The DCR Protein TTC3 Affects Differentiation and Golgi Compactness in Neurons through Specific Actin-Regulating Pathways

Gaia Elena Berto1*, Cristina Iobbi1, Paola Camera1, Elena Scarpa1, Corinne Iampietro1, Federico Bianchi1, Marta Gai1, Francesco Sgro1, Flavio Cristofani1, Annette Gärtner2, Carlos G. Dotti2,3, Ferdinando Di Cunto1*

1 Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy, 2 VIB Center for the Biology of Disease – VIB, Leuven, Belgium, 3 Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain

Abstract

In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and Pila. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.

Introduction

Neuronal cells are characterized by a high degree of morphological and functional polarization, which is required for their activity as information processors and is progressively established during development [1–3]. Neuronal polarization, occurring during the earliest stages of differentiation, is driven by the interaction of cell-extrinsic and cell-intrinsic mechanisms, impinging on growth cone cytoskeletal dynamics and on polarized membrane trafficking [4,3].

During the fast axonal growth phase, which follows neuronal polarization, the Golgi apparatus has a very compact organization and is oriented towards the growing axon [1,6]. However, since dendrites initiate their rapid growth phase, the Golgi becomes more dispersed and is oriented towards the dendrites [6], which very often contain specialized Golgi outposts associated with branch points [4,7].

The dynamics of actin cytoskeleton play an essential role at the growth cone [8–10] and at the Golgi [11,12] and are likely to be involved in the crosstalk between these two structures during neurite extension. Remodeling of F-actin at the growth cone is essential for neuronal polarization, since the neurite which will be specified as the axon is characterized by increased actin instability [13]. This condition allows the penetration of microtubules, which can direct membrane flow from the Golgi to the growing tip [8,14]. On the other hand, while in most cell types depolymerization of the actin cytoskeleton does not disrupt Golgi compactness [11], it may elicit Golgi fragmentation in differentiating neurons [15].

As in all the other cell types, cytoskeletal dynamics of neuronal cells are primarily orchestrated by small GTPases of the Rho family and by their effector networks [2]. Rho-GTPases may act both at the growth cone and at the Golgi, strongly suggesting that they could mediate the dynamic crosstalk between these structures during differentiation.

This possibility is strongly supported in the case of Cdc42 and of its effectors. Indeed, Cdc42 is enriched in the Golgi [16] and is accumulated by polarity cues at the axonal growth cone, where it may promote actin instability and actin retrograde flow by increasing the local phosphorylation of Cofilin, which is mediated by the ser/thr kinase LIM-kinase [17–21]. This can be in turn activated by the Rac1/Cdc42 effectors PAK kinases [22] or by the RhoA effectors Rho-kinases (ROCKs) [23]. In addition, in neuronal cells, LIMK can promote the delivery of the PAR3/ PAR6 polarity complex to the growth cone [21]. Together, these reports suggest that the CDC42 to LIMK pathway may sustain a positive feedback loop between the Golgi and the growth cone, which may maintain polarity. Accordingly, the CDC42 effectors PAK4 [18] and LIMK1 [21] are localized both at the growth cone...
and at the Golgi; in the case of Limk1 it has also been shown that Golgi localization is important for axon outgrowth [21].

Previous studies suggest that also RhoA could mediate a Golgi to growth cone crosstalk. It is well established that RhoA inhibits growth cone extension through a pathway connecting RhoA with the neuro-specific Profilin II isoform (Pila) [24] through ROCKs [2,10]. In addition, we found that active RhoA is specifically associated with the Golgi of differentiating neurons [13] and that it may regulate Golgi compactness through Citron-N (CIT-N) [25], a CNS-specific variant of the cytokinesis regulator Citron-kinase (CIT-K) [26-28]. Since CIT-K is capable to inhibit neuronal differentiation [29], it is conceivable that it may share this activity with CIT-N, but this has not been demonstrated directly so far.

