AguR is a transmembrane transcription activator of the putrescine biosynthesis operon in *Lactococcus lactis*, and acts in response to agmatine concentration.

Daniel M. Linares¹, Beatriz del Rio¹, Begoña Redruello¹, Victor Ladero¹, Mª Cruz Martin¹, Anne de Jong², Oscar P. Kuipers², Maria Fernandez¹, Miguel A. Alvarez¹*.

¹Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.

²Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.

Keywords: *Lactococcus lactis*, biogenic amines, putrescine, agmatine deiminase, AGDI cluster, AguR

*Corresponding author

Mailing address: Instituto de Productos Lácteos de Asturias (IPLA-CSIC) Paseo Rio Linares s/n, 33300 Villaviciosa, Spain.

Phone: +34 985 89 21 31

Fax: +34 985 89 22 33

E-mail: maag@ipla.csic.es
Abstract

Dairy industry fermentative processes mostly use *Lactococcus lactis* as a starter. However, some dairy *L. lactis* strains produce putrescine - a biogenic amine that raises food safety and spoilage concerns - via the agmatine deiminase pathway (AGDI). The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene-cluster. The role of the catabolic genes *aguB*, *aguD*, *aguA* and *aguC* has been studied, but knowledge regarding the role of *aguR* (the first gene in the cluster) remains limited. In the present work, *aguR* was found to be a very low-level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (*aguBDAC*). In response to agmatine, AguR acts as a transcriptional activator of the *aguB* promoter (*P_{aguB})*, which drives transcription of the *aguBDAC* operon. Inverted sequences required for *P_{aguB}* activity were identified by deletion analysis. Further work indicated AguR to be a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of the *aguBDAC* operon through a LuxR_C-like cytoplasmic DNA binding domain.
INTRODUCTION

Lactococcus lactis is the lactic acid bacterium (LAB) most widely used as a primary starter in the dairy industry, especially in cheese manufacturing. Despite its 'qualified presumption of safety' (QPS) status (awarded by the European Food and Safety Authority [EFSA]) and its 'generally regarded as safe' (GRAS) status (awarded by the Food and Drug Administration [FDA]), some \textit{L. lactis} strains possess enzymatic activities that produce undesirable flavors associated with food spoilage (1). Some even produce toxic compounds such as the biogenic amine (BA) putrescine (2). Putrescine - together with histamine and tyramine - is one of BAs in fermented dairy products most frequently encountered at potentially unsafe levels (3,4,5). It has a synergistic effect on the toxicity of other BAs, and can also react with nitrite to form carcinogenic nitrosamines (4,6). In addition, the metabolism of putrescine and of its derivatives (the polyamines spermine and spermidine) plays an important role in the promotion of colorectal tumorigenesis, via effects on cell proliferation and migration (7-10).

A number of putrescine-producing \textit{L. lactis} strains of the subspecies \textit{lactis} and \textit{cremoris} isolated from artisanal cheeses have been shown to have a functional agmatine deiminase (AGDI) pathway. This catabolizes agmatine (a decarboxylated derivative of arginine) (11) into putrescine, yielding one molecule of ATP, one
molecule of CO₂ and two ammonium ions (2). AGDI pathway increases the growth
of *L. lactis* and causes the alkalinization of the culture medium, although it does not
seem to be an acid stress resistance mechanism (58). The AGDI cluster of *L. lactis*
is composed of five genes - *aguR, aguB, aguD, aguA* and *aguC* - the last four
being responsible for the conversion of agmatine to putrescine (2,12). Agmatine
enters the cell via *AguD* (an agmatine-putrescine antiporter encoded by *aguD*), and
is then hydrolyzed to *N*-carbamoylputrescine and an ammonium ion by *AguA* (an
agmatine deiminase encoded by *aguA*). *AguB* is a putrescine
carbamoyltransferase encoded by *aguB* that catalyzes the phosphorolysis of *N-
carbamoylputrescine*, yielding putrescine and carbamoylphosphate. Finally, a
phosphate group is transferred from carbamoylphosphate to ADP by *AguC* (a
carbamate kinase encoded by *aguC*) to generate ATP, CO₂ and a further
ammonium ion. Putrescine is then exchanged for agmatine via the antiporter *AguD*
(2). The protein encoded by *aguR* showed primary structure similarity to the *AguR*
of *Streptococcus mutans*, a transcriptional activator of the agmatine deiminase
system (13). The aim of the present work was to investigate whether *aguR* of
Lactococcus lactis is involved in the transcriptional regulation of the AGDI cluster.
The strain selected for study was *L. lactis* subsp. *cremoris* CECT8666 (formerly
GE2-14); originally isolated from a traditional cheese (2) this strain is a strong
putrescine-producer (12), and its genome has been completely sequenced (14).
Although previously demonstrated in a *L. lactis* subsp. *lactis* putrescine-producing
strain (2), it was first confirmed that the present strain's *aguR* was transcribed
independently of the catalytic genes, which are expressed as an operon
(*aguBDAC*). The construction of a Δ*aguR* knock-out mutant, and its subsequent
analysis, showed AguR to activate putrescine production. Transcriptomic studies, confirmed by independent transcriptional analysis of \textit{aguR} and the \textit{aguBDAC} operon, verified the involvement of AguR in the transcriptional activation of \textit{aguBDAC}. Moreover, the transcriptional activation of \textit{aguBDAC} was dependent on the agmatine concentration of the culture medium. \textit{In silico} analysis of the topology of AguR, plus comparative studies of its structure, revealed the presence of a putative DNA binding domain at the C-terminus. It was also confirmed that AguR is located on the cell surface. Taking these results together, AguR would seem to act as a one-component signal transduction system that senses the agmatine concentration in the environment and accordingly regulates the transcription of the \textit{aguBDAC} operon.

\textbf{MATERIALS AND METHODS}

\textbf{Bacterial strains, plasmids and growth conditions}

Table 1 shows the strains and plasmids used in this study. \textit{Lactococcus lactis} strains were grown in M17 (Oxoid, Basingstoke, United Kingdom) supplemented with 30 mM glucose (GM17) or 60 mM galactose (GalM17) to prevent carbon catabolic repression (CCR) of the ADGI pathway (12). Where indicated, media were supplemented with agmatine (Sigma-Aldrich, Barcelona, Spain) at the specified concentration. \textit{Escherichia coli} strains were grown in Luria Bertani (LB) medium at 37°C with aeration (15). When plasmid-containing clones were grown, the medium was supplemented with the appropriate antibiotics: for \textit{L. lactis}, 5 µg ml\(^{-1}\) of chloramphenicol (Cm) and 2 µg ml\(^{-1}\) of erythromycin (Em); for \textit{E. coli}, 150 µg ml\(^{-1}\) of Em.
Analysis of putrescine production by ultra high performance liquid chromatography

Cultures were grown in GM17 medium in the presence of 20 mM agmatine for 24 h. The cultures were then centrifuged at 8000 g and the supernatants collected. The putrescine concentration in the supernatants (100 µl) was assessed by ultra high performance liquid chromatography (UHPLC) using a Waters H-Class ACQUITY UPLC™ apparatus controlled by Empower 2.0 software, and employing a UV-detection method based on derivatization with diethyl ethoxymethylene malonate (Sigma-Aldrich) (16).

