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Abstract

We present the derivation of the two-loop gluon Regge trajectory using Lipatov’s high
energy effective action and a direct evaluation of Feynman diagrams. Using a gauge invari-
ant regularization of high energy divergences by deforming the light-cone vectors of the
effective action, we determine the two-loop self-energy of the reggeized gluon, after com-
puting the master integrals involved using the Mellin-Barnes representations technique.
The self-energy is further matched to QCD through a recently proposed subtraction pre-
scription. The Regge trajectory of the gluon is then defined through renormalization of
the reggeized gluon propagator with respect to high energy divergences. Our result is in
agreement with previous computations in the literature, providing a non-trivial test of
the effective action and the proposed subtraction and renormalization framework.

I Introduction

Current applications of high energy factorization to QCD phenomenology range from the
analysis of perturbative observables, such as dijets widely separated in rapidity [1], over
transverse momentum dependent parton distribution functions in the low x region [2], up to
the study of phenomena in heavy ion collisions [3]. Their common base is the factorization of
QCD scattering amplitudes in the limit of asymptotically large center of mass energy, together
with the resummation of large logarithmic contributions using the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation [4, 5]. Recent phenomenological use of the BFKL resummation
can be found in the analysis of the combined HERA data on the structure function F2 and FL
[6, 7], the study of di-hadron spectra in high multiplicity distributions at the Large Hadron
Collider [8] or the production of high pT dijets [9, 10, 11] , widely separated in rapidity.

In the present work we discuss Lipatov’s high energy effective action [12] and show that
it can serve as a useful tool to reformulate the high energy limit of QCD as an effective field
theory of reggeized gluons. While the determination of the high energy limit of tree-level
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amplitudes has been well understood for quite some time within this framework [13], it was
only until recently that progress in the calculation of loop corrections has been achieved.
Starting with [14] and extended in [15], a scheme has been developed that comprises the reg-
ularization, subtraction and renormalization of high energy divergences. This scheme then
allowed to successfully derive forward jet vertices for both quark and gluon initiated jets at
NLO accuracy from Lipatov’s high energy effective action.

Here we extend this program to the calculation of the 2-loop gluon Regge trajectory. The
latter provides an essential ingredient in the formulation of high energy factorization and
reggeization of QCD amplitudes at NLO. It has been originally derived in [16, 17] using s-
channel unitarity relations. The result was then subsequently confirmed in [18], clarifying an
ambiguity in the non-infrared divergent contributions of [19]. The original result was further
verified by explicitly evaluating the high energy limit of 2-loop partonic scattering amplitudes
[20]. While the explicit result for the 2-loop gluon Regge trajectory is by now firmly estab-
lished, our calculation provides an important confirmation of its universality: unlike previous
calculations, the effective action defines the Regge trajectory of the gluon without making
any reference to a particular QCD scattering process.

For the development of a consistent formulation of the effective action, the calculation
of the 2-loop gluon trajectory provides an essential and non-trivial test of our scheme. The
latter has been set up in [21], where partial results, addressing the flavor dependent parts of
the gluon Regge trajectory have been already presented. The current paper addresses the
gluon corrections, which are considerable more complicated than their fermionic counterparts.

The outline of this paper is as follows: Sec. II provides a short introduction to Lipatov’s
effective action and a list of necessary Feynman rules, together with a discussion of our
regularization and the employed pole prescription. Sec. III recalls the scheme we follow in
the derivation of the gluon Regge trajectory, which has been originally introduced in [21].
Sec. IV provides details about our calculation of the 2-loop reggeized gluon self-energy from
the effective action, together with our result for the 2-loop gluon Regge trajectory. Sec. V
contains our conclusions and an outlook on future projects. Several technical details of our
calculations are summarized in the appendix.

II Lipatov’s high energy effective action

The effective action [12] describes interactions which are local in rapidity, i.e. which are
restricted to an interval of narrow width (η) in rapidity space. The entire dynamics which
extends over rapidity separations larger than η, is on the other hand integrated out and
taken into account through universal eikonal factors. To reconstruct from this setup QCD
amplitudes in the limit of large center of mass energies, a new degree of freedom —the
reggeized gluon— is introduced on top of the usual QCD fields. The high energy effective
action then describes the interaction of this new field with the QCD field content through
adding an induced term Sind. to the QCD action SQCD,

Seff = SQCD + Sind., (1)
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where the induced term Sind. describes the coupling of the gluon field vµ = −itavaµ(x) to the
reggeized gluon field A±(x) = −itaAa±(x). Due to this particular construction, it is immedi-
ately clear that a specific calculational scheme is needed to avoid overcounting and to ensure
the abovementioned locality in rapidity. These requirements can be achieved using the follow-
ing two-step procedure: a) calculation of vertices of reggeized gluon fields and QCD degrees
of freedom and b) a procedure which matches the resulting field theory of reggeized gluons
with QCD. a) is achieved through Lipatov’s high energy effective action in Eq. (1), which
provides the gauge invariant couplings of the new reggeized gluon field to the gluon field. For
b), a certain subtraction scheme has been proposed in [14], originally in the context of quark-
quark scattering at 1-loop, and later on also verified for the case of gluon-gluon scattering [15].

To set the notation it is useful to have a partonic scattering process pa+pb → p1 +p2 + . . .
in mind with light-like momenta p2

a = p2
b = 0 and squared center of mass energy s = 2pa · pb.

Dimensionless light-like four vectors n± normalized to n+ · n− = 2 are then defined through
a re-scaling n± = 2pa,b/

√
s, while a general four-vector k has the decomposition

k = k+n
−

2 + k−
n+

2 + k, k± = n± · k. (2)

High energy factorized amplitudes reveal strong ordering in plus and minus components of
momenta which is reflected in the following kinematic constraint obeyed by the reggeized
gluon field

∂+A−(x) = 0 = ∂+A+(x). (3)

Even though the reggeized gluon field is charged under the QCD gauge group SU(Nc), it
is invariant under local gauge transformations: δA± = 0. Its kinetic term and the gauge
invariant coupling to the QCD gluon field are contained in the induced term,

Sind. =
∫

d4x tr
[
(W−[v(x)]−A−(x)) ∂2

⊥A+(x)
]

+ tr
[
(W+[v(x)]−A+(x)) ∂2

⊥A−(x)
]
, (4)

with

W±[v(x)] =v±(x) 1
D±

∂±, D± = ∂± + gv±(x). (5)

For a more in depth discussion of the effective action we refer the reader to [12] and the
recent review [22].