The product of the TTC3 gene [30] is an interesting possible regulator of these molecules in neuronal differentiation. TTC3 is one of the genes mapped to the Down Critical Region, a relatively small locus of human Chr. 21 that plays a major role in generating the characteristic intellectual disability of Down syndrome [30]. The encoded protein contains four TPR motifs in the amino-terminal half, a potentials coiled-coil region and a Citron binding region in the central part and a E3 ubiquitin ligase ring-finger domain at the carboxy terminus [31,32]. The only substrate of the ubiquitin-ligase activity of TTC3 so far reported is the phosphorylated form of Akt [33]. Expression profiling studies, performed in human cells from patients and in mouse models have shown that TTC3 is one of the most consistently upregulated genes in a Chr. 21-related trisomic context and in other disorders associated with intellectual disability [34]. These data suggest that increased expression levels of TTC3 in neuronal cells may significantly contribute to the phenotypes that characterize Down syndrome (DS).

In agreement with this possibility, we previously found that TTC3 inhibits the neuronal-like differentiation of pheocromocytoma cells by activating RhoA and by binding to Citron proteins [32]. However, TTC3 has never been studied so far in primary neuronal cells. Moreover, it is not known whether, being a Citron partner, TTC3 may also control neuronal Golgi organization and whether this may relate to its effects on differentiation.

In this report we have used hippocampal neurons in primary culture to investigate the effects of TTC3 levels on neurite extension and Golgi organization during the early stages of neuronal differentiation. Moreover, we analyzed the role of F-actin and the pathways that could connect TTC3 to actin remodeling, using overexpression, RNAi-mediated knockdown or pharmacological inhibition of the critical genes. The results of these experiments and their possible implications are described and discussed.

Results

TTC3 Affects Neuronal Differentiation and Golgi Compactness

TTC3 Restrains Neuronal Differentiation by Modulating F-actin Stability: Role of CIT-N and of the Other RhoA Downstream Players

To address whether TTC3 can modulate the physiologic neuronal differentiation program, we resorted to rat hippocampal neurons in primary culture [35], which were first used to perform overexpression studies. In particular, neurons were electroporated immediately before plating with plasmids expressing GFP-TTC3 from a CMV promoter and their morphology was assessed 24 and 48 hours after transfection. The typical transfection efficiency was around 50% and transfected cells displayed TTC3 levels 5 to 10 folds higher than endogenous levels (Fig. S1A). TTC3 overexpression strongly impairs neuronal differentiation, with only 20% of the neurons displaying a multi-neurite morphology (stage 2, [35]) at 24 hours (Fig. 1A), or displaying a clearly polarized morphology (stage 3, [35]) at 48 hours (Fig. 1B). In comparison, 50% and 90% of cells transfected with a control GFP plasmid reached Stage 3 at 24 hours and 48 hours, respectively (Fig. 1A-B). Time-lapse recording (Fig. 1C, Movies S1 and S2) showed that cells expressing high TTC3 levels are capable to progress from spherical morphology (stage 1, [35]) to a bipolar shape, but are then defective in neurite elongation. To establish whether the over-expression paradigm reflects the role of TTC3 in the physiological context, i.e. if it is a physiologic modulator of neurite outgrowth, we set out to reduce its expression by RNA interference, using two independent sequences which have been previously validated [32]. Primary neurons were transfected in suspension shortly after dissection and analyzed 72 hours later. The typical transfection efficiency was around 40% and shRNA-expressing constructs reduced TTC3 immunoreactivity at levels of approximately 30%, if compared to controls (Fig. S1B). Axonal length was significantly increased in TTC3-depleted neurons (Fig. 1D-E). As expected, this phenotype was reverted by cotransfection of an expression construct encoding full length TTC3 (Fig. 1F). Since axon is the neurite growing at higher speed in this window of the differentiation program, these results are consistent with the possibility that TTC3 plays a physiological role in neurite growth.

To address the role of the actin cytoskeleton in the phenotype induced by abnormal TTC3 levels, we tested whether these can be modified by changes of the polymerization state of actin. In particular, since the overexpression of TTC3 can be detected already 6 hours after transfection (data not shown), to evaluate the role of actin polymerization on the overexpression phenotype we measured the percentage of differentiated cells (i.e. of cells possessing at least one neurite longer than twice the cell body) and the average number of neurites per cell, which are two fundamental parameters of the early differentiation stages. Moreover, since in RNAi experiments the reduction of TTC3 can be detected only 72 hours after transfection, to evaluate the role of actin polymerization on the knockdown phenotype we measured axonal length. Interestingly, in TTC3 overexpressing neurons, the percentage of differentiated cells (Fig. 2A-B) and the number of neurites (Fig. 2C) were restored to control values by treatment with 1 μM of the actin-destabilizing drug Cytochalasin D (CytoD). Conversely, Jasplakinolide (Jaspla), a macrocyclic peptide which stimulates actin nucleation and induces actin polymerization, reverted to control levels the increased axonal length induced by TTC3 knockdown (Fig. 2D).

