Platinum-Group Element Abundances in Pyrite from the Main Sulfide Zone, Great Dyke, Zimbabwe

Rubén Piña
Dpto. Cristalografía y Mineralogía, Fac. Ciencias Geológicas, Universidad Complutense de Madrid, Spain

Fernando Gervilla
Dpto. Mineralogía y Petrología and Instituto Andaluz de Ciencias de la Tierra, Fac. Ciencias, Universidad de Granada-CSIC, Granada, Spain

Sarah-Jane Barnes
Sciences de la Terre, Université du Québec à Chicoutimi, Canada

Thomas Oberthür
Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

Rosario Lunar
Dpto. Cristalografía y Mineralogía, Fac. Ciencias Geológicas, Universidad Complutense de Madrid, and Instituto de Geociencias IGEO (UCM-CSIC), Madrid, Spain

Abstract. The Main Sulfide Zone (MSZ) of the Great Dyke of Zimbabwe hosts the world’s second largest reserve of platinum-group elements (PGE). It comprises a sulfide assemblage made up of pyrrhotite, pentlandite, chalcopyrite and minor pyrite. Several studies have highlighted that pyrite can be an important carrier of PGE and therefore, we have measured PGE and other trace element abundances in pyrite of the MSZ from the Hartley, Ngezi, Unki and Mimosa mines by LA-ICP-MS. Pyrite occurs as individual euhedral or subhedral grains or clusters of crystals mostly within chalcopyrite and pentlandite (occasionally in form of symplectic intergrowths) and is generally absent within pyrrhotite. At Hartley and Ngezi, pyrite contains higher Os, Ir, Ru, Rh and Pt contents than co-existing pyrrhotite, pentlandite and chalcopyrite from the same sulfide aggregate. In contrast, at Mimosa and Unki, PGE values in pyrite are low and similar to coexisting sulfides. Pentlandite is always the main sulfide carrying Pd. Although the origin of pyrite in this type of mineralization is commonly attributed to the activity of hydrothermal fluids, we suggest that pyrite may have formed by late, low temperature (< 300ºC) decomposition of residual Ni-rich mss.

Keywords. Pyrite, sulfides, platinum-group elements, LA-ICP-MS, Great Dyke, Zimbabwe

1 Introduction

Pyrite is a relatively minor sulfide in Ni-Cu-PGE magmatic sulfide deposits, however its origin is poorly understood. Experimental studies show that pyrite may form by decomposition of S-rich monosulfide solid solution (mss) at temperatures below 700°C (Naldrett et al. 1967; Craig 1973). However, this process does not seem to be common because most natural sulfide melts do not contain the required amount of sulfur. Alternatively, it has been proposed that pyrite forms as result of partial to total replacement of pre-existing sulfides (mainly, pyrrhotite) due to the activity of late magmatic, hydrothermal and/or metamorphic fluids (e.g., Djon and Barnes 2012; Piña et al. 2013; Smith et al. 2014; Holwell et al. 2014; Vukmanovic et al. 2014).

Recently, several studies indicate that pyrite from Ni-Cu-(PGE) magmatic sulfide deposits can host significant amounts of PGE (e.g., Oberthür et al. 1997; Dare et al. 2011; Djon and Barnes 2012; Piña et al. 2013; Smith et al. 2014). These studies show that pyrite contains similar amounts of Os, Ir, Ru and Rh to coexisting pyrrhotite and pentlandite, and is the only base metal sulfide hosting significant amounts of Pt. Detection of trace amounts of Pt in pyrite is especially relevant because Pt is typically not present in the other base metal sulfides but occurs as discrete platinum-group minerals (PGM, e.g., sperrylite PtAs2).

In this contribution, we report new PGE, Au, Ag, Co, Se, As, Te, Bi and Sb abundances in pyrite from the Main Sulfide Zone in four mines of the Great Dyke of Zimbabwe. In addition to assessing the role of pyrite as carrier of PGE in this mineralization, we use trace element contents and textures of pyrite to discuss the possible mechanisms involving in its formation.

