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Abstract 

Extremely voluminous landslides with a long run-out (also known as megalandslides) on 

oceanic volcanic islands are infrequent denudational processes on such islands. At the same 

time, they represent a major geological hazard that must be looked into to avoid negative 

consequences for the inhabitants of these islands. Their occurrence can be related to periods 

of intense seismo-volcanic activity, similar to that which occurred on El Hierro Island over 

2011-2012. Landslides on volcanic islands are studied using onshore and offshore geological, 

geophysical and geomorphological records, considering their unique triggering conditions 

(e.g. lava intrusions, eruptive vents, magma chamber collapses). Previous work has pointed 

out similarities between specific cases of landslides on volcanic islands and deep-seated 

gravitational slope deformations (DSGSDs) which are typical in high mountain settings. 

Nevertheless, the methodological approaches and concepts used to investigate DSGSDs are 

not commonly applied on volcanic islands studies, even though their use may provide new 

information about the development stage, recent movements and future hazards. Therefore, 

this approach for studying the San Andrés landslide (SAL) on El Hierro (Canary Islands) has 

been developed applying a detailed morphological field mapping, an interpretation of digital 

elevation models, structural measurements, kinematic testing, and a precise movement 

monitoring system. The acquired information revealed a strong structural influence on the 

landslide morphology and the presence of sets of weakened plains acting as the sliding 

surfaces of the SAL or secondary landslides within its body. The presence of secondary 

landslides, deep erosive gullies, coastal cliffs and high on-shore relative relief also suggests a 

high susceptibility to future landslide movement. Direct monitoring on the landslide scarps 

and the slip plane, performed between February 2013 and July 2014, using an automated 

optical-mechanical crack gauge with a precision of up to 10
-2 

mm, detected creep movement 

in the order of 1 mm yr
-1

 with a persistent sinistral component as well as episodic horizontal 
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and a subtle vertical movement. This monitoring will continue in the future in order to verify 

the initial observations, which instead of long-term movement patterns, could represent a 

landslide response to the period of an intense seismo-volcanic activity during 2011-12.  

Key words: deep-seated gravitational slope deformations (DSGSDs); landslide 

monitoring; creep movements; Canary Islands 

 

1. Introduction 

 

Large and extremely voluminous coastal and submarine landslides (up to 10
4
 km

3
, Whelan 

and Kelletat, 2003) with run-out often exceeding tens of kilometres, as well as deposits below 

the sea level, are commonly referred to as megalandslides. These megalandslides are an 

inherent part of volcanic islands development. They have been widely reported from volcanic 

islands such as Hawaii, Reunion, Madeira, Azores, Cape Verde, Stromboli and the Canary 

Islands (Moore et al., 1995; Labazuy, 1996; Tibaldi, 2001, 2004; Masson et al., 2008; 

Mitchell et al., 2012; Carracedo, 2014). Megalandslide is a non-genetic term that covers 

different landslide types and it resembles the term deep-seated gravitational slope 

deformations (DSGSDs) used for large, mountain-scale, subaerial landslides. DSGSDs are 

further characterized by the development of specific morphological forms (e.g. scarps, 

antithetic scarps, double-crest ridges, trenches); absence of well-defined shear surfaces and 

creep movements that often evolve using existing structures (e.g. faults, fold axes, bedding 

planes; Dramis and Sorriso-Valvo, 1994; Agliardi et al., 2001) creating favourable conditions 

for secondary landslide development (Cimarelli and De Rita, 2010). DSGSDs are several 

kilometers long and hundreds of meters thick, with conditions suitable for future slope failure 

development (Crosta et al., 2014; Jargon et al. 2014). A large number of DSGSDs has been 

identified, described and monitored in a variety conditions, providing detailed information 
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about their circumstances of occurrence, and triggering factors. In particular, Cimarelli and 

De Rita (2010) showed that many morphological features affecting megalandslides on 

volcanic islands are similar to those described as associated with DSGSDs. 

 Investigation of megalandslides on volcanic islands is difficult compared to subaerial 

DSGSDs on continents as the megalandslides have relatively low abundance, have most of 

their landslide body below the sea level and, in most cases, the catastrophic movements 

destroyed onshore evidence of the megalandslides development (Day et al., 1997). All the 

above forces scientists to investigate this phenomenon using geological and geophysical 

methods applied mostly at small scales (Gee et al., 2001; Masson et al., 2002) which hamper 

determination of hazard levels for the whole landslide. This is the case of the Canary Islands 

where large landslides are considered a major geological hazard (Krastel et al., 2001). Their 

hazard is being broadly recognized mainly during periods of intense seismic and volcanic 

activity (López et al., 2012). Recently, a period of submarine eruption accompanied by 

intense seismicity (Las Calmas Sea submarine eruption) hit El Hierro in 2011-2012 (López et 

al., 2012). This island hosts, among other megalandslides, the San Andrés Landslide (SAL) 

which offers a rare opportunity to study geological conditions and recent movement activity 

of a partly failed megalandslide (Day et al, 1997; Gee et al., 2001). Previous research of the 

SAL (Carracedo et al., 2001; Becerril et al., 2015) pointed out the existence of prominent 

morphological features: scarps and antithetic scarps, which match DSGSDs diagnostic 

landforms. Nevertheless, no detailed structural and morphological investigations or 

representative and precise monitoring of possible landslide movements have been done so far. 

Therefore, we have investigated, in depth, its subaerial morphology, structural conditions and 

established a long-term monitoring network to detect potential precursory deformations of 

possible future increased movement rates of the landslide. Here we present more than one 

year of monitoring results and information about the SAL limits, its morphology, structural 
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settings and occurrence pattern of secondary landslides on the SAL. This new evidence allows 

initial assumptions about the dynamics of its recent movements and re-examination of its 

development stage as basis for a landslide hazard assessment. 

 

2. Controlling factors of landslide occurrence on the Canary Islands 

 

The occurrence of megalandslides on the Canary Islands, including El Hierro, has been 

related to triggering factors that act over relatively short time periods. The majority is related 

to volcanic activity and other processes represented by the intrusion of dykes (Day et al., 

1997; Krastel et al., 2001; Masson et al., 2002), which is associated with changes in fluid pore 

pressure (Moore et al., 1994; Voight, 2000) or seismicity (Gee et al., 2001). Some factors 

include even more rapid processes, such as earthquakes (Elsworth and Voight, 1995; Elsworth 

and Day, 1999; Clouard et al., 2001), caldera formation seismicity associated with onshore 

volcanic edifices (Martí et al., 1997; Hürlimann et al., 2000), and large explosive eruptions 

(Dávila et al., 2011). 