We previously found that in PC12 cells the excess of TTC3 inhibits differentiation by activating RhoA, through a pathway requiring CIT-K but not impinging on Rho kinases (ROCKs) [32]. Although it appears reasonable to postulate that a similar mechanism may operate in neurons, it is also possible that TTC3-dependent events occurring in primary neurons are significantly different from those characterizing immortalized neuroendocrine cell lines. For instance, an important difference is that post-mitotic neurons express CIT-K but do not express CIT-T [15,28,36], while PC12 and neuroblastoma cells express only CIT-K regardless of their differentiation state [29,32]. Therefore, we assessed the role of CIT-N, RhoA and ROCK in the events activated by TTC3 overexpression in hippocampal neurons during the early stages of differentiation. We first asked whether, as in the case of CIT-K in neuroblastoma cells [29], CIT-N may restrain neurite outgrowth in primary neurons. This was indeed the case, since the knockdown of CIT-N increased axon outgrowth in primary neurons (Fig. 3A) similarly to TTC3 knockdown. Moreover, CIT-N knockdown significantly increased the number
TTC3 Affects Neuronal Differentiation and Golgi Compactness

![Graph A: 24 h after plating](image)

![Graph B: 48 h after plating](image)

![Images C: GFP-empty, GFP-TTC3, RNAi-CTRL, RNAi-TTC3](image)

![Graph D: Axonal length (um)](image)

![Graph E: Axonal length (um)](image)
TTC3 Affects Neuronal Differentiation and Golgi Compactness

Figure 1. Effects of altered TTC3 levels on neuronal differentiation. A–B. Hippocampal neurons extracted from E18.5 rats were electroporated by nucleofection with the indicated plasmids. 24 hours (A) or 48 hours (B) after plating, cells were processed for immunofluorescence and the morphology of GFP-positive cells was assessed to analyze their distribution across the indicated differentiation stages. C. Selected frames from time-lapse series of neurons transfected as in panel A, undergoing differentiation in culture. For full movies, see supporting material. D–E. Hippocampal neurons were nucleofected with control or TTC3-specific sh-RNA-expressing plasmids, plated and allowed to differentiate 72 hours in culture. Cells were then processed for IF with anti-Tau antibodies and the axonal length was then quantified with ImageJ. H.
TTC3 Affects Neuronal Differentiation and Golgi Compactness

A

DMSO

GFP-empty

GFP-TTC3

CytoD

GFP-empty

GFP-TTC3

B

% differentiated cells

DMSO

CytoD

GFP-empty

GFP-TTC3

C

Number of neurites/neuron

DMSO

CytoD

GFP-empty

GFP-TTC3

D

Axonal length (um)

DMSO

Jaspla

RNAi-CTRL

RNAi-TTC3

*
main neurite (Tau-positive axon) was then quantified. Scale bars = 10 μm; error bars = SEM; *P<0.05, **P<0.001, two tails Student T-test. doi:10.1371/journal.pone.0093721.g002

Discussion

In this work we have investigated the role of TTC3 in primary neuronal cells during the first stages of differentiation, with respect to both neurite extension and Golgi organization. Moreover, we have addressed the role of some of the possible downstream players which could connect TTC3 to actin organization, especially the CIT-N protein. First of all we have confirmed that, in line with previous studies performed in pheochromocytoma cells [32], TTC3 is a physiological determinant of the neuronal differentiation cell-autonomous program, since its knockdown leads to increased neurite extension. In contrast, the reduction of TTC3 levels is not sufficient in differentiating neurons to alter Golgi organization. Together with the observation that only a minimal fraction of TTC3 is associated with the Golgi, this result suggests that the primary function of TTC3 could be to restrain neurite outgrowth by acting on the growth cone, rather than on the Golgi. However, if TTC3 is expressed above physiological levels, as it may occur in Down syndrome (DS) and other neurological diseases [34], besides impairing neurite extension it can also disrupt Golgi compactness. These findings could be of relevance for understanding how increased levels of TTC3 in DS may contribute to the overall intellectual disability phenotype. Indeed, it is commonly believed that the complex pathological scenario characterizing DS arises from a combination of neurodevelopmental abnormalities and neurodegenerative processes [42–44].

