(19) Organización Mundial de la Propiedad Intelectual

Oficina internacional

(21) Número de la solicitud internacional:

PCT/ES2014/070246

(22) Fecha de presentación internacional:

31 de marzo de 2014 (31.03.2014)

(25) Idioma de presentación:

español

(26) Idioma de publicación:

español

(30) Datos relativos a la prioridad:

P 201330467 2 de abril de 2013 (02.04.2013) ES

(71) Solicitante: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) [ES/ES]; C/ Serrano, 117, E-28006 Madrid (ES).

(72) Inventores: ESTEBAN RODRÍGUEZ, Mariano; Centro Nacional de Biotecnología (CNB), C/ Darwin, 3, Cantoblanco, E-28049 Madrid (ES). GÓMEZ RODRÍGUEZ, Carmen Elena; Centro Nacional de Biotecnología (CNB), C/ Darwin, 3, Cantoblanco, E-28049 Madrid (ES). PERDIGUERO DE LA TORRE, Beatriz; Centro Nacional de Biotecnología (CNB), C/ Darwin, 3, Cantoblanco, E-28049 Madrid (ES).

Abstract:

The recombinant viruses of the invention contain sequences which are inserted at the same site of insertion as that of MVA and allow the simultaneous expression of various antigens of the HCV, concretely the structural (Core, E1, E2 and p7) and non-structural (NS2, NS3, NS4A, NS4B, NS5A plus the 201 amino acids of the N-terminal region of NS5B) mature proteins. In this way, stable recombinant viruses are obtained, which allow an immune response to be triggered against a large variety of antigens of the HCV, suitable for being used as preventive and therapeutic vaccines against hepatitis C.

Resumen:

Los virus recombinantes de la invención contienen secuencias que se encuentran insertadas en el mismo sitio de inserción del MVA y que permiten la expresión simultáneamente de varios antígenos del VHC, concretamente las proteínas maduras estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B). Con ello se consiguen virus recombinantes estables, que permiten el desencadenamiento de una respuesta inmune contra una gran variedad de antígenos del VHC, adecuados para ser utilizados como vacunas preventivas y terapéuticas contra la hepatitis C.
— con la parte de lista de secuencias de la descripción
(Regla 5.2(a))
VECTORES RECOMBINANTES BASADOS EN EL VIRUS MODIFICADO DE ANKARA (MVA) COMO VACUNAS PREVENTIVAS Y TERAPEÚTICAS CONTRA LA HEPATITIS C

SECTOR Y OBJETO DE LA INVENCIÓN

La presente invención se circunscribe al sector de la biomedicina y, más concretamente, se refiere a virus recombinantes basados en el virus vaccinia modificado de Ankara (MVA). Más concretamente, la invención se refiere a virus recombinantes derivados del MVA que actúan como sistemas de expresión de las proteínas del virus VHC y a su uso en la vacunación frente a la hepatitis C.

ESTADO DE LA TÉCNICA

El virus de la hepatitis C (VHC) infecta a más de 170 millones de personas en todo el mundo con 3 millones de nuevas infecciones cada año (Shepard, Finelli et al. 2005). Tras la fase aguda de la infección, el 20% de las personas infectadas erradican el virus al cabo de semanas o meses y son a menudo asintomáticos. El 80% restante desarrollará una enfermedad crónica de los cuales aproximadamente el 20% desarrollará finalmente cirrosis crónica y del 1 al 5% cáncer hepático (Lauer and Walker 2001, Afdhal 2004).

El protocolo actual de tratamiento para los pacientes infectados con VHC es una combinación de interferón-α pegilado y ribavirina. Sin embargo, este tratamiento es prolongado en el tiempo, presenta un amplio espectro de efectos secundarios, falla con frecuencia y resulta prohibitivamente caro para los países en vías de desarrollo (Grieve, Roberts et al. 2006). Debido a ello, se ha realizado un gran esfuerzo dirigido al desarrollo de nuevos agentes antivirales (Pawlotsky 2012). Sin embargo, debido al coste, los efectos secundarios y la complejidad del tratamiento así como al desarrollo de mutantes de VHC resistentes y a la heterogeneidad viral, la terapia antiviral no es la solución para erradicar la infección por VHC. Por lo tanto, existe una necesidad urgente de desarrollar una vacuna profiláctica que resulte eficaz y reduzca la incidencia global de la enfermedad.
La generación de vacunas contra el VHC ha demostrado ser compleja. El hecho de que una proporción significativa de pacientes infectados durante la fase aguda erradiquen espontáneamente la infección junto con una potente inmunidad antiviral sugiere que el desarrollo de una vacuna profiláctica es un objetivo alcanzable.

El papel de la respuesta de células T específicas para VHC en el resultado de la infección primaria por VHC ha sido estudiado ampliamente y aunque no se ha identificado ningún parámetro que se correlacione con protección, se sabe que este brazo de la respuesta inmune es determinante en la eliminación del virus. Estudios comparativos en humanos han demostrado que respuestas CD4$^+$ y CD8$^+$ potentes frente a múltiples regiones de VHC y mantenidas en el tiempo son claves ya que se asocian con la eliminación espontánea del virus (Thimme, Oldach et al. 2001, Afdhal 2004, Schulze zur Wiesch, Lauer et al. 2005).

Así, basándonos en las interacciones virus-hospedador durante la infección por VHC, existen probablemente tres características que deben ser compartidas tanto por las aproximaciones vacunales profilácticas como por las terapéuticas para que resulten exitosas. En primer lugar, estas vacunas necesitan generar una respuesta de células T potente, amplia y funcional así como una respuesta humoral frente a un amplio abanico de antígenos de VHC. En segundo lugar, deben ir dirigidas frente a regiones virales relativamente conservadas para hacer frente a la gran diversidad genética del virus VHC tanto entre hospedadores como dentro del mismo hospedador. En tercer lugar, deben erradicar el VHC del hígado sin inducir ningún tipo de inmunopatología hepática para que puedan ser consideradas vacunas seguras.

Actualmente, se están ensayando diversos candidatos vacunales frente al VHC dirigidos frente a un número limitado de antígenos virales, como péptidos, proteínas recombinantes, ADN y vacunas basadas en diferentes vectores con distintos niveles de éxito. Las vacunas basadas en proteínas recombinantes que inducen respuestas humorales específicas frente a la envuelta difícilmente proporcionarán inmunidad esterilizante debido a la variabilidad genética de la envuelta de VHC pero podrían tener un papel en la atenuación del curso de la
infección primaria o servir como adyuvante para una vacuna basada en células T. Las vacunas de células T basadas en proteínas y péptidos han inducido respuestas de células T débiles por lo que esta aproximación probablemente sólo pueda progresar con el desarrollo de nuevos adyuvantes. Las vacunas de ADN, con técnicas adicionales que favorezcan su liberación y la inmunogenicidad generada, han mostrado algunos resultados prometedores y se ha descrito que son capaces de reducir la carga viral en algunos pacientes infectados crónicamente (Halliday, Kleneman et al. 2011, Torresi, Johnson et al. 2011, Ip, Nijman et al. 2012).

Las observaciones más prometedoras derivan del uso de vacunas basadas en vectores virales como adenovirus defectivos en replicación o el virus vaccinia. Sin embargo, esta estrategia no permite hasta ahora utilizar el genoma completo de VHC dada la toxicidad que presenta la unión de ambas moléculas (Gomez, Vandermeer en et al. 2005). Los candidatos vacunales basados en el virus MVA actualmente bajo ensayo están dirigidos frente a un grupo limitado de proteínas estructurales y no estructurales de VHC y ya han demostrado su capacidad para generar respuestas inmunes de células T de alta calidad tanto en estudios preclínicos (Abraham, Himoudi et al. 2004, Rollier, Depla et al. 2004, Fourniller, Gerossier et al. 2007, El-Gogo, Staib et al. 2008) como clínicos (Habersetzer, Honnet et al. 2011). Los estudios terapéuticos más avanzados utilizando MVA se han llevado a cabo con el candidato TG4040. Se trata de una vacuna poli-antigénica recombinante de células T basada en MVA que codifica las proteínas NS3, NS4 y NS5B de VHC. Se detectaron respuestas de células T específicas para VHC en todos los pacientes una semana después de la primera vacunación y dichas respuestas se mantuvieron durante los 6 meses de seguimiento. La vacunación redujo las cargas virales hasta 1.5 log10 y las respuestas de células T específicas más fuertes se observaron en aquellos pacientes que presentaban los mayores niveles de reducción de la carga viral (Habersetzer, Honnet et al. 2011). Actualmente se encuentra en marcha un estudio randomizado en fase II en el que participaron 153 pacientes divididos en tres grupos de tratamiento. Datos preliminares publicados en la página web de Transgene muestran una reducción de la carga viral en el grupo pre-vacunado con TG4040 previamente al inicio del ensayo una semana después del inicio del mismo. Dicha reducción en la carga viral se produce de una manera más rápida que en los otros grupos que habían recibido
el tratamiento solo o en combinación con el TG4040 dentro del mismo programa de tratamiento (Clinical-Trials.gov, NCT01055821).

Estos ensayos demuestran la viabilidad de una vacuna contra el VHC que produzca respuestas específicas de memoria en el sistema inmune. Sin embargo, están limitadas por el uso de una parte del genoma del virus, lo que en caso del desarrollo de mutaciones por parte del virus limitaría su alcance. Son pues necesarios candidatos vacunales que amplíen la intensidad y diversidad de la respuesta inmune generada frente a múltiples regiones de VHC.

EXPLICACIÓN DE LA INVENCIÓN

DESCRIPCIÓN BREVE DE LA INVENCIÓN

Un primer objeto de la invención lo constituye el polinucleótido de la invención que comprende la secuencia de nucleótidos correspondiente al virus MVA que actúa como vector de expresión de los genes del VHC regulando la transcripción, traducción y procesamiento post-traduccional de dichos genes del VHC en la mayoría de tejidos del organismo (polinucleótido MVA-HCV).

Una realización particular de la invención se corresponde al polinucleótido MVA-HCV en el que la secuencia del virus VHC se corresponde con el genoma casi completo del genotipo 1a y que comprende las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B) y cuya secuencia es SEQ ID No 1.

Un objeto de la invención lo constituye el procedimiento de obtención del polinucleótido de la invención, que comprende las siguientes etapas: (a) Generación del plásmido de transferencia pCyA-HCV, (b) Construcción del virus recombinante MVA-HCV, (c) Selección de los virus MVA-HCV estables mediante pases sucesivos en cultivos celulares.
Una realización particular de la invención es el procedimiento de obtención del polinucleótido de la invención donde la secuencia del virus VHC se corresponde con el genoma casi completo del genotipo 1a, con secuencia SEQ ID No 1.

Otro objeto de la invención es el vector recombinante MVA-HCV codificado por el polinucleótido de la invención que provoca en las células a las que infecta la expresión de la propia partícula viral y la de las proteínas del virus VHC.

Una realización particular de la invención es el vector recombinante en el que las proteínas virales del VHC se con la SEQ ID No 1.

Otro objeto de la invención es la célula que contiene el polinucleótido de la invención MVA-HCV.

Una realización particular de la invención es la célula que contiene el polinucleótido MVA-HCV, en el que las proteínas virales del VHC se corresponden con las secuencias de las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a del VHC con SEQ ID No 1.

Otro objeto preferente de la invención es el uso de la célula que contiene el polinucleótido de la invención para la obtención del vector recombinante de la invención.

Una realización particular de la invención es el uso de la célula que contiene el polinucleótido de la invención para la obtención del vector recombinante de la invención, en el que las proteínas virales del VHC se corresponden con las secuencias de las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a del VHC con SEQ ID No 1.

Otro objeto de la invención es la composición farmacéutica que contiene el vector recombinante de la invención MVA-HCV, útil como mecanismo de vacunación contra la hepatitis C.
Una realización particular de la invención es la composición farmacéutica de la invención MVA-HCV útil como mecanismo de vacunación contra la hepatitis C que contiene el vector recombinante de la invención, en el que las proteínas virales del VHC se corresponden con las secuencias las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a del VHC con SEQ ID No 1.

Otro objeto preferente de la invención es el uso de la composición farmacéutica que contiene el vector recombinante de la invención MVA-HCV para prevenir o tratar la infección por VHC.

Una realización particular de la invención es el uso de la composición farmacéutica de la invención MVA-HCV que contiene el polinucleóutido de la invención para la obtención del vector recombinante de la invención, en el que las proteínas virales del VHC se corresponden con las secuencias las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a del VHC con SEQ ID No 1.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

Debido al hecho de que los actuales candidatos vacunales frente al VHC están dirigidos frente a un número limitado de antígenos virales, los autores de la presente invención decidieron desarrollar un nuevo candidato vacunal basado en la cepa atenuada MVA que expresa constitutivamente el genoma casi completo del genotipo 1a del VHC. Esta pauta de lectura abierta (ORF) del VHC había sido utilizada previamente para la generación del virus vacinia recombinante vT7-HCV, basado en la cepa virulenta WR, en el que el genoma de VHC es eficientemente transcrito dando lugar a una poliproteína que es procesada correctamente generando las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B) maduras (Gomez, Vandermeeren et al. 2005). Sin embargo, la expresión del genoma del VHC por la cepa WR tuvo que ser regulada de forma controlada por el represor lacI de E. coli, pues al producirse las proteínas del VHC por adición a los cultivos celulares de IPTG (que inhibe al represor lacI), las células
moran por apoptosis e inhibición de la síntesis de proteínas, con lo que se abortaba la replicación viral (Gomez, Vandermeer et al. 2005). Dicho procedimiento no se podía trasladar a un organismo por la imposibilidad de poder administrar IPTG de forma continua debido a su rápida eliminación.

