High temperature microbial activity in upper soil layers

MM Santana¹* and JM Gonzalez²

¹ Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Núcleo da Mitra, Ap.94, 7006-554, Évora, Portugal
² Instituto de Recursos Naturales y Agrobiología, IRNAS-CSIC, Av. Reina Mercedes, 10, E-41012, Sevilla, Spain

Running headline: Soil thermophiles

Abstract

*Corresponding author:
Margarida M. Santana, PhD
Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Núcleo da Mitra, Ap.94, 7006-554, Évora, Portugal
Tel. + 351 266 760 851; Fax + 351 266 760 822; E-mail: msantana@uevora.pt

Abstract
Biomineralization at high temperatures in upper soil layers has been largely ignored, although desertification and global warming have led to increasing areas of soils exposed to high temperatures. Recent publications evidenced thermophilic bacteria ubiquity in soils as viable cells, their role on nutrient cycling and seedling development. High temperature events, frequently observed at medium and low latitudes, locate temporal niches for thermophiles to grow in soils. There, at temperatures inhibitory for common mesophiles, thermophilic bacteria could perform biogeochemical reactions with importance to soil food web. Nutrient cycling analyses in soils at medium and low latitudes would benefit from considering the potential role of thermophiles.

Keywords: soil thermophiles; biomineralization; C, N, and S-cycles; plant growth; global warming

The ubiquitous presence of thermophilic bacteria in soils
Microorganisms are known to control the turnover of elements through the immobilization and mineralization of nutrients, i.e. through biogeochemical reactions, (Coleman DC & Crossley, 1996; Crawford et al., 2005; Torsvik et al., 2002) but how these processes occur in nature is not fully understood. Plant growth is largely dependent on the availability of inorganic nutrients provided by biomineralization, so understanding nutrient cycling in soils under a variety of conditions is of major importance.

Current climate changes are leading to an increase of high temperature events (Stocker et al., 2013) and misuse of soil capabilities and poor management of vegetation can lead towards desertification and formation of arid or semi-arid soils. Soils with poor or highly reduced plant cover are exposed to intense solar radiation which leads to increasing temperatures at the upper soil layers. Altogether, these factors lead to soil temperature values well above the optimum for commonly studied mesophilic soil bacteria; values above 40°C are frequently observed with measurements reaching 75°C (Portillo et al., 2012; Gonzalez et al., 2014) and some investigators have reported temperatures higher than 90°C in deserts (McCalley & Sparks, 2009). As a consequence, microbial activity at upper soil layers (i.e., the outermost layer of soil, usually the top 5 cm in this study) has been suggested to be highly reduced during such extreme temperature events similar to animals and plants inhabiting these soil zones (Townsend et al., 1992; Conant et al., 2011).

Some cases of potential activity by mesophilic bacteria have been reported at temperatures above 40°C (Gonzalez et al., 2014) or after exposure to these temperatures as a result of metabolic stimulation (Ho & Frenzel, 2012) or germination of resting cells (Whittenbury et al., 1970). In general, mesophilic bacteria undergo a decline in activity and survival period under high temperature events although other microorganisms,
adapted to these high temperatures, may succeed in finding suitable temporal conditions to develop. Recent reports have highlighted the occurrence of peaks of enzymatic activity at high soil temperatures (in the 55°C to 75°C range) (Gonzalez et al., 2014) and the ubiquitous presence in all tested soils of thermophilic bacteria, specifically species belonging to *Geobacillus* and related genera (Marchant et al., 2002; Marchant et al., 2008; Portillo et al., 2012; Santana et al., 2013). These thermophiles exhibit optimal growth between 50°C and 70°C under laboratory conditions. In addition, these thermophilic bacteria are mostly present in temperate soils as vegetative viable cells (Marchant et al., 2008; Portillo et al., 2012) which strongly suggest that they can be potential participants of soil biogeochemical reactions (Gonzalez et al., 2014). Therefore, the study of these soil thermophilic bacteria and their role in soil ecosystems is an aspect deserving further consideration.

