ESTUDIOS DE BIODEGRADACIÓN Y MINERALIZACIÓN A ELEVADAS CONCENTRACIONES DEL HERBICIDA DIURON EMPLEANDO CEPAS BACTERIANAS DEGRADADORAS ESPECÍFICAS EN CONDICIONES DE ESTRÉS.

José Luis González Pimentel
Abril 2015
ESTUDIOS DE BIODEGRADACIÓN Y MINERALIZACIÓN A ELEVADAS CONCENTRACIONES DEL HERBICIDA DIURON EMPLEANDO CEPAS BACTERIANAS DEGRADADORAS ESPECÍFICAS EN CONDICIONES DE ESTRÉS.

Visado en Sevilla, Abril 2015

LOS DIRECTORES

Dr. D. Jaime Villaverde Capellán (Tutor externo)
Científico Titular CSIC

Dra. Dª. Marina Rubio Bellido
Doctora Contratada (CSIC)

TUTOR INTERNO

Dr. D. Said Hamad Gomez
Profesor Contratado Doctor, Universidad Pablo de Olavide de Sevilla
Índice
1. Introducción.. 3
 1.1 Diurón .. 4
 1.2 Biodegradación, Mineralización y Envejecimiento ... 5
 1.3 Escenarios reales de contaminación. ... 8
 1.4 Ciclodextrinas .. 9
2. Objetivos .. 11
3. Materiales y métodos ... 12
 3.1. Materiales ... 12
 3.1.1 Herbicida ... 12
 3.1.2 Suelos ... 12
 3.1.3 Cepas bacterianas ... 12
 3.1.4 Análisis Cromatográfico ... 13
 3.1.5 Ciclodextrínas .. 14
 3.2. Métodos ... 14
 3.2.1 Obtención de biomasa para los experimentos realizados 14
 3.2.2 Ensayos de Biodegradación ... 17
 3.2.3 Ensayos de Mineralización ... 19
4. Resultados .. 21
 4.1. Biodegradación .. 21
 4.2. Mineralización .. 26
5. Discusión ... 31
6. Conclusiones .. 36
7. Referencias ... 37
Índice de Tablas

Tabla 1. Propiedades físico-químicas del suelo utilizado... 12
Tabla 2. Composición y proporciones de la fase móvil ... 13
Tabla 3. Compuestos eluídos en cada ventana cromatográfica, tiempos de retención e iones monitorizados... 14
Tabla 4. Composición (g/L) de los medios de cultivo... 15
Tabla 5. Solución de nutrientes (SNs)... 18
Tabla 6. % residual de diurón técnico y 3,4-DCA a diferentes tiempos de envejecimiento (0 – 49 días).. 22
Tabla 7. Valores de pH en los ensayos de biodegradación a diferentes tiempos de envejecimiento... 23
Tabla 8. Mineralización (%) para los distintos estudios con diurón, técnico y comercial. .. 26
Tabla 9. Mineralización con y sin HPBCD.. 29

Índice de Figuras

Figura 1. Estructura fenilurea. .. 4
Figura 2. Estructura diurón ... 5
Figura 3. Complejo de inclusión. ... 9
Figura 4. Placa sembrada a partir de criovial .. 16
Figura 5. Cultivos de las tres cepas en medio R2a ... 17
Figura 6. Trampa y modelo final de respirómetro utilizado.. 20
Figura 7. Curvas de biodegradación.. 21
Figura 8. Medición del pH... 23
Figura 9. Unidades Formadoras de Colonias (UFCs). ... 25
Figura 10. Curvas de mineralización del estudio con diurón técnico... 26
Figura 11. Curvas de mineralización del estudio con diurón comercial.. 28
Figura 12. Curva de mineralización del estudio con diurón técnico a 10 mg/L en presencia de suelo P44... 28
Figura 13. Curvas de mineralización del estudio con 500 ppm de diurón marcado radiactivamente .. 29
Figura 14. Ruta catabólica de la degradación de diurón... 33
1. Introducción

De acuerdo con la FAO (1989), los pesticidas se definen como unas sustancia o mezcla de sustancias destinadas a prevenir, destruir, o controlar cualquier parásito, que pueda causar un daño, o interferir, en la producción, procesamiento, almacenamiento o marketing de alimentos. Los herbicidas se consideran pesticidas cuya finalidad es la de impedir que las malas hierbas proliferen. Desde su introducción en la década de los años 40 del siglo XX, los herbicidas sintéticos se han convertido en una herramienta indispensable para el mayor factor biótico que afecta a la agricultura, siendo la inhibición de la fotosíntesis su principal mecanismo de acción (1). El uso extensivo de los herbicidas como la simazina y, especialmente, la triazina, los mayormente utilizados en los primeros años, favoreció la aparición de mecanismos de resistencia ante los efectos de estos compuestos, determinándose años más tarde, que dicha resistencia se debía a la mutación del gen psbA en el cloroplasto, cambiando la serina 264 a glicina (2). Este hecho indujo a la síntesis de nuevos herbicidas orgánicos sintéticos, y la aparición de nuevas estrategias para erradicar la maleza, como la de aplicar distintas combinaciones de estos, siendo triazina + fenilurea el binomio más comúnmente utilizado. Sin embargo, esta estrategia puede conducir a efectos sinérgicos o antagónicos en los organismos vivos, convirtiéndose en una amenaza potencial para el medio ambiente y para la seguridad de los seres humanos. Como consecuencia del uso extendido de los herbicidas en general, se ha producido la difusión al medio ambiente de estos compuestos, contaminando suelos y aguas subterráneas (3)

En España, de acuerdo con los datos estadísticos recogidos por el Ministerio de Agricultura, Alimentación y Medio Ambiente, se utilizaron 13.624 toneladas de herbicidas, en el año 2012, un 4% más que en el año 2011. De entre las principales categorías de sustancias químicas según Anexo del Reglamento (CE) 1185/2009 del Parlamento Europeo y del Consejo de 25 de noviembre de 2009 relativo a las estadísticas de plaguicidas, las Ureas y uracilos suponen 906 de las toneladas anteriormente citadas.

Hoy en día los herbicidas basados en estructura fenilurea son ampliamente utilizados, tanto junto con otros herbicidas (triazina, anteriormente mencionada), como individualmente. Su uso está especialmente indicado para los cultivos de espárrago, cítricos, algodón, arbustos frutales, maíz, judías y trigo. Estos actúan como inhibidores
de la fotosíntesis, por actuar como disruptores endocrinos, o por presentar efectos ecolóxicos o genotóxicos. (4).

Desde el punto de vista estructural, las fenilureas, como su propio nombre indica, se caracterizan por disponer de un grupo fenilo, cuyo carbono 1 enlaza con un radical metilurea, siendo esta su estructura base. A partir de aquí, las fenilureas se diferencian entre sí por disponer diferentes grupos radicales en los carbonos 3 y 4 del anillo aromático, así como un tercero enlazado al grupo metil urea (Figura 1). Los distintos grupos que compongan la molécula, conferirán al herbicida una naturaleza más o menos hidrófoba y una baja o alta tendencia a ser absorbida por el suelo. Además, independientemente de la naturaleza que caracteriza a cada molécula, las propiedades fisicoquímicas del entorno (composición química del suelo y la cantidad de materia orgánica que en éste resida, temperatura, pluviometría) inciden en los herbicidas afectando su comportamiento en el medio (5).

![Estructura fenilurea](image)

Figura 1. Estructura fenilurea. Los radicales X, Y y Z, representan los variantes que definen las distintas moléculas de los herbicidas fenilureas.

1.1 Diurón

El herbicida fenilurea diurón, [N-(3,4-diclorofenil)-N,N-dimetilurea], está presente ampliamente en las diferentes formulaciones de herbicidas, por lo que se ha detectado su presencia en aguas y suelos de aquellas áreas donde se ha procedido a su uso extensivo. Este herbicida evita la producción de oxígeno y bloquea la transferencia de electrones del fotosistema II inhibiendo la fotosíntesis.