Addressing which processes are irreversible and which ones can be prevented or reverted by manipulating genes and pathways is of paramount importance for the possible development of new therapeutic strategies. Impaired neuronal differentiation has been reported by some studies in DS patients [45,46]. In addition, a prominent role in neuronal differentiation has also been reported for Dyrk1a [47], a gene mapping into the DCR which is considered one of the major players in DS [48]. On the other hand, although Golgi abnormalities have not been reported so far in DS, they have recently been found in several neurodegenerative disorders [49–51]. If deeper studies on patients and/or experimental models should confirm the existence of neurite extension or Golgi organization phenotypes in DS, the TTC3 pathway could become an interesting potential target for experimental manipulation.

The effects of TTC3 on neurite extension are mainly mediated by an increase in actin polymerization. Indeed, the enhanced neurite outgrowth produced by TTC3 knockdown is reverted by F-actin stabilization, while the differentiation block produced by TTC3 overexpression is reverted by F-actin depolymerization. An increase in actin polymerization is also involved in the Golgi fragmentation phenotype produced by TTC3 overexpression. At a first glance, this result was in apparent contrast with our previous discovery that in neuronal cells F-actin is required for Golgi fragmentation [15], a finding which differs from those obtained in other cell types [11]. However, it raised the interesting possibility that in neurons the requirement of F-actin for the structural integrity of the Golgi may change throughout differentiation. We found that this is indeed the case, because CytoD treatment has no effect on Golgi compactness during the earliest stages of differentiation, while it induces Golgi fragmentation at later stages (Fig. S2). The mechanisms responsible for this switch are presently unknown and may represent an interesting subject for future studies.

The effects of TTC3 overexpression on Golgi compactness cannot be explained only by its activity on actin polymerization, since the rescue of the phenotype elicited by CytoD was much less pronounced than the rescue of the neurite extension phenotype. Since it has previously been shown that TTC3 may also affect the PI3-kinase (PI3K)/Akt pathway by ubiquitinating Akt, thus stimulating Akt degradation [33], one possibility is that TTC3 may affect Golgi compactness through this mechanism. However, this possibility would be in contrast with a recent report showing that, in polarized migrating cells, the PI3K/Akt/mTOR pathway...
TTC3 Affects Neuronal Differentiation and Golgi Compactness

A. Axonal length (μm) for RNAi-CTRL and RNAi-CITN.

B. Percentage of differentiated cells for RNAi-CTRL and RNAi-CITN.

C. Percentage of differentiated cells for GFP-empty and GFP-CITN.

D. Images showing neuronal morphology under different conditions:
 - VEHICLE
 - C3
 - Y-27632
 - GFP-empty
 - GFP-TTC3

E. histograms showing percentage of differentiated cells for different conditions and treatments.

F. Comparison of percentage of differentiated cells for different treatments:
 - VEHICLE
 - C3
 - Y-27632
controls the polarization of the plasma membrane but does not affect Golgi polarization [52]. It is not known whether these conclusions can also be applied to differentiating neurons. An alternative possibility is that TTC3 may affect Golgi organization by inducing the ubiquitilation of presently unknown substrates. To this regard, it must be noticed that CIT-K was excluded as a possible target by previous studies [33]. On this basis and considering the positive functional relationship between TTC3 and CIT-N we consider very unlikely the possibility that CIT-N may be a TTC3 substrate in neurons.

