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Abstract— In this paper, a two-layer scheduling scheme
for pump stations in a water distribution network has been
proposed. The upper layer, which works in one-hour sam-
pling time, uses Model Predictive Control (MPC) to produce
continuous flow set-points for the lower layer. While in the
lower layer, a scheduling algorithm has been used to translate
the continuous flow set-points to a discrete (ON-OFF) control
operation sequence of the pump stations with the constraints
that pump stations should draw the same amount of water
as the continuous flow set-points provided by the upper layer.
The tuning parameters of such algorithm are the lower layer
control sampling period and the number of parallel pumps in
the pump station. The proposed method has been tested in the
Richmond case study.

I. INTRODUCTION

In conventional water distribution systems, pumping water
comprises the major fraction of the total energy budget. In
practice, the operation of a pump station is simply a set of
rules or a schedule that indicates when a particular pump
or group of pumps should be turned on or off. The optimal
policy will result in the lowest operating cost and highest
efficiency of pump station [1].

Optimal pump scheduling policies will indeed decrease
economic consumption of the whole flow systems. But,
the dynamical and mixed-integer nature associated to the
optimization of scheduling pump stations increases the com-
plexity of the optimal control problem of water networks [2].
Some typical mixed-integer linear programming or dynamic
programming-based algorithms are not applicable because of
high computation load, being infeasible or may be not being
efficient enough for large water networks [2][3].

MPC is a well-established class of advanced control meth-
ods [4][5] and is used for the control of distribution water
networks [6][7] as it can compute advanced control strategies
(e.g. to minimize energy cost) while guaranteeing certain
quality of service and satisfying the operating constraints
of the plant. MPC can handle large scale systems with
operational constraints in states and inputs, multiple objec-
tives and is flexible to extensions. However, the inclusion of
discrete ON-OFF operation of pumps would lead to an hybrid
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MPC problem that would probably involve computational
problems in case of large scale water networks.

The main contribution of this paper is to propose a two-
layer control scheme for optimizing the scheduling of pump
stations, avoiding mixed-integer optimization problems. At
the upper layer, MPC is used to optimize the continuous
flow model and then, at the lower layer, scheduling al-
gorithm translates the continuous flow set-points into ON-
OFF control operation sequences of the pumps. MATLAB
and EPANET have been used to simulate and validate the
proposed approach in the Richmond network case study [8].

This paper is organized as follows. Section II provides
the control oriented modelling methodology for water distri-
bution systems. Section III presents the MPC mixed-integer
optimization problem for the scheduling of pump stations.
Section IV provides the two-layer control scheme and de-
scribes the two layers individually. Section V provides the
scheduling algorithm details with its tuning parameters. In
Section VI, complexity analysis of this algorithm is provided.
Then, in Section VII, the considered case study (Richmond
Water Network) and the application results of the proposed
methods are described and finally, the main conclusions are
presented in Section VIII.

II. CONTROL-ORIENTED MODELLING
METHODOLOGY

A control-oriented modelling approach is outlined for the
upper layer, which follows the principles presented in [9],
[7] and [10]. The extension to include the pressure-model
can be found in references provided by [2] and [11].

A. Tanks and Reservoirs.

Water tanks and reservoirs provide the entire network with
the water storage capacity. The mass balance expression of
these storage elements can be written as the discrete-time
difference equation

vi(k + 1) = vi(k) + ∆t

∑
j

qu j (k) −
∑

l

qul (k)

 , (1)

where v is the stored volume, qu j are the manipulated inflows
and qul are the manipulated outflows for the ith storage
element, ∆t is the sampling time and k denotes the discrete-
time instant. The physical constraint related to the range of
admissible water in the ith storage element is expressed as

vi ≤ vi(k) ≤ vi, for all k, (2)

where vi and vi denote the minimum and the maximum
admissible storage capacity, respectively.



B. Actuators.

Two types of control actuators are considered: valves
and pumps (more precisely, complex pumping stations).
The manipulated flows through the actuators represent the
manipulated variables, denoted as qu. Both pumps and valves
have lower and upper physical limits as system constraints.
In (2), they are expressed as bound constraints

qui
≤ qui(k) ≤ qui, for all k, (3)

where qui
and qui denote the minimum and the maximum

flow capacity, respectively.