Debido a los dos átomos de cloro unidos al grupo fenilo, así como a la segunda metilación del grupo urea (Figura 2), esta molécula posee una fuerte naturaleza apolar, lo que implica que tiene una baja solubilidad en agua y una alta tendencia a ser absorbida por la materia orgánica presente en el suelo. Estos procesos dificultan su degradación en el medio ambiente por su reducida biodisponibilidad. (5).
El diurón está considerado como una sustancia peligrosa, prioritaria para la Directiva Marco del Agua de la Comisión Europea. Está incluido en una lista de sustancias prioritarias para el establecimiento de políticas para el agua, y está incluido en la lista 3 de contaminantes candidatos de los Estados Unidos. De este modo, la Unión Europea, ha establecido la concentración máxima permisible de cualquier pesticida en aguas potables en 0,1 μg/L, no pudiéndose sobrepasar los 0,5 μg/L de la suma total de distintos pesticidas (6). Actualmente, el uso de diurón está prohibido a niveles de agricultura extensiva en toda Europa, siendo Bélgica y España, los únicos países donde se usa a baja escala, como es el caso de la jardinería a nivel usuario, donde está permitido.

El diurón presenta una baja solubilidad en agua (36,4 mg/L a 25°C), siendo más soluble en disolventes orgánicos, como la acetona (53 g/L), butil estearato (1,4 g/L) y benceno (1,2 g/L). Esta molécula es muy estable a temperatura ambiente, pero puede sufrir hidrólisis a altas temperaturas, descomponiéndose a 180-190°C. Su baja volatilidad se ve representada por la presión de vapor, de 0,009 mPa a 25°C y una constante de Henry de 0,000051 Pa m³/mol (7).

1.2 Biodegradación, Mineralización y Envejecimiento
Las características anteriormente citadas, sitúan a la biodegradación a través de microorganismos degradadores específicos como el principal mecanismo para la transformación y disipación del diurón en suelos y aguas contaminadas, ya que este es un compuesto muy persistente en el ambiente, debido a su escasa volatilidad, baja solubilidad en agua y alta afinidad por la fracción suelo. Su tiempo de vida media varía entre un mes y un año. Otros procesos como la fotodegradación, hidrólisis e incluso oxidación-reducción, han demostrado ser mecanismos poco eficientes (8, 9, 10). Además, los procesos de degradación conllevan la aparición de metabolitos que son los
que realmente representan la verdadera amenaza de este herbicida, siendo el 3,4-dicloroanilina, su principal metabolito. Este es un compuesto altamente tóxico con fuerte tendencia a acumularse en el medio ambiente, que presenta propiedades carcinógenas y mutagénicas. Provoca irritación en piel y mucosas al contacto. Los efectos sistémicos sólo ocurren ante una ingesta considerable, y abarcan taquicardia y reducción de la capacidad pulmonar, náusea, vómitos, enfisema moderado y pérdida crónica de peso ante la exposición prolongada. Es extremadamente tóxico para el fitoplancton, moderadamente tóxico para insectos y ligeramente tóxico para aves, anfibios y crustáceos. Su toxicidad en peces y moluscos varía de ligera a moderada y de ligera a alta para el zooplancton. Tiene efectos contaminantes en la capa freática (11,12).

Según la definición de la Agencia de Protección Medioambiental de los Estados unidos (2009), la biodegradación de un compuesto consiste en aquel proceso por el cual los microorganismos transforman o alteran, por acción metabólica o enzimática, la estructura de dicho compuesto. Hay documentadas numerosas especies de microorganismos capaces de degradar diferentes contaminantes. Los compuestos cuya degradación ha sido más estudiada son los hidrocarburos derivados del petróleo, debido al alto impacto económico y ambiental de desastres protagonizados por estos compuestos. La biorremediación, como tecnología, comenzó a utilizarse debido a su exitoso funcionamiento, en casos como el del desastre del Exxon Valdez (13).

La capacidad degradadora del organismo depende del desarrollo de un sistema metabólico que le permita asimilar los compuestos, pero para que esto se produzca, el microorganismo debe enfrentarse a una serie de condicionantes que limitan su actividad:

- Factores medioambientales: Temperatura, pH, disponibilidad de nutrientes en el medio, humedad, aceptores de electrones.

- Factores físico-químicos: Concentración del contaminante, estructura química y peso molecular, solubilidad, biodisponibilidad (la cantidad/fracción de contaminante que puede ser asimilado y degradado por el microorganismo en un momento dado) y bioaccesibilidad (disponibilidad de una sustancia para ser asimilada por el microorganismo, viene limitada por la solubilidad y/o la capacidad de ser adsorbida por la fracción orgánica de un suelo).
La biodegradación del compuesto se puede llevar a cabo mediante tres procesos diferentes: i) respiración aerobia, en el que el acceptor de electrones es el oxígeno, obtiene un aporte de energía elevado; ii) mediante respiración anaerobia, donde se utilizan nitratos, sulfatos, Fe$^{3+}$ o Mn$^{4+}$ como aceptores de electrones, se trata de un proceso más lento que la respiración aerobia y donde el balance neto de energía es relativamente bajo, por lo que en ocasiones se dan relaciones de sintrofismo; iii) por fermentación, proceso en el que la cadena transportadora de electrones no interviene en la obtención de energía, se trata de un sistema catabólico parcial, ya que los productos finales son compuestos orgánicos que no han llegado a descomponerse por completo, obteniendo un rendimiento energético bajo (16, 17).

Las características estructurales y físico-químicas de los contaminantes son otras variables a tener en cuenta para que la biodegradación se produzca. De este modo nos encontramos con que los microorganismos tienen una mayor facilidad para degradar hidrocarburos saturados, como los alcanos o cicloalcanos, sin embargo, otros compuestos como hidrocarburos clorados o compuestos nitroaromáticos, son muy difíciles de descomponer y eliminar. En el caso de producirse su degradación completa, los productos finales que se obtienen son dióxido de carbono y agua, obteniéndose la mineralización del compuesto.

Además, hay que tener en cuenta otro factor que juega en contra, en este caso, de la recuperación de suelos contaminados, y es el envejecimiento de la sustancia tóxica en el sustrato, que disminuye la biodisponibilidad, debida a procesos de difusión a través de las partículas del suelo que favorecen la adsorción del diurón, impidiendo su desorción (14, 15).

El diurón y otras fenilureas son consideradas estructuras xenobióticas, de una elevada recalcitrancia. Xenobióticos son aquellos compuestos químicos que de forma natural no se hayan en la naturaleza, es decir, son sintetizados por el ser humano, y que generalmente afectan en un mayor o menor grado a los seres vivos, debido a su toxicidad. Esto ha favorecido que los microorganismos presentes en aguas y suelos contaminados por estos compuestos, hayan podido desarrollar un mecanismo metabólico eficaz para utilizar estos herbicidas (especialmente aquellos con una estructura menos compleja y especialmente aquellos que presenten un menor número de átomos de cloro) y sus metabolitos, como fuente de nutrientes y energía, obteniendo así como producto final, desechos inocuos para el medio ambiente, o simplemente CO$_2$ y H$_2$O.
Este es el caso del aislamiento de *Pseudomonas sp.*, con capacidad de mineralizar atrazina como fuente de nitrógeno, obteniendo una tasa de mineralización del 80% para unas concentraciones de 100 mg/L (18). Dicha especie, ha sido posteriormente utilizada para llevar a cabo ensayos de *bioestimulación* y *bioaumentación* en suelos y aguas contaminadas por este herbicida, observándose que, por un lado la estimulación de la microflora endógena a través de nutrientes (*bioestimulación*), es fundamental para la degradación del herbicida, y por otro lado, mediante el uso de estos microorganismos y/o mediante la manipulación de otros exógenos, y su inoculación en el entorno contaminado (*bioaumentación*). De forma paralela, se observó que proceder a reinoculaciones periódicas de las mismas cepas de microorganismos en los ensayos, se conseguía aumentar la tasa de mineralización del contaminante. En la misma línea que en el caso de la atrazina, otros estudios se han centrado en la identificación y caracterización de microorganismos degradadores de herbicidas fenilureas, como es el caso del isoproturon. En suelos donde la exposición a este herbicida había sido continua, se consiguió aislarse colonias de la cepa SRS2 del género *Sphingomonas sp.* (19).

Independientemente de las estrategias a seguir para la recuperación de espacios degradados, por bioestimulación y/o bioaumentación, existen dos grupos en los que se engloban los distintos tipos de tratamientos que actualmente se pueden llevar a cabo.

