Assessing the Role of TUBA4A Gene in Frontotemporal Degeneration

Oriol Dols-Icardo, Oriol Iborra, Jessica Valdivia, Pau Pastor, Agustín Ruiz, Adolfo López de Munain, Raquel Sánchez-Valle, Victoria Álvarez, Pascual Sánchez-Juan, Alberto Lleó, Juan Fortea, Rafael Blesa, Fernando Cardona, Miquel Baquero, María Dolores Alonso, Sara Ortega-Cubero, María A. Pastor, Cristina Razquin, Mercè Boada, Isabel Hernández, Ana Gorostidi, Fermín Moreno, Miren Zulaica, Albert Lladó, Eliecer Coto, Onofre Combarros, Jordi Pérez-Tur, Jordi Clarimón

PII: S0197-4580(15)00542-4
DOI: 10.1016/j.neurobiolaging.2015.10.030
Reference: NBA 9430

To appear in: Neurobiology of Aging

Received Date: 4 September 2015
Revised Date: 28 October 2015
Accepted Date: 28 October 2015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ASSESSING THE ROLE OF TUBA4A GENE IN FRONTOTEMPORAL DEGENERATION

Oriol Dols-Icardo1,2,*, Oriol Iborra1,*, Jessica Valdivia2,3, Pau Pastor2,4,5, Agustín Ruiz6, Adolfo López de Munain2,7, Raquel Sánchez-Valle8, Victoria Álvarez9, Pascual Sánchez-Juan2,10, Alberto Lleo1,2, Juan Fortea1,2, Rafael Blesa1,2, Fernando Cardona2,3,11, Miquel Baquero11,12, María Dolores Alonso13, Sara Ortega-Cubero2,5, María A. Pastor2,14,15, Cristina Razquin16, Mercè Boada6, Isabel Hernández6, Ana Gorostidi2,7, Fermín Moreno2,7, Miren Zulaica2,7, Albert Lladó8, Eliecer Coto9, Onofre Combarros2,10, Jordi Pérez-Tur2,3,11, Jordi Clarimón1,2, on behalf of The Dementia Genetics Spanish Consortium (DEGESCO)

*These authors equally contributed to this work

1Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.

2CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain.

3Molecular Genetics Unit. Institut de Biomedicina de València-CSIC. Valencia, Spain.

4Memory and Movement Disorders Units, Department of Neurology, University Hospital Mútua de Terrassa, University of Barcelona School of Medicine, Barcelona, Spain.

5Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra School of Medicine, Pamplona, Spain.
6 Alzheimer Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències
Aplicades, Barcelona, Spain.

7 Neuroscience Area, Institute Biodonostia, and Department of Neurosciences, University of Basque Country EHU-UPV, San Sebastián, Spain.

8 Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic. Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain.

9 Genetics Laboratory, AGC Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain.

10 Neurology Department, University Hospital Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.

11 Neurology and Molecular Genetics Mixed Investigation Unit. Instituto de Investigación Sanitaria La Fe. València, Spain.

12 Neurology Department. La Fe University and Polytechnical Hospital. València, Spain.

13 Neurology Department, Hospital Clínic Universitari. València, Spain.

14 Neuroimaging Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.

15 Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine, Pamplona, Spain.

16 Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra School of Medicine, Pamplona, Spain.
Abstract
The Tubulin Alpha 4a (TUBA4A) gene has been recently associated with amyotrophic lateral sclerosis. Interestingly, some of the mutation carriers were also diagnosed with frontotemporal degeneration (FTD) or mild cognitive impairment. With the aim to investigate the role of TUBA4A in FTD, we screened TUBA4A in a series of 814 FTD patients from Spain. Our data did not disclose any nonsense or missense variant in the cohort, thus suggesting that TUBA4A mutations are not associated with FTD.

Introduction
Frontotemporal degeneration (FTD) represents a group of neurodegenerative disorders caused by frontal and/or temporal lobe atrophy and manifests with behavioral and/or language impairment (Neary et al., 2005). Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, clinically characterized by progressive muscle weakness, atrophy, muscular fasciculations and spasticity. ALS and FTD are considered part of the same disease spectrum as demonstrated by overlapping clinical, pathological and genetic features (Kiernan et al., 2011). Recently, a case-control study found an excess of rare damaging variants in Tubulin Alpha 4a (TUBA4A) gene in familial ALS index cases using an exome-sequencing method (Smith et al. 2014). Importantly, among the seven ALS patients carrying rare variants in TUBA4A, two of them developed FTD and one had a first-degree relative affected by FTD. The involvement of TUBA4A in ALS has been recently replicated in a cohort of sporadic ALS patients (Pensato et al., 2015). Notably, one of the four mutation carriers had mild cognitive impairment. Overall, these data suggest that TUBA4A mutations might be particularly associated with the FTD-ALS disease continuum. Here we test this hypothesis in a large series of FTD patients from Spain.
Methods

