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Abstract: We evaluate the probability of future neutrino oscillation facilities to

discover leptonic CP violation and/or measure the neutrino mass hierarchy. We study

how this probability is affected by positive or negative hints for these observables to

be found at T2K and NOνA. We consider the following facilities: LBNE; T2HK; and

the 10 GeV Neutrino Factory (NF10), and show how their discovery probabilities

change with the running time of T2K and NOνA conditioned to their results. We

find that, if after 15 years T2K and NOνA have not observed a 90% CL hint of

CP violation, then LBNE and T2HK have less than a 10% chance of achieving a

5σ discovery, whereas NF10 still has a ∼ 40% chance to do so. Conversely, if T2K

and NOνA have an early 90% CL hint in 5 years from now, T2HK has a rather

large chance to achieve a 5σ CP violation discovery (75% or 55%, depending on

whether the mass hierarchy is known or not). This is to be compared with the 90%

(30%) probability that NF10 (LBNE) would have to observe the same signal at 5σ.

A hierarchy measurement at 5σ is achievable at both LBNE and NF10 with more

than 90% probability, irrespectively of the outcome of T2K and NOνA. We also find

that if LBNE or a similar very long baseline super-beam is the only next generation

facility to be built, then it is very useful to continue running T2K and NOνA (or

at least T2K) beyond their original schedule in order to increase the CP violation

discovery chances, given their complementarity.
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1. Introduction

A coherent picture of leptonic mixing is gradually emerging from the experimental

data, much as in the case of quark mixing: the three Standard Model lepton gener-

ations mix via the unitary Pontecorvo-Maki-Nakagawa-Sakata [1–5] matrix UPMNS,

the analogue of the CKM matrix VCKM that governs hadronic mixing. This matrix

can be parametrized in terms of three rotation angles, θ12, θ13 and θ23, that have

been first measured using solar [6–13], reactor [14–16] and atmospheric [17] neutrino

data, respectively. Their values have been further constrained using long-baseline

reactors [18] and accelerator-based neutrino beams [19–24]. The most recent global

fits of neutrino data give the following best-fits and 1σ errors for the leptonic mixing

angles and the neutrino squared mass differences [25] (see also Refs. [26, 27]):

sin2 θ12 = 0.302 +0.013
−0.012

sin2 θ13 = 0.0227 +0.0023
−0.0024

sin2 θ23 = 0.413 +0.037
−0.025 / 0.594 +0.021

−0.022



∆m2
21/10−5 = 7.50 +0.18

−0.19 eV2

∆m2
31/10−3 = 2.473 +0.070

−0.067 eV2 (NH)

∆m2
32/10−3 = −2.427 +0.042

−0.065 eV2 (IH)
(1.1)

where the twofold ambiguities related to allowed values of the θ23-octant and of the

neutrino mass hierarchy are clearly shown. These values strongly differ from the

corresponding values obtained for the mixing angles in the CKM matrix [28], when

the latter is also parametrized in a similar way. It is well known that the CKM matrix
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can be approximately parametrized as a small perturbation of the identity matrix,

while the PMNS matrix rather displays entries which are all of similar order. The

different patterns of quark and lepton mixing add to the puzzling flavor problem, i.e.

the apparent arbitrariness of the Yukawa couplings of the Higgs boson with fermions

belonging to different generations, that eventually induce fermion masses with large

hierarchies after the spontaneous breaking of the electroweak symmetry. The second

important difference between the CKM matrix and the PMNS matrix is that in the

former case we know that the matrix is complex, i.e. that a non-vanishing CP-

violating phase is needed in order to accurately reproduce the hadronic flavor mixing

data. The quark CP-violating phase is δCKM ∼ γ = (66± 12)◦ (see, e.g., Refs. [29]

and [30]). A straightforward question is, therefore, if the leptonic mixing matrix is a

complex matrix, as well as VCKM.

The task of establishing whether δPMNS is CP-violating (and possibly measuring

it with a precision comparable to that of δCKM) is the main goal of the present

generation of long baseline neutrino experiments. T2K [31] is presently running,

and the NOνA experiment [32] is under construction and is expected to start data

taking soon (in May 2013). Even if these experiments will be able to probe CP

violation, their combined significance will remain below the 3σ evidence unless they

run for an extended period of time, see for instance Refs. [33, 34]. Therefore, a next

generation of long baseline neutrino experiments will most likely be needed if we

want to establish leptonic CP violation at the 5σ level. A second task that these

experiments should address is the determination of the neutrino mass spectrum, i.e.

if ∆m2
31 > 0 (normal hierarchy) or ∆m2

31 < 0 (inverted hierarchy). However, due to

the rather large value of θ13 recently discovered, the measurement of the neutrino

mass hierarchy may be accessible to several alternative strategies to a long baseline

neutrino experiment, such as atmospheric neutrino experiments [35–39] or a reactor

experiment with a medium baseline [40–47].