- **Tratamientos *in-situ***: Hacer uso de métodos para eliminar la contaminación de sitios contaminados, tanto para aguas subterráneas, como para suelos. Las tecnologías más utilizadas son Infiltración; Bombeo, tratamiento y reinyección; Difusión de oxígeno; Bioventilación; Extracción por Vapor del Suelo (EVS).

- **Tratamientos *ex-situ***: Necesidad de excavar o perforar, y de trasladar el material contaminado a una planta específica para su tratamiento. El compostaje, landfarming, representan las técnicas ex-situ más utilizadas.

1.3 Escenarios reales de contaminación.

Normalmente, las concentraciones de herbicidas en el medio ambiente varían dependiendo del evento de contaminación en cuestión, por ejemplo, en aguas subterráneas, estos contaminantes se encuentran en concentraciones del orden de ng/L a μg/L. No obstante, ocasionalmente se dan eventos puntuales de contaminación por altas concentraciones, como ciertos vertidos accidentales, donde se alcanzan mg/L (20).
Estos escenarios presentan dificultades para el empleo de técnicas con un alto rendimiento en la descontaminación de la fracción biodisponible del herbicida, es decir, la fracción potencialmente tóxica para los seres vivos, debido a las características físico-químicas del diurón que lo hacen menos bioaccesible a las bacterias, así como la variabilidad de las concentraciones del contaminante, que lo hacen más o menos biodisponible para su degradación. Por ello, se han realizado estudios para el desarrollo de técnicas de descontaminación in situ, más respetuosas con el medio ambiente, usando ciclodextrinas (5).

1.4 Ciclodextrinas.

Las ciclodextrinas son oligosacáridos cíclicos constituidos por un número variable de unidades de glucosa unidas por enlaces α-(1,4). Estas moléculas son capaces de formar complejos de inclusión con numerosos productos, debido a su conformación toroidal o de “donut”, que delimita una cavidad relativamente apolar, mientras que el exterior presenta una naturaleza hidrofílica, pudiendo formar compuestos de inclusión tanto en medio líquido como en estado sólido y solubilizar moléculas hidrofóbicas de tamaño compatible con su cavidad (21).

![Figura 3. Complejo de inclusión.](image)

Las CDs son compuestos naturales, no tóxicos e inocuos para los microorganismos, y de ahí que tengan gran uso en aplicaciones farmacológicas, y más recientemente, en terapia génica contra el cáncer (22). Las CDs son producidas por la acción de la enzima CD glicosiltransferasa (CGT) en un medio que contenga almidón. La nomenclatura de las
CDs se realiza por medio de letras griegas para denotar el número de unidades de D-glucosa: α para las de 6 unidades, β para las de 7, γ para las de 8 y así sucesivamente para CDs superiores.
2. Objetivos

En el presente proyecto se llevará a estudio la capacidad de mineralizar y biodegradar el herbicida diurón, por parte de un consorcio de tres bacterias usadas por el Grupo de Investigación “Contaminantes orgánicos e inorgánicos en el Medio Ambiente” del Departamento de Agroquímica y Conservación de Suelos del Instituto de Recursos Naturales y Agrobiología de Sevilla, pertenecientes al Consejo Superior de Investigaciones Científicas (IRNASE-CSIC), para la Tesis Doctoral de Marina Rubio Bellido, “EMPLEO DE CICLODEXTRINAS EN LA BIORRECUPERACIÓN DE SUELOS CONTAMINADOS POR DIURÓN. ESTIMACIÓN DE SU RIESGO TÓXICO” (Octubre 2014).

- En los ensayos de biodegradación se analizará la actividad del consorcio en presencia de diferentes concentraciones del herbicida diurón, para usar a este como fuente de carbono y nitrógeno, en medio acuoso, en su forma técnica, comercial y en presencia de suelo previamente esterilizado, para comprobar su efecto sobre la biodisponibilidad del herbicida. Durante un periodo de 7 semanas, se medirá el pH de los cultivos, se monitorizará el contaminante mediante cromatografía líquida de alta eficacia (HPLC) y de Gases (CG-MS), al igual que se realizarán siembras periódicas en placas Petri para determinar si las altas concentraciones del herbicida inhiben el crecimiento y desarrollo de las cepas bacterianas estudiadas.

- Para los ensayos de mineralización, los microorganismos se someterán a las mismas concentraciones del diurón empleadas en el ensayo de biodegradación, pero en esta ocasión se marcará el anillo aromático del herbicida con el isótopo carbono 14, para medir el 14CO$_2$ desecharo resultante de su metabolismo en contador de centelleo, así como la efectividad de reinoculaciones de estas cepas degradadoras específicas para aquellas concentraciones donde el inóculo inicial no haya conseguido biodegradar/mineralizar el contaminante, con y sin la ayuda de la ciclodextrina 2-hidroxipropil-β-ciclodextrina HPBCD.
3. Materiales y métodos

3.1. Materiales

3.1.1 Herbicida

Se ha utilizado diurón en polvo (pureza > 98%), suministrado por Sigma Aldrich (Madrid, España). Igualmente, se ha utilizado diurón comercial al 80% (80 g/L) de la empresa Industrial Química Key, S.A. El diurón marcado radiactivamente en el anillo aromático se adquirió del Instituto de Isótopos Co., Ltd., (Budapest, Hungría). Actividad específica, 36 mCi/mmol; pureza química, 99,9%; pureza radioquímica, 100%.

3.1.2 Suelos

El suelo utilizado pertenece a una zona dedicada a dehesa en la finca “Dos Hermanas”, situada en Santa Bárbara de Casas (Huelva). Está desarrollado sobre granito. La vegetación es natural. En la tabla 1 se describen las propiedades físico-químicas del suelo utilizado.

<table>
<thead>
<tr>
<th>Suelo</th>
<th>PH</th>
<th>CO$_3^{2-}$ (%)</th>
<th>MO (%)</th>
<th>Arena (%)</th>
<th>Limo (%)</th>
<th>Arcilla (%)</th>
<th>Clasificación Textural</th>
</tr>
</thead>
<tbody>
<tr>
<td>P44</td>
<td>5,50</td>
<td>0,00</td>
<td>1,56</td>
<td>49,8</td>
<td>34,5</td>
<td>15,7</td>
<td>Franco</td>
</tr>
</tbody>
</table>

3.1.3 Cepas bacterianas

Las cepas bacterianas utilizadas en el presente trabajo fueron las siguientes:

- *Advenella kashmirensis*, previamente aislada e identificada en un suelo contaminado por derivados del petróleo, hidrocarburos clorados y ftalatos (23). La morfología de esta bacteria fue descrita por Ghosh y col. (24, 25) y Coenye y col. (26). Es Gram negativa, ovalada en forma de coco. No contiene flagelos, aparece sola, en parejas, en cadenas, en cadenas ramificadas o en grupos. Presentan revestimientos capsulares y aproximadamente miden entre 1,0 - 1,8 µm de largo por 0,6 - 1,5 µm de ancho.
• *Arthrobacter sulfonivorans*, capaz de crecer con diurón como única fuente de carbono, fue caracterizada por Widehem y col. (27) y adquirida de la Colección del Instituto Pasteur (París, Francia). Su código en esta colección es CIP 105365. Esta bacteria es Gram positiva, esférica y aproximadamente 0,7 µm de diámetro. Forman grupos o cadenas en solución, son móviles y no presentan esporas (28).

• *Variovorax soli*, proporcionada amablemente por el Doctor Sebastian Sorensen, del Instituto “Geological Survey of Denmark and Greenland” (GEUS, Copenhague, Dinamarca). Esta bacteria es capaz de mineralizar la cadena lateral del diurón y otros herbicidas del grupo de las fenilureas, utilizándolos como única fuente de carbono (29). Según Kim y col., (30) esta bacteria es Gram negativa, bacilo móvil y no presenta esporas, aproximadamente miden entre 0,5 - 0,7 µm de largo por 1,0 - 1,5 µm de ancho.

