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Abstract: We consider a non-perturbative formulation of an SU(2) massive gauge

theory on a space-time lattice, which is also a discretised gauged non-linear chi-

ral model. The lattice model is shown to have an exactly conserved global SU(2)

symmetry. If a scaling region for the lattice model exists and the lightest degrees

of freedom are spin one vector particles with the same quantum numbers as the

conserved current, we argue that the most general effective theory describing their

low-energy dynamics must be a massive gauge theory. We present results of a ex-

ploratory numerical simulation of the model and find indications for the presence of

a scaling region where both a triplet vector and a scalar remain light.
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1. Introduction

The discovery of a Higgs-like particle [1, 2] has recently established a new milestone

in the experimental quest for the origin of electroweak symmetry breaking, which

amazingly seems to be well described by the simplest mechanism thought off in the

sixties [3, 4, 5, 6]. The reason why the Standard Model (SM) is such a good effec-

tive theory, if there is new physics, remains however an open question. Traditional

avenues that have been pursued in the past to address the hierarchy problem such

as supersymmetry, extra dimensions or technicolor have found no support in exper-

iment.

Another unsatisfactory aspect of the problem lies in the lack of a non-perturbative

definition of electroweak symmetry breaking and the Higgs mechanism. In particular,

it has been known for a long time that in a gauge theory defined on a space-time lat-

tice [7], spontaneous symmetry breaking cannot take place [8]. Even in the presence

of gauge fixing it has been shown [9, 10] that whether or not a gauge non-invariant

condensate can get an expectation value depends on how the gauge is fixed [11]. This

of course does not exclude the possibility that a Higgs-like phase does exist where

a continuum limit can be defined and that it resembles the electroweak sector of

the Standard Model, but such connection has not been firmly established. In other

words, there is no derivation of the successful perturbative regime of the electroweak

sector of the SM from its non-perturbative definition on a space-time lattice.

In this line, several studies of gauge-scalar theories were performed in the eight-

ies. Some early references are [12, 13]. Much effort was devoted to understanding

the phase diagram of such lattice theories, in particular trying to search for phase
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transitions separating the Higgs and confinement phases. It was shown that no phase

transition line separates these two phases (i.e. the Higgs and confinement phases are

continuously connected) as a consequence of analiticity [12]. However, the interesting

question of whether a scaling region could exist in the Higgs phase, and whether the

dynamics in this phase is a small perturbation of the trivial scalar model or a non-

trivial one has not been settled. An important question is how one could distinguish

such a scaling region from that in the pure gauge theory. It is not expected that

the two phases differ qualitatively at distances of the order of the lattice spacing,

but they should definitely differ at long distances, because the propagating physical

states are different. Even though confinement might be at work in both cases, in the

sense that only colorless states are asymptotic, static charges can be screened in the

Higgs phase but not in the confinement phase.

In this paper we reconsider the simplest of these theories, the gauged non-linear

chiral model defined on a lattice, and argue that its continuum limit within a Higgs

phase, if it exists, could be the simplest model of dynamical electroweak symmetry

breaking. The two key ingredients are the standard mechanism of confinement (the

asymptotic states that survive the continuum limit are gauge singlets) and the exis-

tence of an exact global symmetry. Assuming the continuum limit or scaling region

of this theory exists, the global symmetry constrains the structure of the Wilsonian

effective theory to be a massive gauge theory. We have performed an exploratory

lattice simulation of this theory searching for trajectories of constant physics and we

find numerical evidence for the presence of a scaling region in the lattice model with

a light massive triplet vector and a light scalar.

The paper is organized as follows. In section 2 we present a simple argument of

why a theory of conserved global currents is a massive gauge theory. In section 3 we

present the lattice gauged non-linear chiral model that represents the discretisation

of a massive SU(2) gauge theory. We show the existence of an exact global symmetry

and rederive the result of section 2 from the associated Ward identities. In section 4,

we present the results of a numerical simulation at three different value of the bare

coupling and study the scaling of various quantities. Our conclusions and outlook

are presented in 5.

2. Gauge invariance in an effective theory of conserved cur-

rents

Let us assume that a gauge-scalar model defined on a lattice of spacing a has a

scaling region, that is the lightest excitations with mass m satisfy ma � 1. Let us

furthermore assume that these are spin 1 states that have the same quantum numbers

of a conserved current, associated with some exact global symmetry. Provided these
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states are lighter than any other states, their dynamics at low momentum must be

described by an effective field theory (EFT).

Let us therefore consider an EFT of spin one fields W a
µ which transform in

the adjoint representation of a global symmetry group that for simplicity we will

consider to be SU(2)3. Let us assume that both Lorentz invariance and parity are

good symmetries. We will also make the following fundamental assumption: the

fields W a
µ are the conserved currents of such global symmetry. In particular this

implies that:

∂µW
a
µ = 0. (2.1)

We will consider all possible operators compatible with these symmetries up to mass

dimension four, assuming that higher dimensional operators would be suppressed by

some higher energy scale.