II.1 Feynman rules and regularization

Apart from the usual QCD Feynman rules, the Feynman rules of the effective action comprise
the propagator of the reggeized gluon and an infinite number of so-called induced vertices,
which result from the non-local functional Eq. (5). Vertices and propagators needed for the
current study are collected in Fig. 1 and Fig. 2.

Loop diagrams of the effective action lead to a new type of longitudinal divergences
which are not present in conventional quantum corrections to QCD amplitudes, and can
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q, a,±

k, c, ν

= −iq2δac(n±)ν ,

k± = 0.

+ a

− b

q = δab i/2
q2

q, a,±

k2, c2, ν2k1, c1, ν1

= gf c1c2a q2

k±
1

(n±)ν1(n±)ν2 ,

k±1 + k±2 = 0.

(a) (b) (c)

q, a,±

k3, c3, ν3k1, c1, ν1

k2, c2, ν2

= ig2q2
(
fa3a2efa1ea

k±3 k
±
1

+ fa3a1efa2ea

k±3 k
±
2

)
(n±)ν1(n±)ν2(n±)ν3 ,

k±1 + k±2 + k±3 = 0.

(d)

Figure 1: Feynman rules for the lowest-order effective vertices of the effective action. Wavy lines
denote reggeized fields and curly lines gluons.

be regularized introducing an external parameter ρ, evaluated in the limit ρ → ∞, which
deforms the light-like vectors n± into

n− → na = e−ρn+ + n−,

n+ → nb = n+ + e−ρn−, (6)

without violating the gauge invariance properties of the induced term Eq. (4). While it is
possible to identify ρ with a logarithm in s or the rapidity interval spanned by a certain high
energy process, we refrain from such an interpretation and consider in the following ρ as an
external parameter, similar to the parameter ε in dimensional regularization in d = 4 + 2ε
dimensions.

q, a,±

k4, c4, ν4k1, c1, ν1

k2, c2, ν2 k3, c3, ν3 = g3q2
[
f c4c3e2

k±4

(
fe2c1e1f c2e1a

(k±1 + k±2 )k±2
+ fe2c2e1f c1e1a

(k±1 + k±2 )k±1

)

+ f c4c1e2

k±4

(
fe2a2e1f c3e1a

(k±3 + k±2 )k±3
+ fe2a3e1f c2e1a

(k±3 + k±2 )k±2

)
+

+f c4c2e2

k±4

(
fe2c1e1f c3e1a

(k±3 + k±1 )k±3
+ fe2c3e1f c1e1a

(k±3 + k±1 )k±1

)]
(n±)ν1(n±)ν2(n±)ν3(n±)ν4 ,

k±1 + k±2 + k±3 + k±4 = 0.

Figure 2: The order g3 induced vertex.
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II.2 Pole prescription

The evaluation of loop diagrams requires a prescription to circumvent the light-cone singu-
larities in the induced vertices shown in Figs. 1,2. The seemingly natural choice which is to
simply replace the operator D± in Eq. (5) by e.g. D± − ε does not work in this context as it
spoils hermiticity of the effective action. At the level of Feynman diagrams this is reflected by
terms that violate high energy factorization. Both effects can be traced back to the existance
of new symmetric color tensors, not present in the vertices of Figs. 1, 2. For a more in depth
discussion we refer to [23]. This problem can be solved by systematically projecting out these
symmetric color structures, order by order in perturbation theory, sticking in this way to
the color tensors present in the original vertices Fig. 1, 2. The resulting pole prescription
respects then Bose symmetry of the induced vertices and high energy factorization [23]. The
O(g) vertex is taken as a Cauchy principal value:

q, a,±

k2, c2, ν2k1, c1, ν1

= gf c1c2a q2

[k±1 ]
(n±)ν1(n±)ν2 ,

1
[k±1 ]

≡ 1
2

(
1

k±1 + iε
+ 1
k±1 − iε

)
. (7)

For the O(g2) and O(g3) vertices the light-cone denominators are to be replaced by certain
functions1 g2 and g3:

q, a,±

k3, c3, ν3k1, c1, ν1

k2, c2, ν2

= −ig2q2
[
f c3c2ef c1eag±2 (3, 2, 1)

+f c3c1ef c2eag±2 (3, 1, 2)
]
n±ν1n

±
ν2n
±
ν3 ,

(8)

q, a,±

k4, c4, ν4k1, c1, ν1

k2, c2, ν2 k3, c3, ν3

= −g3q2n±ν1n
±
ν2n
±
ν3n
±
ν4 ·

[
fa4a1d2fd2a3d1fd1a2cg±3 (4, 1, 3, 2) + fa4a1d2fd2a2d1fd1a3cg±3 (4, 1, 2, 3)

+fa4a2d2fd2a1d1fd1a3cg±3 (4, 2, 1, 3) + fa4a2d2fd2a3d1fd1a1cg±3 (4, 2, 3, 1)

+fa4a3d2fd2a1d1fd1a2cg±3 (4, 3, 1, 2) + fa4a3d2fd2a2d1fd1a1cg±3 (4, 3, 2, 1)
]
. (9)

They are obtained as

g±2 (i, j,m) =
[ −1

[k±i ][k±m]
− π2

3 δ(k
±
i )δ(k±m)

]
. (10)

1We corrected a typing error present in Eq. (16) of [23] in the expression below.
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and

g±3 (i, j,m, n) =
( −1

[k±i ][k±n + k±m][k±n ]
− π2

3 δ(k
±
n )δ(k±m) −1

[k±i ]

− π2

3 δ(k
±
n )δ(k±i ) 1

[k±m]
− π2

3 δ(k
±
n + k±m)δ(k±i ) 1

[k±n ]

)
. (11)

III The gluon Regge trajectory from the effective action

A key ingredient in the resummation of high energy logarithms of QCD scattering amplitudes
is provided by a universal function associated with the exchange of a single reggeized gluon,
known as the Regge trajectory of the gluon. For the real part of QCD scattering amplitudes,
where the high energy description is given in terms of single reggeized gluon exchange, this
function is known to govern the entire energy dependence at leading logarithmic (LL) and
next-to-leading logarithmic (NLL) accuracy.