3.1.4 Análisis Cromatográfico

Las cromatografías se obtuvieron a través de las técnicas denominadas Cromatografía Líquida de Alta Resolución (HPLC) y Cromatografía de Gases-Masa. El equipo de HPLC es el modelo LC-2010A HT de la compañía Shimadzu, con un detector ultravioleta - visible, empleando una columna Kromasil C18 de fase reversa (15 x 0,40 cm) suministrada por Teknokrom (España), con un volumen de inyección de 100 µL y a una temperatura de horno de 30ºC. Para la adquisición y manejo de los datos se empleó el programa informático Shimadzu LC Solution Chromatography Data System. La determinación de la concentración de diurón en las muestras a analizar se llevó a cabo siguiendo las condiciones descritas en la tabla 2, para la visualización de la curva del herbicida, a un tiempo de retención de 2,5 minutos (31).

<table>
<thead>
<tr>
<th>Tabla 2. Composición y proporciones de la fase móvil.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Acetonitrilo (%)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Diurón</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(Sorensen et al., 2013)

En el caso de la cromatografía de gases, las muestras en hexano fueron analizadas en un cromatógrafo de gases (Agilent GC 6890 N) acoplado a un detector de masas (MS, Agilent MD 5975B). El sistema fue utilizado en modo impacto electrónico (EI 70 eV).
La columna empleada, modelo 30 m x 0,25 mm I.D. DB-5 ms con recubrimiento de un 5% de fenil-metilpolisiloxano, fue suministrada por J&W Scientific, Agilent Technologies. La rampa de temperatura del horno fue desde 80ºC, temperatura a la que se mantuvo durante 1 minuto, hasta 175ºC, aumentando 6ºC por minuto y permaneciendo a esta temperatura durante 4 minutos; después aumentó hasta 235ºC a razón de 3ºC por minuto, alcanzándose 320ºC, aumentando a una velocidad de 8ºC por minuto y manteniendo esta temperatura final durante 5 minutos. La inyección de las muestras se llevó a cabo en modo splitless. El gas conductor fue Helio, con un flujo de 50 cm³/s. Las temperaturas del inyector, el transfer line y la fuente de iones respectivamente fueron 280ºC, 250ºC y 200ºC. Con el objeto de aumentar la sensibilidad y especificidad del método, la cuantificación de los distintos compuestos fue llevada a cabo en modo SIM (Selected Ion Monitoring) utilizando tres iones para cuantificar cada compuesto. La cuantificación por patrón interno fue llevada a cabo utilizando el compuesto deuterado que aparecía en cada ventana de elución, previamente definida al crear el método de análisis en el equipo.

En la Tabla 3 se detalla el programa de iones utilizado en la cuantificación. Para la detección e integración de los picos se utilizó el software Agilent ChemStation.

Tabla 3. Compuestos eluídos en cada ventana cromatográfica, tiempos de retención e iones monitorizados.

<table>
<thead>
<tr>
<th>Tiempo ventana (min)</th>
<th>Tiempo de retención (min)</th>
<th>Compuesto</th>
<th>Iones (M/Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>12</td>
<td>DIU</td>
<td>187</td>
</tr>
<tr>
<td>32</td>
<td>14</td>
<td>DCA</td>
<td>162</td>
</tr>
</tbody>
</table>

3.1.5 Ciclodextrinas

Se utilizó un tipo de ciclodextrina sintético, la 2-hidroxipropil-β-ciclodextrina (HPBCD). Esta ciclodextrina tiene una solubilidad en agua superior a 330 g/L y un peso molecular de 1303, 3. Fue suministrada por Cyclolab (Budapest, Hungría).

3.2. Métodos

3.2.1 Obtención de biomasa para los experimentos realizados

Los crioviales (Microbank PL170/M, PROLAB Diagnostics) presentan esferas porosas de pequeño tamaño sumergidas en una solución que protege a las cepas de las consecuencias de su conservación a -80ºC en un congelador específico (Revco Elite...
Plus, Clarkson Laboratory & Supply Inc. USA). De los diferentes crioviales se tomaron entre dos (*Advenella* y *Arthrobacter*) y tres (*Variovorax*) esferas, que fueron sembradas por separado, en placas Petri con medio R2a (Tabla 4), para *Advenella* y *Variovorax*, y LB (Tabla 4), para *Arthrobacter* (Tabla 4). Se favoreció el crecimiento de las bacterias mediante su incubación en estufa a 30ºC durante 3-4 días.

Tabla 4. Composición (g/L) de los medios de cultivo utilizados en este trabajo.

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>MSM (1)</th>
<th>LB (2)</th>
<th>R2A (3)</th>
<th>R2A agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NH₄)₂SO₄</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgSO₄ x 7 H₂O</td>
<td>1,6</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Triptona</td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Extracto de levadura</td>
<td>5,0</td>
<td>5,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptona</td>
<td></td>
<td>0,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Casaminoácidos</td>
<td></td>
<td>0,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Extracto de levadura</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucosa</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almidón</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piruvato sódico</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacto Agar</td>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

(1) MSM: Mineral salts medium. Resultado de la mezcla de las siguientes disoluciones:
Disolución I: 2,0 g de KH₂PO₄ más 4,0 g de Na₂HPO₄ en 500 mL de agua destilada.
Disolución II: 1,6 g de MgSO₄ x 7 H₂O mas 0,8 g de *(NH₄)₂SO₄* en 500 mL de agua destilada.
El pH se ajustó con NaOH a 7,5.

(2) LB: Luria–Bertani medium. Medio 381 de la lista de medios para microorganismos (Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures).

(3) R2A: Medio 830 de la lista de medios para microorganismos (Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures). Este medio también se utilizó diluido 40 veces para estudios en placas Petri con y sin diurón y HPBCD para observar el crecimiento de las cepas bacterianas.
Figura 4. Placa sembrada a partir de criovial (señalado en la parte central) con *Variovorax soli*.

Pasados 48 horas se procedió a la siembra en cuadrantes, es decir, se realiza una segunda siembra tomando la biomasa de la primera siembra de cada cepa, sembrando en dos placas para conseguir una mayor cantidad de biomasa a partir de una placa anterior. Se siguió el mismo proceso y tiempo de incubación descrito anteriormente.

Una vez crecida la biomasa, se procedió a recoger la máxima cantidad posible de cada una de las cepas para su incubación en botellas de 250 ml con 100 ml de medio de cultivo en solución acuosa a la que se añadió diurón técnico (40 mg/L) como fuente de carbono, para la adaptación del sistema metabólico de las bacterias. Los cultivos se mantuvieron 20 horas en crecimiento en incubadora de agitación, tiempo necesario para obtener una densidad óptica de los cultivos ajustada a la solución de McFarland del número 4 (13 x 10⁸ UFC/mL). En microbiología, los estándares de turbidez de McFarland se usan como referencia en suspensiones bacteriológicas para saber el número de bacterias por mililitro, o más bien en CFU, según una escala que va de 0,5 a 10. Estos estándares son creados al mezclar soluciones de cloruro de bario al 1% con ácido sulfúrico al 1% en volúmenes específicos. Los estándares pueden ser visualmente comparados con suspensiones de bacterias en solución salina estéril. La ventaja de este método es que no es necesario incubar ni usar equipo especial para estimar el número de bacterias.

Posteriormente, se centrifugaron los tres medios que contenían cada una de las cepas durante 10 min a 7000 rpm, tras lo cual se eliminó el sobrenadante y se resuspendió la biomasa en medio MSM (Tabla 4), para volver a centrifugar del mismo modo que anteriormente se hizo. Este proceso se repitió una vez más, y finalmente se resuspendieron cada uno de los pellets de cada cepa para unirlos en un mismo medio de cultivo MSM.

3.2.2 Ensayos de Biodegradación

Para los estudios de biodegradación se usaron viales de vidrio estériles de 26 mL en los que se añadieron 15 mL de medio MSM previamente contaminado con diurón técnico o con diurón comercial a distintas concentraciones, en condiciones de saturación de agua. Puesto que la solubilidad del herbicida en agua no supera los 40 mg/L, se considera que aquellas concentraciones superiores a los 10 mg/L, están en exceso o no se solubilizan. Se preparó una solución matriz de 500 mg/L de diurón técnico en acetona que se dejó evaporar durante 24 horas para evitar que el disolvente afecte a las bacterias. Se incluyeron 10 g de suelo P44 en viales con una concentración de 10 mg/L de diurón técnico para observar cómo el sustrato incide en la biodisponibilidad del herbicida. Con el objetivo de estimular las reacciones enzimáticas de las bacterias estudiadas, se añadió 1 mL de una solución de nutrientes, que dispone tanto de sales minerales como micronutrientes (Tabla 5).
Tabla 5. Solución de nutrientes (SNs).