DNA manipulation

L. lactis genomic DNA was obtained using Kirby lytic mix following a previously described protocol (17). Genetic constructs for *L. lactis* were produced using *L. lactis* NZ9000 as an intermediate host. Plasmid DNA from *L. lactis* was isolated and transformed as described previously (18). Genetic constructs for *E. coli* were produced using *E. coli* DH11S (Life technologies, Madrid, Spain) as an intermediate host. The *E. coli* plasmid DNA was isolated by the alkaline lysis method (15). Electroporation was performed in a Bio-Rad pulser apparatus (Bio-Rad, Barcelona, Spain) following the manufacturer’s instructions. Restriction endonuclease digestions, alkaline phosphatase treatments, ligations and other DNA manipulation procedures were performed according to standard methods (15). PCR amplifications were performed in a MyCycler™ thermal cycler (Bio-Rad).
using Phusion High-Fidelity DNA polymerase (Thermo Scientific, Barcelona, Spain) according to the manufacturer’s protocol. Table 2 shows the primers used for PCR amplifications. The primers used to amplify fragments of the *L. lactis* CECT8666 AGDI cluster were based on its nucleotide sequence (GenBank Accession No. HG317493.1). All plasmids constructed in this work were checked by nucleotide sequencing (performed by Macrogen Inc. Seoul, Republic of Korea).

Reverse Transcription PCR (RT-PCR)

Cells were grown in GM17 culture medium in the presence of 20 mM agmatine. Two milliliters of culture were collected at the end of the exponential phase of growth. Total RNA was extracted as previously described (19). cDNA was then synthesized from DNase-treated RNA samples using the iScript™ cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s recommendations. The *ycaC-aguR, aguR-aguB, aguB-aguC, aguC-aguD* and *aguD-aguA* intergenic regions (Fig. 2A) were analyzed by PCR amplification using cDNA as a template and specific pairs of primers (see Table 2). PCR reactions were performed using 2 µl of cDNA and 0.4 µM of each gene-specific primer. Amplifications were performed for 35 cycles (94°C for 30 s, 55°C for 45 s, and 72°C for 1 min); the resulting amplicons were separated on 1.5% agarose gels in TAE buffer. The absence of contaminating DNA was checked via omission of reverse transcriptase in PCR reaction; this was performed under the conditions described above, using the corresponding RNA as a template.

Construction of a *L. lactis* CECT 8666 ΔaguR deletion mutant
A *L. lactis* CECT8666 Δ*aguR* deletion mutant was constructed by homologous recombination using the selection/counter-selection vector pCS1966 (20). Table 2 shows the primers used to generate the Δ*aguR* knock-out. They were designed to include the following restriction recognition sites: *SpeI* (in primer KO-214AguR-AF2), *PstI* (in KO-214AguR-AR), *PstI* (in KO-214AguR-BF) and *ClaI* (in KO-214AguR-BR). A 826 bp PCR fragment containing a 610 bp fragment of the 3’ end of the *ycac* gene (upstream of *aguR*, GenBank Accession No. HG317493.1), the intergenic region between *ycac* and *aguR*, and the sequence coding for the five first amino acids of the *aguR* gene of *L. lactis* CECT8666, was amplified using primers KO-214AguR-AF2 and KO-214AguR-AR. The resulting fragment was digested with *SpeI* and *PstI* restriction enzymes and cloned into the pCS1966 vector, rendering the plasmid pIPLA1269. A second 1110 bp PCR fragment containing the last 18 bp of *aguR*, the intergenic region between *aguR* and *aguB*, and 856 bp of the beginning of the *aguB* gene, was PCR amplified using primers KO-214AguR-BF and KO-214AguR-BR. The resulting fragment was digested with *PstI* and *ClaI* and cloned into the plasmid pIPLA1269, rendering the plasmid pIPLA1713. Plasmid pIPLA1713 was then transformed and integrated into *L. lactis* CECT8666 electrocompetent cells by homologous recombination. The methodology described by (20), based on 5-fluoroorotate sensitivity, was used to select for loss of the plasmid (second recombination step). The resulting mutants lacking *aguR* (*L. lactis* CECT 8666 Δ*aguR*) were confirmed by nucleotide sequence analysis of the amplicon obtained using primers KO-214AguR-AF2 and KO-
214AguR-BR, which rendered the expected 1936 bp fragment instead of the 2894 bp fragment corresponding to the wild type (WT) strain (data not shown).

DNA microarray experiments and data analysis

L. lactis CECT 8666 DNA microarrays (Agilent Technologies, Santa Clara, CA) were designed using the Agilent eArray v.5.0 program according to the manufacturers’ recommendations (http://earray.chem.agilent.com/earray/). Each microarray (8x15 K) was designed to contain spots of two different 60-mer oligonucleotide probes (in duplicate) specific for each of the 2635 coding DNA sequences (CDS) representing the protein coding genes of the *L. lactis* CECT8666 genome (GenBank Accession No AZSI00000000.1) (14).

Total RNA was isolated from 10 ml of *L. lactis* CECT8666 and from ΔaguR mutants, both grown to late exponential phase in GalM17 supplemented with 20 mM agmatine. cDNA synthesis was performed using the SuperScript® III Reverse Transcriptase Kit (Life Technologies, Bleiswijk, Netherlands), following the manufacturer’s instructions. Twenty micrograms of cDNA were then labeled with Cy-3/Cy-5 dyes using the DyLight® Amine-Reactive Dyes Kit (Thermo Scientific, Amsterdam, Netherlands) following the manufacturer’s protocol. Nine hundred nanograms of both Cy3- and Cy5-labeled cDNA were then mixed and hybridized for 17 h at 60°C in the *L. lactis* CECT8666 DNA microarray using the In situ Hybridization Kit Plus (Agilent Technologies) following the manufacturer’s instructions. Slides were scanned using a GenePix 4200A Microarray Scanner.
(Molecular Devices, Sunnyvale, CA) and the images analyzed using GenePix Pro v.6.0 software. Background subtraction and LOWESS normalization were performed using the standard routines provided by GENOME2D software available at http://server.molgenrug.nl/index.php/dna-microarrays. DNA microarray data were obtained from three independent biological replicates and two technical replicates (including a dye swap). Expression ratios were calculated from the comparison of four spots per gene per microarray (total of 20 measurements per gene). A gene was considered differentially expressed when a p value of at least <0.05 was obtained and the expression fold-change was at least $>|0.5|$. The microarray data were deposited in Gene Expression Omnibus (GEO) database under the Accession No. GSE59514.

Quantification of gene expression by reverse transcription quantitative PCR (RT-qPCR)

Total RNA was extracted from cultures collected at the end of the exponential phase of growth and cDNA synthesized by retro-transcription as described above. cDNA samples were analyzed by quantitative real-time PCR (qPCR) using an ABI Prism Fast 7500 sequence detection system (Applied Biosystems, Carlsbad, CA). Reactions were performed as previously described (19) in a 25 µl reaction volume, which included 9 µM of each primer and Power SYBR® Green PCR Master Mix (which contains ROX as a passive reference) (Applied Biosystems). Cycling was performed under the Applied Biosystems default settings. Amplifications were performed with previously described specific primers (12) (Table 2); primers
specific for the thermo-unstable elongation factor (*tuf*) (12) and RNA polymerase alpha-subunit (*rpoA*) (21) genes were used as references. The linearity and amplification efficiency of the reactions were tested for each primer pair at five points in a 10-fold dilution series of *L. lactis* subsp. *cremoris* CECT8666 genomic DNA. Samples with no template were included in each run as negative controls. Relative gene expression was calculated using the ΔΔCt comparative method as previously described (22). For each condition, RT-qPCR analysis was performed on RNA purified from three independently grown cultures. Statistical comparisons were made using the Student *t* test; significance was set at *p* < 0.05.