Multiple reggeized gluon exchanges appear on the other hand for the high energy descrip-
tion of the imaginary part of scattering amplitudes and in general for amplitudes beyond
NLL accuracy. While this requires new elements, which describe in a nutshell the interaction
between reggeized gluons, the gluon Regge trajectory remains an essential building block in
the formulation of high energy resummation also in this more general case.

To be more precise, for the elastic process pa+pb → p1 +p2 with s = (pa+pb)2 and t = q2

with q = pa − p1 one finds for amplitudes with gluon quantum numbers in the t-channel at
LL and NLL accuracy the following factorized form2

M(8A)(s, t)
M(0)(s, t)

= Γa1(t)
[(−s
−t

)ω(t)
+
(
s

−t

)ω(t)
]

Γb2(t), (12)

where M(0)
(8A) is the tree-level amplitude and the subscript ‘8A’ denotes that the allowed t-

channel exchange is restricted to the anti-symmetric color octet channel. The functions Γij(t)
are known as impact factors, describing the coupling of the reggeized gluons to scattering
particles. For the case of gluon and quarks they have been determined within the effective
action in [14, 15]. The function ω(t) which governs the s-dependence of the scattering ampli-
tude is on the other hand the Regge trajectory of the gluon. It is currently known to leading
[4] and next-leading order [16] for QCD and to all orders in N = 4 super Yang-Mills theory
[25]. The procedure which allows the derivation of the gluon trajectory from the effective
action has been originally discussed in [21]. It consists of two steps

• determination of the propagator of the reggeized gluon to the desired order in αs;

• renormalization of the rapidity divergences of the reggeized gluon propagator; the gluon
Regge trajectory is then identified as the coefficient of the ρ dependent term in the
renormalization factor.

To obtain the reggeized gluon propagator to order α2
s it is needed to determine the one- and

two-loop self-energies of the reggeized gluon. Following the subtraction procedure proposed
in [14] these self-energies can be obtained through

2For a pedagogical review see [24].
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• determination of the self-energy of the reggeized gluon from the effective action, with
the reggeized gluon treated as a background field;

• subtraction of all disconnected contributions which contain internal reggeized gluon
lines.

Using a symmetric pole prescription as given in Sec. II.2, all diagrams with internal reggeized
gluon lines that would possibly contribute to the one loop self energy can be shown to vanish
and no subtraction is necessary. The contributing diagrams are shown in Fig. 3.

1 loop = + + + + +

Figure 3: Diagrams contributing to the one-loop reggeized gluon self-energy.

Keeping the O(ρ, ρ2), for ρ→∞, terms and using the notation

ḡ2 = g2NcΓ(1− ε)
(4π)2+ε , (13)

we have the following result in d = 4 + 2ε dimensions3:

1 loop = Σ(1)
(
ρ; ε, q

2

µ2

)

= (−2iq2)ḡ2Γ2(1 + ε)
Γ(1 + 2ε)

(
q2

µ2

)ε {
iπ − 2ρ

ε
− 1

(1 + 2ε)ε

[5 + 3ε
3 + 2ε −

nf
Nc

(2 + 2ε
3 + 2ε

)]}
. (14)

To determine the 2-loop self energy it is on the other hand needed to subtract disconnected
diagrams, whereas diagrams with multiple internal reggeized gluons can be shown to yield a
zero result, if the symmetric pole prescription of Sec. II.2 is used. Schematically one has

Σ(2)
(
ρ; ε, q

2

µ2

)
=

2 loop
=

2 loop
−

1 loop

1 loop

, (15)

where the black blob denotes the unsubtracted 2-loop reggeized gluon self-energy, which is
obtained through the direct application of the Feynman rules of the effective action, with

3In the original result presented in [14] and reproduced in [21, 22] a finite result for the second and third
diagram has been erroneously included. This has been corrected in the result presented here.
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the reggeized gluon itself treated as a background field. Its determination will be discussed
in detail in the forthcoming section. The (bare) two-loop reggeized gluon propagators then
reads

G
(
ρ; ε, q2, µ2

)
= i/2

q2

1 + i/2
q2 Σ

(
ρ; ε, q

2

µ2

)
+
[
i/2
q2 Σ

(
ρ; ε, q

2

µ2

)]2

+ . . .

 , (16)

with

Σ
(
ρ; ε, q

2

µ2

)
= Σ(1)

(
ρ; ε, q

2

µ2

)
+ Σ(2)

(
ρ; ε, q

2

µ2

)
+ . . . (17)

where the dots indicate higher order terms. As discussed in Sec. II.1 and as directly apparent
from Eq. (14), the reggeized gluon self-energies are divergent in the limit ρ→∞. In [14, 15]
it has been demonstrated by explicit calculations that these divergences cancel at one-loop
level, for both quark-quark and gluon-gluon scattering amplitudes, against divergences in the
couplings of the reggeized gluon to external particles. The entire one-loop amplitude is then
found to be free of any high energy singularity in ρ. High energy factorization then suggests
that such a cancellation holds also beyond one loop. Starting from this assumption, it is
possible to define a renormalized reggeized gluon propagator through

GR(M+,M−; ε, q2, µ2) = G(ρ; ε, q2, µ2)