<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>µg mL⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca SO₄ . 2 H₂O</td>
<td>10,0</td>
</tr>
<tr>
<td>Zn SO₄ . 7 H₂O</td>
<td>12,5</td>
</tr>
<tr>
<td>Al₂ (SO₄)₃ . 18 H₂O</td>
<td>12,5</td>
</tr>
<tr>
<td>Ni Cl₂ . 6 H₂O</td>
<td>12,5</td>
</tr>
<tr>
<td>Co Cl₂ . 6 H₂O</td>
<td>12,5</td>
</tr>
<tr>
<td>Sn Cl₂ . 2 H₂O</td>
<td>25,0</td>
</tr>
<tr>
<td>Fe SO₄ . 7 H₂O</td>
<td>37,5</td>
</tr>
<tr>
<td>Li Cl</td>
<td>2,50</td>
</tr>
<tr>
<td>K Br</td>
<td>3,75</td>
</tr>
<tr>
<td>K Cl</td>
<td>3,75</td>
</tr>
<tr>
<td>Mn Cl₂ . 4 H₂O</td>
<td>75,0</td>
</tr>
</tbody>
</table>

Los viales se mantuvieron en agitación, llevando a cabo una metodología destructiva de las muestras a distintos tiempos, con diferentes condiciones y concentraciones, para realizar los distintos experimentos de pH, conteo de UFC en placas, y mediciones en HPLC y Gases-Masa, con una duración total del ensayo de 7 semanas. En total se prepararon 168 viales, en los que se añadió el herbicida para disponer concentraciones finales de 10, 100, 300 y 500 mg/L de diurón técnico, 500 y 1000 mg/L de diurón comercial y 10 mg/L de diurón comercial en solución con 10 g de suelo. Cada concentración se preparó por duplicado. Para validar los resultados del ensayo se prepararon controles que contenían la menor concentración del herbicida para cada escenario, en ausencia de las cepas degradadoras específicas.

El conteo de UFC se realizó en placas R2a, realizando siembras con factores de dilución de 10² y 10³, en el caso de los controles y de 10⁵, 10⁶ y 10⁷, para el resto de cultivos del ensayo.

Para las cromatografías en HPLC las muestras problema se filtraron usando filtros de jeringa de polietileno, PTFE, (0,45 µm, 13 mmØ) para evitar obturaciones en el instrumental, y se dispusieron en viales para medir en el cromatógrafo.

En la preparación de cada muestra problema para la cromatografía de Gases-Masas, se adecuaron tubos de ensayo para cada vial en el que se incluirían 2 ml de hexano y 2 ml...
de solución problema, se agitaron durante 15 segundos y se dejaron en reposo. Se tomó la fase orgánica para su medición en el cromatógrafo.

Por último, para analizar el pH, se realizó la medida potenciométrica con electrodo de vidrio.

3.2.3 Ensayos de Mineralización

1ª Fase: Respirómetros. Contador de Centelleo.

El estudio de mineralización del diurón, se llevó a cabo utilizando respirómetros, los cuales constan de matraces de 250 ml donde situamos el medio de cultivo para las bacterias (50 ml de medio MSM, 1 ml de solución de nutrientes, y para la parte del ensayo con suelo, 10 gr de este) y 1 ml de cada cepa bacteriana a una concentración de \(10^8\) UFC. A este cultivo, le añadiremos la cantidad específica de diurón marcado con el isótopo \(^{14}\)C en el anillo aromático, y diurón no marcado, preparado a partir de una disolución matriz en base de acetona (500 mg/L de diurón en 50 ml de acetona). En la parte superior del matraz se coloca un tapón envuelto en cinta de teflón con una trampa de álcali suspendida (1 mL de NaOH 0,5N) (Figura 6), la cual será la encargada de recoger la producción de \(^{14}\)CO\(_2\) (32). La reacción química que se produce en los respirómetros sería la siguiente:

\[
{^{14}\text{CO}_2} + \text{NaOH} \rightarrow \text{NaH}^{14}\text{CO}_3 + \text{H}_2\text{O} \rightarrow \text{NaH}^{14}\text{CO}_3 + \text{NaOH} \rightarrow \text{Na}_2^{14}\text{CO}_3 + \text{H}_2\text{O}
\]

La cantidad de isótopo radioactivo añadido en cada matraz del ensayo corresponden con 2500 Bq para un total de 17 respirómetros, que contienen las mismas concentraciones de diurón técnico, diurón comercial y diurón técnico con suelo, implementadas en el estudio de biodegradación, por duplicado. Como control, se dispondrán 3 respirómetros que contendrán 10 mg/L de diurón técnico, 500 mg/L de diurón comercial y 10 mg/L de diurón técnico con suelo.

Los experimentos se realizaron en cámara de agitación a 25°C. Periódicamente se extrae la solución de sosa, reemplazándola por una cantidad similar nueva. La sosa extraída, se mezcla con 4,5 ml de líquido de centelleo (ÚLTIMA GOLD™, PerkinElmer, Inc., USA) y se mantuvo en oscuridad al menos durante 24 horas para la disipación de la quimioluminiscencia. La radiactividad se midió en un contador de centelleo líquido modelo Beckman LS5000TD.
2ª Fase: Reinoculaciones
Se reinocularon 4 respirómetros con una concentración de 500 mg/L de diurón comercial en solución acuosa, dos de los cuales contenían ciclodextrinas HPBCD a una concentración de 0,1 M. Estos respirómetros habían sido inoculados con la triada bacteriana con anterioridad, mostrando unas tasas de mineralización prácticamente nulas. Posteriormente, una vez se determinaron las concentraciones de herbicida que inhibían la capacidad de las bacterias para mineralizarlo, se procedió a reinocular, al igual que en el proceso realizado en el estudio de biodegradación, con 1 ml de cultivo de cada una de las cepas, en cada uno de los respirómetros que contenían dichas concentraciones.
4. Resultados

4.1. Biodegradación

Los resultados obtenidos en el cromatógrafo de gases muestran la completa degradación de diurón a la concentración más baja estudiada (10 mg/L) y una notable biodegradación del herbicida a medida que se incrementan las concentraciones iniciales, mientras que se aprecia una acumulación del metabolito principal de este herbicida, la 3,4-dicloroanilina, tal y como se muestra en la Figura 7 y la Tabla 6.

Figura 7. Curvas de biodegradación de diurón residual (línea azul) y formación del principal metabolito 3,4-DCA (línea roja) en presencia de los microorganismos degradadores específicos estudiados.
En las dos primeras semanas *Advenella kashmirensis*, *Arthrobacter sulfonivorans* y *Variovorax soli*, han conseguido degradar por completo tanto el herbicida como su principal metabolito (3,4-DCA), a la menor concentración, de 10 mg/L. Los resultados observados para los ensayos con suelo, muestran una dinámica similar a los resultados obtenidos en los ensayos en solución en los que se utilizó la misma concentración de diurón (10 mg/L). Las concentraciones de diurón técnico superiores estudiadas, 100, 300 y 500 mg/L, mostraron una elevada degradación, puesto que la concentración en solución al final del ensayo descendió entre un 55% y un 78% con respecto a la concentración inicial, de acuerdo a los datos incluidos en la tabla 6. Por el contrario, se puede observar una acumulación progresiva del principal metabolito de la degradación del herbicida estudiado, lo cual podría demostrar el carácter extremadamente tóxico y recalcitrante del herbicida gracias al metabolito 3,4-dicloroanilina, derivado de su degradación. Además, las concentraciones en solución del metabolito son muy similares en cada una de las tres concentraciones más elevadas, lo que marca el límite de tolerancia de los microorganismos a dicho metabolito. Es decir, aunque el porcentaje de 3,4-DCA es mayor o menor, dependiendo de la concentración de diurón implementado en los experimentos, las áreas del cromatógrafo para 3,4-DCA, eran muy similares entre ellos.
No se pudo realizar el estudio cromatográfico de la degradación del diurón comercial, puesto que, los resultados obtenidos tanto por cromatografía líquida como por el cromatógrafo de gases, fueron nulos debido a la presencia de compuestos en la fórmula que distorsionaban las mediciones.