2 Pyrite from the Great Dyke of Zimbabwe

The Great Dyke of Zimbabwe (2575 ± 0.7 Ma, Oberthür et al. 2002) represents the world’s second largest reserve of PGE after Bushveld Complex in South Africa (Oberthür 2011). It is a 550 km long and 4 to 11 km wide, linear, mafic and ultramafic layered intrusion emplaced into Archean granites and greenstone belts of the Zimbabwe craton. The Great Dyke shows a well-defined igneous stratigraphy divided into a lower Ultramafic Sequence (dunite, harzburgite and pyroxenite) and an upper Mafic Sequence (gabbro and norite) (Wilson and Prendergast 1989). The economic PGE mineralization is restricted to disseminations of intercumulus sulfides (from 0.1 to 10 vol. %) in the several meters-thick Main Sulfide Zone (MSZ) situated in pyroxenites some meters below the transition from the Ultramafic to the Mafic Sequence. Based on the degree of sulfide mineralization and PGE ratios, the MSZ is
divided in a basal PGE-rich subzone that slightly overlaps with an overlying base metal sulfide (BMS)-rich subzone.

Pyrite mainly occurs in the upper part of the PGE-rich subzone and in the BMS-rich subzone of the MSZ. Sulfides occur as disseminations of polymineritic aggregates interstitial to silicates. These aggregates are made up of pyrrhotite, equal amounts of pentlandite and chalcopyrite and minor pyrite. Pentlandite mostly forms coarse grains and minor flame-shaped exsolution lamellae in pyrrhotite, and chalcopyrite typically occurs along the peripheries of sulfide aggregates or as isolated monomineralic grains. According to Oberthür (2011), the presence of pyrite indicates increasing f_{O_2} up sequence in the MSZ.

2.1 Pyrite textures

The studied samples come from the Hartley, Ngezi, Unki and Mimosa mines (located from north to south along the Great Dyke). Samples are located just above the Pt-peak of the MSZ. At Unki and Mimosa, pyrite forms clusters of small individual euhedral to subhedral crystals within chalcopyrite, pentlandite and, to a lesser extent, pyrrhotite (Fig. 1a). At Hartley and Ngezi, pyrite forms small individual grains within pentlandite and chalcopyrite (Fig. 1b). Locally, these grains appear to have coalesced during growth, resulting in poikiloblastic aggregates that enclose chalcopyrite and pentlandite grains. Some pyrite grains seem to form symplectic intergrowths with chalcopyrite and pentlandite (Fig. 1c).

2.2 PGE and other trace element abundances

Trace elements (PGE, Au, Ag, Re, Co, Se, As, Te, Bi and Sb) were determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at LabMaTer, Université du Québec à Chicoutimi (UQAC), Canada, using a Resonetics Resolution 193 nm Excimer laser with a M-50 ablation cell and an Agilent 7,700x quadrupole mass spectrometer, and following the analytical protocol of Piña et al. (2013).

There are notable differences between trace element abundances of pyrite from Hartley and Ngezi mines (located in the North Chamber of the Great Dyke) and pyrite from Mimosa and Unki mines (located in the South Chamber) (Fig. 2). At Hartley and Ngezi, pyrite is relatively rich in PGE with contents ranging from 0.3 to 99 ppm Pt, 0.7 to 61.1 ppm Rh (both Pt and Rh contents are typically > 10 ppm), 1.2 to 47.1 ppm Ru, 0.1 to 7.8 ppm Os and 1.0 to 20.2 ppm Ir. These values are higher than those in co-existing pyrrhotite, pentlandite and chalcopyrite (Fig. 2a). PGE abundances in pyrite from Hartley and Ngezi mines are in agreement with previous contents reported by Oberthür et al. (1997) from the Hartley mine using micro-pixe (40 ppm Ru, 10 ppm Rh, 9 ppm Pd and 233 ppm Pt on average). At Mimosa and Unki mines, PGE concentrations in pyrite are low (< 0.11 ppm Pt, < 0.34 ppm Rh, < 2.5 ppm Ru, < 0.37 ppm Ir and < 0.40 ppm Os) and similar to those in pyrrhotite and pentlandite (Fig. 2b). Palladium in pyrite is commonly below 2 ppm in all studied mines except in one sample from Ngezi which contained up to 60.4 ppm Pd. Osmium, Ir, Ru, Rh and Pt are positively correlated each other, whereas Pd poorly correlates with all other PGE. In contrast to the PGE, Au, Te, Ag, Sb and Bi contents are higher in pyrite from Mimosa and Unki than in pyrite from Hartley and Ngezi (Fig. 2). Gold is positively correlated with Te and Bi. In the pyrite samples from Hartley and Ngezi, Pt correlates with Au.