Z+
(
M+√
q2
, ρ; ε, q2

µ2

)
Z−

(
M−√
q2
, ρ; ε, q2

µ2

) , (18)

where the renormalization factors need to cancel against corresponding renormalization fac-
tors associated with the vertex to which the reggeized gluon couples with ‘plus’ (Z+) and
‘minus’ (Z−) polarization. For explicit examples we refer the reader to [15, 21]. In their most
general form these renormalization factors are parametrized as

Z±
(
M±√
q2 , ρ; ε, q

2

µ2

)
= exp

[(
ρ

2 − ln M±√
q2

)
ω

(
ε,
q2

µ2

)
+ f±

(
ε,
q2

µ2

)]
, (19)

with the coefficient of the ρ-divergent term given by the gluon Regge trajectory ω(ε, q2). It
is assumed to have the following perturbative expansion

ω

(
ε,
q2

µ2

)
= ω(1)

(
ε,
q2

µ2

)
+ ω(2)

(
ε,
q2

µ2

)
+ . . . , (20)

and is to be determined by the requirement that the renormalized reggeized gluon propagator
must, at each loop order, be free of ρ divergences. At one loop we get from Eq. (14)

ω(1)
(
ε,
q2

µ2

)
= −2ḡ2Γ2(1 + ε)

Γ(1 + 2ε)ε

(
q2

µ2

)ε
. (21)

The function f±(ε, q2) parametrizes finite contributions and is, in principle, arbitrary. While
symmetry of the scattering amplitude requires f+ = f− = f , Regge theory suggests fixing
it in such a way that terms which are not enhanced in ρ are entirely transferred from the
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reggeized gluon propagators to the vertices, to which the reggeized gluon couples. With the
perturbative expansion

f

(
ε,
q2

µ2

)
= f (1)

(
ε,
q2

µ2

)
+ f (2)

(
ε,
q2

µ2

)
. . . (22)

we obtain from Eq. (14)

f (1)
(
ε,
q2

µ2

)
= ḡ2Γ2(1 + ε)

Γ(1 + 2ε)

(
q2

µ2

)ε (−1)
(1 + 2ε)2ε

[5 + 3ε
3 + 2ε −

nf
Nc

(2 + 2ε
3 + 2ε

)]
. (23)

The renormalized reggeized gluon propagator is then to one loop accuracy given by

GR(M+,M−; ε, q2, µ2) = 1 + ω(1)
(
ε,
q2

µ2

)(
log M

+M−

q2 − iπ

2

)
+ . . . (24)

The scales M+ and M− are arbitrary; their role is analogous to the renormalization scale in
UV renormalization and the factorization scale in collinear factorization. They are naturally
chosen to coincide with the corresponding light-cone momenta of scattering particles to which
the reggeized gluon couples. To determine the gluon Regge trajectory at two loops we need
in addition the ρ-enhanced terms of the two-loop reggeized gluon self-energy. From Eq. (24)
we obtain the following relation

ω(2)
(
ε,
q2

µ2

)
= lim

ρ→∞
1
ρ

[ Σ(2)

(−2iq2) +
(

Σ(1)

(−2iq2)

)2

−
(
ρω(1) + 2f (1)

) Σ(1)

(−2iq2)

+ ρ2

2
(
ω(1)

)2
+ 2ρf (1)ω(1)

]
= lim

ρ→∞
1
ρ

[ Σ(2)

(−2iq2) + ρ2

2
(
ω(1)

)2
+ 2ρf (1)ω(1)

]
, (25)

where we omitted at the right hand side the dependencies on ε and q2/µ2; in the last line
we further expanded Σ(1) in terms of the functions ω(1) and f (1). We stress that this is a
non-trivial definition and that it is not clear a priori whether the right hand side even exists
due to the presence of the second term, linear in ρ. Confirmation of this relation provides
therefore an important non-trivial check on the validity of our formalism.

IV Computation of the 2-Loop reggeized gluon self-energy

The necessary diagrams for the computation of the unsubtracted reggeized gluon self-energy
are shown in Fig. 4. The diagrams (a1)-(d3), containing internal quark loops, generating an
overall factor nf , have been computed in [21] and lead to the following result,

2 -loop

quark-contr.
= −ρ(−i2q2)ḡ4 4nf

εNc

Γ2(2 + ε)
Γ(4 + 2ε) ·

3Γ(1− 2ε)Γ(1 + ε)Γ(1 + 2ε)
Γ2(1− ε)Γ(1 + 3ε)ε +O(ρ0) . (26)
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(a) (b) (c1) (c2)

(d1) (d2) (d3) (e)

(f) (g1) (g2)
(h1)

(h2) (h3) (i1) (i2)

(i3) (j1) (j2) (j3)

(k1) (k2) (k3)
(l1)

(l2) (l3) (m1)

(m2) (m3) (m4) (n1)

Figure 4: Diagrams for the two-loop trajectory in the effective action formalism. Tadpole-like con-
tributions are zero in dimensional regularization and are omitted.
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IV.1 The scaling argument

For the computation of the remaining diagrams we observe at first that the number of dia-
grams, which can be potentially enhanced by a factor ρk, k ≥ 1, is largely reduced by scaling
arguments: only those diagrams where both reggeized gluons couple to the internal gluon
lines through induced reggeized gluon–n-gluon vertices with n ≥ 2 have the potential to lead
to an enhancement through a factor ρ. This is immediately clear for diagrams where both
reggeized gluons couple through the reggeized gluon–1-gluon vertex Fig. 1 (a) to the internal
QCD lines. Those diagrams are a projection of the 2-loop QCD polarization tensor onto the
kinematics of reggeized gluons and no ρ enhancement can be expected.