In this paper we compare the proposed new facilities to be built in the following

ten to twenty years based on their chances to establish a CP-violating phase δPMNS

(from now on δ, for simplicity) at a given CL and, secondarily, on their chances to

pin down the correct neutrino mass hierarchy. For this purpose, we compute the

probability that a given new facility has to discover a CP-violating δ (or a given

mass ordering) at 5σ, conditioned to the presence or absence of a hint (at the 90%

CL for CP violation and at the 3σ level for the mass hierarchy)1 for the combination

of T2K+NOνA. We define a condensed performance indicator, the gain fraction G

(and Ḡ), corresponding to the conditional probability that a next generation facility

would reach the discovery limit over an observable, given that T2K+NOνA have (or

1While higher CL can prove challenging to the statistically-limited T2K+NOνA, they will be

able to provide 90% hints over a large portion of the parameter space. Therefore, while we will

require that the new experiment reaches the discovery limit, for T2K+NOνA only a hint at the

90% CL will be required.
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have not) previously observed a hint of it. The gain fraction thus represents the

“gain” in performance that the new facility can provide given the prior results from

T2K and NOνA. This approach allows for a quantifiable betting strategy between

the proposed new facilities, particularly important at this time of decision-making

in neutrino oscillation experiments.

The paper is organized as follows. In Sect. 2 we introduce the statistical approach

and the terminology used in the rest of the paper before describing the technical

details of the included facilities in Sect. 3. We then present our results in Sect. 4,

before we summarize and give our conclusions in Sect. 5.

2. The statistical method

We address the question of how much discovery potential can be gained by building a

new facility given the prior information available at the time of its running from T2K

and NOνA. If a significant hint for CP violation or a given mass hierarchy is already

present, then a modest upgrade to increase the statistics should be able to provide

the desired CL. Conversely, if no hint is found, a more demanding facility is needed

to significantly increase our discovery potential. In other words, depending on the

outcome of T2K and NOνA, can we quantify the additional gain a next generation

facility would provide?

We will make use of some simple statistical tools. First of all, we compute the

probability that a given facility combined with T2K+NOνA reaches a desired CL

(outcome A) for a given observable (either discovery of CP violation or of the correct

mass hierarchy) as a function of the true value of δ, P (A|δ). In order to compute

this probability we take the following steps:

1. First, the expected event rates (including signal and backgrounds) are com-

puted for each energy bin and oscillation channel of the facility under study,

for an input value for δ;

2. A Monte Carlo is then used to generate 1000 “realizations” of the experiment,

by randomly generating numbers for the different energy bins and channels ac-

cording to a Poisson distribution with mean value equal to the one computed

in step 1. In order to do this, a new function has been added to the Monte-

CUBES free software [48] that produces a random distribution of events at a

given experiment, provided its expected event rates;

3. For each realization of the experiment, we evaluate the CL with which CP

violation or the correct mass hierarchy is favored. Then, for a given value of δ,

we count the fraction of times the target CL was reached, that is, the fraction

of times for which A is fulfilled, thus estimating the probability P (A|δ).
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The probability P (A|δ) is the starting point of our statistical analysis. In particular,

instead of computing the expected achievable CL for a given observable (e.g. the

capability to observe a CP-violating signal) at a given facility, we rather fix a target

CL (typically 90%, 3σ or 5σ) and ask what is the probability with which the facility

will reach the target. This procedure is slightly different from what is commonly

done in the literature, where the most widely used performance indicator is rather

the discovery potential for a given observable, defined as the CL that a facility is

expected to provide for that observable as a function of δ. In this case, the expected

number of events for the facility is computed for each value of δ and the CL with

which CP conservation or the wrong mass hierarchy would be disfavored for that

value of δ is evaluated. It has been shown (see Ref. [49]) that the probability P (A|δ)
of the facility actually reaching that CL is around 50%. Indeed, upward or downward

random fluctuations will increase or decrease the final CL in a particular realization

of the experiment.

To address the question of how much we can improve on the results from T2K

and NOνA we will also make use of the joint probability P (A,B|δ), representing

the probability that the new facility combined with T2K+NOνA reaches a given CL

(outcome A) and that the combination of T2K+NOνA alone also observed a signal at

some CL for the same observable (outcome B)2, for a given δ. It should be noted that

the CL required for outcomes A and B do not need to be the same. The computation

of the joint probability is done following similar steps to 1-3. We first compute the

expected event rates for both T2K and NOνA and the next generation facility and

generate 1000 different realizations of them. Then, for each realization, we record the

CL with which T2K and NOνA, on their own as well as in combination with the new

facility, are able to disfavor CP conservation or the wrong mass hierarchy. Finally,

we count how many times T2K and NOνA were (un)able to reach the desired CL

while the combination with the new facility reached its desired CL. This procedure

is repeated for all values of δ.

We are interested, in particular, in the joint probability that T2K+NOνA find

(or not) a hint at the 90% CL for a given value of δ (B or B̄, respectively) and

that their combination with a new facility reaches 5σ for the same δ and observable

(A). In the case of the mass hierarchy we will raise the CL of B to the 3σ level,

since T2K+NOνA will most likely have a 90% hint. The joint probability P (A, B̄|δ)
defined this way is a measure of the complementarity between T2K+NOνA and the

new facility for that particular value of δ. Indeed, if P (A, B̄|δ) is high it means that

there is a high probability that T2K+NOνA will not find a hint at that value of δ

while the probability of making a discovery of their combination with the new facility

is also high. Clearly, for facilities whose best chances to measure δ take place for the

2We will also let B̄ represent the complement of B, i.e., that T2K+NOνA do not reach a given

CL. We then have P (A,B|δ) + P (A, B̄|δ) = P (A|δ).
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Event Definition

A The combination of T2K+NOνA with a future facility provides a

discovery of CP violation or the mass hierarchy at 5σ.