Our results suggest that the molecular networks mediating the effects of enhanced TTC3 expression at the growth cone and at the Golgi may differ significantly, a scenario that was confirmed by our epistatic analysis of TTC3 downstream players (for a summary, see the scheme in Fig. 8). For what concerns neurite extension, our previous studies on pheocromocytoma cells had suggested that TTC3 may limit neurite extension by activating RhoA, which in turn may signal to cytoskeleton through ROCK and CIT-K, with the latter two molecules working in parallel [32]. We have found that the same players operate also in differentiating primary neurons, although in this case Citron proteins are represented by CIT-N. Indeed, the inhibition of RhoA and ROCK and the knockdown of CIT-N are all capable to rescue the neurite outgrowth phenotype induced by TTC3 overexpression. However in this case ROCK regulates neurite extension acting downstream of CIT-N, rather than in parallel with it. Interestingly, the same players are also capable to mediate the Golgi disorganization induced by TTC3 overexpression, but there are at least two important differences with neurite outgrowth inhibition. The first difference is that in this context ROCK does not work downstream of CIT-N. The second is that CIT-N works largely upstream of RhoA, rather than downstream of it. The latter finding is consistent with the data obtained in other biological processes implicating Citron proteins. Indeed, CIT-K and CIT-N have previously been shown to regulate midbody abscission [53,54] and dendritic spine maintenance [55,56], respectively, by locally stabilizing active RhoA. To summarize, our data reveal that TTC3 overexpression may affect Golgi organization through at least two pathways (Fig. 8): a “canonical” pathway flowing from RhoA to actin polymerization through ROCK and PIIa; a non-canonical pathway involving CIT-N and RhoA, which may impinge on other mechanisms. To this regard, it must be noticed that Citron proteins have recently been linked to microtubules [57], which are well known for their critical role in Golgi organization [58].

Although ROCK is only partially responsible for the effects induced by TTC3 overexpression, it was important to understand how it may affect actin polymerization downstream of TTC3. The reason of this is that ROCK inhibitors display neuroprotective effects in models of neurodegenerative disorders and have already been approved for clinical use [59]. Based on current models, a first mechanism by which ROCK may increase the amount of F-actin is through the activating phosphorylation on Thr-508 of LIMK [23], which in turn inhibits the actin-depolymerizing protein Cofilin by phosphorylating its Ser-3 residue [17]. However, it is still not clear whether a similar mechanism may actually operate in differentiating neurons, since the same activating phosphorylation on LIMK can be produced by PAK kinases, operating downstream of Rac and Cdc42 [22]. Although our results do not exclude that the LIMK-Cofilin pathway could play a role downstream of TTC3, they strongly suggest that this pathway is not controlled by ROCK, at least in early differentiatation. Indeed, we found that the pharmacological inhibition of ROCK in our system has no effect on the levels of phospho-Cofilin. Moreover, the overexpression of LIMK does not enhance the TTC3 overexpression phenotype, but rather rescues it, through a mechanism that requires the kinase activity and the domains which localize the protein at the Golgi or at the growth cone. Together with the previous reports showing that LIMK stimulates neuronal differentiation [21], these results suggest that, at early stages of this process, the LIMK-cofilin pathway may be much more influenced by Cdc42-Rac/PAK than by RhoA/ROCK. A second mechanism through which ROCK may affect actin polymerization is by stimulating the activity of Profilins, which in neurons are mainly represented by PIIa [41]. Our results strongly support the implication of this player. Indeed the overexpression of PIIa reverts to control values the increased neurite extension induced by TTC3 knockdown, while the knockdown of PIIa rescues both the neurite extension and the Golgi phenotypes induced by TTC3 overexpression. Moreover, this results are in line with our previous finding that, in neuronal cells, CIT-N and ROCK are in a same complex with PIIa [15].

In conclusion, besides confirming that TTC3 plays a crucial role in the early differentiation of neurons our study reveals a complex organization of the pathways by which TTC3 may regulate neurite outgrowth and Golgi organization through the actin cytoskeleton. It will be interesting to test whether the same processes and pathways are affected in experimental models of Down syndrome.

Materials and Methods

Ethics

For the preparation of primary hippocampal neurons, pregnant rats and embryos were sacrificed conforming to the Italian laws on animal experimentation and under the supervision of the veterinary service of our animal facility. The corresponding experimental protocols have been approved by the Italian Ministry of Health, Department of Public Veterinary Health with approval number 22/2007-A, released on 03/14/2007.