En esta invención se describe la generación, caracterización y evaluación preclínica del virus MVA-HCV que expresa de manera constitutiva todas las proteínas del VHC (excepto la región C-terminal de NS5B). Y más específicamente abordando el estudio de la amplitud, fenotipo, polifuncionalidad y duración de las respuestas inmunes generadas. Ni la obtención del vector MVA-HCV ni los resultados de respuesta inmune eran predecibles, ya que no se había conseguido con anterioridad un virus recombinante que expresara todo el genoma del VHC debido a la toxicidad de los antígenos virales, ni tampoco se había definido en el contexto de expresión conjunta de todos los antígenos del VHC por un vector viral el tipo de respuesta inmune inducida. Por ello, ha sido inesperado el haber conseguido el recombinante MVA-HCV con las funcionalidades descritas. En virtud de su comportamiento en células y su inmunogenicidad en un organismo, se propone que MVA-HCV puede ser un buen candidato vacunal frente al VHC.

Así, un primer objeto de la invención se refiere a un polinucleótido, de aquí en adelante polinucleótido de la invención, que comprende:

i) Una secuencia de nucleótidos reguladora de la transcripción correspondiente al virus MVA (secuencia depositada en el GenBank con el número de acceso U94848; http://www.ncbi.nlm.nih.gov/nuccore/U94848) que actúa como vector de expresión de los genes del VHC regulando la transcripción, traducción y procesamiento post-traduccional de dichos genes del VHC en la mayoría de tejidos del organismo, y

ii) Una secuencia de nucleótidos correspondiente al genoma del VHC, insertada en el locus timidin quinasa (TK) del genoma de MVA, y con secuencia SEQ ID No 1; y

donde la secuencia de MVA que regula la expresión (i) está operativamente unida a la secuencia de nucleótidos del VHC (ii).
Una realización particular de la invención se corresponde al polinucleótido MVA-HCV en el que la secuencia del virus VHC ii) se corresponde con el genoma casi completo del genotipo 1a y que comprende las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B), insertada en el locus timidín quinasa (TK) del genoma de MVA y cuya secuencia es SEQ ID No 1.

Tal como se utiliza aquí, el término "polinucleótido" se refiere a un polímero compuesto de una multiplicidad de unidades de nucleótidos (desoxirribonucleótidos o ribonucleótidos o variantes estructurales relacionadas o análogos sintéticos de los mismos) enlazadas a través de enlaces fosfodiéster (o variantes estructurales relacionadas en análogos sintéticos de la misma). El término polinucleótido incluye ADN genómico o ADN codificante de cadena doble o sencilla, ARN, cualquier polinucleótido sintético y manipulado genéticamente y ambos tanto la cadena codificante como la antisentido (aunque sólo se destaca la cadena codificante en la presente memoria). Esto incluye moléculas de cadena sencilla y de doble cadena, como por ejemplo, híbridos de ADN-ADN, ADN-ARN y ARN-ARN. En la presente invención, el polinucleótido comprende una secuencia de nucleótidos del virus MVA que regula la expresión del genoma casi completo del genotipo 1a del VHC bajo el control transcripcional del promotor viral sintético temprano/tardío y operativamente unido a dicha secuencia de nucleótidos del VHC.

Tal y como se usa en la presente memoria, la expresión "una secuencia reguladora de la transcripción" se refiere a una secuencia que controla y regula la transcripción y, en su caso, la traducción del polinucleótido del VHC. Una secuencia reguladora de la transcripción incluye secuencias promotoras, secuencias que codifican reguladores transcripcionales, secuencias de unión al ribosoma (RBS) y/o secuencias terminadoras de la transcripción.

Las variantes de acuerdo con la presente invención incluyen secuencias de aminoácidos que son al menos 60%, 70%, 80%, 90%, 95% ó 96% similares o idénticas a la secuencia del vector recombinante y que incluye tanto las secuencias aminoacidicas correspondientes al virus MVA como a las secuencias de aminoácidos del virus VHC, en particular de las proteínas estructurales (Core, E1,
E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B del genotipo 1a del VHC) (SEQ ID No 1). Como se conoce en el estado de la técnica, la "similitud" entre dos proteínas se determina comparando la secuencia de aminoácidos y sus sustitutos aminoácidos conservados de una proteína a una secuencia de una proteína segundos. El grado de identidad entre dos proteínas se determina usando algoritmos informáticos y métodos que son ampliamente conocidos por las personas expertas en la técnica. La identidad entre dos secuencias de aminoácidos se determina preferiblemente mediante el algoritmo BLASTP (Altschul, Gish et al. 1990). Como los expertos en la técnica apreciarán, las variantes o fragmentos se pueden generar usando técnicas convencionales, tales como mutagénesis, incluyendo la creación de mutación de punto discreto (s), o por truncamiento. Por ejemplo, la mutación puede dar lugar a variantes que conservan sustancialmente la misma, o simplemente un subconjunto, de la actividad biológica de un polipéptido del que se deriva.

El término "vector", tal y como se emplea en la presente memoria, se refiere a una molécula de ácido nucleico que es capaz de transferir secuencias de ácidos nucleicos contenidas en la misma a la célula que infecta y que se produce por medio de técnicas de biología molecular. Algunos ejemplos de vectores recombinantes son ADN lineal, ADN plasmidico, virus modificados, adenvirus/virus adenoasociados, vectores retrovirales y virales, etc.; todos ellos ampliamente descritos en la literatura y que pueden ser empleados siguiendo técnicas estándar de biología molecular o comprados a proveedores. Un vector recombinante típico se selecciona del grupo que consiste en un vector lentiviral, un vector adenoviral y/o un vector de virus adenoasociados.

El término "vector recombinante", tal y como se usa en la presente invención, se define como un vector producido por la unión de diferentes fragmentos de ácidos nucleicos a partir de diferentes fuentes y cuya expresión da lugar a una partícula viral con capacidad infectiva compuesta característicamente de cápside proteica, genoma viral y proteínas asociadas al genoma viral. Un vector recombinante según la invención puede, por tanto, emplearse tanto como herramienta biotecnológica para multiplicar el virus como emplearse en composiciones farmacéuticas como las vacunas.
Tal y como se utiliza en esta descripción, la expresión "unida operativamente" significa que la secuencia de nucleótidos que codifica un polipéptido que comprende el genoma del virus VHC, en particular el genoma casi completo del genotipo 1a del VHC con SEQ ID No 1 (las proteínas estructurales, Core, E1, E2 y p7, y no estructurales, NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B) está covalentemente unida a la secuencia de nucleótidos del virus MVA y que ambas están dispuestas de modo que la expresión de la secuencia de nucleótidos del VHC se produce bajo el control de la secuencia del virus MVA reguladora de la transcripción.

Otro objeto de la invención lo constituye un procedimiento de obtención del polinucleotido de la invención, en adelante procedimiento de la invención, donde dicho método comprende de forma general las siguientes etapas:

(a) Generación del plásmido de transferencia. Un fragmento de ADN de una longitud variable conteniendo las proteínas estructurales y no estructurales de un determinado genotipo de VHC sería escindido del plásmido inicial donde se encontrara insertado (pHCV) utilizando las enzimas de restricción correspondientes e insertado en el plásmido pCyA-20 descrito más adelante y previamente digerido con las mismas enzimas de digestión para generar el plásmido de transferencia correspondiente (pCyA-HCV);

(b) Construcción del virus recombinante MVA-HCV. Células BHK-21 serían infectadas con el virus atenuado MVA-WT y posteriormente transfectadas con el plásmido pCyA-HCV obtenido en el apartado anterior utilizando un agente transfectante según las especificaciones del fabricante. A las 72 horas post-infección, las células serían recogidas, congeladas/descongeladas, sonicadas y utilizadas para la selección de los virus recombinantes;

(c) Selección de los virus MVA-HCV estables mediante pases sucesivos en cultivos celulares. Los virus MVA recombinantes que contuvieran los genes de VHC de un genotipo determinado y que expresaran de forma transitoria el gen marcador β-gal (MVA-HCV (X-Gal*)) serían seleccionados durante
pases consecutivos de purificación de placas en células BHK-21 teñidas con 5-bromo-4-cloro-3-indolil-β-galactósido (X-Gal). Tras una serie de pases consecutivos de purificación se aislarían un número de placas recombinantes que expresaran eficientemente las proteínas de VHC de un genotipo determinado y que hubieran perdido el gen marcador. La placa final seleccionada (designada como MVA-HCV stock P1) sería crecida para generar una preparación viral cruda (stock P2) a partir de la cual se prepararía un stock P3 de virus purificado según el protocolo descrito más adelante.

Según la heterogeneidad de la secuencia genómica, el VHC se clasifica en 11 genotipos (designados 1→11), numerosos subtipos (designados a, b, c,...) y alrededor de 100 cepas diferentes (numeradas 1, 2, 3,...).

Un virus se considera "estable" si pierde menos del 50% de la infectividad en, por ejemplo, un ensayo de formación de placas (PFU), que mide el cambio en la cantidad de PFU / mL entre dos puntos de temporales anterior y posterior.

Una realización particular de la invención es un procedimiento de obtención del polinucleótido de la invención, donde la secuencia del virus VHC se corresponde con la SEQ ID No 1 y comprende las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a de VHC. Dicho método comprende de forma general las siguientes etapas:

(a) **Generación del plásmido de transferencia pCyA-HCV**. El plásmido pCyA-20 fue generado mediante la inserción de una banda sintética que contenía el promotor viral temprano/tardío y un sitio múltiple de clonaje en el plásmido pLZAW1. Esta banda sintética, obtenida mediante la hibridación de dos oligonucleótidos complementarios que contenían dianas para las enzimas de restricción Ascl y Swal, fue digerida con Ascl y Swal e insertada en el plásmido pLZAW1 previamente digerido con las mismas enzimas de restricción para generar el plásmido pCyA-20. Un fragmento de ADN de 7.9 Kbp que contenía las proteínas
estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a de VHC fue escindido con EcoRI del plásmido pHCV1a (cedido por Charles M. Rice, New York) que contenía el genoma completo de VHC. Este fragmento de ADN fue tratado con la ADN polimerasa Klenow para generar extremos romos e insertado en el plásmido pCyA-20 previamente digerido con Pmel y desfosforilado mediante la incubación con fosfatasa alcalina de gamba para generar el plásmido de transferencia pCyA-HCV_{7,9} (SEQ ID No 2).

(b) **Construcción del virus recombinante MVA-HCV.** Células BHK-21 fueron infectadas con el virus atenuado MVA-WT y posteriormente transfectadas con el plásmido pCyA-HCV_{7,9} utilizando lipofectamina (Invitrogen) como agente transfectante. A las 72 horas post-infección, las células fueron recogidas, congeladas/descongeladas, sonicadas y utilizadas para la selección de los virus recombinantes.

(c) **Selección de los virus MVA-HCV estables mediante pases sucesivos en cultivos celulares.** Los virus MVA recombinantes que contenían los genes de VHC y que expresaban de forma transitoria el gen marcador β-gal (MVA-HCV (X-Gal\(^+\))) fueron seleccionados durante pases consecutivos de purificación de placas en células BHK-21 teñidas con 5-bromo-4-cloro-3-indolil-β-galactósido (X-Gal). Tras 7 pases consecutivos de purificación se aislaron 12 placas recombinantes que expresaban eficientemente las proteínas de VHC y que habían perdido el gen marcador. La placa designada como MVA-HCV-1.6.1.1.9.3.2 (stock P1) fue crecida para generar una preparación viral cruda (stock P2: 9.8 \(\times\) 10\(^8\) UFP/ml) a partir de la cual se preparó un stock P3 de virus purificado a partir de células BHK-21 infectadas a una multiplicidad de infección de 0.05 UFP/célula a través de dos colchones de sacarosa al 36%. Este stock P3 fue el que finalmente se seleccionó. También se aisló un stock P-2 de MVA-HCV a partir del P1 inicial después de tres pases consecutivos de placas obtenidas en células embrionarias de pollo (CEF) y confirmación de expresión de proteínas y esterilidad.
Como es conocido para un experto en la técnica, los plásmidos obtenidos como intermediarios en el método de la invención también pueden ser empleados para obtener variantes o derivados del polinucleótido de la invención. Así también será objeto de protección el plásmido pCyA-HCV\textsubscript{7,9} cuya secuencia se corresponde con SEQ ID No 2.

En la presente invención, el polinucleótido de la invención codifica las estructuras necesarias para generar una partícula viral de MVA-HCV en células CEF y BHK-21 y puede ser empleado como vector recombinante para infectar y transformar aquellos cultivos celulares en los que se introduzca y con ello producir la expresión de las proteínas virales propias del VHC.

Así, otro objeto de la invención es el vector recombinante MVA-HCV, o partícula viral, que comprende el polinucleótido de la invención. La partícula viral o vector recombinante provoca en las células a las que infecta la expresión de la propia partícula viral y de las proteínas del virus VHC.

En una realización particular el vector recombinante de la invención expresa la secuencia del virus VHC que se corresponde con la secuencia SEQ ID No 1 y que codifica las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a de VHC.

Un cultivo de células hospedadoras engloba los procesos de mantener y crecer dichas células hospedadoras. Los cultivos celulares necesitan condiciones controladas de temperatura, pH, porcentajes de gases como el dióxido de carbono y el oxígeno, así como la presencia de los nutrientes adecuados para permitir la viabilidad y la división celular. Los cultivos celulares pueden desarrollarse en sustratos sólidos como el agar o en medio líquido, lo que permite cultivar grandes cantidades de células en suspensión. Los cultivos virales precisan de células hospedadoras que aporten la maquinaria celular y metabólica de la que carecen. Esto permite que el virus pueda no sólo mantenerse sino también multiplicarse por lo que la expresión del polinucleótido de la invención en dicho cultivo celular puede utilizarse para propagar el vector recombinante de la invención.
De esta manera, otro objeto de la invención es la célula que contiene el polinucleótido de la invención MVA-HCV, de ahora en adelante célula hospedadora de la invención.

Una realización particular de la invención se refiere a la célula hospedadora de la invención que contiene el polinucleótido de la invención MVA-HCV, donde la secuencia del virus VHC se corresponde con la secuencia SEQ ID No 1 que codifica las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a del VHC.