B T2K+NOνA provide a signal for CP violation (or mass hierarchy)

at 90% CL (3σ).

B̄ T2K+NOνA do not provide a hint. The complement of B.

Table 1: The definitions of the events A, B, and B̄. Cited for back reference.

same region of parameter space as for the combination of T2K and NOνA, the joint

probability P (A, B̄|δ) will be small, since for favorable values of δ a positive result at

the 90% CL would have been likely at T2K+NOνA. On the other hand, for a facility

whose best sensitivity to δ is not totally overlapping with that of T2K+NOνA, we

expect a rather high joint probability in the regions where they do not overlap. In

order to simplify for the reader to recollect our definitions of A and B, these can be

found in Tab. 1.

A very interesting (and condensed) quantity to parametrize the margin for im-

provement over the results of T2K+NOνA by a new facility is the conditional prob-

ability P (A|B) = P (A,B)/P (B). This is the probability of achieving a 5σ discovery

at the new facility provided a 90% CL or 3σ signal has been previously obtained at

T2K+NOνA. For brevity, we will call this quantity the gain fraction G. Similarly, we

can define the gain fraction assuming the opposite outcome: Ḡ = P (A|B̄), i.e., the

probability of achieving a 5σ discovery at the new facility provided no 90% CL or 3σ

signal has been previously seen at T2K+NOνA. Notice that we have defined the gain

fractions in a way that does not depend on δ. Indeed, the outcome from T2K+NOνA

will provide a probability distribution for the possible values of δ, P (δ|B), that can

be used as prior information for the measurements of the new facility. Integration

can be performed over δ as follows3:

G = P (A|B) =

∫
P (A|B, δ)P (δ|B)dδ =

∫
P (A,B|δ)dδ∫
P (B|δ)dδ

=
P (A,B)

P (B)
. (2.1)

We can see that there is a very close relation between the joint probability P (A,B|δ)
and the gain fractions. Thus, the joint probability is not only useful as a measure

of the complementarity of a new facility with respect to T2K+NOνA, but can also

help to understand the behaviour of the gain fraction. For this reason, example plots

of the joint probability for the CP and mass hierarchy discovery as a function of δ

will also be shown in Sect. 4. We will also show the dependence of the gain fractions

G and Ḡ on the running time of T2K+NOνA. From the above equation, it is clear

3Using that P (δ|B) = P (B|δ)×P (δ)/P (B) according to Bayes’ theorem. We also assume a flat

distribution for δ, P (δ) = 1/(2π), prior to the measurement from T2K+NOνA.
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Setup Epeak
ν L OA Detector kt MW Decays/yr (tν,tν̄)

T2K 0.6 295 2.5◦ WC 22.5 0.2-0.7 – Var.

NOνA 2 810 0.8◦ TASD 3-14 0-0.7 – Var.

NF10 6 2000 – MIND 100 – 7×1020 (10,10)

LBNE 3.0 1290 – LAr 10-33 0.8 – (5,5)

T2HK 0.6 295 2.5◦ WC 560 1.66 – (1.5,3.5)

Table 2: Main features of the setups considered in this work. From left to right, the

columns list the energy at which the number of neutrino events peak (in GeV), the length of

the baseline (in km), the off-axis angle in degrees, the detector technology (Magnetized Iron

Neutrino Detector, Liquid Argon, Water Čerenkov or Totally Active Scintillator Detector),

the fiducial mass of the detector, the beam power or the number of useful decays per year,

and the number of years that the experiment is assumed to run per polarity. The label

“Var.” indicates that the running times for T2K and NOνA are variable, see text for

details.

that the gain fraction can also be obtained in a graphical way: it is simply the area

under the curve for P (A,B|δ) divided by the area under P (B|δ), thus representing

the fraction of parameter space remaining after T2K+NOνA that is probed by the

new facility. For zero running time of T2K+NOνA the gain fraction is, therefore,

intimately related to the CP-fraction that is usually discussed in the literature.

Finally, it should be noted that B and B̄ are oversimplifications of the results

from T2K+NOνA. Indeed, the outcome from T2K+NOνA will not be limited to the

presence or absence of a hint, but will rather be some measured event distributions

that would translate in a given probability distribution for δ when trying to fit

different values to data, P (δ|data). It is this probability distribution which should be

used as condition B for the prior when computing the gain fraction. However, lacking

the results from T2K+NOνA we decided to adopt two representative scenarios to

present our results: the presence or absence of a 90% CL or 3σ signal.

3. Setups

The performance of new facilities will be compared to (and combined with) those

attainable from the combination of T2K and NOνA, assuming variable running times.