To address the case where only one of the reggeized gluons couples through an induced
reggeized gluon–n-gluon (n ≥ 2) vertex to the internal QCD particles, we consider the general
diagram in Fig. 5. The dependence on the light-cone vectors of the reggeized gluon–n-gluon

. . .µ1 µ2 µn

ν

Figure 5: General non-enhanced diagram.

vertex in Fig. 5 is, up to permutations, of the form n
µ1
a n

µ2
a ···n

µd
a

na·k1na·k2···na·kn−1
. The denominators

na · ki, i = 1, . . . n− 1 appear in the integrals that give rise to an amplitudeMµ1µ2···µnν . In a
general diagram such as Fig. 5, the only vectors that are not integrated over in the amplitude
are q, the momentum transfer, and na, which enters through the denominators of the induced
vertex. The vector nb only contracts with the four-vector index ν. The whole diagram can
be therefore written as

nµ1
a n

µ2
a · · ·nµna Mµ1µ2···µnν(na, q)nνb . (27)

As a consequence, the tensor structure ofMµ1µ2···µnν(na, q) can only consist of combinations
of the four vector nµa and the metric tensor gµν , since the external reggeized gluons imply
q · na = q · nb = 0. The only scalar combinations that can appear are therefore q2 and n2

a.
These factors must give the dimensions required by scale transformations. If s is the number
of metric tensors in the numerator for a given term and l the number of nµa numerators, then
n+ 1 = 2s+ l and the associated scalar function must scale as

1
nn−1+l
a

= 1
(n2
a)d−s

. (28)

Next, we consider the contractions with the vertex currents. If nρb is contracted through a
metric tensor then we obtain

(n2
a)l na · nb (n2

a)s−1 = (n2
a)n−sna · nb; (29)

11



if on the other hand nρb is directly contracted with one of the na’s, we obtain a factor

na · nb (n2
a)s(n2

a)l−1 = (n2
a)n−sna · nb. (30)

In both cases the factors of n2
a cancel against corresponding factors in the denominators and

no enhancement can occur. Thus, in our case only the diagrams (h1), (i1), (j1), (k1), (l1),
(m1) and (n1) are potentially enhanced by (powers of) ρ.

(a) (b)

Figure 6: (a) typical tadpole contribution to the 2-loop self energy (b) disconnected diagrams with
internal reggeized gluon loops which would contribute to possible subtraction terms. Both contributions
can be shown to vanish.

A further class of diagrams that can be omitted are tadpole diagrams and diagrams with
internal reggeized gluon loops. Tadpole diagrams, such as in Fig. 6 (a), have been verified to
vanish in dimensional regularization. Possible loop diagrams with internal reggeized gluon
lines, such as Fig. 6 (b) vanish identically due to the symmetry properties obeyed by the pole
prescription of the induced vertices.

IV.2 Calculation of the enhanced diagrams

Direct computation reveals that diagram (l1) is identically zero. We use the notation ξ =
n2
a = n2

b = 4e−ρ, δ = na ·nb ∼ 2, and the following shorthand notation for the master integral

[α1, α2, · · · , α9 ] = (µ4)4−d
∫∫

ddk

(2π)d
ddl

(2π)d
1

(−k2 − i0)α1 [−(k − q)2 − i0]α2(−l2 − i0)α3

× 1
[−(l − q)2 − i0]α4 [−(k − l)2 − i0]α5

· 1
(−na · k)α6(−nb · k)α7(−na · l)α8(−nb · l)α9

, (31)

with na · q = nb · q = 0 and the eikonal factors taken with the pole prescription defined in
Sec. II.2. More accurately, for master integrals with single poles 1/na,b · k (α6 = 1, α8 = 0,
α6 = 0, α8 = 1 and/or α7 = 1, α9 = 0, α7 = 0, α9 = 1) the function ga,b1 is used, while for
terms with two poles 1/na,b · k/na,b · l (α6 = 1, α8 = 1, and/or α7 = 1, α9 = 1) the function
ga,b2 is employed. Dropping all pieces that cannot generate terms enhanced as ρ → ∞, we

12



have the following contributions from each diagram:

[iMh1 ]enh = − 3ig4

4(3 + 2ε)Sh1

δ2q2N2
c [1, 0, 0, 1, 1, 0, 0, 1, 1]; Sh1 = 1.

[iMi1 ]enh = ig4

2Si1
(q2)2N2

c

[
δ2
{

2q2[1, 1, 1, 1, 1, 1, 0, 0, 1] + [1, 1, 1, 1, 0, 1, 0, 0, 1]

− 4[1, 1, 1, 0, 1, 1, 0, 0, 1]
}

+ 8ξ[1, 1, 1, 1, 1, 1,−2, 0, 1]
]
; Si1 = 2.

[iMj1 ]enh = −3ig4

2Sj1
q2N2

c δ
2 19 + 12ε

3 + 2ε [1, 0, 0, 1, 1, 0, 0, 1, 1]; Sj1 = 2.

[iMk1 ]enh = 3ig4

2Sk1

(q2)2N2
c δ

3[1, 0, 0, 1, 1, 1, 1, 1, 1]; Sk1 = 6.

[iMm1 ]enh = ig4

Sm1
(q2)2N2

c δ

[
− 6δ

q2 [1, 0, 0, 1, 1, 0, 0, 1, 1] + 2[1, 1, 1, 0, 1, 1, 0, 0, 1]

+ 2ξ[1, 1, 0, 1, 1, 1, 1,−1, 1]
]
; Sm1 = 1.

[iMn1 ]enh = 0.

(32)

In some cases, we have used the Mathematica package FIRE [26] that implements the Laporta
algorithm [27] to reduce the number and complexity of master integrals through integration-
by-parts identities [28]. Discarding all contributions which are finite or suppressed in the
limit ρ → ∞, we can express the entire unsubtracted two-loop self-energy in terms of 7
master integrals A − G with a certain coefficient associated with each master integral, see
Tab. 1. The master integral A can be shown to vanish by symmetry due to the symmetric
pole prescription of the eikonal poles of the induced vertices. The ρ-enhanced pieces of the
remaining master integrals are computed up to terms of order O(ε) using the Mellin-Barnes
representations technique, for a review see e.g. [29].