Así, otro objeto de la invención se refiere al uso de la célula hospedadora de la invención para reproducir y mantener el virus MVA-HCV y para obtener el vector recombinante de la invención. Preferentemente, la célula hospedadora de la invención es una célula de mamífero, más preferentemente de origen aviar y más preferentemente aún fibroblastos embronarios de pollo.

Una realización particular de la invención se refiere al uso de la célula hospedadora de la invención para reproducir y mantener el virus MVA-HCV y para la obtener el vector recombinante de la invención. Así pues, el vector recombinante de la invención puede transferir la secuencia del VHC a una célula bajo el control transcripcional del promotor viral sintético temprano/tardío del fragmento del virus MVA e inducir su expresión en la misma. La poliproteína viral generada es procesada dando lugar a las proteínas propias del VHC, en particular a la secuencia de las proteínas estructurales, Core, E1, E2 y p7, y no estructurales, NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B, maduras del genotipo 1a del virus VHC. Este vector recombinante puede, por tanto, ser empleado para expresar los genes del VHC en un organismo y de este modo inducir respuestas inmunes frente a las proteínas virales del VHC en aquellos organismos a los que se les administre dicho vector.

Así pues, otro objeto de la invención se refiere también a una composición farmacéutica útil para generar una respuesta inmunológica duradera frente al virus VHC, de aquí en adelante “composición farmacéutica de la invención”, que comprenden el vector de la invención y un vehículo farmacéuticamente aceptable.
Opcionalmente, dicha composición puede comprender otro principio activo y/o adyuvante.

Una realización particular de la invención se refiere a la composición farmacéutica de la invención en la que el vector de la invención contiene la secuencia SEQ ID No 1 que se corresponde con la secuencia de las proteínas estructurales, Core, E1, E2 y p7 y no estructurales, NS2, NS3, NS4A, NS4B, NS5A más los 201 aminoácidos de la región N-terminal de NS5B, maduras del genotipo 1a del virus VHC.

Otro objeto preferente de la invención se refiere al uso de la composición farmacéutica de la invención para generar una respuesta inmunológica duradera y profiláctica para el tratamiento y prevención de la infección por VHC. La generación de esa respuesta protectora se puede conseguir mediante la administración únicamente del vector recombinante de la invención, en una única dosis o en dosis administradas en el tiempo, o como parte de un protocolo de inmunización con vectores diferentes que expresan antígenos del VHC, formando parte los vectores recombinantes de la invención de la dosis inicial que desencadena la respuesta y/o de una o más dosis posteriores destinadas a potenciar la respuesta previamente generada.

Otra realización particular de la invención se refiere al uso de la composición farmacéutica de la invención para generar una respuesta inmunológica duradera y profiláctica para el tratamiento y prevención de la infección por el genotipo 1a del VHC.

En la presente invención, el término “medicamento o composición farmacéutica” hace referencia a cualquier sustancia usada para prevención, alivio, tratamiento o curación de enfermedades en el hombre y/o los animales.

En una realización preferida además, la composición farmacéutica o medicamento de la invención además comprende un vehículo o excipiente farmacéuticamente aceptable. En una realización más preferida, la composición farmacéutica o medicamento de la invención además comprende un adyuvante. En
una realización aún más preferida, la composición farmacéutica o medicamento de la invención además comprende otro principio activo (principio activo adicional).

El término “excipiente” hace referencia a una sustancia que ayuda a la absorción de los elementos de la composición de la invención, estabiliza dichos elementos y activa o ayuda a la preparación de la composición en el sentido de darle consistencia o aportar sabores que la hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos, como por ejemplo es el caso de almidones, azúcares o celulosas, la función de endulzar, la función como colorante, la función de protección de la composición, como por ejemplo, para aislara del aire y/o la humedad, la función de relleno de una pastilla, cápsula o cualquier otra forma de presentación, como por ejemplo, es el caso del fosfato de calcio dibásico, la función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo.

El término “vehículo”, al igual que el excipiente, hace referencia a una sustancia que se emplea en la composición farmacéutica o medicamento para diluir cualquiera de los componentes de la presente invención comprendidos en ella hasta un volumen o peso determinado. El “vehículo farmacológicamente aceptable” es una sustancia inerte o de acción análoga a cualquiera de los elementos de la presente invención. La función del vehículo es facilitar la incorporación de otros elementos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición. Cuando la forma de presentación es líquida, el vehículo farmacológicamente aceptable es el diluyente.

En esta memoria, el término “adyuvante” se refiere a un agente que aumenta la formación de anticuerpos contra un determinado antígeno cuando es suministrado de forma conjunta a éste o bien formando parte de un mismo protocolo de tratamiento.

A lo largo de la descripción y las reivindicaciones, la palabra “comprende” y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y
características de la invención se desprendrán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración y no se pretende que sean limitativos de la presente invención.

5

DESCRIPCIÓN DE LAS FIGURAS

Figura 1.- (A) Esquema de la construcción del plásmido de transferencia pCyA-HCV_{7,9}. El plásmido pCyA-20 fue generado mediante la inserción de una banda sintética que contenía el promotor viral temprano/tardío y un sitio múltiple de clonaje en el plásmido pLZAW1. Esta banda sintética, obtenida mediante la hibridación de dos oligonucleótidos complementarios que contenían dianas para las enzimas de restricción Ascl y Swal, fue digerida con Ascl y Swal e insertada en el plásmido pLZAW1 previamente digerido con las mismas enzimas de restricción para generar el plásmido pCyA-20. Un fragmento de ADN de 7.9 Kpb que contenía las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS2, NS3, NS4A, NS4B, NS5A y la región N-terminal de NS5B) del genotipo 1a de VHC fue escindido con EcoRI del plásmido pHCV1a (cedido por Charles M. Rice, New York) que contenía el genoma completo de VHC. Este fragmento de ADN fue tratado con la ADN polimerasa Klenow para generar extremos romos e insertado en el plásmido pCyA-20 previamente digerido con Pmel y desfosforilado mediante la incubación con fosfatasa alcalina de gamba para generar el plásmido de transferencia pCyA-HCV_{7,9}. (B) Análisis de la estabilidad de las proteínas de VHC expresadas por MVA-HCV. Treinta placas individuales aisladas de células infectadas con MVA-HCV tras 11 pases fueron recidadas en células BHK-21, las células infectadas lisadas y las proteínas separadas en geles para SDS-PAGE al 12% y analizadas por Western-blot utilizando un suero humano positivo para anticuerpos frente a VHC.

Figura 2.- Caracterización in vitro y estabilidad genética del virus recombinante MVA-HCV. (A) Esquema de la organización del genoma de VHC en el locus TK de MVA. (B) Confirmación de la inserción del genoma de VHC mediante análisis por PCR. El ADN viral fue extraído de células BHK-21 infectadas con MVA-WT o MVA-HCV a una multiplicidad de infección de 5 UFP/célula. Los oligonucleótidos TK-L y TK-R que hibridan en las secuencias flanqueantes del locus
TK fueron utilizados para el análisis por PCR del locus TK. En el virus MVA parental se obtiene un fragmento de 873 pb mientras que en el virus recombinante se observa un único producto de 8393 pb. (C) Expresión de las proteínas de VHC mediante análisis por Western-blot. Células BHK-21 fueron no infectadas o infectadas con MVA-WT o MVA-HCV a 5 UFP/célula. A las 24 horas post-infección, las células fueron lisadas en presencia de tampón Laemmli, los extractos celulares fueron separados en geles para SDS-PAGE al 12% y analizados mediante Western-blot utilizando anticuerpos monoclonales de ratón frente a las proteínas Core, E1, E2, NS4A, NS4B y NS5A. (D) Análisis de la estabilidad de MVA-HCV a lo largo de diferentes pases en células BHK-21. La expresión de las proteínas de VHC fue visualizada mediante Western-blot a partir de muestras de células BHK-21 no infectadas o infectadas a 5 UFP/célula con MVA-WT o con los diferentes pases de MVA-HCV (desde P8 hasta P11) utilizando un suero humano positivo para anticuerpos frente a VHC.

Figura 3. (A) Análisis del crecimiento del virus MVA-HCV en células BHK-21. Monocapas de células BHK-21 fueron infectadas con MVA-WT o MVA-HCV a 0.01 UFP/célula. A diferentes tiempos post-infección (0, 24, 48 y 72 horas), las células fueron recogidas y la presencia de virus infecciosos fue determinada mediante inmunotinción de los focos de células infectadas. (B) Cinética de expresión de las proteínas de VHC en células BHK-21 y HepG2. La expresión de las proteínas de VHC a los diferentes tiempos post-infección indicados fue determinada mediante Western-blot a partir de muestras no infectadas o infectadas con MVA-WT o MVA-HCV a 5 UFP/célula utilizando un suero humano positivo para anticuerpos frente a VHC. (C) Formación de estructuras membranosas durante la infección (5 UFP/célula) de células HeLa por MVA-HCV a las 16 h. por microscopía electrónica.

Figura 4. La infección por MVA-HCV bloquea la respuesta inmune innata. Células dendríticas humanas fueron no infectadas o infectadas con MVA-WT o MVA-HCV a 0.3 o 1 UFP/célula durante 6 horas. Los niveles de ARNm de IFN-α, IFIT1, IFIT2, RIG-I, MDA-5 y IP-10 fueron cuantificados mediante RT-PCR. Los niveles de ARNm se expresan como el ratio entre los niveles del gen de interés y los niveles de Hprt. U.A.: unidades arbitrarias. * p<0.05, ** p<0.005, *** p<0.001
para todas las condiciones comparando MVA-HCV con MVA-WT a la misma multiplicidad de infección (MDI).

Figura 5.- Respuesta inmune adaptativa de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación. (A) Magnitud de la respuesta de células T CD8⁺. Las células T CD8 específicas para VHC fueron medidas 10 días después de la última inmunización mediante marcaje intracelular de citocinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD8⁺ que secretan CD107a y/o IFN-γ y/o IL-2 y/o TNF-α frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD8⁺ total en los diferentes grupos de inmunización. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001. El valor p indica respuestas significativamente mayores con respecto a los grupos parentales o entre los grupos de inmunización ADN-HCV/MVA-HCV y MVA-HCV/MVA-HCV. (B) Perfiles de citometría de flujo mostrando la respuesta de células T CD8 específicas frente a las mezclas de péptidos p7+NS2 o NS3. (C) Perfil funcional de la respuesta adaptativa de células T CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. *** p<0.001.

Figura 6.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación. (A) Magnitud de la respuesta de células T CD4⁺ o CD8⁺. Las células T CD4 o CD8 específicas para VHC fueron medidas 53 días después de la última inmunización mediante marcaje intracelular de citocinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los
porcentajes de las células T CD4⁺ o CD8⁺ que secretan IFN-γ y/o IL-2 y/o TNF-α (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-α (CD8) frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD4⁺ o CD8⁺ total en los diferentes grupos de inmunización. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001. El valor p indica respuestas significativamente mayores con respecto a las respuestas de células T CD4⁺ o entre las respuestas de células T CD8⁺ obtenidas en el grupo ADN-HCV/MVA-HCV en comparación con las observadas en el grupo MVA-HCV. (B) Perfil funcional de la respuesta de memoria de células T CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. ** p<0.005; *** p<0.001. (C) Perfil fenotípico de las células T CD8 de memoria específicas para VHC. Los gráficos superiores representan el porcentaje total de células T CD8 específicas para VHC que presentan un fenotipo central de memoria (TCM; CD127⁺CD62L⁺), efector de memoria (TEM; CD127⁺CD62L⁻) o efector (TE; CD127⁺CD62L⁻). Los diagramas inferiores corresponden a gráficos representativos de citometría de flujo mostrando el porcentaje de células T CD8 específicas frente a las mezclas de péptidos de VHC p7+NS2 (izquierda) o NS3 (derecha) con fenotipo central de memoria, efector de memoria o efector. ** p<0.005.

Figura 7.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo y en el hígado de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación. Perfiles de citometría de flujo mostrando la respuesta de células T CD8 específicas frente a las mezclas de péptidos p7+NS2 o NS3 en esplenocitos y células inmunes intrahepáticas.

Figura 8.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el hígado de ratones C57BL/6 inmunizados en protocolos homólogos y heterólogos de vacunación.
(A) Magnitud de la respuesta de células T CD4⁺ o CD8⁺. Las células T CD4 o CD8 específicas para VHC fueron medidas en el hígado 53 días después de la última inmunización mediante marcado intracelular de citocinas multiparamétrico tras la estimulación de las células inmunes intrahepáticas derivadas de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD4⁺ o CD8⁺ que secretan IFN-γ y/o IL-2 y/o TNF-α (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-α (CD8) frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD4⁺ o CD8⁺ total en los diferentes grupos de inmunización. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001. El valor p indica respuestas significativamente mayores con respecto a las respuestas de células T CD4⁺ en los diferentes grupos de inmunización. (B) Perfil funcional de la respuesta de memoria de células T CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. *** p<0.001. (C) Perfil fenotípico de las células T CD8 de memoria específicas para VHC. Los gráficos superiores representan el porcentaje total de células T CD8 específicas para VHC que presentan un fenotipo central de memoria (TCM; CD127⁺CD62L⁺), efector de memoria (TEM; CD127⁺CD62L⁻) o efector (TE; CD127⁻CD62L⁻). Los diagramas inferiores corresponden a gráficos representativos de citometría de flujo mostrando el porcentaje de células T CD8 específicas frente a las mezclas de péptidos de VHC p7+NS2 (izquierda) o NS3 (derecha) con fenotipo central de memoria, efector de memoria o efector. ** p<0.005.