The main features for these two experiments are summarized in Tab. 2. Notice that

the beam power of T2K has not reached its goal yet and it is not expected to do so

in the next couple of years. In the case of NOνA, both the fiducial volume of the

detector as well as the beam power are expected to increase progressively within the
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Figure 1: Integrated exposure as a function of time for NOνA (left panel) and T2K (right

panel). For NOνA, the running time is split equally between neutrino and antineutrino

modes. The shown integrated exposure corresponds to the total between the two polarities.

For T2K, the exposure for each polarity is assumed to change differently with time, as seen

in the right hand panel. The integrated exposure in this case corresponds to each polarity

separately. The vertical lines correspond to year 2020.

first few months of data taking of the experiment, which is expected to start in May

2013 [50]. Several assumptions have been made in this work in order to perform as

realistic as possible an estimate of the statistics achievable at each experiment for a

given date. Fig. 1 shows our assumptions for the integrated exposure for T2K and

NOνA as a function of time. The integrated NOνA exposure has been extracted

from Ref. [50]. For T2K we have followed Ref. [51], assuming that the experiment

starts in 2013 at 200 kW, goes up to 300 kW in 2014, and finally reaches 700 kW

in 2017. In addition, we have assumed that during the first 5 years it is only run in

neutrino mode, but that after that date the running is equally split between the two

polarities. A vertical line corresponding to year 2020 has been added to Fig. 1 for

reference.

The simulation of the T2K and NOνA experiments is largely based on Ref. [52].

The T2K simulation is exactly the same, except for the integrated exposure which

has been varied according to Fig. 1. The situation is a bit different for NOνA. In

view of the large value of θ13 the NOνA collaboration have recently modified their

analysis techniques [50]. In particular, some of the cuts have been relaxed so that

larger efficiencies are now expected, at the price of larger backgrounds. Therefore, we

have used the same signal and background rejection efficiencies as in Ref. [53], which

are in agreement with those in Ref. [50]. Finally, we are using matrices to migrate

NC backgrounds to low energies, unlike in Ref. [52] where migration matrices were

not available for this purpose.

Alongside with T2K and NOνA, we consider in this paper a few representative
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facilities to analyse under the new performance indicators described in Sect. 2. We

will concentrate in particular on three of the most discussed setups for the next

generation of neutrino oscillation facilities: two super-beams, T2HK and LBNE,

and the “low energy” [54–58] Neutrino Factory (NF10), which is considered as the

ultimate neutrino oscillation facility but also a longer term project.

The technical details of the simulations for these three facilities are summarized

in Tab. 2:

1. T2HK

This setup uses the same baseline (L = 295 km) and accelerator as T2K (al-

beit, with a higher power of 1.66 MW) aiming at a new detector, Hyper-

KamiokaNDE (HK), with a fiducial volume of 560 kton of water [59]. To

compensate for the different νN and ν̄N CC cross-sections, this setup is fore-

seen to run for 1.5 years with π+ and for 3.5 years with π−. The collaboration

is also exploring the possibility to run the experiment for 10 years (3 years with

π+ and 7 years for π−) but with a beam power of 750 kW (see, for instance,

Refs. [60, 61]). We have checked that the results using this configuration are

very similar, and therefore will only show those corresponding to the configu-

ration described in the HK letter of intent, Ref. [59].

2. LBNE

The proposal consists of a new accelerator to be built at FermiLab with a

design power of 0.7 MW, aiming at a distant, on-axis, 33 kton Liquid Argon

(LAr) detector (in a first phase, only 10 kton of LAr are considered) located

at L = 1290 km from the source4. Five years of data taking for π+ and π−

are considered. The simulation details have been implemented according to

Ref. [66].

3. NF10

After the measurement of a large θ13, a re-evaluation of the Neutrino Factory

design [67] has identified the optimal parent muon energy for this facility at 10

GeV (see also Ref. [68]). The new design includes a 100 kton magnetized iron

neutrino detector (MIND, [69]), located at approximately L = 2000 km from

the source. Both µ+ and µ− would run at the same time inside the decay ring

for a total of 10 years. The detector simulation details have been implemented

according to Ref. [69]. Migration matrices for both signal and backgrounds have

been used [70], and the so-called τ -contamination [71–74] has been included in

the analysis for both appearance and disappearance signals.

4European alternatives to these two facilities with somewhat similar physics performances have

also been proposed. The SPL [62, 63] or ESS proposals [64] present similar characteristics and

performance to T2HK, while LBNO [65], with a smaller LAr detector, longer baseline and higher

energy, has a similar performance to LBNE.

8



Systematic errors are expected to have a large impact on the results for long

baseline experiments, given the large value of θ13. In Ref. [75] a detailed analysis

of systematics and their impact on long baseline oscillation experiments was per-

formed. It was shown that the effect on LBNE as well as the NF10 setups is small5

if a fully correlated analysis is performed. In the case of T2HK, however, the re-

sults present large variations depending on the particular values for the systematic

uncertainties and, more importantly, on the particular implementation used. In the

present work, systematic uncertainties have been implemented as overall normaliza-

tion errors, which are uncorrelated between signal and backgrounds but correlated

among all backgrounds contributing to the same channel. Even if this does not cor-

respond to the real physics case, it was shown in Ref. [75] that an appropriate choice

of the normalization errors would yield similar results to those obtained with a more

sophisticated systematics implementation. Thus, we have chosen the following nor-

malization errors for the signal and backgrounds in each experiment: 1.5% and 10%

for the NF10, 3% in both cases for LBNE, and 5% and 10% for T2HK and NOνA.