Other factors act over relatively long time periods and are thus considered as 

preparatory conditions that favour the development of megalandslides. These include stress 

associated with the extensional regime caused by the main island rift zones (Yepes et al., 

2013a) and unloading due to abrasion and onshore erosion which occurs during intensive 

stages of erosion associated with flank collapse or large rockslides (Yepes et al., 2013b). 

Deep erosive canyons on the island of Tenerife were identified as playing an important role in 

the development of landslides (Hürlimann et al., 2004), and intensive erosion is an important 

element of alternating volcanic build-up and failure cycles (Masson et al., 2002). The 

occurrence of landslides is probably also affected by site-specific conditions favouring their 

initiation. These include lithological and structural weakened zones (i.e. ignimbrites, 
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hyaloclastites, or poorly cemented pyroclasts, vents and volcanic fissures) that control a 

pressurization response to intrusive events (Elsworth and Voight, 1995; Hürlimann et al., 

2001; Rodríguez-Losada et al., 2009). Other factors may also cause large landslides, e.g. 

stress changes induced by inflation/deflation of magma chambers and hydrothermal reservoirs 

(Duffield et al., 1982; Lo Giudice and Rasa, 1992; Gudmundsson, 2012), although they have 

not yet been reported for El Hierro. In some cases, factors that are not directly related to the 

development of volcanic islands could be a landslide trigger, such as changes in sea level 

(Carracedo et al., 1999; Ablay and Hürlimann, 2000) or prolonged precipitation (Masson et 

al., 2002). 

In previous research, surprisingly little attention has been paid to the role of inherited 

rock discontinuities in the development of landslides on volcanic islands (e.g. columnar 

joints, bedding planes, faults or dykes). This contrasts with DSGSD research, in which 

numerous studies have demonstrated the significance of fractures resulting from rock 

formation and later stress forces (Di Luzio et al., 2004; Vilímek et al., 2007; Brideau et al., 

2009; Imre et al., 2009; Jaboyedoff et al., 2009). In some cases, even micro-fractures are 

found to play an important role in landslide development (Zorzi et al., 2014). Nevertheless, 

some preceding works on volcanic islands have also highlighted the importance of structural 

conditions for landslide development. Carracedo et al. (2009) stressed the importance of a 

wedge failure mechanism for their initiation, while Rodríguez-Losada et al. (2009) mentioned 

the importance of structural weakened zones for large flank collapse and the location of debris 

avalanche source areas (Seta et al., 2011). 

 

3. Geological and geomorphological setting 
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The Canary Archipelago, located 100 km off the coast of northwest Africa, is a chain of seven 

volcanic islands that extends for about 500 km (Fig. 1). El Hierro, with an area of ~269 km
2
, 

is the smallest and south-westernmost island of the Canaries. It has an estimated total edifice 

volume of 5,500 km
3
 and rises about 5,500 m from its submarine base at a depth of 4,000 m 

b.s.l. (Schminke and Sumita, 2010) to attain an elevation of 1,501 m a.s.l. It is the youngest of 

the Canary Islands, with its oldest rocks dated to 1.12 Ma (Guillou et al., 1996), and the most 

recent eruption (Las Calmas Sea submarine eruption) occurring in 2011-2012 (Fig. 1). This 

eruption was preceded and accompanied by continuous seismicity (López et al., 2012). From 

its onset, more than 22,000 earthquakes were recorded up to February 2015 (www.ign.es), 

with local magnitudes of up to 5.1 ML. Several rock falls took place, caused by the highest 

magnitude seismic swarms (Jorge Yepes, personal communication). 

The geology of this shield volcano consists of three main volcanic cycles (Fig. 1) that 

correspond to successive volcanic edifices (Guillou et al., 1996; IGME, 2010a, 2010b): the 

Tiñor Edifice (1.12-0.88 Ma); the El Golfo-Las Playas Edifice (545-176 ka), and the Rifts 

Volcanism (158 ka-present). The volcanism is characterized by effusive magmatic eruptions 

of basic composition, which arose through fissure eruptions fed by sub-vertical dykes located 

mainly along three rift zones (Fúster et al., 1993; Carracedo, 1996; Becerril et al., 2013a, b; 

Becerril, 2015) with a high concentration of volcanic fissures and vents (Becerril et al, 2015). 

At least five megalandslides have occurred between the rift axes (Fig. 1) generating steep 

escarpments and large scars which have notably changed the island morphology (Masson, 

1996; Urgeles et al., 1996, 1997; Carracedo et al., 1999; 2001; Gee et al., 2001; Longpré et 

al., 2011; Masson et al., 2002). The occurrence of these landslides is related to dyke intrusion, 

pore pressure changes linked to intrusion, seismicity or climatically driven sea-level changes 

(Masson et al., 2002). Lava injections and associated earthquakes seem to be the most 

probable triggers of these prehistoric landslides. 
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Few fragile structures have been reported in the western and southern rifts (Becerril, 

2014, 2015). However, a clear system of sub-vertical dislocation planes, striking ENE-WSW, 

has been described only along the north-eastern rift (Day et al., 1997; Carracedo et al., 2001; 

IGME, 2010a; Becerril et al., 2015) forming the so-called ʻSan Andrés Fault Systemʼ. Its fault 

scarps and planes form the scarps and slip planes of the SAL. The SAL (Fig. 1) is referred to 

as Las Playas I in Masson et al. (2002) and the San Andrés slump in Gee et al. (2001). In this 

article we refer to the  San Andrés Landslide (SAL, Fig. 1). The age of the SAL was 

constrained by Gee et al. (2001) to 176-545 ka. This landslide has been interpreted as an 

aborted, inactive giant flank collapse (Day et al., 1997) but other authors (Gee et al., 2001) 

concluded that it is a partly failed slump, where movement occurred in several phases, 

providing suitable conditions for the occurrence of the younger Las Playas II debris avalanche 

(145-176 ka; Gee et al., 2001). The accumulation of the Las Playas II debris avalanche is 

partly superimposed over the SAL deposits, providing evidence of the relative timing of both 

of the events (Gee et al., 2001). 

 

4. Applied methods 

 

To obtain novel information about the SAL we applied methods widely used in DSGSD 

research, which have never before been applied in the study area. They include a detailed 

morphological study of the SAL, an in-depth study of structural conditions at site-specific and 

regional scales (e.g. valley network analysis), and we also installed direct movement 

monitoring on the possible future sliding planes of the SAL. 