Generation of fusions with the *gfp* reporter gene

A transcriptional fusion of the *aguR* promoter (P_{aguR}) attached to the *gfp* reporter gene (which codes for green fluorescent protein [GFP]) was generated (P_{aguR-gfp}). For this, the P_{aguR} fragment was PCR-amplified using AgurNco and AguRBglII primers (Table 2) and cloned into the BglII-NcoI sites of plasmid pNZ8048 (23,24). The *gfp* gene was then PCR-amplified from plasmid pNZcGFP (25) using primers Gffor and Gfrev, and cloned into the resulting vector as a NcoI-SphI fragment, yielding the plasmid pAG1.

Similarly, a transcriptional fusion of the promoter of *aguB* (P_{aguB}) attached to the *gfp* reporter gene was generated (P_{aguB-gfp}). For this, the P_{aguB} fragment was PCR-amplified using primers PtcNco and PtcBglIII (Table 2) and cloned into the BglII-
NcoI sites of plasmid pNZ8048. The gfp gene was then PCR-amplified from plasmid pNZcGFP using primers Gffor and Gfrev, and inserted into the resulting vector as a NcoI-SphI fragment, yielding the pAG2 plasmid.

Finally, for the cellular localization of AguR, a translational fusion between aguR and gfp under the control of the nisin-inducible promoter (PnisA) was generated. For this, aguR was PCR-amplified using the Agurlicf and Agurlicr primers (Table 2) and cloned into the Swal restriction site of the pNZcLIC-GFP expression vector (25,26), yielding the plasmid pAG3. All constructs were checked by nucleotide sequencing (performed by Macrogen Inc.).

Generation of aguB promoter deletion constructions

Plasmids pAGDIΔ1, pAGDIΔ2, pAGDIΔ3 and pAGDIΔ4 bearing deleted versions of PaguB were all derived from previously constructed pAGDI (12). Plasmid pAGDI carries the cassette PaguR-aguR-PaguB fused to the gfp reporter gene. For each construct, pAGDI was first methylated with Dam methylase and S-adenosyl methionine (New England Biolabs, Hertfordshire, UK) following the manufacturer’s instructions. The whole pAGDI plasmid was amplified using divergent primers (Table 2) flanking the region of Pagub to delete. An EcoRI target site was included in the primers so that the obtained amplicons could be digested with EcoRI and self-ligated. The ligation mixture was digested with DpnI (in order to digest the original pAGDI plasmid used as a Dam-methylated template) before transformation in L. lactis NZ9000.
Whole-cell fluorescence measurements

For whole-cell fluorescence measurements, equal quantities of cells were harvested, washed, and subsequently resuspended in 50 mM KPi, pH 7.2 as previously described (25). GFP emission was measured in a volume of 250 μl of cells, using a Cary Eclipse fluorescence spectrophotometer (Varian Inc., Palo Alto, CA) (excitation wavelength 485 nm; emission wavelength 530 nm). For direct comparison, all GFP fluorescence data were normalized to the same OD_{600}. Background fluorescence levels were assessed by measuring non-fluorescent control cells; these values were subtracted. Statistical comparisons were made using the Student t test; significance was set at p<0.05.

Fluorescence microscopy

L. lactis NZ9000 cells containing the pAG3 plasmid carrying the P_{nisA-aguR-gfp} translational fusion (Table 2) were grown in GM17 supplemented with chloramphenicol (5 μg ml^{-1}) at 30°C until an OD_{600} of 0.6. The expression of *aguR-gfp* was then induced by the addition of 0.5 nM nisin for 2 h. Fluorescence was analyzed using a Nikon Eclipse 90i (Nikon UK, Kingston, UK) microscope running iControl software and ACT-2U camera control software, employing a X100 objective and the B2A Nikon filter (excitation filter 450-490 nm, dichroic mirror 505 nm, emission filter 520 nm). A minimum of 15 random fields of view were observed for each sample. Each experiment was performed in triplicate.

In silico analysis of inverted sequences of the *aguB* promoter
In silico analysis of the nucleotide sequence of the putative *aguB* promoter (GenBank Accession No. HG317493.1, nucleotides 3518 to 3726) was performed using Clone Manager V.7 software (Scientific & Educational Software, Cary, NC).

In silico analysis of AguR

The NCBI BLASTP program (http://blast.st-va.ncbi.nlm.nih.gov) was used to determine the similarity of the deduced amino acid sequence for AguR to sequences present in databases. Functional domains in AguR were analyzed using the Pfam database (http://pfam.xfam.org/) (27). The topology of AguR was predicted using computer-based algorithms available on the SOSUI server (http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html) (28). Homology modeling was performed by searching for the most suitable template protein structure using the SWISS MODEL workspace (http://swissmodel.expasy.org) (29). Model refinement and editing were performed using Swiss-PdbViewer software v.4.0.4 (30).

RESULTS

aguR is transcribed independently of the *aguBDAC* operon

The transcriptional profiles of *aguR* and of the genes encoding the putrescine biosynthetic pathway (*aguB*, *aguD*, *aguA* and *aguC*) were determined. Total RNA was isolated from *L. lactis* CECT8666 cells grown in GM17 supplemented with 20 mM agmatine, and was used in RT-PCR analysis involving five sets of primers (referred to as 1 to 5 in Fig. 1 A) designed to amplify the regions spanning the gene
junctions (Table 2, Fig. 1A). The ycaC-aguR and aguR-aguB intergenic regions rendered no RT-PCR product (Fig. 1B, lanes 1 and 2, respectively), indicating that neither ycaC-aguR nor aguR-aguB are co-transcribed. In fact, a potential transcription terminator was found in each intergenic region ($\Delta G = -9.4$ and $\Delta G = -10.3$ kcal/mol respectively). In contrast, RT-PCR amplifications of the aguB-aguD, aguD-aguA and aguA-aguC intergenic regions rendered DNA fragments of the expected size (Fig. 1B, lanes 3, 4 and 5 respectively), showing that aguB, aguD, aguA and aguC are co-transcribed. The RT-PCR reactions for the negative controls failed to yield any amplification product. DNA template controls (to ensure PCR fidelity for each primer pair) uniformly yielded the PCR product of the expected size. Overall, these results indicate that the aguR gene is transcribed from its own promoter (P_{aguR}) as a monocistronic mRNA, and that its transcription is independent of both the ycaC gene located upstream of the AGDI cluster and the aguB gene. In addition, the results indicate aguB, aguD, aguA and aguC genes to be co-transcribed as a polycistronic mRNA (aguBDAC operon) from the P_{aguB} promoter.

AguR is essential for putrescine biosynthesis

To investigate the involvement of AguR in putrescine production, a *L. lactis* CECT8666 ΔaguR mutant (KO) was constructed as described in Materials and Methods (section 2.4). Both the WT and KO strains were grown in GM17 supplemented with increasing agmatine concentrations (0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10, and 20 mM) for 24 h. Samples were collected at the end of fermentation and
putrescine production determined by UHPLC (Fig. 2). Putrescine production by the WT strain correlated strictly with the initial concentration of agmatine in the medium. However, the deletion of *aguR* completely abolished the conversion of agmatine to putrescine; no putrescine was produced at any of the agmatine concentrations tested.