For T2K, on the other hand, 2% and 5% normalization errors have been used for

the signal and background event rates, plus a calibration (tilt) error of 1% and 5%,

respectively, following Ref. [52].

4. Results

In this section we apply the statistical method described in Sect. 2 to compare the

different facilities defined in Sect. 3, under the hypotheses that the combination of

the data taken by T2K and NOνA, after a given number of years of running time,

either does or does not show a hint of a CP-violating phase δ (or of a given hierarchy)

at the 90% CL (3σ). We restrict to this CL due to the statistical limitations of both

experiments.

4.1 CP violation

Fig. 2 shows the results for T2K+NOνA assuming that they will take data until

2020 (i.e., close to the initially foreseen running time). The probability of finding

CP violation at 90% CL for the combination of T2K+NOνA is represented in Fig. 2

(left) by the gray-shaded area. In the same panel, the lines show the probability of

finding CP violation (i.e., to distinguish a CP-violating phase δ from 0 and π) at 5σ

for the different new facilities described in Sect. 3, in combination with T2K+NOνA

data. Solid black lines correspond to NF10; dotted blue lines to T2HK; dot-dashed

red lines to LBNE-33 kton; and dashed green lines to LBNE-10 kton. As explained in

5Note that no uncertainties on the shape of the neutrino flux or cross section were considered

in Ref. [75], though. If this is not the case the situation may be very different, see for instance

Refs. [76–78].
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Sect. 2, this probability is obtained by simulating different realizations of a given ex-

periment 1000 times for each input value of δ and checking whether in that particular

realization the facility is able to exclude CP-conserving values of δ at the desired CL.

For T2K+NOνA and for T2HK, the probability of finding CP violation is strongly

asymmetric, reaching higher probabilities for negative δ. This is a consequence of

the sign degeneracy that leads to allowed CP-conserving regions for positive δ when

measuring νµ → νe oscillations [79–81].
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Figure 2: Left panel: probability of finding CP violation (CPV) at the 90% CL for the

combination T2K+NOνA (gray-shaded area); probability of finding CP violation at 5σ for

the new facilities in combination with the results obtained at T2K+NOνA (lines). Right

panel: joint probability that a new facility in combination with T2K+NOνA observes CP

violation at 5σ and that T2K+NOνA alone have not seen a hint of it at 90% CL for the

same value of δ. In all cases, it is assumed that T2K+NOνA will stop data taking on 2020.

To explain our results let us consider now, for example, the black solid line in

Fig. 2 (left), that represents the probability of finding CP violation at 5σ (condition

A) for6 the NF10, P (A|δ). Two flat regions can be seen for δ ∈ [−150◦,−30◦] and

[30◦, 150◦], for which the probability to measure a CP-violating phase at 5σ at the

NF10 is P (A|δ) ∼ 1. Depending on δ, it is more or less likely that T2K+NOνA

will have already found a 90% CL hint by themselves. For maximally CP-violating

values of δ, in particular, there is a fair chance that they will have found a hint

by 2020 and, thus, condition B̄ will not be satisfied. This is reflected in that the

black solid line in Fig. 2 (right), which represents the joint probability P (A, B̄|δ),
is reduced for |δ| = 90◦. For δ = −90◦, where T2K+NOνA have a peak in the

probability of finding CP violation at the 90% CL, we see that P (A| − 90◦) ∼ 1

whereas P (A, B̄|−90◦) ∼ 0.3. On the borders of the region of maximal probability of

finding CP violation for T2K+NOνA we see high spikes for the NF10 joint probability.

6We have checked that the combination of the NF10 data with T2K+NOνA is irrelevant, due

to the low statistics of the latter with respect to the NF10.
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These appear because the flat region that we observe in Fig. 2 (left) for NF10 is much

broader than the region where the probability of finding CP violation for T2K+NOνA

(the gray-shaded area) is maximal. This shows that, in those spikes, NF10 can probe

for CP violation with very high significance, while T2K+NOνA have a hard time

finding a hint. Thus, the gain factor Ḡ for NF10 will receive significant contributions

from those areas of the parameter space.

CPV

-150 -100 -50 0 50 100 150
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90%, 5Σ CL

2030

2025
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2015

Figure 3: Joint probability that NF10 observes CP violation at 5σ for a fixed value of δ

and that T2K+NOνA have not been able to see a hint of it at the 90% CL for the same

value of δ. Results are shown assuming that T2K+NOνA stop data taking in 2015, 2020,

2025 or 2030, as indicated in the legend.

It is interesting to observe how the joint probability P (A, B̄|δ) is affected as the

running time of T2K+NOνA is increased. This is illustrated in Fig. 3, where we

show the joint probability that NF10 discovers CP violation at 5σ (condition A) and

T2K+NOνA have not seen a hint of it at the 90% CL if they stop data taking on 2015,

2020, 2025 or 2030 (condition B̄). It can be clearly seen that the probability that

both conditions are fulfilled for maximal CP-violating values of δ (δ ∼ ±90◦) rapidly

decreases with increasing T2K+NOνA exposures, whereas spikes at δ ∼ ±30◦,±150◦

are only mildly affected (showing that, for NF10, some areas of the parameter space

remain promising even after a negative result from T2K+NOνA). The reason for

this is that, as the data taking period increases for T2K+NOνA, it is more and

more unlikely that they do not observe a hint for CP violation at the 90% CL if δ is

maximally CP-violating.