Figura 9.- Respuesta inmune adaptativa de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones transgénicos HLA-A2 en un protocolo heterólogo de vacunación. (A) Magnitud de la respuesta de células T CD4⁺ o CD8⁺. Las células T CD4 o CD8 específicas para VHC fueron medidas 10 días después de la última inmunización mediante marcado intracelular de citocinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de
péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD4⁺ o CD8⁺ que secretan IFN-γ y/o IL-2 y/o TNF-α (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-α (CD8) frente a todas las mezclas de péptidos de VHC. Los diagramas de la derecha representan la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD4⁺ o CD8⁺ total. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001. El valor p indica una respuesta significativamente mayor con respecto a la respuesta de células T CD4⁺. (B) Perfiles de citometría de flujo mostrando la respuesta de células T CD4 o CD8 específicas frente a las mezclas de péptidos E (CD4) o NS3 (CD8). (C) Perfil funcional de la respuesta adaptativa de células T CD4 o CD8 específicas para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD4 o CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. ** p<0.005; *** p<0.001.

Figura 10.- Respuesta inmune de memoria de células T específicas para VHC generada por el virus recombinante MVA-HCV en el bazo de ratones transgénicos HLA-A2 en un protocolo heterólogo de vacunación. (A) Magnitud de la respuesta de células T CD4⁺ o CD8⁺. Las células T CD4 o CD8 específicas para VHC fueron medidas 53 días después de la última inmunización mediante marcaje intracelular de citoquinas multiparamétrico tras la estimulación de los esplenocitos derivados de ratones inmunizados con las diferentes mezclas de péptidos de VHC. El valor total en cada grupo representa la suma de los porcentajes de las células T CD4⁺ o CD8⁺ que secretan IFN-γ y/o IL-2 y/o TNF-α (CD4) o CD107a y/o IFN-γ y/o IL-2 y/o TNF-α (CD8) frente a todas las mezclas de péptidos de VHC. El diagrama de la derecha representa la contribución específica de las distintas mezclas de péptidos de VHC a la respuesta CD8⁺ total. El fondo obtenido en las muestras no estimuladas fue restado en todos los casos. *** p<0.001. El valor p indica una respuesta significativamente mayor con respecto a la respuesta de células T CD4⁺. (B) Perfiles de citometría de flujo mostrando la respuesta de células T CD8 específicas frente a las mezclas de péptidos p7+NS2 o NS3. (C) Perfil funcional de la respuesta de memoria de células T CD8 específicas
para VHC en los diferentes grupos de inmunización. Todas las posibles combinaciones de las respuestas se muestran en el eje x mientras que los porcentajes de las diferentes poblaciones funcionales dentro del total de la población de células T CD8 se representan en el eje y. Las respuestas aparecen agrupadas en base al número de funciones. ** p<0.005; *** p<0.001. (D) Perfil fenotípico de las células T CD8 de memoria específicas para VHC. El gráfico de la izquierda representa el porcentaje total de células T CD8 específicas para VHC que presentan un fenotipo central de memoria (TCM; CD127+CD62L+), efector de memoria (TEM; CD127+CD62L+), o efector (TE; CD127+CD62L+). El diagrama de la derecha muestra un gráfico representativo de citometría de flujo en el que se indica el porcentaje de células T CD8 específicas frente a la mezcla de péptidos de VHC p7+NS2 con fenotipo central de memoria, efector de memoria o efector. * p<0.05.

MODO DE REALIZACIÓN DE LA INVENCIÓN

Ejemplo 1. Generación y caracterización in vitro de un virus MVA recombinante que expresa constitutivamente el genoma casi completo del virus de la hepatitis C (VHC) del genotipo 1a (MVA-HCV).

Pureza, expresión y estabilidad genética de las proteínas de VHC expresadas por el virus recombinante MVA-HCV

Los inventores han generado el virus MVA-HCV, un virus recombinante basado en la cepa atenuada de poxvirus MVA que tiene insertado en el locus TK el mismo fragmento de ADN incluido en el virus vT7-HCV7,9 pero bajo el control transcripcional del promotor viral sintético temprano/tardío. Este promotor dirige, por lo tanto, la expresión constitutiva de las proteínas estructurales y no estructurales de VHC. En la Fig. 1A se muestra un esquema con los diferentes pasos de clonaje llevados a cabo para la construcción del plásmido de transferencia pCyA-HCV7,9 utilizado para la generación del virus MVA-HCV y la organización del genoma de VHC en el locus TK de dicho virus recombinante aparece representada en la Fig. 2A.

La correcta inserción del genoma de VHC en el locus TK de MVA y la pureza del virus recombinante MVA-HCV fue confirmada mediante PCR y
secuenciación. El ADN viral extraído de células BHK-21 infectadas con MVA-HCV fue amplificado utilizando una pareja de oligonucleótidos que híbridan en las regiones flanqueantes del locus TK. El tamaño del producto de PCR esperado se muestra en la Fig. 2A. El ADN extraído de células infectadas con el virus MVA-WT fue utilizado como control. Como puede observarse en la Fig. 2B, el producto de PCR obtenido en las células infectadas con MVA-HCV tiene un tamaño aproximado de 8 kpb, indicando que el genoma de VHC ha sido correctamente insertado en el locus TK del virus MVA y que no existe contaminación con el virus parental en la preparación del virus recombinante MVA-HCV.

El análisis por Western-blot de células BHK-21 infectadas con MVA-HCV confirmó que el genoma de VHC se transcribe eficientemente durante la infección produciendo una poliproteína viral que es correctamente procesada dando lugar a las proteínas maduras estructurales (Core, E1 y E2) y no estructurales (NS4A, NS4B y NS5A) de VHC (Fig. 2C).

Para confirmar que el virus recombinante MVA-HCV puede ser mantenido en células en cultivo sin perder el fragmento de VHC insertado se realizó un análisis de su estabilidad. El virus MVA-HCV fue pasado sucesivamente en células BHK-21 desde el pase 7 (P2 stock) hasta el pase 11 (P8→P11). La expresión de las proteínas de VHC en los diferentes pases fue analizada por Western-blot utilizando un suero humano positivo para anticuerpos frente a VHC. Como se muestra en la Fig. 2D, el virus MVA-HCV expresa eficientemente las proteínas de VHC después de 11 pases. Además, un extracto de células infectadas con el pase 11 de MVA-HCV fue utilizado para una nueva ronda de purificación de placa en células BHK-21 y se analizó la expresión de las proteínas de VHC en treinta placas aisladas de MVA-HCV mediante Western-blot. Como puede observarse en la Fig. 1B, todas las placas (100%) expresan las proteínas de VHC, indicando que el virus recombinante MVA-HCV es genéticamente estable.

Análisis del crecimiento viral y de la cinética de expresión de MVA-HCV

Con el objetivo de establecer si la expresión de las proteínas de VHC afectaba a la replicación viral en células en cultivo, analizamos el crecimiento de los
virus MVA-HCV y MVA-WT en células BHK-21. Como se muestra en la Fig. 3A, la cinética de crecimiento de ambos virus fue similar.

Además, llevamos a cabo una cinética de expresión de las proteínas de VHC expresadas por el virus MVA-HCV en células BHK-21 y en la línea hepática HepG2. El análisis mediante Western-blot utilizando un anticuerpo policlonal humano reveló que la poliproteína de VHC es procesada y detectada a las 2-4 horas post-infección en forma de productos de menor tamaño en ambas líneas celulares (Fig. 3B).

Análisis por microscopía electrónica de células HeLa infectadas por MVA-HCV

A continuación, quisimos determinar mediante microscopía electrónica el efecto de la expresión de la poliproteína de VHC en el contexto de una infección por MVA. Para ello, infectamos células HeLa con el virus MVA-HCV a 5 UFP/célula y a las 16 horas post-infección las células fueron fijadas y procesadas. Como puede observarse en la Fig. 3C, en el citoplasma de las células infectadas por MVA-HCV se aprecian claramente estructuras membranosas en el citoplasma y región perinuclear.

La infección por MVA-HCV bloquea la respuesta inmune innata

Debido a que está ampliamente aceptado que en la infección natural por VHC algunas proteínas virales bloquean la respuesta inmune innata frente al virus, decidimos evaluar el efecto de la expresión de las proteínas de VHC por el virus MVA-HCV en células dendríticas humanas. Como puede observarse en la Fig. 4, mediante PCR a tiempo real de células dendríticas humanas infectadas durante 6 horas, los niveles de expresión de IFN-β, de genes inducidos por IFN-β (IFIT1, IFIT2) y de la quimioquina IP-10 fueron menores que los obtenidos con el virus parental. La expresión de los receptores RLR citósólicos RIG-I y MDA-5 fue también menor en las células infectadas con MVA-HCV en comparación con los niveles observados con el virus parental. Estos resultados indican que, al igual que ocurre en la infección natural, la expresión de las proteínas de VHC desde el virus MVA-HCV bloquea significativamente la respuesta inmune innata.
Ejemplo 2. MVA-HCV administrado en combinación homóloga (MVA-HCV/MVA-HCV) o heteróloga (ADN-HCV/MVA-HCV) induce en ratones de la cepa C57BL/6 una respuesta de células T VHC-específica alta, amplia, polifuncional y de larga duración.

Respuesta inmune adaptativa

Para caracterizar la inmunogenicidad del vector MVA-HCV, evaluamos en ratones de la cepa C57BL/6 la respuesta de células T VHC-específicas inducida usando protocolos de inmunización homólogos (MVA-HCV/MVA-HCV) o heterólogos (ADN-HCV/MVA-HCV).

Para ello, ratones C57BL/6 (4 en cada grupo) fueron inmunizados siguiendo el protocolo descrito más adelante. La respuesta inmune adaptativa se evaluó 10 días después de la última dosis empleando un ensayo de marcaje intracelular de citoquinas multiparamétrico. Los esplenocitos aislados de los animales inmunizados fueron estimulados “ex vivo” durante 6 horas con un panel de 457 péptidos (de 13 a 19-mers solapantes en 11 ó 12 aminoácidos) agrupados en 6 mezclas de péptidos: Core (28 péptidos), E (83 péptidos), p7+NS2 (40 péptidos), NS3 (98 péptidos), NS4 (47 péptidos) y NS5 (161 péptidos) e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a) y células respondedoras (IL-2, IFN-γ y TNF-α). Animales que recibieron una primera dosis con MVA parental (MVA-WT) o ADN vacío (ADN-ϕ) seguido de una segunda dosis con MVA-WT fueron utilizados como controles.

Los porcentajes de células T que producían IFN-γ y/o IL-2 y/o TNF-α determinaron la respuesta total de células T CD4+ mientras que los porcentajes de células T que producían CD107a y/o IFN-γ y/o IL-2 y/o TNF-α determinaron la respuesta total de células T CD8+.

La magnitud de la respuesta de células T CD8+ VHC-específicas, determinada como la suma de las respuestas individuales obtenidas frente a las mezclas de péptidos Core, E, p7+NS2, NS3, NS4 y NS5, fue significativamente mayor en animales inmunizados con los protocolos MVA-HCV/MVA-HCV o ADN-
HCV/MVA-HCV que en sus respectivos grupos controles donde las respuestas antígeno-específicas fueron muy bajas (p<0.005) (Fig. 5A). En ambos grupos la respuesta inmune inducida por la vacunación estuvo mediada por las células CD8 mientras que no se detectó respuesta específica mediada por células CD4 (Fig. 5A).

La respuesta de células T CD8+ VHC-específicas fue significativamente mayor en animales que recibieron ADN-HCV/MVA-HCV en comparación con los que recibieron MVA-HCV/MVA-HCV (p<0.005). En el grupo MVA-HCV/MVA-HCV el 90% de la respuesta de células T CD8+ estuvo dirigida frente a la mezcla de péptidos p7+NS2 mientras que en los animales que recibieron ADN-HCV/MVA-HCV el 97% de la respuesta de células T CD8+ estuvo dirigida frente a la mezcla de péptidos NS3 (Fig. 5A y B).

La calidad de la respuesta de las células T puede ser caracterizada en parte por el patrón de secreción de citocinas y por su potencial citotóxico. Sobre la base del análisis de la secreción de IFN-γ, IL-2 y TNF-α, así como la determinación de la expresión de CD107a sobre la superficie de las células T activadas como un marcador indirecto de citotoxicidad, es posible identificar 16 poblaciones diferentes de células T CD8+ antígeno-específicas (Fig. 5C). Para cada población fue sustraído el valor de fondo detectado en las muestras controles no estimuladas. La respuesta de células T CD8+ VHC-específicas inducida por ambos protocolos de inmunización fue altamente polifuncional, con más de un 60% de las células secretando de forma simultánea dos, tres o cuatro citocinas. La mayor magnitud de la respuesta antígeno-específica obtenida en el grupo ADN-HCV/MVA-HCV en comparación con el grupo MVA-HCV/MVA-HCV fue debida principalmente a un aumento significativo en las frecuencias absolutas de las poblaciones de células T CD8+ que expresaban en superficie CD107a, que coexpresaban CD107a+TNF-α o las triples productoras de CD107a+IL2+TNF-α.

Respuesta inmune de memoria

Un requerimiento importante para la vacunación profiláctica lo constituye la durabilidad de la respuesta de células T inducida por la inmunización. Debido a ello,
decidimos analizar el fenotipo de la respuesta inmune de memoria de células T inducida por MVA-HCV tanto en el bazo como en el hígado de los animales inmunizados 53 días después de la última inmunización mediante el marcapunto intracelular de citocinas multiparamétricas. A este tiempo, los esplenocitos y las células inmunes intrahepáticas (IHIC) aisladas del bazo y del hígado, respectivamente, fueron estimuladas “ex vivo” durante 6 horas con las diferentes mezclas de péptidos de VHC e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a), células respondedoras (IL-2, IFN-γ y TNF-α) y fenotipo de memoria (CD127 y CD62L).