We used a morphological approach to identify and describe the limits and surface 

forms found within the SAL. Due to the character of the landslide, we focused on diagnostic 

features of DSGSDs (i.e. scarps, antithetic scarps, double-crest ridges, trenches) and 
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identification of the secondary landslides. The latter is commonly used to identify most 

landslide-prone regions as well as actively deforming segments within DSGSD bodies (Crosta 

et al., 2014). 

Structural conditions were documented within secondary landslides as well as 

fractures along the sliding planes. This information with the slope geometry can be used for 

the identification of kinematically suitable areas for rockslide development (Günter, 2003; 

Santangelo et al., 2015) and also to explain the occurrence conditions of DSGSDs (Pánek et 

al., 2011). We applied this approach to test structural influences on the development of the 

SAL and the secondary landslides that occur on its body. Possible prevailing effects of 

structural conditions on long-term relief development at a regional scale were tested by an 

analysis of the valley network. This analysis provides information on the long-term surface 

development controlled by lithological, structural and morphological characteristics, 

regardless of actual surface hydrology (Horton, 1945; Křížek and Kusák, 2014). We were 

looking for evidence of specific structural conditions occurring within the SAL, both showing 

its unique properties compared to the rest of the island and complementing our site-specific 

structural study. We decided not to use lineament mapping for this purpose as the results 

would partly overlap with the valley network analysis and the already available structural and 

volcano-structural mapping (Becerril, 2014). 

Finally, we installed three very precise (10
-2

 mm), 3D optical-mechanical crack gauges 

(Košťák, 2006; Klimeš et al., 2012) to measure movements along discontinuities assumed on 

the basis of field mapping to represent slip planes of the SAL. The high frequency 

deformation readings provide accurate and representative information about the recent 

activity of the SAL. 

 

4.1. Geomorphological mapping 
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Five topographic profiles were constructed and then analysed for the presence of typical 

DSGSD morphological features (e.g. scarps, antithetic scarps, inclined planes, trenches). The 

profiles were constructed using a Digital Elevation Model (DEM) provided by the National 

Geographic Institute (IGN; http://centrodedescargas.cnig.es/) with 5 m cell dimensions. The 

DEM was generated in 2009 using cubic convolution interpolation of LiDAR point-clouds 

(density 0.5 point/m
2
, precision 0.5-1 m RMSZ) acquired by IGN/PNOA (2015). We also 

used bathymetric data to make a DEM for the submarine part of the SAL. The bathymetric 

data show contour lines with 100 m intervals (GRAFCAN, 2009) depicting only general 

morphology of the submerged part of the landslide. 

Through fieldwork, DEM analysis and interpretation of colour aerial photographs 

(pixel size of 0.25 m) we mapped the aforementioned DSGSD indicative landforms, including 

secondary landslides, at a scale of 1:5,000. Landslides were mapped only if it was possible to 

clearly identify their scarp area, landslide body, or landslide accumulation. Less preserved 

landslide forms were omitted, as were landslides whose one dimension did not exceed 80 m. 

The mapped landslides included rockslides, landslides in colluvium, and deep-seated block 

slides. The deep-seated block slides are represented by headscarps detaching largely 

undisturbed blocks of rocks which often have a plane surface with a slight counter slope 

inclination. Other landslide types follow the definitions given in Cruden and Varnes (1996). 

 

4.2. Structural measurements and kinematics 

 

During the field mapping we collected 253 structural measurements characterizing dip and 

dip direction of SAL scarps and antithetic scarps. Slickensides of the SAL scarps were also 

measured in fourteen cases and its kinematics were analysed in GEOrient©. Fractures and 
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bedding planes were measured mainly within the mapped shallow landslides and inside the 

Tijirote water gallery (Fig. 1). We also focused on collecting different sets of pre-existing 

discontinuities (i.e. fractures, bedding planes), which could act, based on the field 

observations, as detachment planes for landslides. Their geometric alignment (dip, dip 

direction), with slope geometry (slope dip and aspect), was tested using the topography 

bedding-plane intersection angle (TOBIA index), according to Meentemeyer and Moody 

((2000) and for rock slope stability assessment (Günter 2003). The latter method determines 

areas where sliding is possible based on the attitude of the assumed slip planes (e.g. structural 

elements) and the slope surface with gravitational force being the destabilizing factor, which 

is balanced by the internal friction angle of the rock slip planes. Different sets of bedding 

planes and fractures, including SAL slip planes and the hypothetical basal sliding plane 

suggested in Elsworth and Voight (1995), were tested as potential planes of weakness. The 

analysis tests only geometric constraints of landslide development without any lithostatic 

pressure. We used the IDW interpolation algorithm to calculate Digital Structural Models 

(DSM) of the selected structural elements measured in the field. The DSM for the SAL slip 

planes was based on spatially distributed field data, whereas the DSM of fractures and 

bedding planes represented single dip direction and dip values which were determined to be 

the most frequently present at the studied sites (cf. the method used in Pánek et al., 2011). The 

internal friction angle values used in testing of landslide occurrence were applied over a range 

between 20° and 60° as used in the calculations of Elsworth and Voight (1995). A lower 

threshold of 10° was also tested. Such low values of internal friction angles were suggested by 

Rodríguez-Losada et al. (2009) for poorly cemented pyroclastic rocks on slopes higher than 

1,500 m, which correspond with the potential sliding planes located on the submarine part of 

the island. Similar low values of internal friction angles were determined for a residual 

friction angle of thin clay layers within DSGSDs in the flysch rocks (Fekeč et al. 1970), 
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which we assume could be analogous to the material found as a thin clay layer on the SAL 

slip plane inside the Tijirote water gallery (Fig. 1, 2). This material was tested to determine its 

basic mechanical properties, allowing an estimation of the internal friction angle. 

Granulometry, Atterberg limits and unit weight were determined according to AENOR (1993, 

1994a, 1994b, 1994c) and the material was classified using the United Soil Classification 

System (USCS, ASTM 2006). Mineralogy, with special attention to clay minerals was 

examined by X-ray diffraction analysis and processed using XPowder® software (Martín-

Ramos, 2004), based on a reference database of diffractograms and following the process 

designed by Snyder and Bish (1989) and Downs and Hall-Wallace (2003). 

The methodological constraints of the kinematic testing implies that the results 

represent theoretical scenarios defined by measured or assumed structural conditions, actual 

slope geometry and suggested properties of possible sliding planes, rather than a stability 

assessment of the studied slopes. 