The same effect is illustrated in Fig. 4 for all facilities, which shows the same

probabilities as in Fig. 2 but assuming that T2K+NOνA run for 10 additional years,

until 2030. As it can be seen, the probability of not finding a positive 90% CL hint

for δ ∼ ±90◦ if T2K+NOνA keep running until 2030 is very small. This in turns

11
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Figure 4: Same as in Fig. 2 assuming that T2K+NOνA will run until 2030.

implies that, provided a negative result from T2K+NOνA, CP-violating values for

δ are much less likely and the new facility will have smaller chances of finding CP

violation. The only facility that retains a non-negligible joint probability after this

exposure is NF10. This fact is better captured by the gain fractions G and Ḡ defined

in Sect. 2, which correspond to the conditional probability that the new facility will

detect CP violation at 5σ, provided that T2K+NOνA have previously seen (G) or

have not seen (Ḡ) a hint at the 90% CL.

We show in Fig. 5 bands for G (left panel) and Ḡ (right panel) as a function of

the year when T2K+NOνA stop data taking. The lower and upper limits of each

band correspond to two possible scenarios: (1) the neutrino mass hierarchy is not

known at the time when the data of T2K+NOνA are analyzed, and (2) the neutrino

mass hierarchy is known at 5σ at that time, assuming that other experiments have

been able to measure it. The gain fractions obtained in case 1 are depicted by thick

lines, whereas those corresponding to case 2 are shown as just the end of each band.

As shown in the figure, G always increases when the additional information about the

mass hierarchy is added, while the situation is the opposite for Ḡ (with the exception

of T2HK). In case the mass hierarchy is measured during a certain year, it suffices

to consider the band edge corresponding to case 2 to take into account the impact

of this information on the gain fractions. It can be seen that previous knowledge on

the hierarchy plays a very important role for the performance of T2HK, while it is

less significant for other new facilities (albeit, Ḡ is generically more affected than G).

Color codes for each facility are shown in the legend.

Consider first Fig. 5 (left), which shows G as a function of the year when

T2K+NOνA stop data taking. On general grounds, if a positive hint of a CP-

violating phase is found at the 90% CL at T2K+NOνA the gain fraction will increase,

since CP-violating values of δ become favored by data. When increasing the expo-

sure, if we keep requiring only a 90% CL hint for CP violation, the gain fraction will
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Figure 5: The gain fractions G (left panel) and Ḡ (right panel) for CP violation defined

as in Sect. 2, i.e. the probability that the new facility will detect a CP-violating signal at

5σ provided that T2K+NOνA have seen or not a hint of it at 90%CL irrespectively of the

value of δ. In both cases results are shown as a function of the year when T2K+NOνA stop

taking data. Bands show how the gain fractions change if we assume no previous knowledge

of the mass hierarchy (thick edges) or that the mass hierarchy is known by the time the

new facility analyses its data (thin edges).

tend to a plateau. If we were to use real T2K+NOνA data instead of just requiring a

90% CL hint, the CL at which CP violation would be favored should rather increase

with the exposure (assuming that δ is indeed CP-violating) and hence the gain frac-

tion would continue rising instead of reaching a plateau. In Fig. 5 (left), when the

mass hierarchy is known, the plateau is clearly visible for NF10 and T2HK. However,

when the data from T2K+NOνA are complementary to that of the new facility and

carry significant statistical weight, the gain fraction will continue to rise with the

exposure of T2K+NOνA, since they play an important role in reaching the 5σ goal.

This behaviour is clearly seen for both LBNE setups, which show a monotonously

increasing G with T2K+NOνA running time, reaching ∼ 10%(∼ 40%) by 2030. For

these facilities, the combination with more and more T2K+NOνA data will increase

the overall probability to measure CP violation at 5σ.

Notice also that the behavior of G for NF10, LBNE-10 kton and LBNE-33 kton

is practically unaffected by the previous knowledge of the neutrino mass hierarchy

(represented by upper edges on the bands), and when the mass hierarchy is known the

gain fraction G only slightly increases. This is due to the fact that, at T2K+NOνA,

positive (negative) CP-violating values of δ with a normal (inverted) hierarchy are

very degenerate with CP-conserving values of δ and an inverted (normal) hierarchy.

It can then happen that, for CP-conserving values of δ, the CP-violating degenerate

solution is actually favored at the 90% CL from T2K+NOνA, thus leading to a fake
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hint. These cases will not lead to a discovery at any of these new facilities that

have very good sensitivity to the mass hierarchy and will therefore be able to rule

out these fake hints. Conversely, if the mass hierarchy was known, these fake hints

would not take place at T2K+NOνA and a positive hint will more likely imply a

truly CP-violating value for δ, thus increasing the chance of discovery at the new

facility, that is, the gain fraction.