Effect of *aguR* deletion on the transcriptomic profile

To determine the effect of the deletion of *aguR* on the transcriptomic profile of *L. lactis* CECT8666, DNA microarray analysis was performed involving the WT and the KO strains grown in the presence of 20 mM agmatine. Genes differentially expressed by the KO and WT that fulfilled the criteria of at least a threefold change and a *p* value of <0.001 - as well as the results for *aguR* - are shown in Table 3. The four catalytic genes (*aguB*, *aguD*, *aguA* and *aguC*) coding for the proteins needed for the biosynthesis of putrescine were clearly downregulated in the Δ*aguR* strain (fold changes -27.44, -26.27, -28.50 and -28.55 respectively). However, although statistically significant (*p*=0.02), the downregulation of *aguR* in the KO was much less (-0.73). That is, the expression of *aguR* in the WT strain is only slightly higher than in the KO, suggesting that *aguR* expression must be very low in the WT strain.

Transcriptional regulation of *aguR* and *aguBDAC* by agmatine

The effect of the environmental agmatine concentration on *aguR* and *aguBDAC* expression was investigated by RT-qPCR. The expression profile of *aguB* (the first
gene of the aguBDAC operon) was analyzed as representative of the whole aguBDAC polycistronic mRNA. Total RNA was isolated from L. lactis CECT8666 cells grown in GM17 as well as GM17 supplemented with increasing concentrations of agmatine (0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10, and 20 mM). Figure 3 shows the relative aguR and aguB gene expression levels (normalized against the rpoA reference gene). aguR expression was not affected by the increase in the agmatine concentration (Fig. 3A), whereas aguB expression was upregulated by concentrations of ≥0.25 mM, the strongest overexpression (1700-fold change) occurring in the presence of 5 mM agmatine (Fig. 3B). Agmatine concentrations of over 5 mM right up to 20 mM did not increase the aguB expression compared to that observed with 5 mM agmatine.

In response to agmatine, AguR acts as a transcriptional activator of P_{aguB}

To study the activity of the P_{aguR} and P_{aguB} promoters, P_{aguR-gfp} and P_{aguB-gfp} fusions were constructed by substituting the aguR or aguBDAC genes for the gfp reporter gene, and comparing with the P_{aguR-aguR-P_{aguB}-gfp} fusion (pAGDI, Table 3). Constructs were assayed in L. lactis NZ9000 -a strain without the AGDI cluster- grown in GM17 in the presence (20 mM) or absence of agmatine, measuring whole-cell fluorescence (see Fig. 4). Interestingly, when fused independently, neither P_{aguR} nor P_{aguB} was associated with any detectable activity. However, P_{aguB} activity was recorded in assays involving the P_{aguR-aguR-P_{aguB}-gfp} construct, but, strikingly, only under the agmatine-supplementation conditions. The fact that P_{aguB} only showed activity when aguR (driven by its own promoter) was included in the genetic cassette supports AguR to be a transcriptional activator of P_{aguB}.
To further determine the dose-dependent activator effect of agmatine on the promoter activity, the *gfp*-fusion constructs were assayed in *L. lactis* NZ9000 grown in GM17 supplemented with increasing amounts of agmatine. Figure 5 shows the whole-cell fluorescence results obtained. Once again no activity was detected for the P*aguR*-gfp nor P*aguB*-gfp construct (at any agmatine concentration tested) (Fig. 5A and 5B respectively), while a dose-dependent activation of the P*aguR*-aguR-P*aguB*-gfp fusion was seen, with maximum activity recorded for 0.1 mM agmatine (6 fluorescent a.u.). Agmatine concentrations above 0.1 mM did not significantly increase the intensity of fluorescence compared to 0.1 mM agmatine (Fig. 5C).

Functional analysis of inverted sequences of the aguB promoter region

Clone software analysis of the nucleotide sequence upstream of the putative -35 region of the *aguB* promoter revealed the presence of one direct and three reversed sequences (Fig. 6A). To determine whether these inverted sequences are necessary for transcriptional activity, a series of deletions in the pAGDI plasmid (from -209 to -179 nucleotides [pAGDIΔ1 plasmid]; from -179 to -147 nucleotides [pAGDIΔ2 plasmid]; from -147 to -119 nucleotides [pAGDIΔ3 plasmid]; and from -119 to -92 nucleotides [pAGDIΔ4 plasmid]; Fig. 6B) were generated. *gfp* was used as the reporter gene and *L. lactis* NZ9000 as the host. Plasmid pAGDI containing the complete *aguB* promoter was used as a control. NZ9000 cells were transformed with either pAGDI, pAGDIΔ1, pAGDIΔ2, pAGDIΔ3 or pAGDIΔ4 and grown in GM17 supplemented with 20 mM agmatine. At the end of the exponential phase, cells were collected and the activity of the promoters examined via whole-
cell fluorescence. The obtained transcriptional activities were expressed as percentages relative to pAGDI (100% activity) (Fig. 6B). The deletion of fragment -209 to -179 did not affect the activity of the promoter, which was equal to that shown by the control. However, the deletion of the fragments located downstream of this region did prevent expression. This indicates that these sequences are required for P_{aguB} activity.

AguR is a transmembrane protein

As described above, the $P_{aguR-aguR-P_{aguB}-gfp}$ fusion became active in response to the extracellular agmatine concentration in *L. lactis* NZ9000, a strain lacking the AGDI cluster, in which *aguD* codes for the agmatine/putrescine antiporter. Database checks were made to confirm that the genome of the *L. lactis* NZ9000 strain (GenBank: CP002094.1) (31) is defective in predicted agmatine transporters. The ability of *L. lactis* NZ9000 to internalize agmatine *in vivo* was therefore assessed. The strain was grown in GM17 plus 20 mM agmatine, but after 24 h the concentration of extracellular agmatine in the supernatant was the same (20 mM), indicating that *L. lactis* NZ9000 likely lacks a system for agmatine internalization (data not shown). Thus, agmatine in the extracellular medium might trigger the induction of *aguBDAC* transcription.

To gain insight into the mechanism of response to the extracellular agmatine concentration, the sub-cellular localization of the AguR protein was predicted by *in silico* topology-analysis using the computer-based algorithms provided by the SOSUI server. The topology revealed a membrane protein secondary structure with seven predicted transmembrane-spanning segments, the N-terminal outside
The localization of AguR was also examined experimentally using the $P_{nis-\text{aguR}}$-gfp translational fusion (pAG3 plasmid) in which the aguR gene fused to the gfp gene is under the control of the nisA promoter. This fusion was assayed in $L. \text{lactis}$ NZ9000 with induction by nisin, and the cells examined by fluorescence microscopy. As shown in Figure 7-B1, the AguR-GFP fusion protein was evenly distributed on the periphery of the cell, confirming the predicted trans-membrane nature of AguR in $L. \text{lactis}$. A control with a cytoplasmic GFP showing contrast with the fluorescent pattern of the AguR-GFP product was carried in parallel (Figure 7-B2).

AguR has a LuxR$_C$-like domain

A C-terminal DNA-binding domain typically found in LuxR-like proteins (LuxR$_C$-like domain), and which contains a helix-turn-helix (HTH) DNA-binding functional motif (13, 32), was found in AguR (C-terminus 265 to 313 residues, Fig. 7A). Structure-based multiple alignment was performed between the predicted LuxR$_C$-like domain sequence of AguR and the orthologous domains of LuxR member proteins with known structures: DosR from *Mycobacterium tuberculosis* (Wisedchaisri et al., 2005), GerE from *Bacillus subtilis* (33), StyR from *Pseudomonas fluorescens* (34), CviR from *Chromobacterium violaceum* (35), and VraR from *Staphylococcus aureus* (36) (Fig. 8A). Remarkably strong similarity was found between the accepted four alpha-helix motif distribution model of the solved LuxR domains and the predicted alpha-helix motifs within the AguR LuxR$_C$-like domain (Fig. 9A). Half of the total residues involved within the LuxR$_C$-like domain
were conserved or conservatively substituted across all the compared structures, indicating strong sequence similarity. Moreover, 9 out of the 13 residues described to act as DNA-binding residues in the LuxR_C_like domain of the DosR regulator of *Mycobacterium tuberculosis* were conserved in AguR (Fig. 8A). Since the LuxR_C_like domain of DosR binds to DNA as a homodimer, it is remarkable that when we replaced in the solved DosR model (37) the LuxR_C_like domain of the chain A of AguR showed a perfect fit match (Fig. 8B). Further, the largest inverted repeated sequence found in the *aguR* promoter region (Fig. 6) showed a 13 bp match with the 20 bp palindromic consensus sequence of DosR binding sites (38).