 

4.3. Valley network analysis 

 

Morphometric characteristics of the valley network for the entire island of El Hierro were 

calculated. These characteristics indicate structural development and morphological and 

lithological characteristics of specific areas (Horton, 1945; Křížek and Kusák, 2014). The 

valley network was derived from the available DEM using the HydroTool script in 10.2 

ArcGIS (ESRI
©

) software. A flow accumulation raster was aggregated and classified as a 

valley when the value of flow accumulation was >25 m
2
. Each valley was assigned an order 

using the Gravelius order system that defines the order of the valley network in the direction 

from the outfall towards the valley head (Gravelius, 1914, in Zăvoianu et al., 2009). 
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According to Křížek and Kusák (2014), the following morphometric characteristics (sensu 

Horton, 1945) are the most suitable for valley network identification: 

a) ʻValley junction anglesʼ express the angle at which the subsidiary valley runs into the main 

valley projected on a horizontal plane; 

b) ʻNumber of valleysʼ n was determined as the number of all valleys of the given order 

(sensu Zăvoianu et al. 2009) in the valley network; 

c) ʻTotal lengths of valleysʼ t was defined as the sum of the lengths of all valleys of the given 

order in the valley network; 

d) ʻValley network densityʼ D was defined by the equation: D = L / P, where L is the total 

length of thalwegs and P is the area of El Hierro. 

 

4.4. SAL monitoring 

 

Direct point measurements of DSGSD movement activity are considered to be a reliable 

source of information on their recent development dynamics (Booth et al., 2015). Several 

DSGSD cases in a variety of geological conditions have been monitored for protracted time 

periods using a TM-71 crack gauge (Košťák, 2006; Klimeš et al., 2012). Information about 

the limits and morphology of a landslide are necessary for selection of proper monitoring 

sites. Field inspection of these features identified the future installation sites, bearing in mind 

all of the technical requirements described in detail in Klimeš et al. (2012). Three instruments 

were installed on the SAL to monitor possible movements on discontinuities which represent 

the main or suggested SAL scarps or slip planes (Fig. 1). 

Crack gauge HIE1 monitors a suggested slip plane (previously described as a fault 

plane in Becerril, 2014) located about 900 m inside the Tijirote water gallery, at an elevation 

of 484 m a.s.l. (Fig. 1, 2). This slip plane is not manifested by a scarp in the relief. Thus, it is 
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difficult to judge if the apparent evidence of movement along this plane developed due to 

tectonic forces or as a result of gravitational deformation. The slip plane dip and dip direction 

are 60°/114°. It has developed in fractured olivine-pyroxene massive basalts and the fracture 

is filled with soft clays with preserved slickensides (Fig. 2). 

Crack gauge HIE2 measures movements on the most prominent relief manifestation of 

the SAL slip plane (75°/140°) described by previous works as a fault plane (Fig. 2; Day et al., 

1997; Carracedo et al., 2001). One arm of the instrument is drilled into olivine-pyroxene 

massive basalts, while the opposite arm is fixed into a large concrete cube with dimensions of 

1 ×1 ×1 m, placed into the talus deposits below the rock face with a preserved fault plane. 

The third instrument, HIE3, is fixed into scoriaceous basalts dissected by the SAL 

scarp up to 1.8 m in height, and trending E-W (89°/189°) with occasionally preserved 

slickensides, suggesting sinistral movement dipping 40° towards the east (Fig. 3). The 

geotechnical properties of this kind of rock can be found in Rodríguez-Losada et al. (2007). 

All three crack gauges are equipped with automated data recorders allowing collection of 

measurements with high temporal frequency, and their semi-automated processing 

considering the actual air temperature (Marti et al., 2013). The current reading interval is set 

at a frequency of 24 hours, which is more regular than in other previous studies (Klimeš et al. 

2012), where slow-moving DSGSDs were monitored using a TM-71 crack gauge usually 

once a month. 

 Stresses associated with seismic events are thought to play an important role in the 

triggering of deep-seated landslides on volcanic islands (Gee et al., 2001). Therefore we 

combined the landslide movement measurements with the available earthquake database 

created by IGN and publically available on its website 

(www.ign.es/ign/resources/volcanologia/hierro.html). 
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5. Research results 

 

5.1. Geomorphological mapping 

 

5.1.1. SAL morphology 

 

On-shore limits of the SAL, to the north and northwest, are morphologically well-defined 

(Fig. 3, profiles A-A´ and B-B´ on Fig. 4), as previously described Day et al. (1997). On the 

other hand, the western and southern borders of the SAL do not follow clearly pronounced 

morphologic features (Fig. 3) and are a hypothetical limit defined on the basis of the local 

geomorphology, including a gully (No. 1 in Fig. 3) interpreted as a remnant of a side scarp. 

The SAL limits defined in this way differ from those described by Day et al. (1997) and do 

not resemble the typical horseshoe shape of other scarps in El Hierro, such as El Golfo or El 

Julan landslides (Fig. 1). 

 A wide and shallow trench below the main scarp of the SAL (No. 2 in Fig. 3, profile 

B-B´ in Fig. 4) is formed by antithetic scarps while other trenches associated with antithetic 

scarps are deeper and narrower. Younger volcanic rocks bury earlier scarps, smoothing the 

slope morphology, as illustrated by the ʻprofile overlayʼ inset in Fig. 4. Profiles with exposed 

older rocks (profiles A-A´ and C-C´ at elevations of between 650 and 200 m a.s.l.) have 

clearly visible scarps and antithetic scarps, while these features are less visible on areas 

covered by younger lavas, with a general slope of about 19°. 

The parallel profile towards the coast (E-E´) shows the asymmetry of the slopes to the 

southwest and northeast of the SAL. The former fall abruptly into the main Las Playas scarp 

while the latter are gentler slopes. The whole E-E´ profile exhibits a general drop in elevation 

towards the northeast which is better visible within the SAL. This profile, along with the 
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DEM, shows that the area of the SAL is segmented by distinct morphological features 

running roughly perpendicular at each other and dissecting the area into large blocks, 

generally dipping towards the northeast. These blocks are separated by northwest-southeast 

oriented gullies. The heads of the gullies are located close to the ridge and expose rocks from 

the older volcanic edifices. 

 

5.1.2. Offshore morphology of the SAL 

 

The northern shoreline of the SAL forms a wide bay where the port of Estaca is located (No. 

3 in Fig. 3). This bay is associated with the older Tiñor volcanic sequences (Fig. 1) and hosts 

the three best-developed gullies within the SAL, as well as across the whole island. 