A completely different behavior is shown by T2HK (blue band): in the case

the mass hierarchy is not known we see that G decreases with time, reaching a

plateau at G ∼ 0.45 by 2022. This behavior can be understood as follows: if a CP-

violating δ is detected for a very low exposure at T2K+NOνA, then δ is probably

very near to δ = −90◦ for a normal hierarchy or δ = 90◦ for an inverted hierarchy,

a value for which the combination of T2K+NOνA data with those of T2HK will

have a very high chance to measure CP violation at 5σ. On the other hand, if CP

violation is detected at 90% CL for increasing exposure, different values of δ can

give rise to the 90% CL hint. For many of these values, the sign degeneracies will

be localized at CP-conserving values. And, while a high exposure from T2K+NOνA

can disfavor the CP-conserving degeneracies at the 90% CL we are demanding, the

combination of T2K+NOνA and T2HK cannot do the same at 5σ and hence cannot

discover CP violation. This explains the decreasing gain fraction of T2HK when

increasing T2K+NOνA exposure if the mass hierarchy is not known. This problem

is of course solved if the neutrino mass hierarchy were known when T2K+NOνA

data are analized, as shown by the upper line of the T2HK blue band, for which

we recover the expected increasing G with time. Notice that also T2HK reaches a

plateau by 2020 (as the NF10), with G ∼ 0.7. Running T2K+NOνA beyond this

date, therefore, does not increase the discovery chances, unlike the case of the LBNE

setups, which keep growing after 2020, albeit more slowly.

Let us consider now Fig. 5 (right), showing Ḡ as a function of the T2K+NOνA

total running time. On general grounds, when no hint for CP violation is found at

T2K+NOνA as the exposure is increased, it is more and more likely that δ is close to a

CP-conserving value, thus making a discovery of CP violation impossible. Therefore,

we expect that Ḡ will monotonously decrease with T2K+NOνA total running time.

Notice that the knowledge of the neutrino mass hierarchy will have a negative impact

on the Ḡ gain fractions (with the exception of T2HK), since CP-violating regions

disfavored at the 90% CL by T2K+NOνA with respect to CP-conserving ones with

opposite hierarchy could actually turn out to be the true solution and lead to a 5σ

discovery at the new facility. These fake CP-conserving solutions cannot take place

when the mass hierarchy is known and hence a negative hint from T2K+NOνA

is more likely to imply a CP-conserving δ in this scenario, decreasing the value of

Ḡ. In the case of T2HK, on the other hand, previous knowledge of the hierarchy

would increase Ḡ, since this facility is unable to measure the hierarchy by its own at

the required 5σ level and, therefore, its performance is significantly affected by sign
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degeneracies. When we study Ḡ for T2HK, then, we notice that in case 1, represented

by the lower edge of the blue band, we get Ḡ ∼ 0.2 (0.05) for T2K+NOνA running

until 2015 (2030). On the other hand in case 2, represented as for G by the upper

edge of the band, Ḡ goes from Ḡ ∼ 0.45→ 0.07 in the same time interval. NF10 and

LBNE-33 kton show the expected decreasing Ḡ with T2K+NOνA running time: for

NF10 we have Ḡ ∼ 0.7 → 0.4 in case 1 and Ḡ ∼ 0.7 → 0.35 in case 2, whereas for

LBNE-33 kton we have Ḡ ∼ 0.13→ 0.10 in case 1 and Ḡ ∼ 0.13→ 0 in case 2. The

case of LBNE-10 kton is a bit different: the statistical power of this facility is limited

to its capability of measuring the neutrino mass hierarchy and, therefore, Ḡ increases

with time since the new facility increases the ability of T2K+NOνA actually making

a discovery (by ruling out fake CP-conserving sign degeneracies). On the other hand,

if previous knowledge of the hierarchy is at hand, the facility has no capability to

discover CP violation by its own.

We can see that if T2K+NOνA see no hint of leptonic CP violation with in-

creasing exposure, a clear gap between NF10 and the rest of facilities opens: we can

fairly say that the super-beam–based experiments have a very low or null chance to

measure CP violation, whereas NF10 would still have a 40% chance to measure it.

On the other hand, if T2K+NOνA have a positive signal already, T2HK appears

to be an interesting alternative to the neutrino factory, in particular if some other

experiment is able to measure the neutrino mass hierarchy.

4.2 Measurement of the neutrino mass hierarchy

MH: 3Σ, 5Σ
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Figure 6: The gain fractions G (left panel) and Ḡ (right panel) for the mass hierarchy

(MH) defined as in Sect. 2, i.e. the probability that the new facility will identify a given

hierarchy at 5σ provided that T2K+NOνA have seen or not a hint of it at 90%CL irre-

spectively of the value of δ. In both cases results are shown as a function of the year when

T2K+NOνA stop taking data.
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Fig. 6 presents the gain fractions G and Ḡ for the neutrino mass hierarchy

discovery potential at 5σ under the hypothesis of a positive (left panel) or negative

(right panel) result at T2K+NOνA at 3σ, as a function of the T2K+NOνA total

running time. Consider first the gain fractions for NF10 and LBNE-33 kton. These

two facilities have a very long baseline and sufficient statistics to measure the true

neutrino mass hierarchy at 5σ independently from the outcome of T2K+NOνA. We

indeed see that G = Ḡ = 1 for both of them.