Primary Hippocampal Neuronal Cultures

Hippocampal neuronal cultures were prepared from embryonic day 18.5 rat brains as described [60]. In brief, hippocampi were dissected and cells dissociated by trypsin (15 minutes at 37°C) and, after 3 washes in HBSS, separated with mechanical trituration.
TTC3 Affects Neuronal Differentiation and Golgi Compactness

A

<table>
<thead>
<tr>
<th>GFP-empty</th>
<th>GFP-TTC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge</td>
<td></td>
</tr>
<tr>
<td>GM130</td>
<td></td>
</tr>
</tbody>
</table>

24 h after plating 48 h after plating

B

% Cells with normal Golgi

C

Normal fixation

TTC3 GM130 Merge CL

D

Saponin pre-extraction

TTC3 GM130 Merge CL

E

Normal fixation Saponin pre-extraction

Px int (AU) Red Px int (AU) Green

F

72 h after plating

Golgi compactness index

RNAi-CTRL RNAi-TTC3
using a fire polished Pasteur pipette. Neurons were plated on Poly-L-Lysine coated coverslips, placed in dishes containing CO2 and temperature-equilibrated Mem-Horse medium. After 4 hours incubation neurons were sufficiently attached and coverslips were placed inverted, separated by paraffin dots, onto astrocyte feeder-cell layers equilibrated in a N2 medium.

Figure 4. Effects of altered TTC3 levels on Golgi compactness. A–B. Hippocampal neurons were electroporated by nucleofection with the indicated plasmids. Cells were processed for immunofluorescence with anti-GM130 antibodies 24 or 48 hours after plating. The percentage of cells with compact (normal) or fragmented Golgi morphology was then quantified (B). Note the compact morphology of the Golgi in the cell transfected with the GFP control plasmid (first cell from left in panel A). The other three cells in panel A are different examples of TTC3-overexpressing cells with disrupted Golgi, analyzed 24 hours after transfection. C–D. Confocal images of 7 DIV primary hippocampal neurons co-stained for TTC3 and GM130 after standard PFA fixation (C) or after pre-extraction with saponin (D). The right panels show a false color image in which the white pixels represent the areas of colocalization (CL) of TTC3 and GM130 (cyan and magenta, respectively). E. Pixel intensity plots of the TTC3 and GM130 immunoreactivities in exemplar cells treated as in panels C and D. AU = arbitrary units. F. Hippocampal neurons were nucleofected with control or TTC3-specific sh-RNA-expressing plasmids (RNAi-TTC3), plated and allowed to differentiate 72 hours in culture. Cells were then processed for IF with GM130 antibodies and the Golgi compactness was measured (see Material and methods). Scale bars = 5 μm; error bars = SEM; **P < 0.01, ***P < 0.001, two tails Student T-test.

doi:10.1371/journal.pone.0093721.g004

Figure 5. Role of TTC3 partners in TTC3-dependent Golgi fragmentation. A. Hippocampal neurons were electroporated by nucleofection with the indicated plasmids and treated with vehicle (DMSO) or with 1 μM Cytochalasin-D (CytoD) for an additional 24 hours. Cells were then processed for IF with the Golgi GM130 marker and quantified for normal Golgi as in Fig. 4. B–C. Hippocampal neurons were nucleofected with the indicated plasmids, allowed to differentiate in culture for 24 hours and treated as described in Fig. 2 with vehicle, C3 toxin and Y27632. Vehicle was 50% glycerol in the case of C3 and water in the case of Y27632. Cells were then processed and analyzed as in panel A. D. Hippocampal neurons were nucleofected with control or CIT-N-specific sh-RNA-expressing plasmids (RNAi), together with plasmids overexpressing, under a CMV promoter, RFP or RFP-TTC3, as indicated. The percentage of cells with normal Golgi was then assessed as in the previous panels. Scale bars = 10 μm; error bars = SEM; *P < 0.05, ***P < 0.001, two tails Student T-test.

doi:10.1371/journal.pone.0093721.g005

Nucleofection

Hippocampal neurons were electroporated immediately after tissue dissociation and before plating using the rat neuron nucleofector kit (Amaxa). In brief, 500,000 cells were centrifuged for 5 minutes at 1000 rpm. After that, supernatant was removed and neurons were resuspended in 100 μl of Nucleofector. Then 5 μg of DNA/5 μg of siRNA were added to the suspension. Neurons were transferred to a glass cuvette and electroporated
with the Amaxa program O-003. Finally, neurons were plated on coverslips.