Los resultados obtenidos (Figura 8 y Tabla7) tras realizar las mediciones de pH en las diluciones con diferentes concentraciones, no revelan diferencias destacables entre ellas, con y sin triada de bacterias, así como para las diferentes concentraciones de diurón ensayadas.

![Figura 8. Medición del pH con: a) Diurón técnico, b) Diurón técnico con suelo y c) Diurón comercial.](image)

<table>
<thead>
<tr>
<th>Tabla 7. Valores de pH en los ensayos de biodegradación a diferentes tiempos de envejecimiento.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo (días)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10 mg/L Control</td>
</tr>
<tr>
<td>10 mg/L</td>
</tr>
<tr>
<td>100 mg/L</td>
</tr>
<tr>
<td>300 mg/L</td>
</tr>
<tr>
<td>500 mg/L</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Diurón comercial</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>500 mg/L</td>
</tr>
<tr>
<td>6,85</td>
</tr>
<tr>
<td>6,84</td>
</tr>
<tr>
<td>6,81</td>
</tr>
<tr>
<td>6,82</td>
</tr>
<tr>
<td>Diurón téc. + Suelo P44</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>10 mg/L</td>
</tr>
<tr>
<td>6.75</td>
</tr>
<tr>
<td>6.71</td>
</tr>
</tbody>
</table>

Obra obstante, sí se puede distinguir un ligero aumento del pH, tal y como se puede observar en la figura 8, durante los primeros días del estudio de biodegradación con diurón técnico en presencia del consorcio bacteriano estudiado, en contraposición con lo observado en el control, sin presencia del consorcio bacteriano. Sin embargo, en los casos de los ensayos con diurón técnico con suelo y diurón comercial (apartados b y c, respectivamente), la tendencia del pH tanto en presencia de los microorganismos como en su ausencia, fue prácticamente idéntica, información que no aporta nada revelador al estudio, ya que la tendencia en los valores de pH parece no variar con o sin la acción degradadora de las bacterias degradadoras específicas.

El conteo de unidades formadoras de colonias (UFCs) a partir de inóculos tomados periódicamente de las muestras de estudio, corroboró en el caso del diurón técnico en solución y en solución con suelo (Figura 9), un aumento de la biomasa en las primeras etapas del ensayo. La interpretación referida a cada escenario de distinta concentración del herbicida es diferente, ya que el fuerte aumento del número de células, a excepción de la concentración más elevada del herbicida (500 mg/L), continuado de un brusco descenso en la formación de colonias, podría provenir por la falta de diurón, como fuente de carbono y nitrógeno, en el caso de la concentración más baja (10 mg/L), mientras que en los casos de las siguientes concentraciones del herbicida, el descenso podría deberse a la toxicidad tanto del diurón como del 3,4-dicloroanilina.

La dinámica de formación de UFCs en los ensayos con suelo ha sido muy similar a la obtenida en los ensayos con la misma concentración del herbicida en solución, aunque alcanzándose el máximo de biomasa de forma más tardía. Esto podría deberse a la baja disponibilidad del herbicida cuando la fracción suelo interviene en el proceso.

En el caso del diurón comercial, debido a los resultados negativos de los cromatógrafos, el conteo de UFCs ha servido para comprobar que, si bien en los estudios de biodegradación para la concentración más alta de diurón técnico, así como para el
conteo de UFCs, se ha comprobado su carácter tóxico, en el caso del herbicida comercial, las altas concentraciones no han impedido el desarrollo de biomasa. De hecho, de acuerdo al mayor número de UFCs contabilizadas en sus cultivos con respecto a las contabilizadas con el herbicida técnico, se podría intuir que aquellos compuestos que se incluyen en la formulación comercial, favorecen el metabolismo del diurón por parte de los microorganismos. No se puede dar una respuesta concreta al descenso en el número de colonias en los últimos tiempos del ensayo ya que, observando la acumulación de 3,4-dicloroanilina en los estudios con diurón técnico, no se puede afirmar que la fuente de carbono y nitrógeno que representaba el herbicida, haya sido consumida. Tampoco se puede determinar si tras su degradación, la alta concentración del metabolito principal propició la muerte de los microorganismos.

Figura 9. Unidades Formadoras de Colonias (UFCs) del consorcio bacteriano empleado en presencia de: a) Diurón técnico, b) Diurón técnico con suelo y c) Diurón comercial, a diferentes tiempos de envejecimiento.
4.2. Mineralización

En las figuras 10, 11 y 12, así como en la tabla 8, quedan reflejados los resultados obtenidos en los experimentos de mineralización de diurón técnico, con y sin suelo, y diurón comercial, donde se comprobó la capacidad del consorcio microbiano, para producir H$_2$O y CO$_2$ en condiciones de estrés a altas concentraciones de este herbicida.

![Figura 10](image1)

![Figura 10](image2)

Tabla 8. Mineralización (%) para los distintos estudios con diurón, técnico y comercial. (*) Primera medición desde que se realizó la reinoculación para todos los experimentos, a excepción del ensayo a 10 mg/L, con y sin suelo P44, donde no hizo falta reinoculación.

<table>
<thead>
<tr>
<th>Concentraciones diurón</th>
<th>1ª Fase: Cultivo inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Días</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>77</td>
</tr>
</tbody>
</table>
En la figura 10 se puede observar la dinámica seguida por los microorganismos. En primer lugar, de acuerdo con los datos obtenidos, la mineralización de herbicida técnico en solución a una concentración de 10 mg/L, (Fig. 12) y sin suelos, se aproxima al 100%, ya que se debe tener en cuenta que si bien, de acuerdo a los datos obtenidos, el porcentaje de herbicida mineralizado supera el 95% (sin suelos), una parte de esta fuente de carbono y nitrógeno ha sido transformada en biomasa. En el ensayo con suelos, el resultado fue similar al obtenido en el ensayo que se realizó con las mismas características, pero sin suelo. Sin embargo, sí se observó una más rápida mineralización del herbicida, ya que en las dos primeras semanas se consiguió superar el 75% de mineralización (Tabla 8). En ambos casos no se llevó a cabo reinoculación debido a la óptima mineralización del diurón.

La curva de mineralización para esta concentración define perfectamente el comportamiento de las bacterias durante su cultivo, comenzando por una fase de aclimatación o fase lag, donde las bacterias se adaptan a las condiciones de cultivo, seguido por una fase exponencial que representa la degradación completa del diurón a agua y dióxido de carbono. Para esta concentración, no se realizaron reinoculaciones debido a los óptimos resultados iniciales.

En los casos de concentraciones superiores de diurón técnico, se comprobó cómo disminuya el porcentaje de mineralización conforme mayor era la concentración del herbicida. Para 100 mg/L, se determinó un 20% de herbicida mineralizado durante las 16 semanas iniciales, llegando a un 51% tras reinocular y a lo largo de 14 semanas de estudio. En el caso de 300 mg/L, se superó el 7% de mineralización durante las 16
primeras semanas, porcentaje que ascendió a un 21% de mineralización tras las reinoculaciones. Por último, el ensayo con 500 mg/L ofreció tasas de mineralización prácticamente nulas, por debajo del 1%, superando un 3% de mineralización una vez se procedieron a las reinoculaciones (Tabla 8).

El estudio centrado en la capacidad de las bacterias para mineralizar diurón comercial (figura 11) ofreció tasas más elevadas que las observadas en los ensayos con el herbicida técnico. Los resultados obtenidos a una concentración de 500 mg/L ofrecen un 20% de mineralización en las 16 primeras semanas del estudio, mientras que tras las reinoculaciones, en 14 semanas se consiguió superar el 41%. A una concentración superior, 1000 mg/L, en la primera fase del estudio se alcanzó el 14% de mineralización, y en la segunda fase, tras reinocular, se quedó levemente por encima de un 40% de mineralización del herbicida. Estos resultados dan lugar a una interesante discusión, ya que parece que los componentes presentes en el producto comercial, ayudan en alguna manera al metabolismo del herbicida por parte de los microorganismos.