En bazo, la magnitud de la respuesta de células T CD4+ y CD8+ VHC-específicas de memoria fue significativamente mayor en los grupos de animales inmunizados con los protocolos MVA-HCV/MVA-HCV o ADN-HCV/MVA-HCV que en sus respectivos grupos controles, donde las respuestas antígeno-específicas fueron muy bajas o ausentes (p<0.005). Como se observa en la Fig. 6A, la respuesta inmune de memoria inducida por la vacunación en ambos grupos estuvo mediada principalmente por las células CD8. A este tiempo, sólo en el grupo MVA-HCV/MVA-HCV se pudo detectar una respuesta baja de células T CD4+ dirigida de forma similar frente a las mezclas de péptidos que representan las proteínas Core (47%) y E (53%).

La magnitud de la respuesta de memoria de las células T CD8+ fue alta en ambos grupos aunque significativamente superior en el grupo ADN-HCV/MVA-HCV (p<0.005). En los esplenocitos de los animales del grupo MVA-HCV/MVA-HCV, el 91% de la respuesta de células T CD8+ detectada estuvo dirigida frente a la mezcla de péptidos p7+NS2 y el resto de la respuesta se distribuyó frente a las mezclas de péptidos NS3 (7%) y E (2%). En los animales del grupo ADN-HCV/MVA-HCV, la respuesta de células T CD8+ detectada estuvo dirigida fundamentalmente frente a las mezclas de péptidos NS3 (70%) y p7+NS2 (19%) mientras que el resto de la respuesta se distribuyó frente a las combinaciones de NS4 (9%) y E (2%) (Fig. 6A y Fig. 7A).

La respuesta de memoria de células T CD8+ inducida por ambos protocolos fue altamente polifuncional, con más de un 90% de las células secretando de forma
simultánea dos, tres o cuatro citocinas (Fig. 6B). Las poblaciones de células T CD8+ antígeno-específicas activadas tras la inmunización co-producían predominantemente CD107a+IFN-γ+TNF-α o CD107a+IL2+IFN-γ+TNF-α.

Estudios previos han demostrado que los marcadores CD127 y CD62L definen poblaciones funcionalmente distintas de células T de memoria antígeno-específicas (4). Debido a ello, hemos caracterizado las distintas etapas de diferenciación de las células T CD8+ activadas según los niveles de expresión de CD127 y CD62L en poblaciones centrales de memoria (TCM; CD127+CD62L-), efectoras de memoria (TEM; CD127+CD62L-) o efectoras (TE; CD127-CD62L). En los esplenocitos de los animales inmunizados con ambos protocolos (ADN-HCV/MVA-HCV o MVA-HCV/MVA-HCV), el 70% de las células T CD8+ VHC-específicas activadas tenían un fenotipo efector de memoria (TEM) (Fig. 6C).

Como el rendimiento obtenido de células inmunes intrahepáticas (IHIC) a partir de los hígados de los animales inmunizados fue bajo, decidimos analizar la respuesta de memoria de células T inducida por MVA-HCV utilizando únicamente 4 estímulos: p7+NS2, NS3, mix (Core+E+NS4+NS5) y RPMI.

El patrón de la respuesta de memoria de células T fue muy similar al obtenido en bajo. En ambos grupos la respuesta inmune de memoria inducida por la vacunación estuvo mediada principalmente por las células T CD8. Sólo en el grupo ADN-HCV/MVA-HCV se pudo detectar una baja respuesta de células T CD4+ dirigida frente a las mezclas de péptidos que representan las proteínas Core+E+NS4+NS5 (66%) y p7+NS2 (34%).

La magnitud de la respuesta de memoria de células T CD8+ fue alta en ambos grupos y muy similares. Al igual que ocurría en los esplenocitos, la respuesta de células T CD8+ detectada en las células inmunes intrahepáticas procedentes de los animales del grupo MVA-HCV/MVA-HCV estuvo dirigida principalmente frente a la mezcla de péptidos p7+NS2 (97%) mientras que en los animales del grupo ADN-HCV/MVA-HCV la respuesta estuvo dirigida fundamentalmente frente a las mezclas de péptidos que NS3 (72%) y p7+NS2 (24%) (Fig. 8A y Fig. 7B).
En hígado, la respuesta de memoria de células T CD8+ inducida por ambos protocolos fue altamente polifuncional, con más de un 80% de las células secretando de forma simultánea dos, tres o cuatro citocinas (Fig. 8B). La población de células T CD8+ antígeno-específicas activadas tras la inmunización co-producían predominantemente CD107a+IFN-γ+TNF-α y tenían un fenotipo efector de memoria (TEM) (Fig. 8C).

Ejemplo 3. La combinación ADN-HCV/MVA-HCV induce en ratones transgénicos HLA-A2 una respuesta de células T VHC-específicas alta, polifuncional y duradera.

Debido a que el protocolo de inmunización heterólogo ADN-HCV/MVA-HCV indujo una magnitud mayor de la respuesta VHC-específica en ratones C57BL/6 (Ejemplo 2), decidimos evaluar esta misma aproximación en los ratones transgénicos HLA-A2. Estos ratones transgénicos expresan una forma quimérica de la molécula HLA-A2.1 y se ha demostrado con anterioridad que potencian un repertorio de respuestas VHC-específicas similares a las detectadas en la población humana infectada (23).

La respuesta inmune adaptativa se evaluó 10 días después de la última dosis empleando un ensayo de marceaje intracelular de citocinas multiparamétrico. Los esplenocitos aislados de los animales inmunizados fueron estimulados “ex vivo” durante 6 horas con un panel de 457 péptidos (de 13 a 19-mers solapantes en 11 o 12 aminoácidos) agrupados en 6 mezclas de péptidos: Core (28 péptidos), E (83 péptidos), p7+NS2 (40 péptidos), NS3 (98 péptidos), NS4 (47 péptidos) y NS5 (161 péptidos) e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a) y células respondedoras (IL-2, IFN-γ y TNF-α). Animales que recibieron una primera dosis con ADN vacío (ADN-ϕ) seguido de una segunda dosis con MVA-WT fueron utilizados como controles.

Del mismo modo que se observó en los ratones de la cepa C57BL/6, la respuesta inmune inducida por la vacunación en los esplenocitos de los ratones transgénicos estuvo mediada por las células T CD8 (Fig. 9A).
La respuesta de células T CD4⁺ detectada tenía una magnitud baja aunque dirigida frente a múltiples combinaciones de péptidos que representaban las diferentes proteínas virales, siendo las mezclas de péptidos E (80%) y Core (11%) las más reconocidas. Por su parte, la respuesta de células T CD8⁺ detectada tenía una magnitud alta y estaba dirigida fundamentalmente frente a las mezclas de péptidos NS3 (75%) y p7+NS2 (19%) (Fig. 9A y B). Ambas respuestas (CD4 y CD8) fueron altamente polifuncionales con más del 50% de las células secretando de forma simultánea dos, tres o cuatro citoquinas (Fig. 9C). Las células T CD4⁺ activadas co-producían mayoritariamente IL2+IFN-γ+TNF-α mientras que las células T CD8⁺ tenían un perfil citotóxico potenciado representado por una alta frecuencia de células activadas que expresaban CD107a en su superficie.

La respuesta inmune de memoria fue evaluada 53 días después de la última inmunización empleando un ensayo de marco intracelular de citoquinas multiparamétrico. A este tiempo, los esplenocitos aislados del bazo de los animales inmunizados fueron estimulados “ex vivo” durante 6 horas con las diferentes combinaciones de péptidos de VHC e incubados con anticuerpos específicos para identificar linaje de células T (CD3, CD4 y CD8), degranulación (CD107a), células respondedoras (IL-2, IFN-γ y TNF-α) y fenotipo de memoria (CD127 y CD62L).

La respuesta inmune de memoria inducida por la vacunación estuvo mediada exclusivamente por las células T CD8 y estuvo dirigida fundamentalmente frente a las combinaciones de péptidos p7+NS2 (72%) y NS3 (28%) (Fig. 10A y B). Al igual que ocurría durante la fase adaptativa, la respuesta de células T CD8⁺ VHC-específicas de memoria fue altamente polifuncional, con frecuencias elevadas de células que expresaban simultáneamente CD107a+IL2+IFN-γ+TNF-α (Fig. 10C) y con fenotipos efector de memoria (TEM, 54%) o central de memoria (TCM, 34%) (Fig. 10D).

Materiales y Métodos

Requerimientos éticos
Los estudios con animales fueron aprobados por el Comité Ético de Experimentación Animal (CEEA-CNB) del Centro Nacional de Biotecnología (CNB-CSIC, Madrid) de acuerdo con las normativas nacionales e interARNcionales y con el Real Decreto (RD 1201/2005) (Número de permiso: 11048).

Células y virus

Las líneas celulares BHK-21 (línea fibroblastoide de riñón de hámster dorado, ATCC, Cat. No. CCL-10) y DF-1 (línea de fibroblastos embrionarios de pollo inmortalizados, ATCC, Cat. No. CRL-12203) se cultivaron en medio esencial mínimo de Eagle modificado por Dulbecco (DMEM) (Gibco BRL) suplementado con penicilina (100 U/ml; Sigma), estreptomicina (100 μg/ml; Sigma), fungizona (0,5 U/ml; Gibco), glutamina (2 mM; Merck) y aminoácidos no esenciales (Sigma) (DMEM completo) y 10% (v/v) de suero fetal de ternera (FCS; Sigma). Las células de carcinoma hepatocelular humano HepG2 (ATCC, Cat. No. HB-8065) se cultivaron en medio DMEM completo suplementado con 20 mM del tampón N-2-hydroxietilpiperacina-N’-2-ácido etanosulfónico, pH 7.4 (HEPES) y 10% (v/v) de FCS). Las células dendríticas derivadas de monocitos humanos (moDCs) se obtuvieron a partir de linfocitos de sangre periférica (PBMC) previamente obtenidos mediante separación por gradiente de Ficoll (GE Healthcare) a partir de la capa leucoplaquetaria (buffy coat) de un donante de sangre sano reclutado por el Centro de Transfusión de la Comunidad de Madrid. Los monocitos CD14+ se purificaron por depleción empleando el kit Dynabeads® Untouched™ human monocyte (Invitrogen) siguiendo las indicaciones del fabricante. Los monocitos obtenidos se cultivaron durante 7 días en placas de cultivos de 6 pocillos (3 × 10⁶ células/pocillo a 1 × 10⁶ células/ml) en medio RPMI 1640 completo suplementado con 50 ng/ml de GM-CSF, 20 ng/ml de IL-4 (ambos de Gibco-Life Technologies) y 10% (v/v) de FCS. Todas las líneas celulares se mantuvieron en un incubador a una temperatura de 37°C (o 39°C para las células DF-1) y un porcentaje de CO₂ del 5%.

Las infecciones virales se realizaron en los medios respectivos suplementados con 2% (v/v) de FCS.
Para la generación del virus recombinante MVA-HCV se empleó como virus parental la cepa atenuada MVA (Antoine, Scheifflinger et al. 1998) obtenida a partir de la cepa Ankara tras 586 pases seriados en fibroblastos de embrión de pollo (derivado del clon F6 de pase 585 y cedido por el Dr. G. Sutter del Instituto de Virología Molecular de Munich, Alemania). Ambos virus fueron crecidos en células BHK-21, purificados a través de dos colchones de sacarosa al 36% (p/v) y titulados por inmunotinción según la metodología descrita previamente (39). La titulación se realizó al menos tres veces.

Construcción del plásmido de transferencia pCyA-HCV\textsubscript{7,9}

El plásmido de transferencia pCyA-HCV\textsubscript{7,9} fue construido para la generación del virus recombinante MVA-HCV que expresa las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS3, NS4A, NS4B, NS5A y los 201 aminoácidos de la región N-terminal de NS5B) del aislado H77 del virus VHC perteneciente al genotipo 1a. El plásmido pCyA-HCV\textsubscript{7,9} deriva del plásmido pUC, diseñado para la selección de placas azules/ blancas. Contiene las secuencias flanqueantes derecha (TK-R) e izquierda (TK-L) del gen viral de la timidina quinasa (TK), el promotor de E3L dirigiendo la expresión del marcador de selección β-galactosidasa (β-Gal) y el gen de resistencia a ampicilina (AP). Entre las dos secuencias flanqueantes se encuentra el promotor sintético temprano/tardío (pE/L) dirigiendo la expresión de los genes de VHC. La posición de cada uno de los componentes incluidos en el plásmido se describe a continuación en la Tabla 1 y su secuencia aparece detallada en el SEQ ID No 2.

Tabla 1.- Componentes del plásmido pCyA-HCV\textsubscript{7,9}

<table>
<thead>
<tr>
<th>Componente</th>
<th>Posición</th>
<th>Hebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanco TK-izquierdo (TK-L)</td>
<td>410-908</td>
<td>complementario</td>
</tr>
<tr>
<td>Señal T5NT para β-gal</td>
<td>929-935</td>
<td>complementario</td>
</tr>
<tr>
<td>β-gal</td>
<td>ATG-TAA (936-4079)</td>
<td>complementario</td>
</tr>
<tr>
<td>Promotor E3L</td>
<td>4080-4140</td>
<td>complementario</td>
</tr>
<tr>
<td>Repetición de flanco TK-izquierdo (TK-L)</td>
<td>4151-4498</td>
<td>complementario</td>
</tr>
</tbody>
</table>
Para la construcción de este plásmido se utilizaron los siguientes plásmidos:

- pLZAW1: Este plásmido fue cedido por Linong Zhang, del grupo Aventis, Canadá. Es un plásmido derivado del pUC que contiene un brazo izquierdo del gen TK, un sitio múltiple de clonaje para la inserción de genes exógenos, una repetición corta del brazo izquierdo del gen TK, el promotor E3L dirigiendo la expresión del gen β-gal, un brazo derecho del gen TK y el gen de resistencia a ampicilina.

- pCyA-20: Fue construido por los inventores a partir del plásmido pLZAW1 como se representa en la Figura 1A. Para ello se generó una banda de ADN sintética de 88 pb que contenía la secuencia del promotor sintético temprano/tardío seguido de un sitio múltiple de clonaje y en cada extremo contenía dianas de restricción para las enzimas Ascl (extremo 5’) y Swal (extremo 3’). Tanto la banda sintética como el vector pLZAW1 fueron digeridos con las enzimas Ascl y Swal, procediéndose posteriormente a su ligación mediante el empleo de la enzima T4 ADN ligasa, generándose finalmente el vector de transferencia pCyA-20.