In principle, the coefficients of such operators are all independent and there-

fore the theory is not a gauge theory. The most general euclidean Lagrangian can

therefore be written in the form:

LW =
1

4
ZW ∂[µ,Wν] · ∂[µ,Wν] + α Wµ ×Wν · ∂µWν + ZW

m2
W

2
Wµ ·Wµ

− λ(Wµ ·Wµ)2 − µ(Wµ ·Wν)
2, (2.2)

where ZW ,mW , α, λ, µ are arbitrary. The global symmetry implies that, under the

infinitesimal transformation, Ω = eiε(x) ∈ SU(2):

Wµ → Ω†WµΩ + iΩ†∂µΩ, (2.3)

the Nöether current must be conserved:

jaµ ≡
∂LW

∂∂µεa(x)
, ∂µj

a
µ = 0. (2.4)

If we assume the consistency condition that the conserved current associated to the

global symmetry is proportional to Wµ:

∂LW
∂∂µεaµ(x)

∝ W a
µ (x), (2.5)

the following relations must be satisfied

α = −4λ = 4µ = ZW . (2.6)

while m2
W is not constrained. After canonically normalizing the kinetic term and

defining g ≡ Z
−1/2
W we end up with the following Lagrangian:

Leff =
1

4
∂[µ,Wν] · ∂[µ,Wν] + g Wµ ×Wν · ∂µWν +

m2
W

2
Wµ ·Wµ

+
g2

4

[
(Wµ ·Wµ)2 − (Wµ ·Wν)

2
]

(2.7)

3In the Standard Model such symmetry would be the custodial symmetry.
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Therefore we find that the most general EFT with the aforementioned properties

and including terms with dimension d ≤ 4 is an SU(2) gauge theory up to a mass

term.

This result can be extended to matter fields straightforwardly. Let us consider

for example a Dirac fermion field, Ψ, that transforms in the fundamental of SU(2),

the allowed couplings of this fermion up to dimension 4 being:

LΨ = ZΨ(Ψ̄γµ∂µΨ +mΨ̄Ψ) + δ Ψ̄γµWµΨ. (2.8)

The contribution of this term to the global current is

δLΨ

∂µεaµ(x)
= −iZΨΨ̄γµT

aΨ− δΨ̄γµT aΨ, (2.9)

with T a = 1
2
σa, where σa is a Pauli matrix. It hence follows that in order to satisfy

eq. (2.5) we need to require

δ = −iZψ. (2.10)

By canonically normalizing the Ψ and the Wµ fields we therefore obtain a gauge

invariant fermion-gauge coupling:

LΨ = Ψ̄(γµDµ +m)Ψ, (2.11)

with Dµ ≡ ∂µ − igWµ. The gauge coupling in the boson self-interactions and the

fermion-boson interactions are the same. The case of massive fermions with chiral

charges will be considered elsewhere.

We note that, by using a different approach, the same EFT derived here from

symmetry arguments, has been previously shown in [14] to provide the most general

Lagrangian describing at low energy the interactions of massive vector bosons coupled

to fermions.

3. Massive gauge theories as confining gauged non-linear σ

models

We consider the SU(2)-gauged non-linear chiral model, which contains the degrees

of freedom corresponding to the massive gauge bosons and no fundamental scalars.

It is well-known that such a model defined on the lattice is exactly equivalent to a

lattice-regularized SU(2) theory with an explicit mass term. Let us recall how this

works. The simplest lattice action of a massive SU(N) Yang-Mills theory in a cubic

lattice of lattice spacing a is given by

Sm[U ] = − β

2N

∑

x

∑

P

tr [P (x) + h.c.]− κ

2

∑

x

∑

µ

tr
[
Uµ + U †µ

]
, (3.1)

4



where P (x) is the elementary plaquette, Uµ(x) is the link variable, β ≡ 2N/g2
0, and

κ ≡ β
N

(ma)2.

In this formulation, the theory looks like it is not gauge invariant, but it can be

rewritten as a gauge invariant theory after performing an integration over the gauge

orbit. Using the compactness of the group and the invariance of the measure we can

write the partition functional as

Z =

∫ ∏

x

dΩ(x)
∏

x,µ

dUµ(x) exp [−Sm[U ]] =

∫ ∏

x

dΩ(x)
∏

x,µ

dUΩ
µ (x) exp

[
−Sm[UΩ]

]

=

∫ ∏

x

dΩ(x)
∏

x,µ

dUµ(x) exp
[
−Sm[UΩ]

]
=

∫ ∏

x

dΩ(x)
∏

x,µ

dUµ(x) exp [−S[U,Ω]] .