Soil thermophiles contribute to carbon, nitrogen and sulfur cycling

The largest fractions of nitrogen (N) and sulfur (S) in soils are in the form of organic matter (Anandham et al., 2008; Gonzalez-Prieto & Carballas, 1991; Schlesinger, 1997). The mineralization of these organic compounds contributes to CO₂ release to the atmosphere and to make inorganic N and S readily available to soil primary producers. For instance, in non-fertilized soils, organic S released as sulfate is considered the major contribution for plant S nutrition, as sulfate is the dominant form of sulfur used by plants. Organic sulfur is estimated to represent more than 90% of soil total sulfur (Anandham et al., 2008; Schlesinger, 1997). In spite of this large pool of organic sulfur in soils, under temperate conditions, around 20°C, organic S biotransformation to sulfate
has been reported to be very limited (Eriksen, 1996; Ghani et al., 1993). On the other hand, recent research has demonstrated that thermophilic gram-positive bacteria of the Firmicutes phylum, mainly the genera *Geobacillus*, *Ureibacillus* and *Brevibacillus*, were able to release significant quantities of sulfate under high temperature conditions as a product of their metabolism (Portillo et al., 2012; Santana et al., 2013). This represents a process involving a dissimilatory organic-sulfur mineralization pathway recently described (Santana et al., 2014) which suggests that soil thermophilic bacteria can be actively involved in C and S cycling in soil upper layers and refutes the prevailing view of bacteria as poor S-mineralizers (Eriksen, 1996).

Santana et al. (2014) explained the metabolic basis for the production of soluble sulfate by soil thermophiles within the phylum Firmicutes (Order Bacillales). The metabolism of proteinaceous compounds, and other sulfur and nitrogen containing organic molecules, by soil thermophiles results in a requirement to process the amino acids methionine and cysteine leading to sulfite synthesis and ultimately to sulfate release; sulfur and nitrogen containing organic molecules, such as humic acids, are common constituents of soils organic matter and an organic source for soil microorganisms (Sutton & Sposito, 2005). The genomes of thermophiles have revealed the presence of genes encoding for the enzymes involved in these metabolic steps leading to sulfite synthesis, while mesophilic bacteria belonging to commonly reported phyla in soils, lack the required genes (Santana et al., 2014). Among these genes is the one encoding sulfite oxidase, the enzyme that catalyzes sulfate synthesis in the last step of sulfur-organic dissimilation, thus determinant for sulfate production.

Simultaneously to this sulfate production during organic matter consumption, these thermophiles also release high levels of ammonium as a product of their metabolism of amino acids (Portillo et al., 2012; Santana et al., 2013; Santana et al.,
The amount of ammonium produced by these heterotrophic thermophiles is quantitatively equivalent to hyperammonium-producing mesophilic bacteria previously described (Eschenlauer et al. 2002; Whitehead & Cotta, 2004). These findings strongly confirm the high potential of soil thermophiles to contribute to global carbon, nitrogen and sulfur cycling under high temperature conditions, thus complementing the ecological role of mesophiles in those environments periodically exposed to high temperature. This inorganic N and S transformed at the upper soil layers can be easily transported down to deeper soil layers (Conant et al., 2011) and they represent a nutrient source for plants. Soil thermophilic bacteria could be regarded as adjuvants in soil fertilization; their activity has been correlated with the increment of growth in plant seedlings (Santana et al., 2013).