Furthermore, the study of Masson et al. (2002) shows notable differences between the 

offshore morphology and the composition of the deposits of the El Golfo and El Julan 

megalandslides, with respect to those of the SAL. The first two morphologies show evidence 

of underground flows and accumulations, whereas the SAL offshore area does not show any 

clear evidence of similar processes and exhibits a wide number of ridges and blocks unlike 

the two others landslides. Some of these are associated with eruptive fissures and volcanic 

vents identified by Becerril et al. (2015). These vents exhibit a different pattern compared to 

the other parts of the submarine slopes, where they spread out radially offshore. In the case of 

the SAL, these features have arched forms resembling the main onshore structural forms of 

the landslide. 

 

5.1.3. Secondary landslides on the SAL 
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Fig. 3 shows the uneven distribution of the mapped features, mainly of the shallow debris 

flows and rockslides, which are found in the northern part of the SAL. The rockslides are 

limited to the pyroclastic rocks that preceed the maximum glacial period. Their head scarps 

and sliding planes are controlled by structural and lithological properties of the rocks with 

bedding planes dipping towards the south or southeast with an inclination of about 30°. Head 

scarps are usually bounded with steeply inclined (65°-85°) fractures dipping towards the SSE 

(155°) and WSW (260°). Colluvial landslides (e.g. No. 4 in Fig. 3) occur near the main 

landslide scarp or the antithetic scarps, mobilizing highly fractured and weathered rocks. In 

contrast, the distribution of deep-seated block slides is limited to well-developed gullies in the 

central part of the SAL (Fig. 3). They are detached along scarps ranging from 2 m to 100 m 

(No. 5 in Fig. 3), suggesting considerable depths of their slip surfaces. Plane surfaces 

developed below the scarps dipping slightly against the slope possibly suggest rotation and 

back tilting of the slid blocks. Nevertheless, bedding of the rock sequence clearly visible on 

the gully slopes does not confirm this assumption. Remnants of the deep-seated block slides 

(No. 6 in Fig. 3) buried by younger lava flows have a back-tilted plane surface placed exactly 

at the same altitude, as in the case of the deep-seated block slide No. 3 (Fig. 3). 

 

5.2. Structural setting of the SAL 

 

The inset in Fig. 3 also provides an overview of the structural conditions found within the 

SAL, showing two prevailing crack families both mainly dipping steeply. One group of crack 

measurements is generally dipping towards the southeast and includes only measurements 

from scarps of the SAL (a in Fig. 3), some of which do not have any associated 

morphological evidence (e.g. the suggested slip plane monitored by HIE1 inside the Tijirote 

water gallery). The second family dips generally in the opposite direction, towards the 
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northwest, and represents antithetic scarps (a in Fig. 3), with a lower dip (below 40°). A 

similar pattern was found within the measurements of fractures (b in Fig. 3). Unlike the scarp 

measurements, the minor crack families are steeply dipping toward the northeast and west-

southwest, which are not present among the fault measurements. Bedding planes (c in Fig. 3) 

dip uniformly towards the southeast, with a prevailing inclination of about 30°. 

The structural properties of the selected landforms were investigated in detail. Rock 

slides developed within pyroclastic rocks are determined by shallow-dipping bedding planes 

and a set of cracks (Fig. 3) that follow the general SAL scarp direction, dipping towards the 

southeast, or include steeply northeast- and west-dipping cracks (e.g. rock slide No. 1 in Fig. 

3). Structural measurements within the deep-seated block slide revealed discontinuities along 

where the slide detached and which correspond to the SAL scarp direction. Shallow-dipping 

cracks (block landslide in Fig. 3) with two different dip directions represent a displaced and 

disturbed rock mass within the block slide. The structural setting description was also 

confirmed by measurements along the 900 m-long Tijirote gallery. Discontinuities 

corresponding to the SAL scarp were detected along two other groups of cracks. One can be 

attributed to the antithetic scarp family while the other to the transversal cracks dipping to the 

northeast. 

 

5.3. Kinematic testing of landslide occurrence conditions 

 

Planar failure mechanism constrained by surface morphology (DEM) and spatially distributed 

structural measurements of the SAL scarps and related discontinuities (DSM) is a feasible 

only for very limited areas. They are largely contained within the three deep-seated block 

landslides identified during the field mapping (No. 1 in Fig. 5). The spatial distribution of the 

susceptible areas remains almost unchanged within the interval of 10°-25° of the applied 
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internal friction angle. When its value is increased to 40°, the susceptible area is reduced 

within the large deep-seated block failure (No. 4 in Fig. 3) with suitable conditions for the 

development of instability. 

Kinematic testing of planar failure constrained by the subaerial and submarine 

morphology of the SAL, and a theoretical basal sliding plane (dip of 6° taken from Elsworth 

and Voight, 1995) with assumed dip directions in the range of 135°-155°, did not show any 

susceptibility to landsliding when the angle of internal friction was set within the suggested 

value range of 10°-60°. Only when the angle of internal friction was reduced to less than 7° 

did a large part of the onshore as well as offshore study area become susceptible to this failure 

mechanism (No. 2 in Fig. 5). Similar results were obtained when testing the wedge failure 

mechanism defined by a hypothetical basal sliding plane and the DSM characterizing the SAL 

scarps. This failure mechanism is feasible for the majority of the study area only when 

reducing the angle of internal friction to an unrealistic value of 3° (No. 2 in Fig. 5). 

Analysis of the infill material of the potential SAL slide plane inside the Tijirote 

gallery provides only limited insight into the possible strength properties affecting landslide 

stability. It showed that the most abundant minerals of the fine-grained material mainly 

composed of silty sand with low clay content (Table 1) are clinopyroxene, plagioclase with 

minor constituents of feldespathoids, oxides, and phyllosilicates. The most abundant clay 

mineral is the highly expandable smectite, which has unfavourable properties for slope 

stability. Unfortunately, the high content of fine-grained material and the presence of smectite 

makes it impossible to reasonably estimate the internal friction angle (cf. Novotný and 

Klimeš, 2014), which could be used to better specify the possible sliding conditions in the 

kinematic analysis. 

  

5.4. Valley network analysis 
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Some 3,280 valley channels, grouped into five orders, were identified on El Hierro. Based on 

the morphology of the island and the identified drainage basins, we divided the island into 

regions for which the characteristics of the valley network were calculated separately (Fig. 6). 