(3.2)

where UΩ
µ is the gauge-transformed link variable,

UΩ
µ (x) = Ω†(x)Uµ(x)Ω(x+ aµ̂), (3.3)

and

S[U,Ω] ≡ − β

2N

∑

x

tr [P (x) + h.c.]

− κ

2

∑

x

∑

µ

tr
[
Ω†(x)Uµ(x)Ω(x+ aµ̂) + h.c.

]
. (3.4)

This action is now invariant under the following gauge transformation

Uµ(x) → Λ(x)Uµ(x)Λ†(x+ aµ̂), (3.5)

Ω(x) → Λ(x)Ω(x). (3.6)

In this formulation, the theory contains gauge degrees of freedom coupled to complex

scalars, Ω ∈ SU(N), on which the gauge transformation acts on the left. It is a

discretized version of the gauged non-linear chiral model. For N = 2 this is also a

non-perturbative formulation of an SU(2)+ λφ4 theory, in the limit of an infinite

Higgs mass λ→∞.

We make also the important observation that this lattice theory satisfies site-

reflection positivity and therefore unitarity [15, 16].

The theory obviously reduces to the pure gauge theory in the limit κ→ 0 (con-

fined phase), while the scalar degrees of freedom decouple from the gauge interactions

in the näıve β →∞ limit, simplifying to the ungauged non-linear sigma model. The

latter is in the same universality class as the λφ4 theory and has a second order phase

transition at κ = κc, between an ordered (Higgs) phase and a disordered one. For an

exhaustive study of this ungauged limit of the lattice model see [17] and references

therein.
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The phase diagram of this theory as function of (β, κ) has been studied before

[12, 13, 18, 19]. For more recent studies see [20, 11, 21, 22, 23]. Using the small κ

limit (high T expansion) at finite β, it is possible to show that the theory falls in

the same universality class as the pure SU(2) gauge theory [24]. There must exist

therefore a confinement phase where the continuum limit is the same as in the pure

SU(2) gauge theory. In this phase, the Ω fields decouple as heavy degrees of freedom

as we approach the continuum limit at β → ∞. It is reasonable to assume that for

sufficiently large κ, the Ω fields can have long range correlations and remain in the

spectrum. That would be a Higgs-like phase.

For large κ and β the standard perturbative expansion indicates that the theory

is non-renormalizable, but it has some validity as a momentum expansion (in the

same sense that chiral perturbation theory does). To be more precise, considering

external momenta such that m2 ≡ κg20
2a2
∼ p2 � κ

a2
, the perturbative expansion is

expected to be renormalizable order by order in p2a2

κ
. In the appendix, we present

the one-loop corrections to β and κ in this regime using the background field method

on the lattice. As expected, m2 ∝ κ
a2

being a dimensionful coupling gets cutoff-scale

corrections and needs to be non-perturbatively fine-tuned to remain light in units of

the cutoff. On the other hand, within the validity of the momentum expansion, the

theory is found to be asymptotically free in g0:

β(g0) = − 1

16π2

(
22

3
− 1

12

)
g3

0 + ..., (3.7)

which corresponds to a scalar contribution to the β function which is half of that of

one complex doublet. The same result has been obtained in a different regularisation

in [25]. These one-loop results suggest that a scaling region might exist at β =∞ for

some finite and non-perturbatively fine-tuned value of κ. Whether that region exists

cannot be established within perturbation theory however, since an infinite number

of tunings seem necessary to find scaling to arbitrary order in this expansion. On

the other hand if such a scaling region is found non-perturbatively, the model might

provide the simplest model of dynamical symmetry breaking: all the low-energy

parameters describing the low-energy dynamics would be determined in terms of two

or less (if there is asymptotic freedom) bare couplings. Note that this is precisely

what happens in the ungauged non-linear model, a tuning of κ is all what is required

to reach the (trivial) continuum limit, in spite of the fact that the perturbative (large

κ) expansion indicates otherwise.

As explained in the introduction, the existence of a scaling region within a Higgs

phase implies that the static potential shows a mixed behavior rising linearly up

to some physical distance rs, related to the scale of string breaking, and flattening

thereafter. If such a physical scale exists it must satisfy scaling rs/a→∞ as a→ 0.

Another observable that would be distinct in a Higgs phase is the correlation function
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of states constructed out of Ω fields, which should not have long range correlations

in the confinement phase, i.e. ξΩ/a remains finite as a→ 0.

An essential property of this lattice model is that it has an exact global symmetry

under the transformation

Ω(x) → Ω(x)Λ, Λ ∈ SU(N). (3.8)

There is an exactly conserved vector current associated to this global symmetry which

is given by

V a
µ ≡ i

κ

2
Tr[Ω(x)†Uµ(x)Ω(x+ µ̂)T a] + h.c. (3.9)

This current satisfies

∂̂µV
a
µ = 0, (3.10)

where ∂̂µΩ(x) ≡ Ω(x+ µ̂)− Ω(x) is the forward lattice derivative.