FTD diagnosis was made according to international consensus criteria for the behavioural variant of frontotemporal dementia (bvFTD; Rascovsky et al., 2011) and for primary progressive aphasia (Gorno-Tempini et al., 2011). ALS diagnosis was made according to the El Escorial criteria (Brooks et al., 2000). A positive family history of ALS/FTD was defined as having at least a first or second-degree relative affected by FTD and/or ALS. A total of 814 DNA samples from Spanish FTD patients were collected from eight centres across the country. Among these patients, 51.8% were male and 45.2% had a positive family history. Mean age at onset was 64.4 ± 10.1 years (range 33-88). At onset, 585 patients (71.9%) presented with bvFTD, 161 (19.8%) with progressive non-fluent aphasia PPA (naPPA) and 68 (8.3%) with semantic variant PPA (svPPA). Thirty-one patients (3.8%), all with bvFTD, also suffered from ALS (FTD-ALS). Thirty-one subjects (3.8%) had a pathologically-confirmed frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP). Mean age at onset of this pathological series was 61.1 ± 11.6 years (range 42-78). All coding regions of TUBA4A, except the first exon (ENSE00001842398) which is solely composed by the start ATG codon, were PCR amplified and Sanger sequenced on an ABI 3100 automatic sequencer (Applied Biosystems, Foster City, CA). Resulting electropherograms where visually analysed using Sequencher software (Gene Codes Corp. Ann Arbor, MI).

Results

TUBA4A sequencing of 814 Spanish FTD patients revealed six synonymous rare genetic variants with frequencies below 1% in public databases, all of them located within exon
four (Supplementary table 1). Among the variants identified, p.Val182Val and p.Asn329Asn have not been previously reported in the European population from the 1000 Genomes Project (The 1000 Genomes Project Consortium., 2012), the non-Finnish European population from the Exome Aggregation Consortium (http://exac.broadinstitute.org) or the European Americans from the NHLBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS).

Discussion
Our analysis in a comprehensive case series comprising 814 FTD patients did not reveal any potentially damaging rare genetic variant in TUBA4A gene. In fact, we only disclosed six rare genetic variants, all of them synonymous. Among them, two synonymous variants (p.Val303Val and p.Ala333Ala) have been already found in both controls and sporadic ALS patients from Italy (Pensato et al., 2015). Finally, p.Val182Val and p.Asn329Asn had not been previously reported in populations of European origin. Consequently, these data do not support a pathogenic role for TUBA4A in familial or sporadic FTD. Neither do our analysis support a relationship between TUBA4 and a concomitant presence of ALS in FTD, with the proviso that the limited subset of cases (n=31) available to us limits any firm conclusion and warrants further studies in larger cohorts of patients manifesting these two devastating disorders.
Aknowledgements

This work was supported in part by grants from CIBERNED and Ministerio de Economía y Competitividad, Spain (SAF2014-59469-R to JPT), grants from the Department of Health of the Government of Navarra, Spain (refs.13085 and 3/2008), from the UTE project FIMA, Spain, from the Instituto de Salud Carlos III (PI12/01311 to JC) and Fundació La Marató de TV3 (project nº 20143810 to RSV). We are indebted to the Neurological Tissue Bank of the IDIBAPS Biobank, Barcelona, Spain, for sample and data collection.

Disclosure statement

The authors have nothing to disclose.

Table legend

Supplementary Table 1.

MAF= Minor allele frequency; 1KG = European population from 1000 genomes; ESP = European Americans from Exome Sequencing Project; ExAC = Non-Finnish Europeans from Exome Aggregation Consortium.
References

Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J.,
van Swieten, J.C., Seelaar, H., Dopper, E.G., Onyike, C.U., Hillis, A.E., Josephs, K.A.,
Boeve, B.F., Kertesz, A., Seeley, W.W., Rankin, K.P., Johnson, J.K., Gorno-Tempini,
M.L., Rosen, H., Prioleau-Latham, C.E., Lee, A., Kipps, C.M., Lillo, P., Piguet, O.,
Rohrer, J.D., Rossor, M.N., Warren, J.D., Fox, N.C., Galasko, D., Salmon, D.P., Black,
S.E., Mesulam, M., Weintraub, S., Dickerson, B.C., Diehl-Schmid, J., Pasquier, F.,
Deramecourt, V., Lebert, F., Pijnenburg, Y., Chow, T.W., Manes, F., Grafman, J.,
diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134,
2456-2477.

Smith, B.N., Ticozzi, N., Fallini, C., Gkazi, A.S., Topp, S., Kenna, K.P., Scotter, E.L.,
Kost, J., Keagle, P., Miller, J.W., Calini, D., Vance, C., Danielson, E.W., Troakes, C.,
Tiloca, C., Al-Sarraj, S., Lewis, E.A., King, A., Colombrita, C., Pensato, V., Castellotti,
B., de Belleroche, J., Baas, F., ten Asbroek, A.L., Sapp, P.C., McKenna-Yasek, D.,
McLaughlin, R.L., Polak, M., Asress, S., Esteban-Pérez, J., Muñoz-Blanco, J.L.,
Simpson, M.; SLAGEN Consortium, van Rheenen, W., Diekstra, F.P., Lauria, G.,
Duga, S., Corti, S., Cereda, C., Corrado, L., Sorarù, G., Morrison, K.E., Williams, K.L.,
Veldink, J.H., van den Berg, L.H., Al-Chalabi, A., Pall, H., Shaw, P.J., Turner, M.R.,
Talbot, K., Taroni, F., García-Redondo, A., Wu, Z., Glass, J.D., Gellera, C., Ratti, A.,
analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84, 324-
331.