Plasmids and siRNAs

The CMV-GFP-TTC3 plasmid was previously described [32]. The same cDNA was cloned in pERFP-C1 (Clontech). Expression
plasmids for hemagglutinin (HA)-tagged LIMK1 and HA-APDZ-LIMK1 [21] were a kind gift from Alfredo Cáceres. To generate plasmids encoding HA-DPZ-LIMK1, HA-LIMK1-wt cDNA was amplified by polymerase chain reaction, with the following primers: forward, 5'GCAAGCTTGCCATGATCGAAGATCCTC3', reverse 5'GCTCTAGACTCAGCGTAATCTGGAAC3'. PCR products were digested with HindIII and XbaI restriction enzymes and ligated to HindIII- and XbaI-digested pcDNA3 vector (Invitrogen). To generate plasmids encoding HA-kd-LIMK1, the K368M mutation [61] was introduced into the HA-LIMK1-wt plasmid using a direct mutagenesis kit (Stratagene). Profilin IIa was cloned into a pCherry-N1 plasmid from pEGFP-N1-Profilin IIa [41] using EcoRI-Xhol restriction sites. TTC3 knockdown by RNAi was performed by using the shRNAi constructs based on the pCMV-GIN(Zeo) lentiviral vector [32]. CITN knockdown by RNAi was performed by using the shRNAi constructs based on the pSUPER-GFP vector [15]. siRNA targeting rat Profilin IIa coding sequence (5'UAAGCAGGGCGGUGUA-3') were purchased from Dharmacon (Thermo Scientific, Lafayette, CO).

Antibody and Inhibitors

The following antibodies were used: rabbit polyclonal anti-GFP (Abcam, Cambridge, MA); mouse monoclonal anti-GM130 (Transduction Laboratories, BD biosciences, Franklin Lakes, NJ); mouse monoclonal anti-TAU (Chemicon); rabbit polyclonal anti-pLIMK1 (Santa Cruz, Santa Cruz, CA); rabbit polyclonal anti-Profilin IIa (kindly provided by Dr. W. Witke); rabbit polyclonal anti-cofilin phospho serine 3 (Cell signalling technology); mouse monoclonal anti-cofilin (Abcam); rabbit polyclonal anti-MLC phospho serine 9 (Cell signalling technology); mouse monoclonal anti-mle (Cell Signaling technology); rabbit polyclonal anti-actin (Santa Cruz); mouse monoclonal anti-HA (Cell signalling technology); we obtained anti-TTC3 rabbit polyclonal antibodies by injecting rabbits with a fusion protein corresponding to aminoacids 719–1176 of TTC3. C3 cell-permeable transferase protein was obtained from Cytoskeleton (Denver, CO), dissolved in 50% glycerol and used in accordance with manufacture’s instruction. ROCK inhibitor Y-27632 (Sigma-Aldrich) was dissolved in water and used at 36.7 μM for 24h. As a control, addition of vehicle only (50% glycerol and water, respectively) was used. F-actin depolymerizing drug CytochalasinD (Calbiochem) was suspended in DMSO, added to neurons 6 hours after plating with a final concentration of 1 μM and maintained for 24 hours. The actin stabilizing drug Jasplakinolide (Calbiochem) was suspended in DMSO, added to neurons 36h after plating with a final concentration of 5 nM and maintained overnight. As a control for all the above drugs, addition of vehicle only (DMSO) was used.

Figure 7. Analysis of the role of PIIa in TTC3-dependent phenotypes. A. Hippocampal neurons were nucleofected with control or TTC3-specific sh-RNA-expressing plasmids, together with plasmids overexpressing, mCherry or mCherry-PIIa. Axonal length was then quantified as described above. B–C. Hippocampal neurons were nucleofected with control or PIIa-specific sh-RNA-expressing plasmids, together with plasmids overexpressing GFP or GFP-TTC3, as indicated. The percentage of differentiated cells (B) and of cells with normal Golgi (C) was then assessed as in the previous figures. Scale bars = 10 μm; error bars = SEM; **P<0.01, ***P<0.001, two tails Student T-test. doi:10.1371/journal.pone.0093721.g007
Immunofluorescence