DISCUSSION

Food safety is a major social concern in developed countries, in part stemming from the world-wide recorded incidence of food-borne illnesses. A great deal of effort has therefore been invested in the development of processing methods and techniques that avoid contaminants such as BAs entering foodstuffs. Fermented foods, and particularly cheese, are of special concern in this respect (39-41). Putrescine is one of the most commonly detected BAs in dairy products (2,3,42,43). Prompted by the increasing awareness of the risks associated with the dietary intake of high BA loads, and the importance of *Lactococcus lactis* as a primary starter in the dairy industry, the aim of this work was to decipher the genetic regulation of the putrescine biosynthesis cluster of *L. lactis* subsp. *cremoris* CECT8666.

The performed transcriptional studies detected the presence of a mRNA spanning the intergenic regions of *aguB, aguD, aguA* and *aguC*, thereby confirming that
these genes are co-transcribed from the P_{aguB} promoter as a single $aguBDAC$ polycistronic mRNA. In fact, no terminator-like sequences were identified in the $aguBDAC$ intergenic regions. The transcription of the catabolic genes of the AGDI cluster as a single mRNA molecule has previously been reported for *Pseudomonas aeruginosa* PAO1 (44), *Streptococcus mutans* UA159 (45), *Lactococcus lactis* subsp. lactis CHCC7244 (2), and *Enterococcus faecalis* JH2-2 (46). The similar degree of downregulation presently seen in the DNA microarray comparisons between the $ΔaguR$ mutant and WT strains (Table 3) supports the idea that these genes are co-transcribed. In addition, the present data reveal the expression of the adjacent upstream $aguR$ gene occurs via an independent mRNA transcribed from the P_{aguR} promoter.

The role of $aguR$ in the AGDI operon has been described as a positive regulator in *Streptococcus mutans* (13), *Enterococcus faecalis* JH2-2 (46) and *Enterococcus faecalis* V583 (47), and as a TetR-family repressor in *Pseudomonas aeruginosa* (44). In the present work, the deletion of $aguR$ in putrescine-producing *L. lactis* CECT8666 fully impaired expression of the catalytic AGDI genes and thereby the catabolism of agmatine to putrescine (Fig. 2), indicating that this gene behaves as a positive regulator. Moreover, when fused to *gfp*, the promoter regions of $aguR$ and $aguBDAC$ showed no activity in NZ9000 cells (without AGDI cluster) regardless of the agmatine concentration (Figs. 4-5). In contrast, when $aguR$ was present in the *gfp* fusion, an agmatine-specific induction of P_{aguB} activity was observed. Together, these data reveal the dual role of AguR in *Lactococcus lactis*: not only is it required for sensing the agmatine concentration, it is involved in the transcriptional activation of putrescine biosynthesis. However, the transcription of
aguR was revealed as completely independent of the agmatine concentration, suggesting that AguR is constantly present in the cells, although its expression must be very low-level since very small differences in aguR transcription were observed between the WT and KO strains in transcriptomic analyses.

As previously reported, the transcription of the aguBDAC operon is regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA. However, the expression level of aguR is independent of the glucose concentration (12). CcpA would control the expression of the aguBDAC operon - which promoter P_{aguB} has in fact a cre site (12) - and would not control aguR expression. Therefore, our data suggest that CCR and AguR activation would work as two independent systems exerting a parallel control on P_{aguB} promoter.

The in silico analysis of the amino acidic sequence of AguR revealed the presence of seven transmembrane domains, a short extracytoplasmic N-terminus, and a longer cytoplasmic C-terminus (Fig. 7A). A membrane localization of AguR has also been predicted in its orthologous protein present in S. mutants (13), although the authors of the latter work proposed a four-transmembrane-domain model and determined the N-terminus to lie in the cytosol. In the present work, fluorescence microscopy analysis of NZ9000 cells expressing aguR fused to gfp showed AguR to localize at the bacterial surface where it is evenly distributed (Fig. 7B).

Moreover, agmatine concentration sensing was maintained when aguR was coexpressed with P_{aguB-gfp} in L. lactis NZ9000, an AGDI-defective strain (lacking aguR) unable to internalize agmatine. This confirms that extracellular agmatine activates the AGDI system without being internalized. However, NZ9000 cells containing the P_{aguB-gfp} construct, but lacking AguR, were unable to transduce the
agmatine signal to the inside of the cell and activate P_{aguB}. These results strongly suggest that AguR is a transmembrane protein that behaves both as a sensor of the extracellular agmatine concentration and as a signal transducer demanding the transcription of the $aguBDAC$ genes be initiated. It should be noted that the non-AGDI cluster genes which, in the present transcriptomic studies, showed different degrees of expression in the KO and WT strains (Table 3), are not present in the genome of $L. lactis$ NZ9000 (except for the glycosyltransferase and transposase genes). They do not, therefore, seem to be required by the proposed regulation model.

Blast analysis of the amino acid sequence of AguR showed this protein to belong to the transcriptional regulators of the LuxR family, as described for its orthologs in $L. lactis$ subsp. lactis CHCC7244 (2), $S. mutants$ UA159 (13,45) and $E. faecalis$ JH2-2 (46). The LuxR family of DNA-binding proteins are transcription factors involved in quorum sensing via the detection of autoinducers such as oligopeptide signaling molecules (in Gram-positive bacteria) (48,49) or acylated homoserine lactones (in Gram-negative bacteria) (50). These proteins have two functional domains: an amino-terminal domain involved in the binding of the signaling molecule, and a LuxR-C-like transcription regulation domain at the C-terminus of the protein which includes a helix-turn-helix (HTH) DNA-binding motif (32). LuxR transcription factors can therefore behave as regulators (transcriptional activators) by binding a cognate extracellular inducer and targeting specific gene promoters (51). A high degree of structural homology was noted when the AguR intracellular C-terminal LuxR_C_like domain was compared to those of LuxR family members with solved structures (Fig. 8); indeed, the characteristic four alpha-helix secondary
structure for this domain was shared (52). Moreover, half of the amino acid residues of the LuxR_C_like domain (34 of 62 residues) were strongly conserved across all the compared structures, indicating high sequence conservation. In fact, 9 out of 13 DNA-binding residues in the LuxR_C_like domain of DosR in *M. tuberculosis* (37) were conserved in the AguR LuxR_C_like domain, as were the three residues involved in dimerization within the α10 helix of DosR monomers (37). The similarity between the two proteins is such that a DosR chain could be perfectly replaced by one from AguR. Since the LuxR_C_like domain of DosR binds to DNA as a homodimer, the LuxR_C_like domain of AguR should be able to bind to DNA, probably with a dimeric structure.