Contiene el genoma completo que codifica para las proteínas estructurales (Core, E1, E2 y p7) y no estructurales (NS3, NS4A, NS4B, NS5A y NS5B) del aislado H77 del virus VHC pertenecientes al genotipo 1a con SEQ ID No 1.

La construcción del plásmido pCyA-HCV₇.₉ a partir de los plásmidos previamente descritos se representa en la Figura 1A. Brevemente, el fragmento de ADN que contiene 7.9 Kpb de la pauta de lectura abierta (ORF) del genoma del virus VHC perteneciente al genotipo 1a fue escindido mediante digestión con la enzima EcoRI del plásmido pHCV1b, tratado con la ADN polimerasa Klenow para
generar extremos romos e insertado en el vector pCyA-20 previamente digerido con
la endonucleasa de restricción Pmel y desfosforilado por incubación con la enzima
fosfatasa alcalina, generándose de esta forma el plásmido de transferencia pCyA-
HCV₇,₉. El plásmido generado dirige la inserción de los genes de interés en el locus
TK del genoma del virus atenuado MVA.

Construcción del virus recombinante MVA-HCV

Células BHK-21 (3 x 10⁶) fueron infectadas con el virus atenuado MVA-WT a
una multiplicidad de infección de 0.05 UFP/célula y posteriormente transfectadas
con 10 μg del plásmido pCyA-HCV₇,₉ utilizando lipofectamina (Invitrogen) como
agente transfectante y siguiendo las instrucciones del fabricante. A las 72 horas
post-infección, las células fueron recogidas, congeladas/descongeladas, sonicadas
y utilizadas para la selección de los virus recombinantes. Los MVA recombinantes
que contenían los genes de VHC y que expresaban de forma transitoria el gen
marcador β-gal (MVA-HCV (X-Gal⁺)) fueron seleccionados durante pases
consecutivos de purificación de placas en células BHK-21 teñidas con 5-bromo-4-
cloro-3-indolil-β-galactósido (X-Gal) (300 μg/ml). Los MVA recombinantes que
contenían los genes de VHC y que habían perdido el gen marcador (MVA-HCV (X-
Gal⁺)) fueron seleccionados como focos virales no teñidos en células BHK-21 en
presencia de X-Gal. En cada pase de purificación las placas aisladas fueron
expandidas en BHK-21 durante 3 días y el extracto viral crudo obtenido era utilizado
para el siguiente paso de purificación de placas.

Tras 7 pases consecutivos de purificación se aislaron 12 placas
recombinantes que expresaban eficientemente las proteínas de VHC y que habían
perdido el gen marcador. La placa designada como MVA-HCV-1.6.1.1.9.3.2 (stock
P1) fue crecida para generar una preparación viral cruda (stock P2: 9.8 x 10⁸
UFP/ml) a partir de la cual se preparó un stock P3 de virus purificado a partir de
células BHK-21 infectadas a una multiplicidad de infección de 0.05 UFP/célula a
através de dos colchones de sacarosa al 36%. Este stock P3, con un título de 4.75 x
10⁹ UFP/ml, fue el que se utilizó en los diferentes protocolos de inmunización.
La secuencia del inserto localizada en el locus de la timidina quinasa de este recombinante aparece detallada en la SEQ ID No 3. La localización de los diferentes elementos que componen el inserto se indica a continuación en la Tabla 2.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Posición</th>
<th>Hebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanco TK-izquierdo (TK-L)</td>
<td>1-499</td>
<td>complementario</td>
</tr>
<tr>
<td>Promotor sintético E/L</td>
<td>516-555</td>
<td></td>
</tr>
<tr>
<td>Región codificante VHC 7.9</td>
<td>ATG-TGA (579-8471)</td>
<td></td>
</tr>
<tr>
<td>Señal T5NT</td>
<td>8481-8487</td>
<td></td>
</tr>
<tr>
<td>Flanco TK-derecho (TK-R)</td>
<td>8505-9240</td>
<td>complementario</td>
</tr>
</tbody>
</table>

Análisis por PCR del virus recombinante MVA-HCV

Para confirmar la homogeneidad genética del virus MVA-HCV generado y la integridad de los genes insertados se realizó un análisis por PCR del ADN viral extraído de células BHK-21 infectadas a una multiplicidad de 5 UFP/célula, empleando para ello oligonucleótidos que hibridan en las regiones TK flanqueantes del inserto. La secuencia de los oligonucleótidos utilizados como cebadores y la posición donde hibridan en el locus TK del virus MVA-HCV$_{7.9}$ se detallan en la Tabla 3 y el tamaño estimado del fragmento de PCR generado se muestra en la Figura 2A.

Tabla 3.- Oligonucleótidos utilizados para la caracterización del virus MVA-HCV mediante PCR

<table>
<thead>
<tr>
<th>Oligonucleótido</th>
<th>Secuencia</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK-L</td>
<td>5’-TGATTAGTTTGATGGCGATTC-3’</td>
<td>339-358</td>
</tr>
<tr>
<td>TK-R</td>
<td>5’-TGTCCTTGATACCGGCAG-3’</td>
<td>8716-8732</td>
</tr>
</tbody>
</table>

Para el análisis por PCR, 100 ng de ADN viral extraído de células BHK-21 infectadas a una multiplicidad de 5 UFP/célula con los virus MVA-HCV (stock P3) o MVA-WT fueron utilizados como molde empleando como cebadores 100 ng de los
oligonucleótidos TK-L y TK-R, que híbridan en las secuencias flanqueantes del gen TK, en una mezcla de reacción que contenía 0.3 mM de dNTPs, 2 mM de MgCl₂ y 2.5 U de la enzima polimerasa Platinum Taq (Invitrogen). El programa incluye un ciclo inicial de desnaturización a 95°C durante 7 minutos; 30 ciclos de desnaturización a 95°C durante 1 minuto, hibridación a 62°C durante 30 segundos y extensión a 72°C durante 4 minutos y una extensión final a 72°C durante 7 minutos. Los productos de PCR fueron analizados en un gel de agarosa al 0.7%.

Expresión de las proteínas de VHC a partir del MVA-HCV

Para determinar la correcta expresión de las proteínas de VHC a partir del virus MVA-HCV, monocapas de células BHK-21 fueron infectadas con MVA-HCV o MVA-WT a 5 UFP/célula. A las 24 horas post-infección, las células fueron lisadas en tampón Laemmli y los extractos celulares fraccionados en geles desnaturizantes de poliacrilamida (SDS-PAGE) al 12%, transferidos a membranas de nitrocelulosa y analizados por Western-blot utilizando anticuerpos policlonales frente a Core (cedido por el Dr. Ilkka Julkunen, Instituto de Salud Público Nacional de Finlandia, diluido 1:1000), anticuerpos monoclonales frente a E1 (Acris Antibodies, diluido 1:1000), E2 (GenWay Biotech, diluido 1:500), NS4A, NS4B y NS5A (todos de GenWay Biotech, diluidos 1:1000). Los anticuerpos policlonales generados en cabra frente a IgG total de conejo o ratón conjugados con peroxidasa (SIGMA) se emplearon como anticuerpos secundarios. La detección de las bandas de proteína reconocidas por los anticuerpos específicos se efectuó mediante el sistema Luminol ECL® (GE Healthcare) exponiendo una película autoradiográfica X-OMAT (Kodak).

Estabilidad genética del virus recombinante MVA-HCV

Para verificar que el virus recombinante MVA-HCV podía ser pasado sucesivamente sin perder la expresión de los genes insertados, se realizó un ensayo de estabilidad efectuando varios pases sucesivos del virus recombinante MVA-HCV en células BHK-21. Monocapas de células BHK-21 crecidas en placas P100 fueron infectadas de forma sucesiva a una multiplicidad de 0.01 UFP/célula, partiendo del stock P2 del MVA-HCV (pase 7) hasta el pase 11 (P11). Los extractos
de células BHK-21 infectadas con los pases 8, 9, 10 y 11 fueron analizados por Western-blot. Para realizar estos ensayos, monocapas de células BHK-21 crecidas en placas de 12 pocillos fueron infectadas con 5 UFP/célula de los diferentes extractos virales obtenidos en los pases 8, 9, 10 y 11 (P8→P11) del virus recombinante MVA-HCV. Los extractos fueron recogidos a las 24 horas post-infección, fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa y analizados por Western-blot empleando un suero policlonal humano anti-VHC (cedido por el Dr. Rafael Fernández del Hospital Ramón y Cajal, Madrid, diluido 1:500). Un anticuerpo policlonal generado en cabra frente a IgG total humana conjugado con peroxidasas (SIGMA) fue utilizado como anticuerpo secundario. La detección de las bandas de proteína reconocidas por los anticuerpos específicos se efectuó mediante el sistema Luminol ECL® (GE Healthcare) exponiendo una película autoradiográfica X-OMAT (Kodak).

La estabilidad del recombinante MVA-HCV también se evaluó mediante el análisis de placas individuales. Monocapas de células BHK-21 crecidas en placas de 6 pocillos fueron infectadas con diluciones seriadas del lisado de células obtenidas en el pase 11. A las 48 horas post-infección, las células se tiñeron con rojo neutro al 0.01% (SIGMA) y se picaron 30 placas de lisis individuales que fueron resuspendidas en 0.5 ml de DMEM completo, congeladas/descongeladas 3 veces, sonicadas y utilizadas (0.2 ml) para la infección de nuevas células BHK-21 crecidas en placas de 12 pocillos. A las 72 horas post-infección, las células fueron lisadas en tampón Laemmli y los extractos celulares fraccionados en geles desnaturalizantes de poliacrilamida (SDS-PAGE) al 12%, transferidos a membranas de nitrocelulosa y analizados por Western-blot empleando un suero policlonal humano anti-VHC (cedido por el Dr. Rafael Fernández del Hospital Ramón y Cajal, Madrid, diluido 1:500). Un anticuerpo policlonal generado en cabra frente a IgG total humana conjugado con peroxidasas (SIGMA) fue empleado como anticuerpo secundario (diluido 1:1000). La detección de las bandas de proteína reconocidas por los anticuerpos correspondientes se efectuó mediante el sistema Luminol ECL® (GE Healthcare) exponiendo una película autoradiográfica X-OMAT (Kodak).
Análisis del crecimiento viral

Para analizar el perfil de crecimiento de MVA-HCV, monocapas de células BHK-21 crecidas en placas de 12 pocillos fueron infectadas a una multiplicidad de 0.01 UFP/célula con MVA-WT o MVA-HCV. Tras una adsorción de 60 min. a 37°C, se retiró el inóculo y las células se incubaron a 37°C y en atmósfera de 5% CO₂ con medio DMEM fresco enriquecido con FCS al 2%. A distintos tiempos post-infección (0, 24, 48 y 72 horas), se recogieron las células por raspado y se sometieron a tres ciclos de congelación/descongelación y sonicación. El título viral en los diferentes lisados celulares se determinó mediante inmunotinción en células DF-1 empleando el anticuerpo policlonal anti-vaccinia (Centro Nacional de Biotecnología; diluido 1:1000) seguido de un conjugado anti-IgG de conejo-peroxidasa (SIGMA; diluido 1:1000).

Cinética de expresión de las proteínas de HCV a partir del MVA-HCV

Para definir la cinética de expresión de las proteínas de VHC, monocapas de células BHK-21 o HepG2 crecidas en placas de 12 pocillos fueron infectadas a 5 UFP/célula con MVA-HCV o MVA-WT. A diferentes tiempos post-infección, las células fueron recogidas y los precipitados celulares fraccionados en geles desnaturizantes de poliacrilamida (SDS-PAGE), transferidos a membranas de nitrocelulosa y analizados por Western-blot empleando un suero policlonal humano anti-VHC (cedido por el Dr. Rafael Fernández del Hospital Ramón y Cajal, Madrid, diluido 1:500). Un anticuerpo policlonal generado en cabra frente a IgG total humana conjugado con peroxidasa (SIGMA) fue empleado como anticuerpo secundario (dilución 1:1000). La detección de las bandas de proteína reconocidas por los anticuerpos correspondientes se efectuó mediante el sistema *Luminol ECL*® (GE Healthcare) exponiendo una película autoradiográfica X-OMAT (Kodak).

Análisis por microscopía electrónica de células HeLa infectadas por MVA-HCV

Se infectaron células HeLa crecidas a confluencia completa con el virus MVA-HCV a una multiplicidad de infección de 5 UFP/célula. A las 16 horas post-infección, se retiró el medio de cultivo y las células fueron fijadas durante 2 h. a
temperatura ambiente en una solución de fijación que contenía glutaraldehído al 2% y ácido tánico al 1% en tampón HEPES. Transcurrido el tiempo de fijación, las células se recogieron en presencia del fijador, se centrífugaron y el pellet se resuspendió en 1ml de tampón HEPES y se procesó mediante una inclusión convencional de células para microscopía electrónica en la epoxi-resina EML-812 (Taab Laboratories, Adermaston, Berkshire, UK). A continuación, el pellet fue cortado con un ultra-microtomo en forma de secciones ultrafinas de 70 nm de grosor que se recogieron en rejillas de cobre. Los cortes de células infectadas con el virus MVA-HCV fueron analizadas en un microscopio electrónico de transmisión modelo JEOL 1011.