To this end, we first derive multi-contour integral representations for the master integrals,
referring the reader for details to Appendix A.1. Having as working environment the code
MB.m [30]4, we use the Mathematica package MBasymptotics.m [32] to perform an asymptotic
expansion in e−ρ. We remove any terms proportional to e−kρε, k ∈ Z, capturing this way
the leading behavior in ρ. As a final step, we resolve the singularities structure in ε by using
the Mathematica packages MB.m and MBresolve.m. Eventually, some of the final integrals
are further simplified by using the Barnes’ lemmas implemented in the Mathematica code
barnesroutines.m [33].

4The package MBresolve.m [31] was also used.
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master integral coefficent

A ≡
[
1, 1, 1, 1, 0, 1, 0, 0, 1

]
cA = −q2

2

B ≡
[
1, 0, 0, 1, 1, 0, 0, 1, 1

]
cB = 66 + 42ε

3 + 2ε

C ≡
[
1, 1, 1, 1, 1, 1, 0, 0, 1

]
cC = −(q2)2

D ≡ [1, 0, 0, 1, 1, 1, 1, 1, 1
]

cD = −q2

E ≡
[
1, 1, 0, 1, 1, 1, 1,−1, 1

]
cE = −2ξq2

F ≡
[
1, 1, 1, 1, 1, 1,−2, 0, 1

]
cF= − ξq2

G ≡
[
1, 1, 1, 0, 1, 1, 0, 0, 1

]
cG = 0

Table 1: Coefficients of the master integrals. Each coefficient is in addition to be multiplied with the
common overall factor (−2iq2)g4N2

c .

Following this procedure we obtain for the master integrals the following results:5

cB · B = 1
(4π)4

[
11
ε2
− 1 + 66Ξ

3ε + 400 + 12Ξ + 396Ξ2 − 33π2

18

]
ρ,

cC · C = 1
(4π)4

([
− 4
ε3
− 8(1− Ξ)

ε2
− π2 + 8(1− Ξ)2

ε
− 2π2(1− Ξ)− 16(1− Ξ)3

3

− 50
3 ζ(3)

]
ρ+

[ 2
ε2

+ 4(1− Ξ)
ε

+ 1
3(12(1− Ξ)2 − π2)

] {
ρ2 − iπρ

})
,

cD · D = 1
(4π)4

[ 4
ε3

+ 8(1− Ξ)
ε2

+ 4(π2 + 6(1− Ξ)2)
3ε + 8π2(1− Ξ)

3

+ 16(1− Ξ)3

3 + 44ζ(3)
3

]
,

cE · E = 0,

cF · F = 1
(4π)4

[
− 4
ε2

+ 8Ξ
ε

+ 2π2

3 − 8(1 + Ξ2)
]
, (33)

where we introduced the notation

Ξ = 1− γE − ln q2

4πµ2 . (34)

Using these results, the (unsubtracted) contribution to the reggeized gluon self-energy (with
5For details on the computation of imaginary parts, see Appendix A.2.
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nf = 0) reads:

2-loop
gluon cont. =

(−2iq2)g
4N2

c

(4π)4

({
2
ε2

+ 4(1− Ξ)
ε

+ 4(1− Ξ)2 − π2

3

}
ρ2 +

{ 7
ε2
− 14Ξ

ε

−1− π2

3ε − 2Ξ(π2 − 1)
3 + 14(1 + Ξ2) + 2

9 −
π2

2 − 2ζ(3)

−iπ
[ 2
ε2

+ 41− Ξ
ε

+ 1
3(12(1− Ξ)2 − π2)

]}
ρ

)
.

(35)

Expanding in ε the expression in Eq. (15), one eventually finds for the subtracted reggeized
gluon self-energy for nf = 0:

Σ(2)
nf=0

(
ρ,

q2

µ2

)
= 2 loop = 2 loop −

1 loop

1 loop

= (−2iq2)g
4N2

c

(4π)4

{
−
[ 2
ε2

+ 4(1− Ξ)
ε

+ 4(1− Ξ)2 − π2

3

]
ρ2 +

[ 1
3ε2 + 1

9ε + π2

3ε −
2Ξ
3ε + π2(11− 12Ξ)

18

+ 16
27 −

2
9Ξ + 2

3Ξ2 − 2ζ(3)
)]
ρ

}
+O(ε) +O(ρ0). (36)

Now we can compare our result for the 2-loop self-energy with the definition of the 2-loop
gluon Regge trajectory, Eq. (25). At first we note that all divergent terms ∼ ρ cancel against
each other since the terms quadratic in ρ in Eq. (36) cancel precisely the term [ρω(1)]2/2 in
Eq. (25), i.e.

(ω(1))2 ρ
2

2 +
Σ(2)
ρ2

(−2iq2) = 0, (37)

if the first term is expanded up to O(ε). Taking the function f (1) in the limit nf = 0, the
remaining terms then yield the 2-loop Regge gluon trajectory for zero flavors,

ω(2)(q2)|nf=0 = (ω(1)(q2))2

4

[
11
3 +

(
π2

3 −
67
9

)
ε+

(404
27 − 2ζ(3)

)
ε2
]
, (38)

which is in complete agreement with the results in the literature [16]. The terms proportional
to nf have been calculated in [21]. With the the flavor-dependent ρ-enhanced terms, the
subtracted 2-loop self-energy is given by

Σ(2)
nf

(
ρ; ε, q

2

µ2

)
= ρ(−2iq2)ḡ44nf

εNc

Γ2(2 + ε)
Γ(4 + 2ε)

(
q2

µ2

)2ε (Γ2(1 + ε)
Γ(1 + 2ε)

4
ε

− 3Γ(1− 2ε)Γ(1 + ε)Γ(1 + 2ε)
Γ2(1− ε)Γ(1 + 3ε)ε

)
, (39)

and one obtains for the 2-loop Regge gluon trajectory with nf flavors

ω(2)(q2) = (ω(1)(q2))2

4

[
11
3 −

2nf
3Nc

+
(
π2

3 −
67
9

)
ε+

(404
27 − 2ζ(3)

)
ε2
]
. (40)
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V Conclusions and Outlook

In this paper we have presented a derivation of the two-loop gluon Regge trajectory using
Lipatov’s effective action and a recently developed computational scheme, which includes a
regularization, subtraction and renormalization procedure. Our result is in precise agreement
with earlier results present in the literature and thus provides a highly non-trivial check of
the effective action and our proposed computational framework.