![Figura 11. Curvas de mineralización del estudio con diurón comercial a 500 y 1000 mg/L.](image)

![Figura 12. Curva de mineralización del estudio con diurón técnico a 10 mg/L en presencia de suelo P44.](image)
Por último, el efecto de la reinoculación en los respirómetros reutilizados de estudios anteriores, para comprobar como este hecho afectaba en la tasa de mineralización, ofreció resultados muy relevantes en el caso de los experimentos con HPBCD con respecto a los resultados obtenidos en los experimentos sin HPBCD. Mientras que en estos últimos se apreció un aumento del 2 al 7% de mineralización de diurón a una concentración de 500 mg/L, en aquellos experimentos con presencia de HPBCD, el aumento de la tasa de mineralización fue muy elevado, pasando de un 2% en la fase pre-reinoculación, para alcanzar casi el 56% en la fase post-reinoculación. En ambos casos, el herbicida estaba marcado radiactivamente por completo.

Figura 13. Curvas de mineralización del estudio con 500 ppm de diurón marcado radiactivamente.

Tabla 9. Mineralización (%) para los estudios con diurón técnico en exceso, con y sin ciclodextrinas (HPBCD). (*) Primera medición tras reinocular, correspondiente únicamente para el ensayo con HPBCD.

<table>
<thead>
<tr>
<th>Días</th>
<th>500 mg/L sin HPBCD</th>
<th>500 mg/L con HPBCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td>1,90</td>
<td>1,418781</td>
</tr>
<tr>
<td>181</td>
<td>1,99</td>
<td>1,449861</td>
</tr>
<tr>
<td>188</td>
<td>2,12</td>
<td>1,477067</td>
</tr>
<tr>
<td>195</td>
<td>2,30</td>
<td>1,502765</td>
</tr>
<tr>
<td>202</td>
<td>2,51</td>
<td>1,533342</td>
</tr>
<tr>
<td>209</td>
<td>2,74</td>
<td>1,562264</td>
</tr>
<tr>
<td>216</td>
<td>2,99</td>
<td>1,584886</td>
</tr>
<tr>
<td>223</td>
<td>3,24</td>
<td>1,609106</td>
</tr>
<tr>
<td>230</td>
<td>3,47</td>
<td>1,632349</td>
</tr>
<tr>
<td>237</td>
<td>3,74</td>
<td>1,652931</td>
</tr>
<tr>
<td>244</td>
<td>3,84</td>
<td>1,675377</td>
</tr>
<tr>
<td>252</td>
<td>4,10</td>
<td>1,69519</td>
</tr>
<tr>
<td>258</td>
<td>4,29</td>
<td>1,714973</td>
</tr>
<tr>
<td>265</td>
<td>4,50</td>
<td>1,733219</td>
</tr>
<tr>
<td>273</td>
<td>4,74</td>
<td>1,760899</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>280</td>
<td>4.93</td>
<td>1,780712</td>
</tr>
<tr>
<td>286</td>
<td>5.09</td>
<td>1,820652</td>
</tr>
<tr>
<td>293</td>
<td>5.29</td>
<td>1,855618</td>
</tr>
<tr>
<td>300</td>
<td>5.50</td>
<td>1,890661</td>
</tr>
<tr>
<td>307</td>
<td>5.70</td>
<td>1,916388</td>
</tr>
<tr>
<td>316</td>
<td>5.89</td>
<td>2,097605</td>
</tr>
<tr>
<td>321</td>
<td>6.06</td>
<td>2,201048</td>
</tr>
<tr>
<td>328</td>
<td>6.23</td>
<td>2,236002</td>
</tr>
<tr>
<td>334</td>
<td>6.37</td>
<td>2,257968</td>
</tr>
<tr>
<td>357</td>
<td>6.53</td>
<td>2,330745*</td>
</tr>
<tr>
<td>363</td>
<td>6.66</td>
<td>2,513115</td>
</tr>
<tr>
<td>370</td>
<td>6.80</td>
<td>3,108961</td>
</tr>
<tr>
<td>377</td>
<td>6.92</td>
<td>5,294596</td>
</tr>
<tr>
<td>385</td>
<td>7.04</td>
<td>29,69485</td>
</tr>
<tr>
<td>392</td>
<td>7.20</td>
<td>50,00195</td>
</tr>
<tr>
<td>398</td>
<td>7.31</td>
<td>54,74089</td>
</tr>
<tr>
<td>405</td>
<td>7.43</td>
<td>55,9723</td>
</tr>
</tbody>
</table>
5. Discusión

Los resultados observados en los ensayos de biodegradación y mineralización, han aportado detalles interesantes, que pueden ser analizados para obtener conocimiento acerca de cómo las altas concentraciones de diurón y, especialmente, su metabolito principal, el 3,4-Dicloroanilina, afectan al consorcio bacteriano estudiado.

Observando los datos, parece que las elevadas concentraciones del herbicida no suponen un impedimento para el desarrollo celular, pues durante las primeras etapas del estudio se aprecia un descenso en la concentración de diurón, el cual sería utilizado por las bacterias como fuente de carbono y nitrógeno. Sin embargo, a excepción de aquellos ensayos donde se emplearon las concentraciones de herbicida más bajas (10 mg/L), observándose una relación elevada de formación de CO₂ muy elevada frente a la disponibilidad de la fuente de carbono, para aquellos ensayos con altas concentraciones de diurón, las tasas de mineralización fueron deficientes o prácticamente nulas. Este hecho, junto con los resultados obtenidos en las cromatografías, donde se apreció una acumulación de 3,4-dicloroanilina, sugiere que la elevada concentración de este metabolito, es el principal problema en los escenarios de contaminación por diurón.

El consorcio está compuesto por microorganismos cuya eficiencia en la degradación de otros herbicidas fenilureas ya ha sido anteriormente testada y documentada (29), a la vez que se determinaron los genes partícipes en el metabolismo de estos compuestos. La existencia de microorganismos capaces de utilizar estos herbicidas como fuente de carbono, nitrógeno y energía, representa un avance en las técnicas biológicas de descontaminación de aguas y suelos a causa de estos componentes sintetizados por el hombre o xenobióticos. Y esto sucede debido al escaso tiempo que estos han estado en contacto directo con los organismos, en torno a 60-70 años, un corto periodo de tiempo para desarrollar complejos metabólicos capaces de degradarlos, ya que, para que las rutas metabólicas evolucionen hacia el uso de moléculas más complejas, es necesario que se produzcan una serie de cambios genéticos y metabólicos que necesitan un tiempo significativamente mayor. Pero debido a las cada vez más frecuentes perturbaciones en el medio ambiente por parte de los humanos, se han ido creando nuevas oportunidades para que los microorganismos desarrollen sistemas metabólicos destinados a utilizar nuevas fuentes de carbono y energía (33). Este es el caso de la evolución de rutas degradadoras de clorobencenos, como por ejemplo se descubrió en Pseudomonas sp. P51, la cual utiliza una combinación de dos complejos enzimáticos diferentes (34). O también el caso de Sphingomonas chlorphenolica, cuyo sistema metabólico evolucionó para degradar el
pesticida pentaclorofenol en tres pasos en el que algunas de las enzimas participantes pudieron originarse para degradar clorofenoles (con uno o dos cloros) que naturalmente son producidos por algunos insectos y hongos, y otras por expresión constitutiva del gen que expresa la enzima maleiloacetoacetato isomerasa, inducida por compuestos tales como la fenilalanina, tirosina y fenilacetato. Es decir, el desarrollo de enzimas más inespecíficas podría haber dado una ventaja evolutiva sobre aquellos microorganismos con una capacidad de adaptación más débil (35).

En el caso del diurón, se dispone de poca información acerca de microorganismos degradadores. Cullington y Walker (36) aislaron bacterias capaces de degradar diurón, así como otros herbicidas fenilureas, donde la acumulación del metabolito 3,4-dicloroanilina era el resultado de la rápida degradación del diurón. Más tarde se llevaron a cabo otros estudios, donde se identificaron algunas de las bacterias objetivo de este estudio y se comprobó su capacidad degradadora sobre clorados, por ejemplo Arthrobacter sp. N2, observándose una elevada acumulación del mismo metabolito tras llevar a cabo la degradación de diurón (37).