Análisis de la expresión de ARN por RT-PCR cuantitativa

El ARN total fue aislado utilizando el RNeasy Mini kit (Qiagen) a partir de células dendríticas derivadas de monocitos humanos infectadas a 0.3 o 1 UFP/célula con MVA-HCV o MVA-WT durante 6 horas. La reverso-transcripción de 500 ng de ARN total se realizó empleando el kit QuantiTect Reverse Transcription (Qiagen). La PCR cuantitativa se llevó a cabo empleando el sistema 7500 Real-Time PCR (Applied Biosystems) y la mezcla maestra de PCR Power SYBR Green (Applied Biosystems) como se describió previamente (8). Los niveles de expresión de los ARNs de los genes IFN-β, IFIT1, IFIT2, RIG-I, MDA-5, IP-10 y Hprt se determinaron por RT-PCR empleando oligonucleótidos específicos. La expresión de cada uno de los genes fue referida relativa a la expresión del gen Hprt en unidades arbitrarias (U.A.). Las muestras fueron ensayadas en duplicado y se realizaron dos experimentos diferentes.

Vectores de ADN

Los ADN plasmídicos pcADN-Core, pcADN-E1, pcADN-E2 y pcADN-NS3 que codifican las proteínas virales Core, E1, E2 y NS3 del aislado H77, genotipo 1a, fueron cedidos por el Dr. Ilkka Julkunen (Instituto de Salud Público Nacional de Finlandia). Los ADNs fueron purificados empleando el kit Mega-Prep Endo-Free (Qiagen) resuspendiéndose en agua bidestilada libre de pirógenos.
Péptidos

Para la evaluación de la respuesta inmune generada por MVA-HCV se emplearon mezclas de péptidos obtenidas a través de BEI Resources, NIAID, NIH, que representaban las proteínas virales Core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A y NS5B del aislado J4 (genotipo 1b; GenPept: AAC15722). Los péptidos, que tenían entre 13 y 19 mers, solapaban en 11 ó 12 aminoácidos y fueron agrupados formando combinaciones que contenían de 28 a 53 péptidos según el caso. La proteína del Core estaba representada por la mezcla de péptidos denominada Core (28 péptidos). La combinación de péptidos denominada E representaba a las proteínas E1 (28 péptidos) y E2 (55 péptidos). Las proteínas p7 y NS2 estaban representadas por la mezcla de péptidos denominada p7+NS2 (40 péptidos). La combinación de péptidos denominada NS3 representaba a la proteína NS3 y estaba constituida por la mezcla NS3-1 (49 péptidos) y NS3-2 (49 péptidos). La mezcla de péptidos denominada NS4 representaba a las proteínas NS4A y NS4B (47 péptidos). Las proteínas NS5A y NS5B estaban representadas en la combinación de péptidos denominada NS5 y estaba formada por la mezcla NS5-1 (55 péptidos), NS5-2 (53 péptidos) y NS5-3 (53 péptidos). El aislado J4 del genotipo 1b comparte un 85.7% de homología con el aislado H77 del genotipo 1a.

Esquema de inmunización en ratones de la cepa C57BL/6

Los ratones de la cepa C57BL/6 fueron obtenidos de los laboratorios Jackson y tenían entre 6 y 8 semanas de edad cuando se comenzó el procedimiento. En el protocolo homólogo de inmunización grupos de 8 animales fueron inoculados con una dosis de 10^7 UFP/ratón de MVA-WT o MVA-HCV por ruta intraperitoneal (i.p.). Dos semanas después recibieron la misma dosis de los respectivos virus. En el protocolo heterólogo de inmunización, grupos de 8 animales fueron inoculados con una dosis de 200 µg de ADN-HCV (50 µg de pcADN-Core + 50 µg de pcADN-E1 + 50 µg de pcADN-E2 + 50 µg de pcADN-NS3) o 200 µg de ADN vacío (200 µg de pcADN) por ruta intramuscular (i.m.). Dos semanas después los animales fueron inoculados con una dosis de 10^7 UFP/ratón de MVA-HCV o MVA-WT por ruta intraperitoneal. Los animales fueron sacrificados 10 días después de la segunda dosis (día 25) para caracterizar la respuesta inmune adaptativa o 53
días después de la segunda dosis (día 67) para analizar la respuesta inmune de memoria.

Esquema de inmunización en ratones transgénicos HLA-A2

Los ratones de la cepa C57BL/6-Tg(HLA-A2.1)1Enge/J fueron obtenidos de los laboratorios Jackson y tenían entre 6 y 8 semanas de edad cuando se comenzó el procedimiento. Este modelo de ratón, transgénico para Tg(HLA-A2.1)1Enge, expresa cantidades significativas del antígeno de MHC clase I humano HLA-A2.1 en células de bazo, médula ósea y timo. Grupos de 8 animales fueron inoculados con una dosis de 200 μg de ADN-HCV (50 μg de pcADN-Core + 50 μg de pcADN-E1 + 50 μg de pcADN-E2 + 50 μg de pcADN-NS3) o 200 μg de ADN vacío (200 μg de pcADN) por ruta intramuscular (i.m.). Dos semanas después los animales fueron inoculados con una dosis de 10⁷ UFP/ratón de MVA-HCV o MVA-WT por ruta intraperitoneal (i.p.). Los animales fueron sacrificados 10 días después de la segunda dosis (día 25) para caracterizar la respuesta inmune adaptativa o 53 días después de la segunda dosis (día 67) para analizar la respuesta inmune de memoria.

Marcaje intracelular de citocinas multiparamétrico

Para determinar la magnitud, polifuncionalidad y fenotipo de la respuesta de células T antígeno-específicas se empleó un ensayo de marcaje intracelular multiparamétrico. Después de ser aislados, tanto los esplenocitos como las células inmunes intrahepáticas se dejaron en reposo durante toda la noche en medio RPMI 1640 completo suplementado con 10% de FCS. Al día siguiente, se sembraron en una placa de 96 pocillos de fondo cónico (4 x 10⁶ células/condición) y se estimularon durante 6 horas empleando una mezcla de RPMI 1640 completo suplementado con 10% de FCS que contenía 1 μl/ml del reactivo GolgiPlug (BD Biosciences), monesina, anti-CD107a-Alexa 488 (BD Biosciences) y 1 μg/ml de las diferentes mezclas de péptidos de VHC. Al final del período de estimulación, las células fueron lavadas, incubadas con los diferentes anticuerpos para moléculas de superficie, fijadas y permeabilizadas empleando el kit Cytofix/Cytoperm (BD Biosciences) e incubadas con los diferentes anticuerpos específicos para moléculas
intracelulares. Las células muertas fueron excluidas utilizando el kit *Violet LIVE/DEAD stain* (Invitrogen). Para determinar linaje celular y expresión de citoquinas se emplearon los siguientes anticuerpos conjugados: CD3-PE-CF594, CD4-APC-Cy7 o -Alexa 700, CD8-V500, IFN-γ-PE-Cy7 o -PerCP-Cy5.5, IL-2-APC y TNF-α-PE (todos de BD Biosciences). Para el análisis del fenotipo de la respuesta de memoria se incluyeron los siguientes anticuerpos conjugados: CD62L-Alexa 700 o -APC (BD Biosciences) y CD127-PerCP-Cy5.5 (eBioscience). Las células se adquirieron utilizando un citómetro de flujo GALLIOS (Beckman Coulter). El análisis de los datos se realizó con el programa FlowJo version 8.5.3 (Tree Star, Ashland, OR).

Análisis estadístico

Para el análisis estadístico de los datos de citometría utilizamos una aproximación descrita con anterioridad que corrige la respuesta obtenida en el grupo control de estimulación (RPMI) y al mismo tiempo permite el cálculo de intervalos de confianza y p valores de las distintas hipótesis (14, 34). Sólo aparecen representados valores significativamente mayores que el control RPMI. Los valores de fondo para las diferentes citoquinas intracelulares en los controles no estimulados nunca excedió el 0.05%. El análisis y presentación de la distribución de las diferentes subpoblaciones funcionales se realizó utilizando el programa SPICE version 5.1, descargado desde http://exon.niaid.nih.gov (Roederer, Nozzi et al. 2011). Se consideraron significativos valores de p menores de 0,05: * $p<0,05$; ** $p<0,01$; *** $p<0,005$.

Bibliografía

decreases viral load in patients with chronic hepatitis C." Gastroenterology 141(3): 890-899 e891-894.

REIVINDICATIONES

1.- Un polinucleótido caracterizado por que comprende:
 i. una secuencia de nucleótidos correspondiente al virus MVA que
 actúa como vector de expresión de los genes de VHC regulando la
 transcripción, traducción y procesamiento post-traduccional de
 dichos genes de VHC en la mayoría de tejidos del organismo, y
 ii. una secuencia de nucleótidos correspondiente al genoma del VHC,
 insertada en el locus timidín quinasa (TK) del genoma de MVA; y
 donde la secuencia de MVA que regula la expresión (i) está operativamente ligada
 a la secuencia de nucleótidos de VHC (ii).

2.- Un polinucleótido según la reivindicación 1 caracterizado porque la secuencia
 del virus VHC ii) se corresponde con la SEQ ID No 1.

3.- Un procedimiento de obtención del polinucleótido según las reivindicaciones 1 y
 2 caracterizado por que comprende de forma general las siguientes etapas:
 a. Generar el plásmido de transferencia pCyA-HCV,
 b. Construir el virus recombinante MVA-HCV, y
 c. Seleccionar los virus MVA-HCV estables mediante pases sucesivos
 en cultivos celulares.

4.- Un procedimiento de obtención del polinucleótido según la reivindicación 3,
 caracterizado por que el plásmido de transferencia de a) es el plásmido pCyA-
 HCV$_{7,9}$ cuya secuencia se corresponde con la SEQ ID No 2 y el virus recombinante
 MVA-HCV de b) es el virus recombinante MVA-HCV genotipo 1a que contiene la
 SEQ ID No 1.

5.- Plásmido pCyA-HCV$_{7,9}$ útil para la obtención de variantes del polinucleótido de la
 invención según la reivindicación 4 caracterizado por que su secuencia se
 corresponde con la SEQ ID No 2.

6.- Un vector recombinante MVA-HCV, caracterizado por que comprende el
 polinucleótido según las reivindicaciones 1 y 2.
7. Célula hospedadora caracterizada por que contiene el polinucleótido de la invención según las reivindicaciones 1 y 2.

8.- Célula hospedadora según la reivindicación 7 caracterizada por ser una célula perteneciente al siguiente grupo: célula de mamífero, célula de origen aviar.

9.- Célula hospedadora según la reivindicación 10 caracterizada por que la célula de origen aviar consiste en un fibroblasto embrionario de pollo.

10. Uso de la célula hospedadora para obtener el vector recombinante según la reivindicación 6.

11.- Composición farmacéutica caracterizada por que comprende el vector recombinante según la reivindicación 6.

12.- Composición farmacéutica según la reivindicación 11 caracterizada por que comprende un vehículo o excipiente farmacéuticamente aceptable.

13.- Composición farmacéutica según las reivindicaciones 11 y 12 caracterizada por comprender un adyuvante.

14.- Composición farmacéutica según las reivindicaciones 11 a 13 caracterizada por comprender otro principio activo.

15. Uso del vector recombinante según la reivindicación 5 o de la composición farmacéutica según cualquiera de las reivindicaciones 11 a 14 para la elaboración de un medicamento.

16. Uso del vector recombinante según la reivindicación 5 o de la composición farmacéutica según cualquiera de las reivindicaciones 11 a 14 para la elaboración de un medicamento para la prevención y/o tratamiento de una infección por el VHC.

17. Uso según cualquiera de las reivindicaciones 15 o 16 donde el medicamento es una vacuna.
Figura 1 (cont)

α-VHC humano

α-VHC-humano
Figura 2 (cont.)

C

1 2 3
 15 25 75
Core E1 E2 NS4A NS4B NS5A
(22 KDa) (35 KDa) (76 KDa) (8 KDa) (27 KDa) (58 KDa)

1: Mock; 2: MVA-WT; 3: MVA-HCV

D

<table>
<thead>
<tr>
<th>KDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
</tr>
<tr>
<td>198</td>
</tr>
<tr>
<td>175</td>
</tr>
<tr>
<td>155</td>
</tr>
<tr>
<td>137</td>
</tr>
<tr>
<td>119</td>
</tr>
<tr>
<td>101</td>
</tr>
</tbody>
</table>

α-VHC humano

HOJA DE REEMPLAZO (REGLA 26)
Figura 4 (cont.)

IFIT2

IP-10

Figura 5

A

Respuesta adaptativa VHC
Células T CD8

% de células T productoras de citocinas

NS3 10%
p7+NS2 90%

Grupo 1: MVA-WT / MVA-WT
Grupo 2: MVA-HCV / MVA-HCV
Grupo 3: DNA+/ MVA-WT
Grupo 4: DNA-HCV / MVA-HCV
Figura 5 (cont.)

B

<table>
<thead>
<tr>
<th></th>
<th>p7+NS2</th>
<th>NS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA-WT MVA-WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.022</td>
<td>0.14 3.69e-3</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.022</td>
</tr>
<tr>
<td>MVA-HCV MVA-HCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.098</td>
<td>0.47 6.83</td>
</tr>
<tr>
<td></td>
<td>3.56</td>
<td>0.16</td>
</tr>
<tr>
<td>DNA-\phi MVA-WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.053</td>
<td>0.11 0.013</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>DNA-HCV MVA-HCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.088</td>
<td>0.24 3.36</td>
</tr>
<tr>
<td></td>
<td>0.97</td>
<td>0.7</td>
</tr>
</tbody>
</table>

CD107a vs TNF-\alpha
Figura 5 (cont.)
Figura 6

A) Respuesta de memoria VHC (bazo)

% de células T productoras de citocinas

<table>
<thead>
<tr>
<th></th>
<th>CD4</th>
<th>CD8</th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA-HCV</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.4%</td>
<td>0.5%</td>
</tr>
<tr>
<td>MVA-HCV</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.4%</td>
<td>0.5%</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>9.8%</td>
<td>9.7%</td>
<td>9.8%</td>
<td>9.7%</td>
</tr>
<tr>
<td>MVA-HCV</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.4%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

MVA-HCV MVA-HCV DNA-HCV MVA-HCV

CD4

E 53% Core 47%

CD8

NS3 7% E 2% p7+NS2 91%

NS4 9% E 2% p7+NS2 19%

NS3 70%
Figura 6 (cont.)