The target DNA-binding sites (lux-type boxes) of many LuxR-type proteins have a dyad symmetry structure (50) and are often located just upstream of the -35 region of the regulated promoters. Such is the case of a direct repeat element essential for transcription from P*aguB* promoter (Fig. 6A), which shows a 13 bp-match with the 20 bp DosR binding site consensus sequence (38). This similarity between the proteins and their DNA-binding sites is even more remarkable considering the taxonomic distance between the GC content of *M. tuberculosis* (65%) and *L. lactis* (35%).

The results reveal the role of the regulatory protein AguR as both agmatine sensor and transcriptional activator of the AGDI genes (*aguB, aguD, aguA*, and *aguC*). In other lactic acid bacteria with the AGDI pathway as *S. mutants* (13,45) and *E. faecalis* (46) the role of AguR would be the same. However, the system seems to be slightly different in *Lb. brevis*, since the AGDI cluster does not contain an *aguR* gene. *Lb. brevis* has a putative transcription regulator gene adjacent to the AGDI
cluster that belongs to the RpiR family, which is distantly related to AguR (57) and
lacks transmembrane domains. A similar mechanism to the one proposed here for
AguR has been described in *E. coli* for the biosynthesis operon of cadaverin,
another BA: the transmembrane protein CadC binds lysine outside the cell, and the
signal is then transduced to the N-terminal cytoplasmic portion of the protein, which
contains the HTH domain (53, 54, 55, 56). Nevertheless, further analyses are
needed to determine the precise mechanism by which AguR senses the agmatine
concentration and transduces the activation signal to the promoter of the *aguBDAC*
genes.

ACKNOWLEDGEMENTS

This work was performed with the financial support of the Spanish Ministry of
Economy and Competitiveness (AGL2013-45431-R) and the Plan for Science,
Technology and Innovation 2013-2017 funded by the European Regional
Development Plan and the Principality of Asturias (GRUPIN14-137). We are
grateful to Bert Poolman for providing the GFP-based cloning vectors and Adrian
Burton for linguistic assistance. Strain *L. lactis* NZ9000 and plasmid pNZ8048 were
kindly provided by NIZO Food Research. D.M.L. and B.d.R. were beneficiaries of
JAE DOC contracts (CSIC).
Table 1. Strains and plasmids.

<table>
<thead>
<tr>
<th>Strain /Plasmid</th>
<th>Characteristics</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. lactis subsp. cremoris NZ9000</td>
<td>L. lactis subsp. cremoris MG1363. containing nisRK genes, non-putrescine producer</td>
<td>(24)</td>
</tr>
<tr>
<td>L. lactis subsp. cremoris CECT8666</td>
<td>Isolated from artisanal cheese, putrescine producer</td>
<td>(2)</td>
</tr>
<tr>
<td>E. coli DH11S</td>
<td></td>
<td>Life technologies, Spain</td>
</tr>
<tr>
<td>L. lactis subsp. cremoris CECT8666 ΔaguR</td>
<td>CECT8666 strain lacking the aguR gene</td>
<td>This work</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNZ8048</td>
<td>Lactococal plasmid, Cm<sup>r</sup></td>
<td>(24)</td>
</tr>
<tr>
<td>pCS1966</td>
<td>Selection/counterselection vector, Em<sup>r</sup></td>
<td>(20)</td>
</tr>
<tr>
<td>pNZcLIC-GFP</td>
<td>pNZ8048 derivative harboring gfp, Cm<sup>r</sup></td>
<td>(25)</td>
</tr>
<tr>
<td>pNZcGFP</td>
<td>pNZ8048 derivative harboring gfp, Cm<sup>r</sup></td>
<td>(25)</td>
</tr>
<tr>
<td>pAGDI</td>
<td>pNZ8048 derivative bearing P<sub>agu</sub>-aguR-P<sub>agu</sub>-gfp fusion, Cm<sup>r</sup></td>
<td>(12)</td>
</tr>
<tr>
<td>pIPLA1269</td>
<td>pCS1966 derivative bearing a fragment of CECT8666 ycaC-aguR genes, Em<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pIPLA1713</td>
<td>pIPLA1269 derivative bearing a fragment of CECT8666 ycaC-aguR genes and a fragment of aguR-aguB genes, Em<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pAG1</td>
<td>pNZ8048 derivative bearing P<sub>agu</sub>-gfp fusion, Cm<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pAG2</td>
<td>pNZ8048 derivative bearing P<sub>agu</sub>-gfp fusion, Cm<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pAG3</td>
<td>pNZcLIC-GFP derivative bearing P<sub>nisA</sub>-AguR-gfp fusion, Cm<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pAGDI<sub>Δ1</sub></td>
<td>pAGDI derivative; deletion from -209 to -179 of P<sub>agu</sub><sup>r</sup>, Cm<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pAGDI<sub>Δ2</sub></td>
<td>pAGDI derivative; deletion from -179 to -146 of P<sub>agu</sub><sup>r</sup>, Cm<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pAGDI<sub>Δ3</sub></td>
<td>pAGDI derivative; deletion from -146 to -119 of P<sub>agu</sub><sup>r</sup>, Cm<sup>r</sup></td>
<td>This work</td>
</tr>
<tr>
<td>pAGDI<sub>Δ4</sub></td>
<td>pAGDI derivative; deletion from -119 to -82 of P<sub>agu</sub><sup>r</sup>, Cm<sup>r</sup></td>
<td>This work</td>
</tr>
</tbody>
</table>