Let us assume that a scaling region exists and that only colorless states are

asymptotic. One such state carries the quantum numbers of the conserved current,

V a
µ . The EFT for such state in the continuum limit must look like a massive gauge

theory, as described in the previous section, since it satisfies all the properties re-

quired. In particular, the interactions of this state (with itself and other non-singlet

fields) are controlled by the effective gauge coupling constant, g, which need not be

related in any simple way to the bare coupling g0.

The relations of eq. (2.6) that underlie the effective gauge symmetry can in

fact be derived also from the Ward identities (WI) associated to the exact global

symmetry as we show next. Such WI also provide a non-perturbative definition of

the effective coupling g.

We note the connection of this formulation with the so called hidden local sym-

metry construction of non-linear sigma models [26, 27, 28] that was applied to de-

scribe light vector mesons in chiral perturbation theory [29, 30] and also to models

of electroweak symmetry breaking [31]. Here the hidden local symmetry is a true

local symmetry, the only fundamental gauge symmetry.

3.1 Ward Identities

The existence of an exactly conserved global symmetry implies that the following

relation must hold for any operator O

〈−δS O〉+ 〈δO〉 = 0, (3.11)

where δS, δO are the variation of the lattice action and operator respectively under

an infinitesimal and local symmetry transformation, Λ(x) = eiT
aεa(x). The variation

of the action is

δεS[U,Ω] = −
∑

x,µ,a

V a
µ (x)∂̂µε

a(x), (3.12)
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where V a
µ (x) is the conserved vector current of eq. (3.9).

Let us first consider the operator O(y, z) ≡ V a
µ (y)V b

ν (z) and the following in-

finitesimal transformation (this is the method of [32] and references therein):

εa(x) =

{
εa, x ∈ R
0, x /∈ R (3.13)

where R is the region 0 ≤ t ≤ T . We assume that y ∈ R (i.e. 0 < y0 < T ) while

z /∈ R, for example z0 > T . The boundaries of R, that we denote by ∂R, are therefore

infinite hyperplanes at constant t = 0 and T . The transformation of the field is easily

derived from the transformation of the current

δεV
a
µ (x) = εabc

[
εb(x) V c

µ (x) +
1

2
∂̂µε

b(x) V c
µ (x)

]
− 1

4
V 0
µ (x)∂̂µε

a(x), (3.14)

where V 0
µ is a singlet under the global symmetry:

V 0
µ (x) ≡ κ

2
Tr[Ω(x)†Uµ(x)Ω(x+ µ̂) + h.c.]. (3.15)

The lattice Ward identity in this case results in the following relation

−εabc
∑

x

〈(V c
0 (T,x)− V c

0 (0,x))V a
µ (y)V b

ν (z)〉 = 2〈V d
µ (y)V d

ν (z)〉, (3.16)

where we have used that ∂µε(y) = 0, y /∈ ∂R. Note that all the operator insertions y, z

and (0,x)/(T,x) are far apart, and therefore both sides of the equation should match

the continuum correlation functions up to a field renormalisation. In the continuum

theory, we denote the canonically-normalised field that represents the vector particle

by W a
µ . The Ward identity in terms of continuum fields is therefore

−εabc
∫

x

〈(W c
0 (T,x)−W c

0 (0,x))W a
µ (y)W b

ν (z)〉 = 2Z
−1/2
V 〈W d

µ (y)W d
ν (z)〉, (3.17)

where ZV can be obtained from the large distance behavior of the Euclidean two-

point function

∫
d4xeiqx〈V a

µ (x)V b
ν (0)〉 =

ZV δab(gµν + qµqν/m
2
W )

q2 +m2
W

≡ ZV δab∆µν(q) . (3.18)

We use the normal convention and define Z
1/2
V ≡ mWFW .

The EFT that represents the continuum limit is the most general renormalizable

theory that satisfies the exact global symmetry and therefore is of the general form

in eq. (2.2) after a canonical normalisation of the field. The three-W coupling,

g ≡ αZ
−3/2
W , and the two four-W couplings λZ−2

W and µZ−2
W are in principle unrelated.

Let us assume that these couplings are small in the EFT and let’s evaluate the two

sides of this equation at leading order in perturbation theory.
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By restricting our attention to the case µ = ν = 0 and evaluating the three-point

function at tree level, we obtain

εabc
∫

x

〈(W c
0 (T,x)−W c

0 (0,x))W a
0 (y)W b

0 (z)〉

=
3g

m2
W

∫

q

q2/m2
W√

q2 +m2
W

eiq(z−y) e−
√

q2+m2
W (z0−y0)

= − 2g

m2
W

〈W d
0 (y)W d

0 (z)〉, (3.19)

and therefore from eq. (3.17) we get

1√
ZV

=
g

m2
W

→ g =
mW

FW
, (3.20)

which provides a definition of the effective coupling at this order. Note that a weak

coupling requires g ∼ O(1), which seems to be the natural value for a ratio of

dynamically generated scales such as mW and FW , even if the underlying theory is

strongly coupled.