C. Nodes.

The nodes represent mass balance relations of inflows and
outflows (e.g., because of a pipe junction).∑

j

qu j (k) =
∑

h

quh (k). (4)

We define an incidence matrix Λc for junction nodes in
order to write equation (4) in matrix form, where the element
in the ith column and jth row of junction nodes incidence
matrix Λc is defined as:

ai j =


1 if flow of branch i enters node j
0 if branch i and node j are not connected
−1 if flow of branch i leaves node j

(5)

Assuming one network has nc static nodes and nb

branches, thus, this matrix has nc rows and nb columns.
A matrix form of equation (4) is as follows:

Λcqu(k) = d(k) (6)

where qu = (qu1 , . . . , qunb
)T is a vector of branch flows, d de-

notes an augmented demand vector where zero components
to nodes without demand associated with.

D. Demand Sectors.

Demand and irrigation sector represents the water demand
made by the network users of a certain physical area. The
demand forecasting algorithm, that runs in parallel with
the control algorithm, typically uses a two-level scheme
composed by (i) a time-series model to represent the daily
aggregate flow values, and (ii) a set of different daily flow
demand patterns according to the day type to cater for
different consumption during the weekends and holidays
periods as provided by [12].

E. Network control oriented model

Finally, using the models of the different elements of the
water network presented above, the following linear discrete-
time control oriented model can be obtained taking into
account the network topology and parameters:

x(k + 1) = Ax(k) + Bu(k) (7a)
y(k) = Cx(k) (7b)

Λcu(k) = d(k) (7c)

where x(k) ∈ Rnx is state vector that corresponds with the
tank volumes and u(k) ∈ Rnu is vector of command variables
that correspond with the valve/pump flow set-points, while
y(k) ∈ Rny is vector of the measured output that correspond
with the tank levels.

III. PROBLEM PRESENTATION

Let us consider that the pump scheduling time horizon
[t0, t f ] can be split into K time steps with ∆tk length each,
where ∆tk = tk − tk−1; k = 1, ...,K, t f = tk. This results in
timing of the scheduling problem which is determined by
the intervention time instants t0, t1, ..., tk, ..., t f . Naturally, the
system control vector, p(k), represents status of pumps (ON-
OFF) in each of these time stages [2].

The pump scheduling problem (PSP) for a given time
horizon can be formulated as follows:

min
p,∆tk

K∑
k=1

α(k) ũ(k) p(k) ∆tk (8a)

s.t. x(k) = Ax(k) + Bũ(k), k = 1, · · · ,K
x(0) = x0, k = 1, · · · ,K (8b)
Λcũ(k) = d(k) (8c)
xmin ≤ x(k) ≤ xmax, k = 1, · · · ,K
ũmin ≤ ũ(k) ≤ ũmax, k = 1, · · · ,K
p(k) ∈ {0, 1}, k = 1, · · · ,K

where ũ(k) is the nominal pump flows (when the pump is
ON) and α(k) is the unitary electrical costs for the k time
stage, x(k) represents the continuous tank volumes, and the
system operating cost associated to pumping.

The PSP is solved by selecting a proper ∆tk according to
pump operatinal constraints and pump control sequence p
that requires minimal economic pumping cost while satisfy-
ing flow or volume requirements induced by the demands.
The small value of ∆tk and the complex topology and
number pumps could consequently increase the computation
load. The mixture of discrete control parameters (ON-OFF
pump schedule) together with the continuous dynamics of
tank volumes makes PSP problem a complex mixed-integer
optimization problem [2].

For this complex mixed-integer problem, the method of
conversion of the mixed-integer problem into the continuous
one by switching times as the control variables is indeed
useful, but the solution is obtained at the expense of an
increased number of decision variables, whose applicability
is limited to rather small networks due to poor robustness
with respect to numerical errors [2]. This paper will derive
an efficient alternative approach which separates the mixed-
integer problem into individual continuous and discrete prob-
lems by decomposition of the scheduling problem into a two-
layer control scheme, as Fig. 1 shows.

IV. PRESENTATION OF THE TWO-LAYER CONTROL
SCHEME

As shown in Fig. 2, the proposed control scheme includes
two layers. The upper layer is the continuous MPC model



Fig. 1: Presentation of the proposed approach

that produces continuous pump flow set-points. Sampling
time in the upper layer is one hour and every pump station
is simplified into a controlled flow u(k) and cost (electricity
price) model α(k). The lower layer is the scheduling algo-
rithm, who works in ∆tk (smaller than one hour) sampling
time, is responsible of translating the continuous flow set-
points into discrete ON-OFF actions to be executed by
the pumps. The resulting pump schedule is simulated by
EPANET before being sent to real pumps in the network.