Cm^r: chloramphenicol resistance; *Em^r*: erythromycin resistance; *P_{agu}^r*: *aguR* promoter; *P_{agu}*: *aguB* promoter; *P_{nisA}*: *nisA* gene promoter
Table 2. Primers used.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Function</th>
<th>Nucleotide sequence (5’ to 3’)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>AguF</td>
<td>Intergenic region ycaC-aguR (F)</td>
<td>CGAACAGACAGCGTCCCTGA</td>
<td>This work</td>
</tr>
<tr>
<td>AgurNco</td>
<td>Intergenic region ycaC-aguR (R)</td>
<td>CCCCATGGGATTAGACCTACTTATCATATTATCA</td>
<td>This work</td>
</tr>
<tr>
<td>PtcBglII</td>
<td>Intergenic region aguR-aguB (F)</td>
<td>CCCCATGGGATTAGACCTACTTATCATATTATCA</td>
<td>This work</td>
</tr>
<tr>
<td>PTC3C</td>
<td>Intergenic region aguR-aguB (R)</td>
<td>CCCCATGGGATTAGACCTACTTATCATATTATCA</td>
<td>This work</td>
</tr>
<tr>
<td>RT1</td>
<td>Intergenic region aguB-aguD (F)</td>
<td>CTTTAGTGTAATCTTCTTGTGATG</td>
<td>This work</td>
</tr>
<tr>
<td>RT2</td>
<td>Intergenic region aguB-aguD (R)</td>
<td>GAAAGAATAGCACTAAATAGAC</td>
<td>This work</td>
</tr>
<tr>
<td>RT3</td>
<td>Intergenic region aguD-aguA (F)</td>
<td>TTTTTGGGAGTTATGTGTTATG</td>
<td>This work</td>
</tr>
<tr>
<td>AgDI3Cre</td>
<td>Intergenic region aguD-aguA (R)</td>
<td>GAAAGAATAGCACTAAATAGAC</td>
<td>This work</td>
</tr>
<tr>
<td>RT4</td>
<td>Intergenic region aguA-aguC (F)</td>
<td>GGCAGGTGGAATATATTACG</td>
<td>This work</td>
</tr>
<tr>
<td>RT5</td>
<td>Intergenic region aguA-aguC (R)</td>
<td>GGCAGGTGGAATATATTACG</td>
<td>This work</td>
</tr>
<tr>
<td>qAguR-F</td>
<td>aguR expression analysis (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>(12)</td>
</tr>
<tr>
<td>qAguR-R</td>
<td>aguR expression analysis (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>(12)</td>
</tr>
<tr>
<td>qPTC-F</td>
<td>aguB expression analysis (F)</td>
<td>ACTTGGTGGGACATGAAACATAGAG</td>
<td>(12)</td>
</tr>
<tr>
<td>qPTC-R</td>
<td>aguB expression analysis (R)</td>
<td>ACTTGGTGGGACATGAAACATAGAG</td>
<td>(12)</td>
</tr>
<tr>
<td>rpoA-F</td>
<td>rpoA reference gene (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>(12)</td>
</tr>
<tr>
<td>rpoA-R</td>
<td>rpoA reference gene (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>(12)</td>
</tr>
<tr>
<td>qtufF</td>
<td>EF-Tu reference gene (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>(12)</td>
</tr>
<tr>
<td>qtufR</td>
<td>EF-Tu reference gene (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>(12)</td>
</tr>
<tr>
<td>AguRBglII</td>
<td>Cloning of PaguR (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>PtcNco</td>
<td>Cloning of PaguB (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>AgurlicF</td>
<td>Cloning of aguR (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>AgurlicR</td>
<td>Cloning of aguR (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>Gffor</td>
<td>Cloning of gfp (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>Gfrev</td>
<td>Cloning of gfp (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO1F</td>
<td>Generation of pAGDIΔ1 (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO1R</td>
<td>Generation of pAGDIΔ1 (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO2F</td>
<td>Generation of pAGDIΔ2 (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO2R</td>
<td>Generation of pAGDIΔ2 (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO3F</td>
<td>Generation of pAGDIΔ3 (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO3R</td>
<td>Generation of pAGDIΔ3 (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO4F</td>
<td>Generation of pAGDIΔ4 (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO4R</td>
<td>Generation of pAGDIΔ4 (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO-214AguR-AF2</td>
<td>Generation of pIPLA1269 (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO-214AguR-AR</td>
<td>Generation of pIPLA1269 (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO-214AguR-BF</td>
<td>Generation of pIPLA1713 (F)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
<tr>
<td>KO-214AguR-BR</td>
<td>Generation of pIPLA1713 (R)</td>
<td>CACGCATCAACAGATAGCAAAATACG</td>
<td>This work</td>
</tr>
</tbody>
</table>

F: forward, R: reverse, PaguR: aguR promoter, PaguB: aguB promoter
Table 3. Genes differentially expressed in *L. lactis* subsp. *cremoris* CECT8666 ΔaguR and the WT for which the criteria of at least a threefold difference and a *p* value of <0.001 were met (aguR is also included although these criteria were not entirely met).

<table>
<thead>
<tr>
<th>Locus tag(^a) (gene name)</th>
<th>Description</th>
<th>Fold change(^b)</th>
<th>p value(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U725_01346 (aguR)</td>
<td>Transcriptional regulator</td>
<td>-0.73</td>
<td>2.02E-2</td>
</tr>
<tr>
<td>U725_01347 (aguB)</td>
<td>Putrescine carbamoyl transferase</td>
<td>-27.44</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>U725_01348 (aguD)</td>
<td>Agmatine/putrescine antiporter</td>
<td>-26.27</td>
<td>1.50E-4</td>
</tr>
<tr>
<td>U725_01349 (aguA)</td>
<td>Agmatine deiminase</td>
<td>-28.50</td>
<td>8.00E-5</td>
</tr>
<tr>
<td>U725_01350 (aguC)</td>
<td>Carbamate kinase</td>
<td>-28.55</td>
<td>8.00E-5</td>
</tr>
<tr>
<td>U725_00022</td>
<td>hypothetical protein</td>
<td>-4.39</td>
<td>8.60E-4</td>
</tr>
<tr>
<td>U725_00023</td>
<td>Glycosyltransferase</td>
<td>-6.00</td>
<td>5.70E-4</td>
</tr>
<tr>
<td>Up-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U725_02522</td>
<td>Transposase</td>
<td>5.00</td>
<td>8.00E-5</td>
</tr>
<tr>
<td>U725_02523</td>
<td>EpsR</td>
<td>16.26</td>
<td>2.30E-4</td>
</tr>
<tr>
<td>U725_02524</td>
<td>EpsX</td>
<td>16.00</td>
<td>7.00E-5</td>
</tr>
<tr>
<td>U725_02525</td>
<td>EpsA</td>
<td>21.20</td>
<td>1.20E-4</td>
</tr>
<tr>
<td>U725_02526</td>
<td>EpsB kinase</td>
<td>30.41</td>
<td>6.00E-5</td>
</tr>
<tr>
<td>U725_02527</td>
<td>EpsC</td>
<td>16.33</td>
<td>4.20E-4</td>
</tr>
<tr>
<td>U725_02528</td>
<td>Undecaprenyl-phosphate galactose phosphotransferase</td>
<td>18.43</td>
<td>7.00E-5</td>
</tr>
<tr>
<td>U725_02529</td>
<td>putative transposase</td>
<td>6.20</td>
<td>6.00E-5</td>
</tr>
<tr>
<td>U725_01694</td>
<td>Transposase</td>
<td>6.50</td>
<td>5.00E-5</td>
</tr>
<tr>
<td>U725_02271</td>
<td>putative replication protein repA</td>
<td>3.83</td>
<td>8.30E-4</td>
</tr>
<tr>
<td>U725_02289</td>
<td>Transposase</td>
<td>3.70</td>
<td>4.10E-4</td>
</tr>
<tr>
<td>U725_02472</td>
<td>Transposase</td>
<td>6.87</td>
<td>3.00E-5</td>
</tr>
<tr>
<td>U725_02477</td>
<td>EpsN protein</td>
<td>25.29</td>
<td>5.00E-5</td>
</tr>
</tbody>
</table>

\(^a\) Locus tags refer to GenBank Accession No AZSI00000000.1
FIGURE LEGENDS

Figure 1. Transcriptional analysis of the AGDI operon of *L. lactis* subsp. cremoris CECT8666. **A)** Genetic organization of the AGDI cluster and surrounding regions. The putative aguR promoter (P\textsubscript{aguR}), the aguB promoter (P\textsubscript{aguB}), and the termination regions (\(\Uparrow\)) are indicated. **B)** RT-PCR amplification of intergenic regions was conducted using total RNA extracted from cells grown in the presence of 20 mM agmatine. Five set of primers were designed to amplify the intergenic regions: ycaC-aguR (primer-pair 1, lane 1), aguR-aguB (primer-pair 2, lane 2), aguB-aguD (primer-pair 3, lane 3), aguD-aguA (primer-pair 4, lane 4), and aguA-aguC (primer-pair 5, lane 5). Negative controls were run with the same RNA samples but without reverse transcriptase. Positive controls were run with chromosomal DNA. M: DNA molecular marker.

Figure 2. Production of putrescine by *L. lactis* CECT8666 (WT) and the \(\Delta\)aguR deletion mutant at different agmatine concentrations. Both strains were grown in GM17 supplemented with 0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10 or 20 mM agmatine for 24 h. Supernatants were analyzed by UHPLC to determine the putrescine concentration in the extracellular medium.