From a technical point of view, the main result of the paper is the computation of the
2-loop reggeized gluon self-energy. Regularizing high energy divergences by slightly moving
the light-like vectors of the effective action away from the light-cone, we first demonstrated
the suppression of a large class of diagrams through a scaling argument. The remaining
diagrams were then expressed in terms of seven master integrals, which have been evaluated
using multiple Mellin-Barnes representations. Our scheme introduces a consistent general
strategy to deal with more complex computations, with the hope to easy the path to perform
further calculations with Lipatov’s high-energy effective action.
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A Appendix

In this appendix we present some details of the derivation of Mellin-Barnes representations
for the general two-loop master integral considered in this work with propagators to arbitrary
powers. The principal tool in this analysis is the formula

1
(X1 + · · ·+Xn)λ = 1

Γ(λ)
1

(2πi)n−1

∫
· · ·
∫ +i∞

−i∞
dz2 · · · dzn

n∏
i=2

Xzi
i X

−λ−z2−···−zn
1

× Γ(λ+ z2 + · · ·+ zn)
n∏
i=2

Γ(−zi),
(41)

where the contours of integration are such that poles with a Γ(· · ·+zi) dependence are to the
left of the zi contour and poles with a Γ(· · ·−zi) dependencies lie to the right of the zi contour.
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A.1 Mellin-Barnes Representation for Master Integrals without phases

We consider the integral

S1 =
∫

ddk

(2π)d
1

(−k2 − i0)C [−(k − q)2 − i0]D[−(k − l)2 − i0]E

× 1
(−na · k − i0)µ1(−nb · k − i0)µ2

, (42)

where the relation na · q = nb · q = 0 is implied. Unlike the general master integral defined in
Eq. (31), the contour of integration is in the following always defined to lie above the singu-
larities introduced by the light cone denominators. The treatment of alternating descriptions,
contained in the functions g1 and g2 is summarized in Appendix A.2.

Using Schwinger parameters, we can write

S1 = iC+D+E+µ1+µ2

Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)

∫ ∞
0
· · ·
∫ ∞

0
dαdβdγdδ̃dσ̃

αC−1βD−1γE−1δ̃µ1−1σ̃µ2−1
∫

ddk

(2π)d e
iD,

D = αk2 + β(k − q)2 + γ(k − l)2 + δ̃na · k + σ̃nb · k

= (α+ β + γ)k2 + βq2 + γl2 − 2k ·
(
βq + γl −

[
δ̃
na
2 + σ̃

nb
2

])
.

(43)

With a shift in the momentum integral and introducing parameters λ = α + β + γ, ξ =
β

α+β , η = γ
α+β+γ ; δ̃ = 2λδ, σ̃ = 2λσ, and x = 2(δ + σ), y = δ

δ+σ , we arrive at

S1 = iC+D+E+µ1+µ2

Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)

∫ ∞
0

dλλC+D+E+µ1+µ2−1
∫ ∞

0
dxxµ1+µ2−1

∫ 1

0
dξ ξD−1(1− ξ)C−1

∫ 1

0
dη ηE−1(1− η)C+D−1

∫ 1

0
dyyµ1−1(1− y)µ2−1

∫
ddk

(2π)d

exp
[
iλ
(
k2 − (1− η)2ξ(1− ξ)q2 − η(1− η)(1− ξ)(−l2)− η(1− η)ξ[−(l − q)2]

−ηx[y(−na · l) + (1− y)(−nb · l)− x2(Ψy(1− y) + e−ρ)
)]
, (44)

where Ψ ≡ (1− e−ρ)2. Performing the integration over momentum and the parameter λ we
obtain with Eq. (41)

S1 = i

(4π)d/2Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2)

∫ 1

0
dξ ξD−1(1− ξ)C−1

∫ 1

0
dη ηE−1(1− η)C+D−1

∫ ∞
0

dxxµ1+µ2−1
∫ 1

0
dy yµ1−1(1− y)µ2−1

∫
· · ·
∫ +i∞

−i∞

dz2
2πi · · ·

dz7
2πiΓ(−z2) · · ·Γ(−z7)

Γ(z2 + z3 + z4 + z5 + z6 + z7 + C +D + E + µ1 + µ2 − d/2)[(1− η)2ξ(1− ξ)q2]z2

[η(1− η)(1− ξ)(−l2)]z3 [η(1− η)ξ(−(l − q)2)]z4 [ηxy(−a · l)]z5 [ηx(1− y)(−b · l)]z6

[x2y(1− y)]z2+z3+z4+z5+z6+z7+C+D+E+µ1+µ2−d/2[x2(e−ρ)]−z7
,

(45)
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which allows to perform the integrations over the parameters ξ, η, x and y. In some cases
integrals of the form ∫ 1

0
dy yα−1(1− y)−α−1 =

∫ ∞
0

dt t−α−1 = 2πiδ (α) (46)

appear which allow for the reduction of contour integrals. Eventually, we arrive at

S1 = i

(4π)d/2
∫
· · ·
∫
dz2
2πi

dz3
2πi

dz4
2πi

dz5
2πi

dz7
2πi

Γ(−z2)Γ(−z3)Γ(−z4)Γ(−z5)Γ(−z7)
Γ(−2z7)

Γ(2z234 + z5 + 2C + 2D + 2E + µ1 + µ2 − d)
Γ(C)Γ(D)Γ(E)Γ(µ1)Γ(µ2) Γ

(
−z2347 − C −D − E + d

2

)
Γ
(
z2345 − z7 + C +D + E + µ1 −

d

2

)
Γ
(
−z23457 − C −D − E − µ1 + d

2

)
Γ(−2z2 − z34 − 2C − 2D − E − µ1 − µ2 + d)Γ(z23 + C)Γ(z24 +D)