Fig. 2: Two-layer Control Scheme

A. Optimizing Flow at the Upper layer

MPC is used to produce optimal continuous set-points
pump flows for being scheduled in the lower layer. The
extension to include non-linear pressure model is researched
in parallel in [13], which uses CSP (Constraints Satisfaction
Problem) to transfer the non-linear MPC into linear ones
with added constraints.

The upper layer MPC problem is based on a linear
discrete-time prediction model obtained applying the control
oriented methodology introduced in Section II considering
the network topology and parameters:

min
(u(0|k),··· ,u(Hp−1 |k))

J(k) (9a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i = 1, · · · ,Hp

x(0|k) = xk (9b)
Λcu(i|k) = d (9c)
xmin ≤ x(i|k) ≤ xmax, i = 1, · · · ,Hp

umin ≤ u(i|k) ≤ umax, i = 0, · · · ,Hp−1

As described above J is a performance index, representing
operational goals of the system, Hp is the prediction horizon,
x(0) is the initial condition of the state vector, xmin and xmax

are minimal and maximal capacities of tanks, while umin and
umax are known vectors defining the saturation constraints on
inputs variables. Problem (9a) can be recast as a Quadratic
Programming (QP) problem, whose solution:

U∗(k) , [u∗(0|k) · · · u∗(Hp − 1|k)]T ∈ RHpm×1 (10)

is a sequence of optimal control inputs that generates an ad-
missible state sequence. Only the first optimal move u∗(0|k)
of the optimal sequence U∗(k) is applied to the optimal
process and the optimization is repeated at time k + 1.

1) Operational Goals: The water distribution network is
operated with a 24-hour horizon, at hourly time interval. The
main operational goals to be achieved are:

• Cost reduction (Jcost): Minimize water cost during water
supplying process, which includes operating cost of the
pump station and also water source cost.

• Operational safety (Jsa f ety): Maintain appropriate water
storage levels in dams and reservoirs of the network for
emergency-handling situations.

• Control actions smoothness (Jsmoothness): Smooth flow
set-point variations for sustainable process operation.

Above mentioned goals lead to the following function:

J = Jsa f ety + Jsmothness + Jcost

= εx̃(k)>Wx̃εx̃(k) + ∆ũ(k)>Wũ∆ũ(k)
+ Wa(a1 + a2(k))̃u(k)

(11)

where

εx̃(k) = x̃(k) − x̃r

ũ = Θ∆ũ + Πũ(k − 1)
∆ũ(k) = ũ(k) − ũ(k − 1)

Θ =


Imi 0 . . . 0
Imi Imi . . . 0
...

...
. . .

...
Imi Imi . . . Imi

 , Π =


Imi

Imi

...
Imi

 .
and Wx̃, Wũ, Wa are also related weights.

The vectors a1 and a2 contain the cost of water treatment
and pumping price, respectively and x̃r is the penalty level
for emergency-handling in reservoirs of the network.

2) Formulation of the optimization problem: The objec-
tive functions (11) of the MPC problem can be formulated
in the following way:

J = zT Φz + φT z + c (12)

where
z = [∆ũ εx̃ ε]T (13)

and c is a constant value.



This allows to determine optimal control actions at each
instant k by solving a quadratic optimization problem by
means of quadratic programming (QP) algorithm in form as:

min
z

z>Φx + φ>z

A1z ≤ b1

A2z = b2

B. Pump scheduling of the Lower layer

Denoting ĉ as the optimal flow set-points produced by the
upper layer MPC controller during the time period [t0, t f ],
the total water volume pumped during this period is

Vĉ = ĉ (t f − t0) (14)

As explained in Section II, the scheduling algorithm will
split the time period [t0, t f ] into K time steps with ∆tk step
length. Let us denote p as the vector which contains the
discrete ON (p(i) = 1) and OFF (p(i) = 0) pump control
actions [14] and ũ(t) as its nominal pump flow (that is when
the pump is ON). Then, the total water volume drawn by
these pump control actions during [t0, t f ] is