Figure 3. Influence of agmatine concentration on the expression of aguR and aguBDAC as determined by RT-qPCR. Cell cultures were supplemented with 0, 0.05, 0.1, 0.25, 0.5, 1, 5, 10 or 20 mM agmatine, and samples collected at the end of the exponential phase of growth. The relative expression of aguR (A) and aguB...
-representing the whole aguBDAC operon- (B) was calculated relative to the transcript level for samples grown in the absence of agmatine. Data were normalized to total RNA content using rpoA and tuf as reference genes. The values shown are the means of three replicates; the standard deviations are indicated by bars. *p<0.05 **p<0.001

Figure 4. Cloning and assay of PaguR and PaguB activity, reported as gfp fluorescence, in the presence and absence of 20 mM agmatine. The genetic fusions PaguR-gfp, PaguB-gfp and PaguR-aguR-PaguB-gfp were transformed in L. lactis NZ9000 cells and promoter activity determined by measuring whole-cell fluorescence (250 μl of cells) at similar OD₆₀₀. The values shown are the means of three replicates; standard deviations are indicated by bars. a.u.: arbitrary units.

Figure 5. Effect of agmatine concentration on the transcriptional activity of the AGDI cluster promoters, measured by whole-cell fluorescence. L. lactis NZ9000 cells harboring either the PaguR-gfp (A), the PaguB-gfp (B) or the PaguR-aguR-PaguB-gfp (C) genetic fusions were grown in GM17 supplemented with 0, 10⁻⁶, 10⁻⁵, 10⁻⁴, 10⁻³, 10⁻², 0.1, 0.5, 1, 2, 5, 10 or 20 mM agmatine for 7 h, after which gfp fluorescence was monitored. The values shown are the means of three replicates; standard deviations are indicated by bars. a.u.: arbitrary units.

Figure 6. A. Sequence of the aguB promoter region. The putative -10 and -35 regions, the ribosome binding site (RBS), and the aguB start codon, are shown in bold. Direct and reversed sequences are indicated by arrows. The deletions
generated in this study (Δ1, Δ2, Δ3, and Δ4) are indicated by dashed lines. Asterisks indicate matches with the palindromic consensus sequence of the DosR binding site. B. Effect of sequential deletions within the aguB promoter region. Plasmids pAGΔ1, pAGΔ2, pAGΔ3 and pAGΔ4 were constructed from pAGDI (P_{aguR-aguR-P_{aguB-gfp}} fusion). The dashed lines indicate the fragments deleted. The corresponding gfp fluorescence was measured in *L. lactis* NZ9000 grown in GM17 supplemented with 20 mM agmatine. The activities associated with the deletion constructs are expressed as percentages relative to pAGDI activity (100% activity). The values shown are the means of three replicates; standard deviations are indicated by bars (*p*<0.05).

Figure 7. Cellular localization of AguR. (A) Predicted secondary structure and topology of AguR obtained via the analysis of the amino acid sequence (performed using the SOSUI server). Seven trans-membrane domains were predicted (grey shadowing). (B1) *In vivo* membrane localization of AguR in *L. lactis* NZ9000 cells overexpressing the AguR-GFP translational fusion protein imaged by fluorescence microscopy. (B2) Control image showing fluorescent pattern of the same cells overexpressing a cytoplasmic GFP.

Figure 8. *In silico* structural analysis of the C-terminal LuxR-C-like domain of AguR. (A) Structural alignment of the LuxR-C-like domain of AguR with homologue domains retrieved from PDB (Protein Data Bank). Residues identical in the majority of the proteins are indicated by capital letters in the consensus sequence, while ‘c’
indicates conservative substitutions. The shadowed residues are those involved in alpha-helices within the domain. The alpha-helices in the AguR sequence are derived from a structural alignment performed with the DosR LuxR_C_like domain as a template. Arrows indicate those residues from the DosR domain that interact with DNA, while asterisks indicate those involved in DosR dimerization. DosR from *Mycobacterium tuberculosis* (PDB code 1ZLK), GerE from *Bacillus subtilis* (1FSE), VraR from *Staphylococcus aureus* (2RNJ), StyR from *Pseudomonas fluorescens* (1YIO), CviR from *Chromobacterium violaceum* (3QP6), and unknown protein from *Bacteroides thetaiotaomicron* (3CLO). (B) Homology modeling analysis between LuxR_C_like domains from DosR and AguR. A DosR dimer (chains A and B) bound to DNA was used as template. Modeling was performed by substituting the LuxR_C_like domain from DosR chain A for the LuxR_C_like domain from AguR (red). DosR chain B is shown in yellow; the DNA helix is grey. The residues involved in DosR dimerization within the α10 helix are shown in dark blue, the AguR putative DNA-interacting residues in green, and the putative dimerization residues of AguR in light blue.

REFERENCES

Figure 1
Figure 2
Figure 3

A

Relative axuR gene expression

Agmatine (mM)

0 0.05 0.1 0.25 0.5 1 5 10 20

B

Relative axuB gene expression

Agmatine (mM)

0 0.05 0.1 0.25 0.5 1 5 10 20
Figure 4

Figure 4
Figure 5

(A) P_{aguR^-gfp}

(B) P_{aguB^-gfp}

(C) $P_{aguR^-aguR-P_{aguB^-gfp}}$
Figure 6

A

\[
\begin{align*}
A & \quad \Delta 1 \\
\text{GTTTTATTTATTTTATAAAAGAAAGCGTTTGAAAAAAGCACTAAACCCTA} & \quad \Delta 2 \\
\text{AACCTTTTTGACCTCAACCCCTTGGTAGCAAAAGGTTTTTTGCTTTTA} & \quad \Delta 3 \\
\text{TTAAATCCTAGAGTGTGTTTAAAGAAATCAACCTTGTTATACTGAAAATCG} & \quad \Delta 4 \\
\text{TTCCCAAGTGGGAAGTCAAATAACTATTTATTCAGGAGGAATAAAACAAATG} & \\
\end{align*}
\]

B

<table>
<thead>
<tr>
<th></th>
<th>-209</th>
<th>-179</th>
<th>-146</th>
<th>-119</th>
<th>-92</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAGDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAGDI(\Delta 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAGDI(\Delta 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAGDI(\Delta 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAGDI(\Delta 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6
Figure 7
AguR_{L. lactis} : \text{YGITQREGEILQLLLQRKHNQEIANQLYLSVTKTHTHNIPIKLOVRVERGCEVWEA}nE : 323
DosR_{M. tuberculosis} : \text{SGLTDQERTLGLSEGLTNIQIDMRMLAEKTVKVVRSLGAMERRTQA}AFFEARIK : 87
GerE_{B. subtilis} : \text{PLILKREVEFVLEMLKSITKVRENHISNAMQKGQVVGCSQAVVEL}RGE : 71
VraR_{S. aureus} : \text{EMLTEREMEILLLIAKGNSNEIASASHHTIKTVKH}VSNILSKLEVQDRTQQAYAFQHNL : 89
StyR_{P. fluorescens} : \text{SSLTGREQVQQLTIIQGNIAGELGIAETVKVHRHNIMQKINVRSLANVH}LVEKYES : 202
CviR_{C. violaceum} : \text{MPLSTQREDFHWMSSRGKTVKEIATILNISERTKFWVANVIRKDANRTHA}1VLMHLAM : 257
3CLO_{B. thetaiotaomicron} : \text{NILSEREKELRCRGLSK}E{i}AATLYISVNTVNRHQRNILEKLISVGN{S}IEACRAELKL : 257
Consensus : \text{Lc}c\text{RE ccL cGc}c\text{N EIA L cc TVK H Ncc KLcc cRcccccc c}