Some of the four regions near the SAL have unique characteristics compared to the rest of the 

island (Table 2). The valley junction angles reached values 32% higher within the northern 

part of the SAL than any other parts of the island (SA North in Table 2). The valley network 

of SA South and Punto Limpio (Fig. 5) as well as for the rest of the island is parallel, with 

streams following the highest slopes - as commonly occurs in structurally undisturbed 

volcanic edifices (Becerril, 2014). In contrast, the Tiñor edifice shows dendritic and SA North 

rectangular valley networks, with the most frequent valley junction angles being between 80 

and 90° (76°21´ in Table 2). Dendritic valley networks are generally present in regions with 

homogenous geology and uniform relief inclination with very limited structural influences 

(Howard, 1967; Price, 1986; Husain, 2008). On the other hand, the rectangular valley network 

is evidence for the presence of structurally-induced linear features (e.g. concealed faults, 

fractures and joints), which are being followed by the streams (Howard, 1967; Gabler et al., 

2008) and often run roughly perpendicular to the highest slope direction. Furthermore, the 

valley network densities in the Tiñor edifice and SA North are extremely low, comparable 

only to the Las Playas valley basin with a value of 0.0056 m m
-2

. Low valley network 

densities are attributed to regions with increased water infiltration compared with surface 

runoff (Pradhan et al., 2009). This may possibly increase the amount of water in the bedrock, 

which creates more suitable conditions for landslide initiation due to the increased water 

pressure during magma injections. 

 

5.5. Monitored movements 
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The movements measured by the TM-71 crack gauges between February 2013 and August 

2014 are summarized in Fig. 7. Measurements from the HIE1 gauge show no movement 

during the entire monitoring period. In contrast, measurements from the HIE2 gauge show a 

total of 0.22 mm of progressive sinistral strike slip (y-axis) for the whole of the monitoring 

period. The x-axis predominately shows extensional movement, which changed to 

compression for a few months at the beginning of 2014. The z-axis (vertical component) 

shows general stability throughout the monitoring period. 

Measurements from the HIE3 gauge were taken manually for most of 2013, with an 

automated data acquisition system installed at the end of November 2013. These 

measurements show long-term sinistral strike slip movements of 1.1 mm, which ceased in 

April 2014. The x-axis shows slow extensional movement with a strong compression pulse of 

0.65 mm during December 2013. The z-axis shows slight movement of the downslope block 

in the upslope direction for most of the monitoring period. 

  

6. Discussion 

 

6.1. Recent activity and future development of the SAL 

 

No previous literature dealing with the SAL explains in detail why the originally fast-moving 

landslide (Carracedo, 2008) stopped and afterwards stood still. One hypothesis suggests that 

the landslide stopped due to the lack of pressurized water in the fault system resulting in an 

ʻabortedʼ landslide (Day et al., 1997). This theory explains the termination of one fast moving 

episode but does not explain why the already in progress, and thus weakened, landslide mass 

did not reactivate or could not reactivate into a major movement in the geological future. To 
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answer this question we summarized the new findings on results of the direct monitoring of 

the main SAL scarps and evidence from previous work: 

a) The unique morphological manifestation of the main scarp of the SAL (which is often 

referred to as the San Andrés Fault) may reflect its unique formation conditions 

controlled by landslides under creep movement activity. 

b) Structural research showed that several discontinuity sets favouring landslide 

occurrence are present within the SAL. 

c) Fragmentation of the rock mass revealed by field measurements at specific sites is 

reflected by landforms on a slope scale (e.g. scarps, antithetic scarps, trenches, gullies) 

and a valley network pattern which has unique properties compared to the rest of the 

island. 

d) There is evidence of weakened zones that possibly facilitate shear plane development 

represented by eruptive vents (Carracedo et al., 1998) or eruptive vents and fissures 

(Becerril et al., 2013a) located to the north and west, just outside the limit of the 

landslide. 

e) Over one year of direct surface monitoring, creeping on the main SAL sliding planes 

is shown. 

f) Creep movement within the SAL is also demonstrated by the clay infill of the 

potential slip plane inside the Tijirote water gallery, which may be interpreted as a 

retrogressive landslide slip plane. 

g) The morphology of the SAL offshore region is evidence of its young development 

stage (less mature), compared to other landslides on El Hierro. We also argue that the 

environmental and geological conditions remain favourable for possible future activity 

of the SAL. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

h) The landslide maintains high onshore relative relief (1000 m over a distance of 3.5 

km) while the GPS monitoring operated by the IGN determined growth of the island 

(www.ign.es; López et al., 2012). 

i) No permanent support of its toe was identified onshore, while offshore accumulation 

is partly covered by the later Las Playas debris avalanche which may provide some 

support to the distal part of the SAL accumulation. 

j) Marine abrasion and river incision act especially on its north-eastern part causing 

permanent unloading of the toe of the landslide. 

k) Possible triggers of accelerated landslide activity occur on the island, i.e. earthquakes, 

magma intrusions, opening of volcanic vents. However, others cannot be excluded 

(e.g. extreme precipitation). 

In addition to the aforementioned indirect evidence for conditions favouring continuous 

landslide development, we may use an analogy with DSGSDs where spatial and temporal 

movement patterns are better described. Many authors indicate that creep could accelerate 

into sliding (e.g. Terzaghi, 1950; Moon and Simpson, 2002; Baldi et al., 2008) and also show 

that repeating activity of DSGSDs or their parts is common in a variety of environments 

(Moro et al., 2007; Vilímek et al., 2007; Klimeš et al., 2009a; Klimeš et al., 2009b; Pánek et 

al., 2011; Crosta et al., 2004; 2014). This also includes volcanic islands where continuous 

creep or repeating sliding activity of similar landslides has been described in other works 

(Pararas-Carayannis, 2002; Seta et al., 2011; Hunt et al., 2011). All of the above-mentioned 

findings suggest continuing development of the SAL in the future. 

It is difficult to determine the magnitude of possible future movements, which may be 

represented by velocities varying from creep to sliding, affecting the entire SAL or its parts. 

Also, the possible absolute magnitudes of horizontal or vertical movements along the main 

sliding planes are very difficult to estimate. The limited historical information about 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

reactivations of similar deep-seated landslides on volcanic islands (Carvelli et al., 2000) 

shows that movements reaching only up to tens of meters may occur during a single sliding 

phase. This uncertainty about future landslide development hinders reliable assessment of 

potentially catastrophic effects induced by the landslide reactivations which may also generate 

tsunamis.  