Let us now consider the Ward identity where O → V b
µ (y)V c

ν (z)V d
σ (u) and a local

global transformation at x. We assume that all points x, y, z, u are far apart of each

other.

The Ward identity reads

〈∂̂ρV a
ρ (x)V b

µ (y)V c
ν (z)V d

σ (u)〉 = 0. (3.21)

This correlation function should also match its continuum counterpart, once we sub-

stitute V by W .

Let us first consider the case a = b = c = d fixed and let us compute this

at leading order in perturbation theory. Due to the color structure there is no

contribution from the three-point coupling g at tree level. The result is

〈∂̂ρW a
ρ (x)W a

µ (y)W a
ν (z)W a

σ (u)〉

= −8(λ+ µ)Z−2
W

∫

k,p,q

(k + q + p)τ (∆µτ (p)∆να(q)∆σα(k) (3.22)

+ ∆µα(p)∆ντ (q)∆σα(k) + ∆µα(p)∆να(q)∆στ (k))eip(y−x)eiq(z−x)eik(u−x) .

For finite separations between all the points x, y, z, u, the integral is well defined and

does not vanish, therefore the coefficient must vanish, i.e.

λ = −µ. (3.23)

Finally we consider the case a = b, c = d and a 6= c. In this case both the

three-point coupling g as well as λ and µ contribute at tree level. By imposing the
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condition eq. (3.23) we get

〈∂̂ρW a
ρ (x)W a

µ (y)W b
ν (z)W b

σ(u)〉

= −(4λZ−2
W + g2)

∫

k,p,q

(k + q + p)τ (2∆µτ (p)∆να(q)∆σα(k) (3.24)

− ∆µα(p)∆ντ (q)∆σα(k)−∆µα(p)∆να(q)∆στ (k))eip(y−x)eiq(z−x)eik(u−x) .

Also in this case the integral gives a non-vanishing contribution and therefore the

coefficient must vanish

λZ−2
W = −g

2

4
. (3.25)

We hence recover the relations of eq. (2.6) and the gauge-invariant effective La-

grangian, eq. (2.7).

The relations eq. (2.6) are derived from a tree level evaluation of the Ward

identities, while we know that in the theory with only the massive W a
µ fields unitarity

breaks down at high energies. The Born approximation should represent correctly

the low-energy dynamics of the theory, provided g is small and there are no other

light degrees of freedom closeby.

This means that we have implicitly assumed that the only light degrees of free-

dom below the cutoff are the W a
µ . However, it is likely that other light states exist

that might contribute to the Ward identity amplitudes, for example, a light scalar H,

that might unitarize the theory if the couplings to the W are those of the Standard

Model. An interpolating field that could couple to such a state is that in eq. (3.15),

which is a singlet under the global symmetry. Accordingly the only allowed d ≤ 4

couplings of this state could be

LH =
1

2
∂µH∂µH − V (H)− λHWWHWµ ·Wµ − λHHWWH

2Wµ ·Wµ , (3.26)

where V (H) is the standard quartic potential. If the H(x) field is invariant under

the local symmetry, the HW couplings would be forbidden by eq. (2.5). In fact

such couplings would give at LO uncanceled contribution to the right-hand side

of eq. (3.25). However such contribution can be reabsorbed in a redefinition of the

conserved current in the EFT. The matching of the conserved current in the presence

of the λHWW is modified to:

V a
µ → W a

µ + 2
λHWW

m2
W

HW a
µ , (3.27)

which is conserved up to higher order corrections. The global symmetry does not

seem to constrain the scalar to vectors couplings, although we know that they are

fixed by the requirement of perturbative unitarity if no other light state exists.
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β κref L3 × T amH amW aFW Nmeas/106

2.3 0.405 163 × 16 0.65(2) 0.455(5) 0.146(2) 5.4

2.55 0.368 243 × 24 0.39(3) 0.241(9) 0.081(2) 2.8

2.75 0.356 363 × 36 0.30(4) 0.174(6) 0.060(2) 2.0

Table 1: Lattice parameters and estimates for amH , amW and aFW .

4. Numerical Results

We have performed an exploratory study of the scaling properties of the lattice model

defined in eq. (3.1). This is essentially a standard gauge theory with the Wilson action

and the κ term, which is the sum of the trace of the link variables. The heatbath and

over-relaxation algorithms can be used straightforwardly by adding to the staples a

term proportional to the identity. Periodic boundary conditions are imposed in time

and space.