Figure 1. Representative photomicrographs in reflected-light, showing pyrite from the Mimosa (a), Ngezi (b) and Hartley (c) mines. Pyrite (Py) occurs mostly within pentlandite (Pn) and chalcopyrite (Cpy) and not within pyrrhotite (Po).

Trace element distribution between co-existing pyrrhotite, pentlandite, chalcopyrite and pyrite in a single polymineritic aggregate from Ngezi mine is shown in Figure 3. Platinum, Os, Ir, Ru, Rh, Co, Se and Bi are preferentially concentrated in pyrite (as also indicated by the primitive mantle-normalized profiles of Figure 2), whereas Pd prefers pentlandite.
The studied samples come from the Hartley, Ngezi, Unki, and Mimosa mines. Pyrite textures observed in the samples from Hartley and Ngezi mines are quite similar to those described for pyrites from the Keivitsansarvi Ni-Cu-PGE sulfide deposit in northern Finland (Gervilla and Kojonen 2002), from orogenic peridotites of the French Pyrenees (Lorand and Alard 2011) and from the UG-2 reef in the Bushveld Complex, South Africa (Naldrett et al. 2009). In all these cases, pyrite mainly occurs associated with pentlandite and/or chalcopyrite forming locally fine symplectitic intergrowths. Experimental studies in the system Fe-Ni-S (Craig 1973; Misra and Kojonen 2002), from orogenic peridotites of the French Pyrenees (Lorand and Alard 2011) and from the UG-2 reef in the Bushveld Complex, South Africa (Naldrett et al. 2009) indicate that loss of Fe to the chromite from sulfides on cooling, accompanied by significant rise in $\delta^{53}C$, caused the formation of pyrite-pentlandite assemblages by decomposition of Ni-rich mss at temperatures below 300-250°C. At Keivitsansarvi, the reaction of Fe-rich vaesite (NiS$_2$) with the coexisting mss on cooling gave rise to a mss richer in Ni from which pyrite and pentlandite ultimately formed. In contrast,
Lorand and Alard (2011) suggest that the formation of pyrite intergrowth with pentlandite and chalcopyrite was due to subsolidus sulfurization processes that increased the f_S of the system. They suggest that pentlandite may be first sulfurized into mss at temperatures above 300°C and then the mss broke down into pentlandite + pyrite symplectites upon cooling below 300°C.

It is suggested here that in the MSZ, pyrite may form during low-temperature equilibration of Ni-rich mss coexisting with intermediate solid solution (iss). Pentlandite composition is closely related to sulfides with which the pentlandite is associated. The tentative <135ºC Fe-Ni-S phase diagram indicates that pentlandite is associated with which the pentlandite is associated. The tentative <135ºC Fe-Ni-S phase diagram indicates that pentlandite is associated.

3.2 Pyrite as sulfide hosting PGE

Previous studies have indicated that most Pd and Rh are hosted in pentlandite, whereas Pt is dominantly present in form of PGM in the MSZ (Oberthür et al. 2003). Our results indicate that among all base metal sulfides, pyrite is individually the sulfide phase hosting the highest contents of PGE (with the exception of Pd that is preferentially concentrated in pentlandite). Mass balance calculation to determine the percentage of each PGE present in each sulfide has not been carried out to date and, thus, the importance of pyrite as carrier of PGE in the mineralization is not quantified. Nevertheless, since most of PGE appear show higher preference for pyrite when present (Fig. 3), we envisage that pyrite may account for significant amounts of PGE (particularly, Rh and Pt) in those zones with the highest modal abundances of pyrite.

Acknowledgements

We would like to thank Dany Savard and Sadia Mehdi for their assistance during the laser ablation analyses. The research work was financed by the Spanish research project CGL2010-17668, the Canada Research Chair in Magmatic Metallogeny and the German Federal Institute for Geosciences and Natural Resources (BGR).

References

Djorn MLY, Barnes S-J (2012) Changes in sulfides and platinum-group minerals with the degree of alteration in the Røby, Twilight, and High Grade Zone of the Lac des Iles Complex, Ontario, Canada. Miner Deposita 47:875-896

Misra KC, Fleet ME (1973) The chemical composition of synthetic and natural pentlandite assemblages. Econ Geol 68:518-539