Γ(−C −D − E − µ1 − µ2 + d)
Ψz234−z7+C+D+E−d/2

(
q2
)z2 (−l2)z3 (−(l − q)2

)z4 (−na · l)z5

(−nb · l)−2z234−z5−2C−2D−2E−µ1−µ2+d (e−ρ)z7 ,

(47)

where zijk... = zi + zj + zk + . . .
In an analogous way, we can derive the following Mellin Barnes representation,

S2 =
∫

ddk

(2π)d
1

(−k2 − i0)A[−(k − q)2 − i0]B(−na · k − i0)λ1(−nb · k − i0)λ2

=
iΓ
(
A+B + λ1+λ2

2 − d
2

)
2(4π)d/2Γ(A)Γ(B)Γ(λ1)Γ(λ2)

Γ
(
d
2 −A−

λ1+λ2
2

)
Γ
(
d
2 −B −

λ1+λ2
2

)
Γ(d−A−B − λ1 − λ2)(q2)A+B+λ1+λ2

2 − d2

×
∫

dz

2πi
Γ(−z)
Γ(−2z)Γ

(
z + λ1 + λ2

2

)
Γ
(
−z + λ1 − λ2

2

)
Γ
(
−z − λ1 − λ2

2

) (
e−ρ

)z
.

(48)

where again na · q = nb · q = 0 is implied. Iterating the results Eq. (47) and Eq. (48), we
obtain the Mellin Barnes representation of the general two-loop master integral

S=
∫∫

ddk

(2π)d
ddl

(2π)d
1

[−k2 − i0]α1 [−(k − q)2 − i0]α2 [−l2 − i0]α3 [−(l − q)2 − i0]α4

× 1
[−(k − l)2 − i0]α5(−na · k − i0)α6(−nb · k − i0)α7(na · l − i0)α8(−nb · l − i0)α9

= −
(
q2)d−α12345−

α6789
2

2(4π)d
6∏
i=1

∫
dzi
2πiΓ(−zi)

Γ
(
z1234 + α345 + α6789

2 − d
2

)
Γ(−z4 + α2)∏9

j=1 Γ(αj)Γ(−2z1)Γ(−2z6)

Γ
(
−z12345 − α345 + α6789

2 + d
2

)
Γ
(
−z1 + z2345 + α345 − α6789

2 − d
2

)
Γ(−z3 + α1)

Γ(−2z2 − z34 − α126789 − 2α345 + 2d)
Γ
(
−z23 − α2345 − α6789

2 + d
)

Γ
(
−z24 − α1345 − α6789

2 + d
)

Γ(z2345 − z6 + α3458 − d
2)

Γ(2z234 + z5 + 2α345 + α789 − d)
Γ(2z234 + z5 + 2α345 + α89 − d)Γ(−z234 + z6 − α345 + d

2)Γ
(
z2 + α12345 + α6789

2 − d
)

Γ(−z5 + α6)
Γ(−z23456−α3458 + d

2)Γ(−2z2 − z34 − 2α34 − α589 + d)Γ(z23 + α3)Γ(z24 + α4)
Γ(−α34589 + d) e−z16ρ

(49)
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where zijk... = zi + zj + zk + . . . and αijk... = αi +αj +αk + . . .. At this stage one then turns
to explicit values for the parameters αi, i = 1, . . . , 9 and the integrals are expanded for the
limits ρ→∞ and ε→ 0 as explained in Sec. IV.2.

A.2 Computation of ρ-enhanced imaginary parts

Among all integrals, only the masters C and D are, for their ρ-enhanced terms, sensitive to
the details of the pole prescription. For diagram (k1), which is directly proportional to D and
constitutes the only diagram containing this master, explicit QCD calculations allow to argue
that no enhanced imaginary parts can result from such a diagram. This is immediately clear
if one identifies this diagram with the high energy expansion of the quark-quark scattering
amplitude with three gluon exchange (see for instance [34]), which allows to argue that the
ρ-enhanced imaginary part of this diagram needs to vanish. We verified that this is indeed
the case and we were able to confirm that the entire ρ-enhanced contribution of this master
integral coincides with the equivalent integral using the pole prescription of Sec. A.1.

The master C possesses on the other hand a ρ-enhanced imaginary part. To this end we
consider the integral

C(±,±) = (µ4)−2ε
∫ ∫

ddk

(2π)d
ddl

(2π)d
1

[−k2 − i0][−(k − q)2 − i0][−l2 − i0]
1

[−(l − q)2 − i0][−(k − l)2 − i0] ·
1

−na · k ± i0
1

−nb · k ± i0
, (50)

where the integral C(−−) is assumed to be known using the techniques of Sec. A.1 while
C(+,+) = C(−,−) holds. Introducing rescaled vectors a, b = 1

2e
ρ/2na,b with a2 = 1 = b2 and

a · b = cosh ρ we find

C(±,±) = 4e−ρ · C̃(±,±),

C̃(±,±) = (µ4)−2ε
∫ ∫

ddk

(2π)d
ddl

(2π)d
1

[−k2 − i0][−(k − q)2 − i0][−l2 − i0]
1

[−(l − q)2 − i0][−(k − l)2 − i0] ·
1

−a · k ± i0
1

−b · k ± i0

= eρ

4 C
(±,±). (51)

As a2 = 1 = b2, the new integral is an analytic function of a · b and q2 only, C̃ = C̃(a · b, q2).
With

1
−a · k + i0 = − 1

−(e−iπa) · k − i0 , (52)

we have

C̃±,∓(a · b, q2) = −C̃(+,+)(e−iπa · b, q2). (53)

Evaluating all integrals in the limit ρ→∞, the substitution a · b→ e−iπa · b is equivalent to
a substitution ρ→ ρ− iπ, up to exponentially suppressed corrections. We therefore find

C(∓,±)(ρ) = C(+,+)(ρ− iπ) (54)

which exhausts all possible cases present in Eq. (50).
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