We have measured the vector and scalar zero-momentum two-point functions,

that is the correlators:

V (t) = −κ2
∑

~x,k,a

〈Tr[Uk(x)T a]Tr[Uk(0)T a]〉 , (4.1)

S(t) = κ2
∑

~x

〈
∑

µ

Tr[Uµ(x)]
∑

ν

Tr[Uν(0)]〉 , (4.2)

where µ, ν = 0, 1, 2, 3 and k = 1, 2, 3. For the scalar, we used APE smeared links [33],

whereas in the case of the vector we considered both, smeared sources to extract the

mass, and unsmeared ones to get FW , since the exactly conserved current is the

unsmeared one. From these two correlators we can extract the physical quantities

mH , mW and FW using standard definitions (see e.g. [19] for the effective mass).

The goal is to consider values of the bare parameters that keep some physical

quantity fixed. We have considered three values of β and L/a starting at β = 2.3,

L/a = 16 and aiming at a change in the lattice spacing by a factor 2-3, guided

by the perturbative formula in eq. (3.7). The volume is roughly fixed in physical

units. In each case we have tuned κ to some reference value, κref (β). Inspired by

the discovery of the Higgs-like particle, we have chosen to keep the ratio mH/mW

fixed to ≈ 1.5 (within ∼ 10% errors). The results at κref (β) are summarised in

Table 1. Some illustrative effective mass plot is shown in Figure 1. Plateaux can

be clearly identified, although the noise to signal ratio grows exponentially in time

as expected. In the future we may adopt the algorithm in [34, 35] to overcome the

problem. Within our errors we do not see a sign of other nearby bound states and a

two state fit of the effective masses indicates that the first excited state is at the cutoff

scale. Of course it would be interesting to search for such states more thoroughly.
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Figure 1: Effective mass plateaux from the scalar and vector APE smeared correlators at

β = 2.55 and the reference point in κ. Bands indicate our final estimates. Errors account

for autocorrelation effects through the method described in [36].

There seems to be indication of scaling at this κref (β) as β grows: increasing

β the correlation lengths get larger in lattice units (amW drops by a factor ∼ 2.7

between the coarser and the finer lattices). Furthermore the dimensionless ratios

mW/FW , mH/FW (only one of them is independent) remain roughly constant as

shown in Figure 2. The ratio mW/FW gives the effective coupling, g. We can see

that the value is however very large (compared to the g ∼ 0.7 in the Standard

Model). The tuning of κ could have also been done in such a way as to fix this ratio

instead, which might actually be more precise numerically. It would be interesting

to see how small a value for this ratio can be achieved within the scaling region and

how it correlates with the ratio of scalar to vector mass. A preliminary study at

β = 2.3, L/a = 16 is summarized in Figure 3. The coupling g appears to vary quite

rapidly as a function of mH/mW , especially for small values of the mass ratio, but

seems to reach a plateau for large values. A more extensive study will be performed

elsewhere. The change in the lattice spacing, as extracted from the ratio of aFW , is

shown in Figure 4 where it is compared with the one-loop expectation from eq. (3.7).

It seems that the running is slower than predicted by one-loop perturbation theory

at these values of β.

We have also measured correlators of Polyakov loops with APE smearing, from

which we have extracted the static potential in the standard way (which assumes the

overlap of the Polyakov loop with the ground state potential to be 1):

V (r) = − 1

T
logCPP (r)connected. (4.3)
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Figure 2: Ratios mH/FW and mW /FW as a function of a in units of FW .
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Figure 3: Results for the coupling g vs mH/mW at β = 2.3, L/a = 16. Data from left

to right correspond to κ = 0.395, 0.397, 0.400, 0.405, 0.409 and 0.413 and are based on

O(106) measurements at each value of κ.

We note that it is necessary to subtract the disconnected contribution, which does

not vanish in this case, because the mass term breaks central charge conjugation. The

result for β = 2.55 is shown in the left panel of Figure 5. There is a clear indication

that the potential does not rise linearly after some distance. This is expected from

the fact that static charges can be screened by the Ω fields, however the interesting

result is that the scale at which this happens seems to also show scaling. This can
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Figure 5: Left: static potential extracted from the Polyakov correlator at β = 2.55 for

two time extents T = 24, T ′ = 32 together with the potential extracted from the ratio

(indicated as V TT′
). Right: same at β = 2.3 for T = 16, T ′ = 20.

be seen by plotting the function H(r) ≡ r2 ∂V (r)
∂r

as a function of r in physical units,

see Figure 6. Within the large error bars, the curves seem to fall on a universal line

for the three β.

Since we have a mixing problem of stringy and static-light states the overlap of

the Polyakov loop with the ground state is actually expected to depend on r. In

order to simultaneously extract values for the ground and first excited levels it would

be necessary to consider other correlators such as those of smeared Wilson loops.

Asymptotically far from the mixing region, the ratio of two Polyakov loop correlators

computed for different time extensions provides a more reliable determination of the
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Figure 6: H(r) as a function of r in physical units of FW for the three β values.

static-light energy, as the dependence on the overlap of the Polyakov loop with the

ground state drops out. Such ratio is shown in the right plot of Figure 5, where the

energy seems to reach a plateau at large r.