Los análisis genéticos realizados por Turnbull y col. (38), y Khurana y col. (39), identificaron los genes puhA y puhB que están presentes en el género Arthrobacter, aunque la cepa utilizada en este estudio solo posee puhA. Estos genes se expresan a unas enzimas que hidrolizan una variedad de sustratos fenilureas, entre ellas el diurón. Variovorax sp. SRS16, originalmente estudiada para medir su capacidad de degradar linurón, otro herbicida fenilurea, se detectó el gen libA, que expresa a una enzima amidasa como el catalizador de esta fenilurea a 3,4-dicloroanilina, CO₂ y N,O-dimetilhidroxialanina. No se observó homología entre esta proteína y las anteriormente mencionadas, PuhA y PuhB (41, 42). Estos mismos autores, identificaron el gen ccdC, que codifica para la proteína que rompe el metabolito 4,5-diclorocatecol, resultante de la catálisis del 3,4-dicloroanilina por parte de la enzima glutamina sintetasa y transposasa, presente en las tres cepas utilizadas en este proyecto (7). El diclorocatecol es degradado a intermediarios que, a través del ciclo de los ácidos tricarboxílicos, es transformado a CO₂ y agua. Esta es la base de la mineralización del herbicida linurón testada por Sorensen y colaboradores (29), y del diurón (7). En el caso de Advenella kashmirensis, no existen referencias bibliográficas a cerca de su eficacia degradando fenilureas, pero en los experimentos de la tesis doctoral que precede a estos ensayos (7), se identificó el mismo gen existente en Variovorax sp. SRS16, el liba, capaz de degradar diurón.
De esta forma se diseñó la ruta metabólica que lleva a este herbicida a ser completamente mineralizado, de acuerdo con los resultados obtenidos la citada tesis y corroborados en este estudio (figura 13).

Durante dicha tesis, se constató la capacidad para biodegradar el diurón de cada cepa, tanto por separado como formando parejas y, finalmente, haciendo uso de las tres cepas a la vez. La primera conclusión que se desprende de tal estudio, y que se afianza con el presente, es que
Arthrobacter sulfonivorans es el principal degradador de la molécula diurón, y al parecer, es capaz de soportar altas concentraciones de este herbicida. No obstante, tanto *Advenella* como *Variovorax* no parecen ser especialmente eficaces en la degradación del diurón, lo que representa la fortaleza de la enzima PuhB, de *Arthrobacter* frente a LibA presentes en las otras dos bacterias.

Variovorax ha demostrado ser la piedra angular para conseguir la mineralización del herbicida, pues se ha visto que es el único realmente determinante en la degradación de 3,4-dicloroanilina, el metabolito más tóxico. Sin embargo, las altas concentraciones de este metabolito han supuesto una barrera definitiva contra la mineralización del diurón, además, el mismo herbicida no comercial utilizado en este estudio, contenía por sí mismo una elevada concentración del metabolito, lo cual, sumado al obtenido por la degradación de la molécula de diurón, ha podido inhibir toda funcionalidad y viabilidad de las bacterias en el medio. Un caso especial representan los resultados obtenidos en los ensayos con diurón comercial. Debido a la naturaleza de los excipientes y otros compuestos presentes en la mezcla con el herbicida, no se pudo obtener cromatografías adecuadas para su interpretación, debido a la distorsión de dichos compuestos. Aun así, gracias a los ensayos de mineralización y conteo de UFCs, se pudo determinar la óptima degradación del herbicida por parte del consorcio, obteniéndose unas aceptables tasas de mineralización, incluso a concentraciones más elevadas de diurón, todo esto, posiblemente, gracias a los compuestos presentes en el formato comercial.

Por último, los resultados recabados con el herbicida en presencia de suelo, no difieren de los obtenidos en solución con la misma concentración de diurón, únicamente, se puede observar la capacidad de este a adsorberse a la fracción suelo, pues en ocasiones se pudo determinar la presencia de herbicida y su principal metabolito, en etapas avanzadas del ensayo. Esto podría deberse al haber tomado más cantidad de suelo de la muestra, previa a su filtración.

Las reinoculaciones han supuesto un incremento de la tasa de mineralización en las soluciones con diurón comercial, así como de forma más leve en la concentración de 100 mg/L del herbicida en su formato técnico, no apreciándose algún incremento en las concentraciones superiores. En los respirómetros reutilizados de un ensayo de mineralización anterior, a 500 mg/L de diurón técnico, sin ciclodextrinas, tampoco supuso un incremento en el porcentaje de mineralización que tuviera que ser destacable desde el punto de vista funcional. No obstante, el grafico si muestra un incremento visual del herbicida mineralizado, aunque en términos absolutos no resulte un avance significativo.
Si parece determinante la presencia de ciclodextrinas en la fase de reinoculación, puesto que, de acuerdo a los resultados obtenido en la experimentación, el incremento en el porcentaje de mineralización ascendió sustancialmente con respecto a los ensayos sin ciclodextrinas. En este punto, estaríamos frente a una metodología muy eficaz en la degradación total del herbicida, usando ciclodextrinas y varias fases de reinoculación de estos microorganismos degradadores específicos.

La acumulación y alta toxicidad del 3,4-dicloroanilina parece ser el factor determinante para que no se alcance un alto porcentaje de mineralización del herbicida incluso cuando procedemos a reinocular con cada una de las tres bacterias que componen el consorcio. En futuros estudios, queda la opción de estudiar reinocular únicamente con *Variovorax*, puesto que se ha presentado como la única cepa de la triada capaz de degradar el metabolito principal del diurón, y en los ensayos con altas concentraciones del herbicida, ha podido no soportarlas. Con ello se comprobaría, en primer término que, efectivamente, la molécula de diurón resulta tóxica para *Variovorax*. De ser ese el caso, el descenso en la concentración inicial del herbicida tras la actuación de *Arthrobacter* y *Advenella*, le permitiría a *Variovorax* incidir sobre el 3,4-dicloroanilina y así, degradarla. En segundo lugar, se podría medir la capacidad para tolerar la alta toxicidad de este metabolito.
6. Conclusiones

- Los ensayos de biodegradación han aportado datos que podrían situar a la molécula diurón, como un agente potencialmente tóxico en el medio ambiente, ya que en su proceso de degradación se libera el 3,4-dicloroanilina, su metabolito principal, el cual ha demostrado ser muy agresivo. Las distintas concentraciones del herbicida no fueron determinantes para la inhibición del desarrollo celular de las cepas degradadoras específicas (*Arthrobacter sulfonivorans* y *Advenella kashmirensis*), pero sí pudo serlo para *Variovorax soli*, encargada de degradar el metabolito, ya que se pudo comprobar una acumulación progresiva de este.

- Los estudios de mineralización en su primera fase mostraron, en primer lugar, la completa mineralización del herbicida a las concentraciones más bajas utilizadas (10 mg/L), tanto para el ensayo en solución, como para el ensayo en solución con suelos. En segundo lugar, los resultados obtenidos para los ensayos con diurón a 100 mg/L, marcan el límite entre la toxicidad del herbicida y la efectividad de las bacterias degradadoras específicas para mineralizar elevadas concentraciones, puesto que se han conseguido tasas cercanas al 50% (tras reinocular). En tercer lugar, las elevadas concentraciones de herbicida (300 y 500 mg/L), han demostrado el carácter tóxico de este, debido a las deficientes tasas de mineralización observadas. En cuanto a los ensayos con diurón comercial, los buenos resultados de mineralización obtenidos, teniendo en cuenta las elevadas concentraciones que se han utilizado (500 y 1000 mg/L), parecen indicar que los excipientes existentes en la formulación comercial incrementan la biodisponibilidad del herbicida. Por último, las reinoculaciones presentaron una mejoría variable en los porcentajes de mineralización de todos los ensayos. Fue determinante la reinoculación de las cepas bacterianas en presencia de HPB-CD, ofreciendo unos porcentajes de mineralización especialmente elevados con respecto al mismo ensayo, sin HPB-CD. Estos resultados abren la puerta a continuar investigando la metodología “reinoculaciones – ciclodextrinas”, debido a su eficacia en la eliminación del compuesto tóxico.
7. **Referencias**