Relevance of soil thermophiles on a global warming context

Warming is known to increase microbial carbon decomposition in soils (Hopkins et al., 2014) leading to a decrease of organic matter residence time and an increase in the release of carbon dioxide from soils into the atmosphere (Conant et al., 2011; Davidson & Janssens, 2006; Hopkins et al., 2014). As well, Hopkins et al. (2014) observed that warming stimulated Gram-positive bacteria to better compete for supplied organic nutrients. Current lack of knowledge on this aspect could have potentially serious effects on our ability to explain or avoid the expected consequences, i.e. typically reduced organic matter content found in soils of warm climatic zones, and potential desertification processes (Conant et al., 2011; SoCo, 2009). As an example, almost half of European soils are included in this category (SoCo, 2009). Understanding organic matter and nutrient cycling in soils is a major keystone in soil, environment, and
biogeochemical related sciences considering both local and global scales. The generally observed reduced organic matter content in soils in warm climate areas is a major concern mainly during current periods of global warming (Davidson & Janssens, 2006; SoCo, 2009), because it implies the mineralization of that soil organic carbon as carbon dioxide to the atmosphere with significant relevance on global scales (Conant et al., 2011; Davidson & Janssens, 2006; SoCo, 2009). A better understanding of the role of soil thermophiles will greatly contribute to that aim.

In an attempt to comprehend the relevance of soil thermophilic Firmicutes, Gonzalez et al. (2014) showed the annual frequency of hot days (those reaching 30ºC or above) from a complete latitude range on Earth. The results confirm that high latitudes offer scarce relevance to the development of thermophilic bacteria, as high temperature events seldom occur and air temperatures above 30ºC are rare. An example is the English town of Cambridge (52ºN) that presents average values of just 1 hot day per year. Interestingly, medium and low latitudes, approximately 40º (both N and S) and below showed over 50 hot days per year (Fig. 1) and this number greatly increases at lower latitudes. This latitude range includes more than half of European soils and it is directly related to the reduced organic matter observed in these soils (Fig. 2). A question raises on the contribution of thermophilic soil bacteria to soil organic matter empowerment on warm climates, and similarly, on a global warming scenario (Davidson & Janssens, 2006; Stocker et al., 2013). Surely, the importance of soil thermophiles gains significance at latitude environments (40º N and S and below) which represent over 60% of terrestrial environments on Earth, where high temperatures are frequently recorded (Gonzalez et al., 2014). At these latitudes, the presence of arid or semi-arid soils and desertification events represents a major concern for soil conservation and function. On the other hand, the role of soil thermophilic bacteria in S
and N cycles, namely on sulfate and ammonium production, raises questions on their potential use, following soil priming and growing of appropriate crops and cultivars, as a way to avoid desertification. Future research on this topic, focusing on the potential for recovery of unproductive soils, must be envisioned.

Conclusion

In summary, recent findings suggest that during high temperature conditions soil thermophilic bacteria can develop and contribute to soil ecosystem functioning. In soils of medium and low latitudes, this process would occur within a temporal basis necessary to the proliferation of soil thermophilic bacterial communities. This ecological shift of responses by complex and diverse soil microbial communities contributes to complement the functional role of the microbiota in processing soil organic matter and ultimately in the cycling and mineralization of essential nutrients (C, S and N) for plant growth. The importance of these processes must be considered to understand the potential soil use, its contribution as carbon sink or link and the actual role of soil microorganisms within different environmental conditions, so that sustainable agricultural practices can be incorporated, and current estimates of the balance of elements in a global warming scenario on Earth can be adjusted.

Acknowledgements

This work was funded by FEDER Funds through the Operational Programme for Competitiveness Factors – COMPETE, and National Funds through FCT - Foundation for Science and Technology under the Strategic Project PEst-C/AGR/UI0115/2011 to
MS, and by the Regional Government of Andalusia, projects BIO288 and RNM2529, and the Spanish Ministry of Economy and Productiveness, projects CGL2009-12328/BOS, CGL2014-58762-P and CONSOLIDER CSD2009-00006 to JMG, also cofunded by FEDER funds.

References

Figure legends

Fig. 1. Curve-fitting, Gaussian-shaped, curve of number of hot days (30°F or above) per year along a complete set of latitudes. Negative latitudes are at the S hemisphere and positive latitudes at the N hemisphere. Extracted and modified from Gonzalez et al. (2014).
Fig. 2. Map showing the actual organic carbon content in agricultural soils for the States members of the European Union. Source: Sustainable agriculture and soil conservation (2009).