In a future study we plan to tune κ to fix the ratio mW/FW , that is the effective

coupling. In this case the ratio of the scalar to vector mass will be a prediction. It

will also be interesting to measure the self-couplings of the vector and those of the

vector to the scalar, as well as to search for higher resonances. For this, as well as for

having a more precise measurement of the static potential algorithmic improvements

are necessary along the lines of [37].

A recent numerical study of this model at significantly smaller physical volumes

can be found in [38].

5. Conclusions

We have studied a lattice formulation of the SU(2) gauged non-linear chiral model,

which is exactly equivalent to the Wilson formulation of an SU(2) gauge theory

with a mass term. The lattice theory has an exact SU(2) global symmetry, and its

associated conserved current has the quantum numbers of a vector triplet. Although

the theory is not perturbatively renormalizable, we have considered the possibility

that a scaling region might exist. Under this assumption, if the lightest state is

a vector triplet we have argued that the Wilsonian EFT describing the low-energy

dynamics of this scaling region must be a massive gauge theory, even if confinement

is at work . Other light states are expected therefore to unitarize the theory, such as

a light scalar. We have carried out a numerical simulation of this model searching for
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lines of constant physics (as defined from the ratio of scalar to vector mass to have

some fixed value) and we have found evidence for a scaling region, where however the

effective coupling seems to be rather large, if the ratio mH/mW is set to roughly its

experimental value. These results suggests that this theory is a non-trivial strongly

coupled theory that needs to be understood non-perturbatively. It obviously has a

clear physics motivation since it might be the simplest model for dynamical symmetry

breaking.
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Appendix A. Peturbation theory at one-loop

Although the lattice model is not perturbatively renormalizable, due to the Ω†Ω = 1

constraint, a perturbative expansion is possible for small external momenta if p2 �
κ
a2

, or in other words for κ large compared to any other scale in lattice units, and for

small g0.

Let us discuss the range of validity of the expansion. There are four scales in

this problem. The presence of the κ term gives at tree level a mass to the lattice

gauge fields:

(ma)2 =
κg2

0

2
. (1)

The equivalent of the vev of the Higgs is simply κ/a2 = 2m2

g20
. Both scales being

physical should be much smaller than the cutoff, therefore we should have m2a2 �
1, v2a2 = κ � 1. The perturbative expansion on the other hand assumes g0 small

and also that the external momenta p2 � 2m2

g20
= κ/a2. Note however that we can

be in two different regimes that are in principle perturbative: 1) p2 � m2 � 2m2

g20

or 2) m2 � p2 � 2m2

g20
. In the second case, we can neglect m2 in front of external

momenta, therefore the computation of the one-loop correction to g2
0 coming from

the diagrams involving the plaquette interactions only can be found in the literature.

We will restrict our attention to this case. In order to ease notation we will set a = 1

throughout.

We have used the background field method introduced in [39] for the lattice

regularization. Besides the quantum fields, we introduce two background fields Bµ(x)

and ω(x) in the following way

Uµ(x) = eig0Aµ(x) eiBµ(x), Ω(x) = eiφ(x) eiω(x). (2)

The gauge fixing procedure follows closely the lattice version of Rξ-gauge introduced

in [39] modified as it is done in the case of spontaneously broken gauge theories in

the continuum. The gauge-fixing term in the action reads:

Sgf [B,A, φ] =
1

ξ

(
DL
µAµ +

1

2
ξκg0φ

)2

, (3)

where DL
µAµ ≡ Aµ(x) − e−iBµ(x−µ̂)Aµ(x − µ̂)eiBµ(x−µ̂), and the term in φ is intro-

duced so that the mixed terms in Aµφ cancel. Note that it does not depend on the

background field ω.

The ghost action can be derived straightforwardly and does not depend on the

ω field. As a result there are no new ghost contributions at one-loop with respect to

those already present in the pure gauge theory. The are also no contributions from

the measure terms at this order.
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The required one-loop corrections to g0 and κ, ∆g2 and ∆κ respectively, can be

read from two-point functions of the background fields computed at one-loop:

Figure 6: Diagrams contributing to ω two-point vertex function at one loop. Solid, wiggly and

dashed lines inside the loops correspond to φ, Aµ and ghost fields respectively.

Figure 7: Diagrams contributing to the Ba
µ two-point function at one loop. Solid, wiggly and

dashed lines inside the loops correspond to φ, Aµ and ghost fields respectively.

−κ+∆κ
4 p̂2ωa(−p)ωa(p)

−κ+∆κ
2 ip̂µBa

µ(−p)ωa(p)

{
− 1

2(g2
0+∆g2)

[
gµν p̂

2 − p̂µp̂ν
]
− 1

4(κ + ∆κ)gµν

}
Ba

µ(−p)Ba
ν (p)

≡ Cµν
a (p)Ba

µ(−p)Ba
ν (p)

The diagrams contributing to the two-point function of the ω field at one loop are

shown in Figure 6.

