplatforms for ultra-
sensitive detection and purification of environmental pollutants
Principal Researcher: ICREA Prof. Arben Merkoçi
Funding: Ministry of Science and Innovation

TECHNOLOGY TRANSFER 2010

Project title: Clinical oncologic translation of gold nanoparticles conjugated with CisPlatino: from in-vivo to phase I.
Principal Researcher: ICREA Prof. Víctor F. Puntes
Funding: ACC1Ó (Generalitat of Catalonia)

Project title: EVALICN -Technology Transfer
Principal Researcher: Prof. Jordi Pascual
Funding: ACC1Ó (Generalitat of Catalonia)

Project title: Evaluation of the biocompatibility and toxicity of micro and nanoparticles
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspoch
Funding: ACC1Ó (Generalitat of Catalonia)

Project title: Evaluation of the encapsulation of fragrances, clothes adhesion and friction liberation of metalorganic micro-and nanoparticles for softeners
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspoch
Funding: ACC1Ó (Generalitat of Catalonia)

Project title: In vivo evaluation of potential nanoconjugates as adjuvant for flu vaccines
Principal Researcher: ICREA Prof. Victor Puntes
Funding: ACC1Ó (Generalitat of Catalonia)

Project title: Scale up of gold clusters synthesis for catalysis applications
Principal Researcher: Ramón y Cajal Researcher Dr. Ernest Mendoza
Funding: ACC1Ó (Generalitat of Catalonia)

COMMERCIALISATION CONTRACTS 2010

Project title: Encapsulation of biocides in metal-organic micro- and nanosystems to extend their biocidal activity
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspoch
Funding: Private company

Project title: Encapsulation of fragrances in metal-organic microsystems for controlled release in textiles
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspoch
Funding: Private company

Project title: Encapsulation of fungicides in metal-organic micro- and nanosystems
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspoch
Funding: Private company

Project title: Development of fragrances encapsulation systems for laundry products
Principal Researcher: Ramón y Cajal Researcher Dr. Daniel Maspoch
Funding: Private Company
ATTENTION 2008

2.1 Atomic Manipulation And Spectroscopy Group

INSTITUT CATALÀ DE NANOTECNOLOGIA (ICN)
UAB Campus
CM7 Building – 08193 Bellaterra
(Barcelona) Spain
Tel.: + 34 93 581 44 08
Fax: + 34 93 581 44 11
E-Mail: info@icn.cat