C

<table>
<thead>
<tr>
<th></th>
<th>MVA-HCV</th>
<th>MVA-HCV</th>
<th>DNA-HCV</th>
<th>MVA-HCV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% de células T CD8 VHC-específicas

![Flow Cytometry](image17)
Figura 7

<table>
<thead>
<tr>
<th></th>
<th>p7+NS2</th>
<th>NS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA-WT</td>
<td>0.035, 0.031</td>
<td>0.039, 0.023</td>
</tr>
<tr>
<td>MVA-WT</td>
<td>0.22, 0.022</td>
<td>0.26, 0.025</td>
</tr>
<tr>
<td>MVA-HCV</td>
<td>0.057, 2.28</td>
<td>0.029, 0.059</td>
</tr>
<tr>
<td>MVA-HCV</td>
<td>3.41, 0.37</td>
<td>0.54, 0.073</td>
</tr>
<tr>
<td>DNA-∅</td>
<td>0.029, 0.025</td>
<td>0.097, 0.16</td>
</tr>
<tr>
<td>MVA-WT</td>
<td>0.013, 0.02</td>
<td>0.7, 0.17</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>0.091, 1.1</td>
<td>0.041, 0.022</td>
</tr>
<tr>
<td>MVA-HCV</td>
<td>1.01, 0.21</td>
<td>0.25, 0.032</td>
</tr>
</tbody>
</table>

Legend
- IL-2
- CD107a
- TNF-α
- IFN
Figura 7 (cont.)

B

<table>
<thead>
<tr>
<th></th>
<th>p7+NS2</th>
<th>NS3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MVA-WT</td>
<td>MVA-WT</td>
</tr>
<tr>
<td></td>
<td>0.075 0.079</td>
<td>0.1 0.022</td>
</tr>
<tr>
<td>MVA-HCV</td>
<td>0.1 0.031</td>
<td>0.044 0.058</td>
</tr>
<tr>
<td>MVA-HCV</td>
<td>1.44 5.1</td>
<td>0.071 0.084</td>
</tr>
<tr>
<td>DNA-φ</td>
<td>4.73</td>
<td>0.092 0.046</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>0.06</td>
<td>0.015</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>0.11 8.63e-3</td>
<td>0.11</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>0.22 1.32</td>
<td>0.22</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>0.57</td>
<td>2.72</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>1.03</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Hígado

CD107a

TNF-α
Figura 8

A. Respuesta de memoria VHC (IHIC)

<table>
<thead>
<tr>
<th></th>
<th>CD4</th>
<th>CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA-HCV</td>
<td>6.5</td>
<td>0.5</td>
</tr>
<tr>
<td>DNA-HCV</td>
<td>7.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

% de células T productoras de citocinas

MVA-HCV MVA-HCV DNA-HCV MVA-HCV

CD4

mix 66% p7+NS2 34%

CD8

NS3 3%
p7+NS2 97%
mix 4% p7+NS2 24%
NS3 72%
Figura 8 (cont.)

B

Grupo 1: MVA-WT / MVA-HCV
Grupo 2: MVA-HCV / MVA-WT
Grupo 3: DNA-HCV / MVA-WT
Grupo 4: DNA-HCV / MVA-HCV

Producers de citocinas
% de células T
Figura 8 (cont.)

C

MVA-HCV
MVA-HCV

\[
% \text{ de células T CD8 VHC-específicas}
\]

\[
\begin{array}{ccc}
\text{TCM} & \text{TE} & \text{TEM} \\
\hline
0 & 10 & 20 \\
\end{array}
\]

**

DNA-HCV
MVA-HCV

\[
\begin{array}{ccc}
\text{TCM} & \text{TE} & \text{TEM} \\
\hline
10 & 20 & 30 \\
\end{array}
\]

**

\[
\begin{array}{cc}
\text{CD62L} & \text{CD127} \\
6.61 & 91.9 \\
\end{array}
\]

0.99

\[
\begin{array}{cc}
\text{CD62L} & \text{CD127} \\
11.7 & 86.6 \\
\end{array}
\]

1.19
Figura 9

A

Respuesta adaptativa VHC

% de células T productoras de citocinas

CD4 CD8

DNA-HCV MVA-HCV

B

CD4 (mezcla E) CD8 (mezcla NS3)

DNA-Φ MVA-WT

DNA-HCV MVA-HCV

IL-2 IFN-γ TNF-α CD107a
Figura 10

Respuesta de memoria VHC

A

![Diagrama de barras mostrando el porcentaje de células T productoras de citocinas en CD4 y CD8 en diferentes condiciones, incluyendo DNA-HCV y MVA-HCV.](image)

% de células T productoras de citocinas

CD4 | CD8

DNA-HCV | MVA-HCV

Figura 10 (cont.)

B

<table>
<thead>
<tr>
<th>p7+NS2</th>
<th>NS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-φ</td>
<td>DNA-HCV</td>
</tr>
<tr>
<td>0.05</td>
<td>0.017</td>
</tr>
<tr>
<td>0.035</td>
<td>0.08</td>
</tr>
<tr>
<td>0.017</td>
<td>0.21</td>
</tr>
<tr>
<td>0.11</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IFN-γ</th>
<th>IL-2</th>
<th>CD107a</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.15e-3</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>9.15e-3</td>
<td>0</td>
<td>0.03</td>
</tr>
</tbody>
</table>

HOJA DE REEMPLAZO (REGLA 26)
% de células T productoras de citoquinas

CD8

DNA-HCV
MVA-HCV

Grup 1: DNA-HCV/MVA-HCV
Grup 2: DNA-f/MVA-WT

Figura 10 (cont)
Figura 10 (cont.)

D

% de células T CD8 VHC-específicas

<table>
<thead>
<tr>
<th></th>
<th>TCM</th>
<th>TE</th>
<th>TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
</tbody>
</table>

CD62L vs. CD127

29.6
18.5
51.9
INTERNATIONAL SEARCH REPORT

International application No.
PCT/ES2014/070246

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C12N, A61K, A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPDOC, INVENES, WPI, XPESP, XPESP2, EMBASE, MEDLINE, BIOSIS, INSPEC, COMPDX, em_rel, emnew, embldcs, em_rel_est, em_rel_gss, em_rel_htc, em_rel_htg, em_rel_std, em_rel_sts, em_rel_tsa, emall, emvec, imgtligm, imghla, ipdkir, ipdmhc, nrnl1

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 2267120 A1 (TOKYO METROPOLITAN ORG. MED. RES. ET AL.) 29/12/2010, the whole document.</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance.
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure use, exhibition, or other means.
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
30/05/2014

Date of mailing of the international search report
(04/06/2014)

Name and mailing address of the ISA/

OFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Facsimile No.: 91 349 53 04
Form PCT/ISA/210 (second sheet) (July 2009)

Authorized officer
E. Rafaño Reyes
Telephone No. 91 3498504
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of documents, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2.☒ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

 Claim 1 is not sufficiently supported by the description (PCT Article 6). The reason is that it is not possible to deduce from the description that the insertion of any fragment of the genome of HCV produces a functional vaccine. Consequently, the HCV sequence included has been considered to code for the virus polyprotein fragment that extends from the core protein to the first 201 amino acids of NSSB.

3.☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2.☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3.☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4.☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in the search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 20100131480 A</td>
<td>15.12.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101965396 A, B</td>
<td>02.02.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2717626 A1</td>
<td>11.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2009220401 A1</td>
<td>11.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009232836 A</td>
<td>15.10.2009</td>
</tr>
</tbody>
</table>
CLASSIFICATION OF SUBJECT MATTER

C12N15/863 (2006.01)
A61K39/29 (2006.01)
A61P31/14 (2006.01)
INFORME DE BÚSQUEDA INTERNACIONAL

Solicitud internacional n°
PCT/ES2014/070246

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

Ver Hoja Adicional

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
C12N, A61K, A61P

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
EPODOC, INVENES, WPI, XPESP, XPESP2, EMBASE, MEDLINE, BIOSIS, INSPEC, COMPDX, cm_rel, emnew, embldcs, cm_rel_est, cm_rel_gss, cm_rel_htc, cm_rel_htg, cm_rel_std, cm_rel_sls, cm_rel_tsa, email, emvec, imgtligm, imgthla, ipdikir, ipdmhc, nrrl1

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría*</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las revindicaciones n°</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.X</td>
<td>GÓMEZ, C. E. et al. High, broad, polyfunctional, and durable T cell immune responses induced in mice by a novel hepatitis C virus (HCV) vaccine candidate (MVA-HCV) based on modified vaccinia virus ankara expressing the nearly full-length HCV genome. Journal of Virology. Julio 2013, Vol. 87, Nº 13, páginas: 7282 - 7300. ISSN 0022-538X (impreso) ISSN 1098-5514 (electrónico) Doi:10.1128/JVI.03246-12</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>EP 2267120 A1 (TOKYO METROPOLITAN ORG. MED. RES. ET AL.) 29/12/2010, todo el documento.</td>
<td>1-17</td>
</tr>
</tbody>
</table>

*: Categorías especiales de documentos citados:
"A" documento que define el estado general de la técnica no considerado como particularmente relevante.
"E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.
"L" documento que puede plantear dudas sobre una revindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
"O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.
"P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad revindicada.
"T" documento anterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.
"X" documento particularmente relevante; la invención revindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.
"Y" documento particularmente relevante; la invención revindicada no puede considerarse nueva o que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.

*: Los documentos de familias de patentes se indican en el anexo.

Fecha en que se ha concluido efectivamente la búsqueda internacional. **30/05/2014**

Fecha de expedición del informe de búsqueda internacional. **04 de junio de 2014 (04/06/2014)**

Nombre y dirección postal de la Administración encargada de la búsqueda internacional
OFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Nº de fax: 91 349 53 04

Formulario PCT/ISA/210 (segunda hoja) (Julio 2009)

Funcionario autorizado
E. Relaño Reyes

Nº de teléfono 91 3498504
<table>
<thead>
<tr>
<th>Categoría</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las revindicaciones nº</th>
</tr>
</thead>
</table>
INFORME DE BÚSQUEDA INTERNACIONAL
Solicitud internacional nº
PCT/ES2014/070246

Recuadro II Observaciones cuando se estime que algunas reivindicaciones no pueden ser objeto de búsqueda (continuación del punto 2 de la primera hoja)

Este informe de búsqueda internacional no se ha realizado en relación a ciertas reivindicaciones según el artículo 17.2.a) por los siguientes motivos:

1. ☐ Las reivindicaciones n°:
 se refieren a un objeto con respecto al cual esta Administración no está obligada a proceder a la búsqueda, a saber:

2. ☒ Las reivindicaciones n°: 1 (parcialmente)
 se refieren a elementos de la solicitud internacional que no cumplen con los requisitos establecidos, de tal modo que no pueda efectuarse una búsqueda provechosa, concretamente:
 La reivindicación 1 no está fundada adecuadamente en la descripción (Art. 6 PCT). Esto es debido a que de la descripción no se deduce que la inserción de cualquier fragmento del genoma del VHC, produzca una vacuna funcional. Por lo tanto, se ha considerado que la secuencia del VHC incluida, codifica para el fragmento de la poliproteína del virus que abarca desde la proteína core hasta los primeros 201 aminoácidos de NS5B.

3. ☐ Las reivindicaciones n°:
 son reivindicaciones dependientes y no están redactadas de conformidad con los párrafos segundo y tercero de la regla 6.4(a).

Recuadro III Observaciones cuando falta unidad de invención (continuación del punto 3 de la primera hoja)

La Administración encargada de la Búsqueda Internacional ha detectado varias invenciones en la presente solicitud internacional, a saber:

1. ☐ Dado que todas las tasas adicionales requeridas han sido satisfechas por el solicitante dentro del plazo, el presente informe de búsqueda de tipo internacional comprende todas las reivindicaciones que pueden ser objeto de búsqueda.

2. ☐ Dado que todas las reivindicaciones que pueden ser objeto de búsqueda podrían serlo sin realizar un esfuerzo que justifique tasas adicionales, esta Administración no requirió el pago de tasas adicionales.

3. ☐ Dado que tan sólo una parte de las tasas adicionales requeridas ha sido satisfecha dentro del plazo por el solicitante, el presente informe de búsqueda de tipo internacional comprende solamente aquellas reivindicaciones respecto de las cuales han sido satisfechas las tasas, concretamente las reivindicaciones n°:

4. ☐ Ninguna de las tasas adicionales requeridas ha sido satisfecha por el solicitante dentro de plazo. En consecuencia, el presente informe de búsqueda de tipo internacional se limita a la invención mencionada en primer término en las reivindicaciones, cubierta por las reivindicaciones n°:

Indicación en cuanto a la protesta ☐ Se acompañó a las tasas adicionales la protesta del solicitante y, en su caso, el pago de una tasa de protesta.

☐ Se acompañó a las tasas adicionales la protesta del solicitante, pero la tasa de protesta aplicable no se pagó en el plazo establecido para ello.

☐ El pago de las tasas adicionales no ha sido acompañado de ninguna protesta.

Formulario PCT/ISA/210 (continuación de la primera hoja (2)) (Julio 2009)
<table>
<thead>
<tr>
<th>Documento de patente citado en el informe de búsqueda</th>
<th>Fecha de Publicación</th>
<th>Miembro(s) de la familia de patentes</th>
<th>Fecha de Publicación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 20100131480 A</td>
<td>15.12.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101965396 A, B</td>
<td>02.02.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2717626 A1</td>
<td>11.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2009220401 A1</td>
<td>11.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009232836 A</td>
<td>15.10.2009</td>
</tr>
<tr>
<td>CLASIFICACIONES DE INVENCIÓN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12N15/863 (2006.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A61K39/29 (2006.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A61P31/14 (2006.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solicitud internacional nº
PCT/ES2014/070246