The correction to ∆κ can be read directly from the coefficient of the one-loop Bω and

ωω two-point vertices, but also from the p-independent term in BB. The three results are

the same. In Feynman gauge we obtain:

∆κ

κ
=

1

κ

[
1

8N
− N

16
− N

2
P1

]

− g2
0

[(
5N

32
− 3

16N

)
P1 +

3N

4
P2 − N

4

1

(4π)2
− 3N

4(4π)2
log(m2) +

2N

(4π)2
F

(
m2

p2

)]
,(4)

where m2 ≡ 1
2κg2

0 where the lattice integrals [33]

P1 ≡
∫ π

−π

d4p

(2π)4
1

p̂2
= 0.15493339...

P2 ≡ lim
µ→0

{
1

(4π)2
log(µ2) +

∫ π

−π

d4p

(2π)4
1

(p̂2 + µ2)2

}
= 0.02401318.... (5)

– 15 –

The diagrams contributing to the two-point function of the ω field at one-loop

are shown in Figure 7.

The correction to ∆κ can be read directly from the coefficient of the one-loop

Bω and ωω two-point vertices, but also from the p-independent term in BB. The

three results are the same. In Feynman gauge we obtain:

∆κ

κ
=

1

κ

[
1

8N
− N

16
− N

2
P1

]
(4)

−g2
0

[(
5N

32
− 3

16N

)
P1 +

3N

4
P2 −

N

4

1

(4π)2
− 3N

4(4π)2
log(m2) +

2N

(4π)2
F

(
m2

p2

)]
,

where m2 ≡ 1
2
κg2

0, with the lattice integrals [40]

P1 ≡
∫ π

−π

d4p

(2π)4

1

p̂2
= 0.15493339...

P2 ≡ lim
µ→0

{
1

(4π)2
log(µ2) +

∫ π

−π

d4p

(2π)4

1

(p̂2 + µ2)2

}
= 0.02401318.... (5)

The function F (x) is given by

F (x) ≡ 1−
√

1 + 4x arccoth
√

1 + 4x. (6)

The one-loop correction to the gauge coupling gets new contributions propor-

tional to κ, corresponding to the diagrams in the first row of Figure 8. For κ = 0 only

the diagrams in the second row of Figure 8 contribute. They have been computed in

[40] for massless gauge propagators. In our case, these diagrams are different because

the gauge propagators are massive. However, in the regime m2 � p2 the results are

the same up to corrections of O(m2/p2).

The contribution from the diagrams in Figure 8 (up to O(m2/p2, a2p2) correc-

tions) is found to be:
(

∆g2

g4
0

)
=

N

(4π)2

(
−29

8
ln p2 +

63

9

)
+N

(
7

48
P1 +

29

8
P2 +

1

16

)
− 1

8N
. (7)
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Figure 7: Diagrams contributing to ω two-point vertex function at one loop. Solid, wiggly and

dashed lines inside the loops correspond to φ, Aµ and ghost fields respectively.

Figure 8: Diagrams contributing to the Ba
µ two-point function at one loop. Solid, wiggly and

dashed lines inside the loops correspond to φ, Aµ and ghost fields respectively.
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Figure 8: Diagrams contributing to the Ba
µ two-point function at one-loop. Solid, wiggly

and dashed lines inside the loops correspond to φ, Aµ and ghost fields respectively.

The β function at one-loop is therefore

β(g) ≡ − ∂g

∂ ln a
= − 29N

8(4π)2
g3

0 + ..., (8)

There is asymptotic freedom. The coefficient coincides with that found in [25] using

a different regularization.

On the other hand, if we want m2 ∼ κ/a2 to be finite in the continuum limit,

we need that κ+ ∆κ = O(a2), therefore at the order we are working

κ+ ∆κ = 0, (9)

which is satisfied at the critical point

κc =
N

2
P1 +

N

16
− 1

8N
+O(g2

0), (10)

which for N = 2 corresponds to κc = 0.2174 + O(g2
0). Obviously κ will get finite

corrections to all orders and therefore the tuning must be done non-perturbatively.

As it is well known not all the divergences can be reabsorbed in g0 and κ. Some

log’s need to be absorbed in new couplings of O(p4) operators [41]. Although these

divergences are logarithmic at one-loop, quadratic corrections to such coefficients will
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appear at higher orders of the loop expansion. It would seem that a non-perturbative

tuning is also required for these couplings to reach a scaling region. Whether at all,

and in case at which values of the cutoff scale, this is necessary non-perturbatively

is an open question and one of the motivations for the study presented here. A

perturbative analysis of this question in the context of a different regularization can

be found in [42].
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