There is a possibility that the SAL may undergo an accelerated movement phase 

affecting only part of its entire area. This suggestion is supported by a closer look at the SAL 

morphology and the possibility that the Las Playas I debris avalanche could represent a partial 

reactivation of the region, which previously formed part of the SAL. Partial reactivation of the 

SAL is further supported by our geomorphological research which identified two main parts 

of the SAL divided by a morphological line in the northwest-southeast direction (Balón 

ravine, No. 7 in Fig. 3). In general, the north-eastern part has more secondary landslides, 

scarps and antithetic scarps (Fig. 3); it is more dissected by streams which form deep gullies; 

there are abundant volcanic cones along or close to its limits; on-shore there are much steeper 

and higher slopes forming cliffs; and it is built in older rocks from the Tiñor eruptive phase. 

On the other hand, younger rocks cover the south-western part; there are less landslides and 

much less morphologically evident scarps and antithetic scarps; the morphology is mostly 

uniform with less developed gullies; and the shore is shallow and flat without cliffs. This 

suggests higher susceptibility to increased landslide activity for the north-eastern part of the 

SAL. The same conclusion can be drawn when evaluating diagnostic features suggested by 

Hürlimann et al. (2004). The north-eastern part of the SAL contains two of four such features 

(presence of deep erosive gullies and coastal cliffs) while none are present in the south-

western part. 

In addition to the morphological features, a high susceptibility to the opening of new 

eruptive vents was calculated for the area close to the north-eastern part of the SAL (Becerril 
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et al., 2013a). Such a process may cause an increase in fluid pressure and stress, which could 

be capable of triggering the sliding movement along pre-existing weakened plains (e.g. the 

possible SAL scarp inside the Tijirote gallery). Nevertheless, there is still an unanswered 

question about the intensity of the potential triggering events required to cause significant 

movement of the SAL. For example, the Las Calmas Sea submarine eruption event, 

accompanied by thousands of earthquakes with a magnitude of up to 5.1 ML, did not 

reactivate the SAL scarps nor did it cause any remarkable secondary landslides. It is also 

suggested that the occurrence of the younger El Golfo landslide did not trigger major activity 

of the SAL (Carracedo et al., 1999) despite its close proximity to the SAL scarp area. 

 

6.2. Suggested areas for future research 

 

Despite a variety of evidence suggesting that the structural conditions play an important role 

in the initiation and development of the SAL, the performed kinematic testing did not 

provided a clear answer to its role in the overall slope stability of the landslide. However, it 

did prove that a planar failure mechanism is realistic for secondary deep-seated block 

landslides. The validity of this finding for the entire SAL is difficult to judge because of the 

simplicity of the applied slope stability approach. Namely, the estimated values of angle of 

internal friction are the only parameters describing the strength of the material that is possibly 

subject to the sliding. Moreover, the SAL sliding plane located at an unspecified depth has 

unknown and probably complex shape  and there is an uncertainty in describing the structural 

settings in these depths using superficial measurements. The latter seems to be a reasonable 

approximation of the in-depth structural conditions, as shown by structures parallel to the rift 

(e.g. dykes, volcanic fissures) which cross-cut the entire subaerial part of the island 

(Carracedo et al., 2001). Assumptions about depth uniformity could only be applied to all of 
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the tested structural surfaces, planar or wedge failures, if unrealistically low (3°-7° of the 

angle of internal friction) strength parameters on the failure planes are considered. The 

properties of the infill material acquired from the potential sliding plane in the Tijirote gallery 

do not suggest such a low strength. Nevertheless, the presence of expandable clays in the 

stuffed joints and their fine-grained composition, make favourable conditions for a significant 

reduction in strength when additional destabilizing forces may act (e.g. pressurized water, 

ground acceleration during earthquakes). Therefore, a better understanding of the geometry of 

the basal sliding plane and the relevant rock strength parameters is necessary for the reliable 

quantification of the slope stability of large landslides on volcanic islands. To achieve this, 

numerical modelling and rock strength testing under representative conditions (Sassa et al., 

2014) would be necessary. Also, analogue models of the landslides may be useful for 

understanding their internal structure and possible movement mechanisms (Bozzano et al. 

2013). 

Another field of study which requires continuous attention is monitoring of the 

landslide movements. The first approach was considered by establishing the monitoring 

network using TM-71 gauges. The initial results proved the correct selection of the 

monitoring sites: none of them exhibit simple downslope gravitational movement which 

would mean that the monitoring is biased by rather shallow slope deformations affecting the 

surface measurements. The results also largely correspond to our assumptions based on the 

field observations, which suggested higher movement activity on sites HIE2 and HIE3 

compared to site HIE1, which is located on a plane with no clear morphological manifestation 

on the surface and outside the previously identified landslide limits (e.g. Day et al., 1997). 

The instrument at this location has not yet shown any movement, whereas the two other 

instruments detected sinistral movements. This movement pattern is in accordance with its 

suggested kinematics interpreted based on the morphological and slickenside analysis (Fig. 
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3). Nevertheless, one year of deformation monitoring along the sliding plane and scarps of the 

landslide is a very short period of time to make any strong conclusions, especially regarding 

long-term deformation behaviour. Only protracted monitoring would be able to clarify 

whether the detected creep is a response to the increased seismic activity following the Las 

Calmas Sea submarine eruption (2011-2012), or it represents long-term movement activity of 

the SAL. We suggest that the only reliable way for hazard assessment is simultaneous 

monitoring of the landslide movements and related geodynamical processes (e.g. earthquakes, 

surface movements, volcanic activity), which may eventually detect and explain movement 

accelerations and their possible causes. 

 

7. Conclusions 

 

Morphological and structural data of the San Andrés Landslide show unique properties on the 

island of El Hierro. The landslide is limited by very well preserved and pronounced scarps (no 

similar features have been identified on any of the other Canary Islands); the valley network 

within the SAL shows a different pattern to the rest of the island, being dissected with deep 

gullies not found outside the landslide area; and regarding its offshore body, it shows unique 

characteristics compared to other landslides on the island, as it has been previously suggested 

by other research. The evidence suggests that the north-eastern part of the landslide is more 

susceptible to future reactivations. In addition, the environmental and geological conditions 

affecting slope stability within the entire landslide (e.g. sea abrasion, repeating volcanic 

events and earthquakes, volcanic growth) favour future landslide development over its long-

term stability. The one-year direct monitoring of movements on three selected slip planes 

showed predominantly sinistral strike slip movement of up to 1.1 mm, proving the creep 

activity of the landslide. However, the monitoring period coincided with a seismo-volcanic 
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unrest that could have reactivated the sliding planes. This direct and indirect evidence 

suggests on-going development of the San Andrés Landslide, illustrating its role in the recent 

as well as future evolution of the youngest island of the Canary Archipelago. Nonetheless, a 

reliable description of the magnitude, temporal and spatial patterns of the future landslide 

development still requires further investigation, during which a long-term monitoring is the 

only reliable and applicable approach to a more precise sliding hazard assessment. The 

presented work shows that a detailed site investigation is required to acquire relevant 

information for hazard assessment (including the possibility of tsunami wave generation) of 

any large landslide on a volcanic island, especially on fast growing and high populated islands 

such as the Canaries. 
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Table 1 Basic mechanical properties of the potential slide plane infill material from the 

Tijirote water gallery. S – Sand, M – Mud, C - Clay, LL - Liquid Limit, PL - Plastic Limit, PI 

- Plasticity Index, ρs - Unit weight. 