Hippocampal neurons grown on coverslips were fixed with 4% paraformaldehyde (PFA)/PBS for 10 min. Quenching with NH4Cl 50mM/PBS was conducted to remove PFA residue for 15 minutes. Permeabilization was carried out with 0.1% TritonX-100/PBS for 3 minutes and a 5% BSA/PBS saturation (Bovine serum albumin in PBS) was left for 30 minutes over the coverslips. Following, primary antibodies (described below) were incubated for 1 hour. After three quickly washings with PBS, primary antibodies were detected with anti-rabbit or anti-mouse or anti-rat Alexa Fluor 568 or 488 secondary antibodies at 1:1000 dilution for 30 minutes; Alexa Fluor 350 was used at 1:250 dilution. After three quickly washings with PBS, coverslips were mounted with Mowiol on cover glasses. Images were acquired using an ApoTome system (Zeiss, Germany) or a ViCo fluorescence microscope (Nikon), or with a Leica SP5 confocal microscope.

Live Cell Imaging

Hippocampal cultures were prepared as described above and left for 6 h before videorecording. Videorecording was performed under an Axiovert Zeiss inverted microscope equipped with an environmental chamber using a 63× oil-immersion objective. Cultures were maintained at 37°C and gassed with 5% CO2. For phase contrast imaging, exposure times were typically 5 ms, 12 frames per hour. Metamorph software (Universal Imaging) was used for acquiring images and for mounting avi format movies.

Figure 8. Schematic representation of the TTC3 downstream pathways dissected in hippocampal neurons at the early stages of differentiation in primary culture. doi:10.1371/journal.pone.0093721.g008

Image Analysis

Images were analyzed with ImageJ software, or Apotome (Zeiss) and ViCo (Nikon) associated software. Differentiated cells were defined as those bearing at least one neurite longer than twice the cell body. Quantification of the percentage of differentiated cells and of cells with normal Golgi was performed in blind by two different operators. In the latter case, cells were scored as having either normal or fragmented Golgi, and the corresponding percentages are therefore complementary. The Golgi compactness index shown in Fig. 4F is an a-dimensional number calculated on serial section performed with Apotome (Zeiss). For the analysis of the circularity of Golgi apparatus, the maximum-projection from each image was derived using ImageJ software [62]. The images were then transformed in 8-bit gray-scale, 1388×1032 pixels. The Golgi labeling image threshold was set at 50–60 on a 0–255 black to white scale to remove background pixel from measurement. The Golgi region of interest was defined manually and the perimeter and surface was measured. The dimensionless circularity of the Golgi apparatus was computed according to the formula [40]. The colocalization analysis was performed using the ImageJ software.

Western Blot Analysis

Neuron cortical cells were extracted with lysis buffer (1% SDS, 25mM Tris- HCl pH 6.8, protease inhibitors (Roche, Basel, Switzerland), 1 mM phenylmethylsulphonyl fluoride, 1mM Sodium Vanadate, 1mM Sodium Fluoride). Equal amounts of proteins were resolved by reducing SDS-PAGE and blotted to nitrocellu-
TTCC Affects Neuronal Differentiation and Golgi Compactness

Supporting Information

Figure S1 Evaluation of TTC3 overexpression and knockdown in primary neurons. A. Hippocampal neurons were nucleofected with GFP empty or with GFP-TTC3-expressing plasmids, plated and allowed to differentiate 36 hours in culture. The expression of endogenous and overexpressed TTC3 was then measured by western blotting with rabbit anti-TTC3 antisemum.

B. Hippocampal neurons were nucleofected with control or TTC3-specific sh-RNA-expressing plasmids, plated and allowed to differentiate 72 hours in culture. To test the downregulation of nucleofected cells, we performed IF experiments with rabbit anti-TTC3 antisemum.

(TIF)

Movie S1 Time lapse recording (14 hours) of exemplar primary hippocampal neuron nucleofected before platting with a GFP-expressing control plasmid.

(AVI)

Movie S2 Time lapse recording (14 hours) of exemplar primary hippocampal neuron nucleofected before platting with a TTC3-expressing plasmid.

(AVI)

Author Contributions

Conceived and designed the experiments: GEB CGD FDC. Performed the experiments: GEB C Iobbi PC ES C. Iampietro FTB MG FS AG FC. Analyzed the data: GEB FDC. Wrote the paper: GEB FDC.

References