Vt(p(1), · · · , p(K)) =

K∑
i=1

p(i)
∫ ti

ti−1

ũ(t) dt (15)

The goal of the scheduling algorithm is to minimize the
difference between Vĉ and Vt in (14) and (15). Since this
difference could not completely be eliminated, the scheduling
algorithm should find a scheduling sequence such that the
following control objective is minimized

Jdis = Vt − Vĉ (16)

V. FACTORS AFFECT SCHEDULING ALGORITHMS
There are two parameters which can affect accuracy of the

scheduling algorithm as described in previous section
• time interval (∆tk)
• number of units in the pump configuration

A. Time interval

In order to guarantee that the pump station configuration
can meet the pump flow set-points provided by the upper
layer, the sampling time can be selected to reduce the error
introduced in (16).

Assuming ∆tk is small enough in order to accurately
compute the term

∫ ti
ti−1

ũ(t) dt in (15) as u∗(k) ∆tk, where u∗(k)
is the nominal pump flow in time stage [tk−1, tk], the equation
(15) can be rewritten as:

Vt(p(1), · · · , p(K)) =

K∑
i=1

p(i)
∫ ti

ti−1

ũ(t) dt �
K∑

i=1

p(i)u∗(k) ∆tk

(17)
Consequently, the accuracy of scheduling algorithm ac-

cording to (16) can be calculated as follows:

Jdis = min(Vt −Vĉ) � min(
K∑

i=1

p(i)u∗(k) ∆ti − ĉ (t f − t0)) (18)

In practice, Jdis is affected by ∆tk, the smaller ∆tk is,
the smaller will be (18). However, the value of ∆tk is
limited by technological constraints imposed by the pumps.
Pump scheduling algorithm with ∆tk works as presented in
Algorithm 1.

Algorithm 1 Scheduling algorithm for one pump
1: popt = [p(1), p(2), ..., p(K)]
2: p(1) = 1
3: for i := 2 to K do
4: p(i) = 0
5: end for
6: for i := 2 to K do
7: Get Jdis using Equation (18)
8: if Jdis < 0 then
9: p(i) = 1

10: end if
11: end for

In this algorithm, popt is the optimal working schedule for
the pump, and Jdis is the optimal scheduling accuracy.

B. Parallel pump configuration
If a single pump cannot meet the pump flow set-points

determined in the upper layer, additional units in the pump
station should be activated.

Assuming n − 1 supplementary units are available at the
pump station in order to minimize (16):

Vĉ ≤ V1t + V2t + ... + Vn (19)

Then, scheduling accuracy of (18) could be evaluated as
follows

Jdis = min(V1t + V2t + ... + Vn − Vĉ)

�min(
n∑
1

K∑
i=1

p(i)u∗(k) ∆tk − ĉ (t f − t0))
(20)

where n means the number of parallel units in the pump
station which is another factor that could be used to increase
the schedule accuracy: the bigger n is, the more degrees of
freedom and the higher accuracy could be achieved by means
of the scheduling algorithm.

Algorithm 2 presents the extension of Algorithm 1 to n
parallel units of the pump station.

The values of pn
opt are the optimal schedules of the

parallel pumps, Jdis is the optimal scheduling accuracy.

VI. COMPLEXITY
Regarding complexity, computation load of the scheduling

Algorithm 1 is K, where K =
t f− f0
∆tk

. This means that, ∆tk can
affect computation load of the algorithm since more compu-
tations will be added with a smaller ∆tk, and consequently
decreased with a bigger ∆tk. The same reasoning can be used
in case of Algorithm 2, where the computation load is Kn and
the computation load is increased when the number of units
n in parallel. Because of that, although smaller time interval
and more parallel pumps can increase scheduling accuracy,
more computation load is needed. Therefore, it is important
to choose proper ∆tk and n even that establishes a trade-off

between accuracy and computation load.