Site 

S 

(%) 

M  

(%) 

C 

(%) 

LL 

(%) 

PL 

(%) 

PI 

ρs 

(g/m
3
) 

Tijirote gallery 24.9 62.5 12.6 28.5 20.91 7.9 2.85 

Table 2 Morphometric characteristics of the valley network around the SAL. Characteristics 

written in bold are unique within the El Hierro Island. 

Parts of 

San 

Andrés 

Valley 

order 

Number of 

valleys 

Total 

length of 

valleys [m] 

Valley 

networks´ 

density [m 

m
-2

] 

Valley 

junction 

angles 

Valley 

network 

type 

Tiñor I. order 33 33,660 0.0055 46°01´12´´ dendritic 

II. order 93 39,226.28 

III. order 80 23,750.1 

IV. order 21 3,998.36 

V. order 1 224.56 

SA North  I. order 23 27,759.4 0.0055 76°21´ rectangular 

II. order 60 22,688.76 

III. order 31 6,253.87 

IV. order 10 453.31 

V. order 1 197.16 

SA South I. order 21 33,067.56 0.0076 21°57´ parallel 

II. order 75 34,042.32 
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III. order 36 10,460.45 

IV. order 12 957.39 

V. order - - 

Punto 

Limpio 

I. order 6 6,281.73 0.0072 35°08´24´´ parallel 

II. order 22 12,806.35 

III. order 25 8,938.42 

IV. order 9 1,975.86 

V. order 1 284.01 
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Fig. 1 Generalized geological map of the island of El Hierro (data from IGME, 2008) 

showing the limits of previously identified large flank collapses: EG - El Golfo, EJ - El Julan, 

LP - Las Playas I, SA - San Andrés, also called as Las Playas II, 1 and 2 indicate the location 

of the Tijirote gallery and the Balón ravine, respectively. The inset figure shows the main 

landslide deposits on the Western Canary Islands based on Gee (2001), Carracedo et al. 

(2001),  Masson et al. (2002), Acosta et al. (2003), Hürlimann et al. (2004), Dávila et al. 

(2011), Longprè et al. (2011). TI – Tiñor, SC - Santa Cruz, CN - Cumbre Nueva, PV - Playa 

de la Veta, I – Icod, O - La Ortova, RG - Roques de García, AB - Abona, G – Güímar, OPS - 

Old post-shield, AN – Anaga, TE – Teno, ED - East Dorsal. 
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Fig. 2 Location and device characteristics of the monitored sites with the TM-71 crack gauge 

on the island of El Hierro. Photograph of the HIE1 shows the setting of the automated reading 

device installed on the TM-71 crack gauge. It consists of computer (white box on the floor), 

web cameras (on the crack gauge) and environmental monitoring station (dark box with large 

display on the PC, measuring air temperature/pressure and humidity). Electricity is supplied 

by car battery. 
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Fig. 3 Landslide inventory map with topographic profile traces (simplified geology is shown 

on colour figure only, for its legend see Fig. 1). 1 gully, 2 - trench below main scarp of the 

SAL, 3 - Port of Estaca, 4 - colluvial landslide, 5 - deep-seated block slide, 6 - suggested 

deep-seated block slide, 7 - Balón ravine. Contour lines below sea level have an interval of 

100 m. The spatial distribution of structural measurements within specific landforms inside 

the SAL is shown on the inset images. N - number of measurements shown, ʻLandslideʼ - 

shows detailed measurements inside the body of deep-seated block slide, ʻTijirote galleryʼ - 

shows structural measurements inside the gallery, ʻRock slideʼ - measurements mainly from 

the scarp area of larger and deeper landslide which involved pyroclastics. Inset figure entitled 

ʻMeasured Structuresʼ shows all structural measurements within the SAL classified into three 
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classes: a - SAL scarps planes, b - fractures, c - bedding planes, which represent surfaces sub-

parallel with the slope surface with a variety of origin. 

 

Fig. 4 Topographic profiles where different morphological features such as scarps, antithetic 

scarps, shallow inclined planes or trenches, related to the SAL are shown. Traces of the 

topographic profiles are shown in Fig. 3. 

 

Fig. 5 Results of regional kinematic testing of landslide occurrence conditions on the 

subaerial part of the SAL (black solid line) showing areas susceptible to sliding under two 

specified conditions: 1 - areas susceptible to planar failure constrained by spatially distributed 

structural measurements (DSM) of the SAL slip planes and recent DEM with angle of internal 

friction ranging from 0° to 25°. 2 - areas susceptible to planar or wedge failure mechanism on 

the hypothetical basal sliding plane with angle of internal friction lower than 7°. Contours of 

the secondary landslides are shown for reference. 
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Fig. 6 Valley network up to V order. Inset shows division of the island into separate areas 

where valley network was characterized (W – West, EG - El Golfo, EJ - El Julan, CR - 

Central Rift, LP - Las Playas, P - Punto Limpio, T – Tiñor, SA-S - San Andrés South, SA-N - 

San Andrés North.  
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Fig. 7 Results of the TM-71 crack gauge monitoring. HIE1 does not show movements at all 

during the monitoring period unlike HIE2 and HIE3. Horizontal movements (x and y) 

dominate over vertical displacements. Positive x values show compression, positive y values 

indicate sinistral strike slip, and positive z values represent movements of the downslope 

block in the upslope direction. 
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Highlights: 

 A long-term, automated landslide movement monitoring system was installed 

 A year-long monitoring shows creep activity on the landslide scarps 

 Environmental conditions remain favourable for possible future landslide activity 

 Morphological evidence suggests that the landslide has recently developed 

 The newly obtained data suggest possible future movement at accelerated velocities 