Algorithm 2 Scheduling algorithm for parallel pumps
1: ms = 1
2: n = 1
3: while ms = 1 do
4: ms = 0
5: pn

opt = [pn(1), pn(2), ..., pn(K)]
6: pn(1) = 1
7: for i := 2 to K do
8: pn(i) = 0
9: end for

10: for in := 2 to K do
11: Get Jdis using Equation (20)
12: if Jdis < 0 then
13: pn(in) = 1
14: end if
15: if in = K and Jdis < 0 then
16: n = n + 1
17: ms = 1
18: end if
19: end for
20: end while

VII. CASE STUDY

The case study used to test the proposed approaches is the
Richmond water distribution system [15]. Fig. 3 shows the
conceptual diagram of Richmond network. A MPC controller
at the upper layer is used to produce the pump flow set-
points, while the pump scheduling algorithm described in
Section IV-B is used to transfer the continuous flow set-
points into discrete ON-OFF operations of the pump.

The MPC controller and the pump scheduling algorithm
are implemented into MATLAB, while the simulation of
the Richmond network is realized using EPANET, which
simulates the water network using a discretization time step
∆tk to realize operations of the scheduling algorithm.

Fig. 3: The Richmond water distribution system

A. Results for the upper layer MPC controller

As described in Section IV-A, the objective function of the
upper layer MPC controller leads to minimize the electrical
pumping cost. Fig. 4 shows pump flow together with its
electricity fee. From this figure, it is confirmed that pump
send more water at its lower price period but less or no

water at the higher price period, which is consistent with
cost term in the objective function.

Fig. 4: Pump flow with electricity price

B. Results for the lower layer scheduling algorithm

After applying scheduling algorithm, continuous optimal
flow will be scheduled into discrete pump actions. Figure 5
shows in detail the pump actions of Pump4B after using the
scheduling algorithm.

Fig. 5: Optimal Schedule for Pump4B with two pump branches

C. Scheduling Results using Different ∆tk
As analyzed in Section IV, time interval ∆tk can affect

accuracy of scheduling algorithm. Take pump4B as an ex-
ample. In this case, the sampling time at the upper layer that
determines t f−t0 is equal with 1 hour while the sampling time
at the lower layer will be changed from one minute to two
minutes to see the effect in the scheduling algorithm result.
∆tk will use 1 minute and 2 minute two different values.
Scheduling accuracies for these two different sampling times
at lower layer are plotted in Fig. 6, which proves that, the
smaller time interval can lead to higher scheduling accuracy.

Accuracy comparisons are provided in detail in Table I,
which shows that, the scheduling accuracy when lower layer
sampling time ∆tk is 1 minute results in 0.64%, which is
much smaller than that of 1.71% when ∆tk is 2 minutes.



Fig. 6: Flow errors in different time intervals

TABLE I: Accuracy Comparison
Sc. With 2-minute Time Interval
Es. Optimal flow Simulated flow Flow Errors Errors in Prop.
T. 332.4045 326.7351 5.6694 1.71%
Sc. With 1-minute Time Interval
Es. Optimal flow Simulated flow Flow Errors Errors in Prop.
T. 329.6 327.4818 2.1182 0.64%

D. Scheduling Results for Different Pump Configurations

Number of parallel pump branches can also affect schedul-
ing accuracy, since the bigger the number is, the higher the
accuracy is. Considering t f − t0 of pump4B as 1 hour, ∆tk as
1 minute cases with single pump4B and two paralleled pump
pump4B are simulated. Their accuracies are provided in Fig.
7.

Fig. 7: Flow errors in different parallel when ∆tk = 1

Accuracy comparisons are provided in detail in Table II,
which shows that, the scheduling accuracy at the paralleled
pump station is nearly 100% and much higher than that at
the single pump.

TABLE II: Accuracy Comparison
Sc. With Single Pump
Es. Optimal flow Simulated flow Flow Errors Errors in Prop.
T. 526.7603 521.3726 5.3877 1.02%
Sc. With 2 Pumps in Parallel
Es. Optimal flow Simulated flow Flow Errors Errors in Prop.
T. 518.1651 518.0742 0.0909 0.01%

VIII. CONCLUSION
This paper has proposed a two-layer control scheme for

scheduling pump stations in water distribution networks in
order to solve the mixed-integer optimization problem. The
upper layer, who works in one-hour sampling time, uses a
MPC strategy to optimize continuous flow model to produce
set-point pump flows for the lower layer. While in the lower
layer, a scheduling algorithm is used to translate the optimal
continuous set-points flow into ON-OFF pump operations.
The effect of tuning parameters (sampling time and pump
configurations) of the scheduling algorithm is compromised
chose in reality according to scheduling accuracy and com-
putation load.
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