On the other hand, for phase I of the LBNE experiment, LBNE-10 kton, we have

G ∼ 1 whereas Ḡ ∼ 0.85 depending on the outcome of T2K+NOνA. The reason for

this is that both T2K+NOνA and LBNE-10 kton are more sensitive to the mass

hierarchy for the same values of δ. Therefore, if T2K+NOνA are not able to obtain

a hint for the true mass hierarchy at 3σ, then it is likely that δ lies in the small region

of the parameter space where LBNE-10 kton cannot reach the 5σ level either.

Finally, the only facility whose gain fractions are strongly affected by the results

of T2K+NOνA is T2HK, whose very short baseline makes it very difficult to measure

the hierarchy by itself. We see in Fig. 6 (left) that G increases with T2K+NOνA

running time, reaching a plateau aroundG ∼ 0.6 by 2017. Conversely, if T2K+NOνA

are not able to find a 3σ CL signal for the mass hierarchy with increasing exposure

then the addition of T2HK will only allow a 5σ discovery with a ∼ 5% probability.

5. Conclusions

In this paper we have introduced a new method to compare the physics reach of

future neutrino oscillation facilities, taking into account the impact of the outcome

of present long baseline experiments (T2K and NOνA). We have compared the new

facilities on the basis of their capability to discover CP violation in the leptonic sector

and to pin down the correct neutrino mass hierarchy, two of the missing inputs to

complete our phenomenological understanding of lepton mixing.

In order to compare facilities, we have first computed the probability P (B|δ) that

T2K+NOνA find a 90% CL hint for CP violation or a 3σ indication for the mass

hierarchy for a given δ. We have done this by simulating 1000 possible outcomes

of T2K+NOνA by randomly generating realizations of the experiment properly dis-

tributed around the theoretical expected values for fixed leptonic mixing parameters

(including δ and the neutrino mass hierarchy). We have then computed, apply-

ing the same method, the probability P (A|δ) with which one of the new facilities,

in combination with T2K+NOνA, is able to discover CP violation or the neutrino

mass hierarchy. Eventually, we have computed the joint probability P (A,B|δ) that

T2K+NOνA provides a hint for CP violation (or measure the mass hierarchy) at a

given CL and that the combined data from T2K+NOνA and the new facility make a

discovery. The joint probability P (A, B̄|δ) is a way to measure the complementarity

of the new facility with T2K+NOνA. Indeed, for the values of δ where this proba-
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bility is large, there is a significant probability that CP violation will be missed by

T2K+NOνA but still be discovered at the new facility.

After having evaluated the degree of complementarity between T2K+NOνA and

the new facilities, we have introduced a very condensed performance estimator, the

gain fraction G. This is the conditional probability P (A|B) = P (A,B)/P (B) that

the new facility discovers CP violation (or the neutrino mass hierarchy) at 5σ given

that T2K+NOνA have been able (G) or unable (Ḡ) to see a hint of it at the 90%

CL (3σ), regardless of the value of δ. While the joint probability quantifies the

complementarity between a new facility and T2K+NOνA, the conditional probabilty

allows to make well-defined statistical statements on how the performance of a new

facility will be affected by the different possible outcomes of T2K+NOνA. It is par-

ticularly interesting to see how G and Ḡ for a given new facility scale with increasing

T2K+NOνA exposure, i.e. with increasing T2K+NOνA running time. This is of

extreme interest in a moment in which a decision on which facility should be built

must be taken, since it helps answering the questions: What would happen if we keep

running T2K+NOνA beyond their scheduled data taking period? Is that helpful to

improve the chances of new facilities to achieve their goals? Can the results from

T2K+NOνA help to decide what is the optimal next step?

Armed with these concepts, we have compared three new facilities: T2HK, LBNE

(in two versions, with a 10 kton and a 33 kton mass detector) and the 10 GeV

Neutrino Factory (NF10). The outcome of our analysis shows that:

1. NF10 is, as expected, the facility which shows the most improvement over

T2K+NOνA. For example, the joint probability P (A, B̄|δ) (i.e., the probability

that T2K+NOνA do not find a 90% CL hint for CP violation and that the

combination with NF10 provides a 5σ discovery) shows high peaks located at

δ ∼ ±30◦,±150◦, corresponding to regions of the δ parameter space that can be

tested by NF10 but not by T2K+NOνA. On the other hand, peaks for T2HK

(LBNE-33 kton) only appear for δ = −90◦ (δ = 90◦), i.e. at the same values

for which T2K+NOνA have the highest chances to discover CP violation. If

we keep running T2K+NOνA until 2030, the joint probabilities for these two

facilities vanish, showing that the areas of the parameter space explored by

T2HK and LBNE are less complementary to those probed by T2K+NOνA.

2. In case of a positive hint for CP violation at T2K+NOνA at the 90% CL,

NF10 has a 90% chance to improve the statistical significance of the hint up

to 5σ. The gain fraction reaches a plateau very early, showing that running

T2K+NOνA beyond, say, 2020 will not increase the gain fraction of NF10.

The super-beam with highest chance to discover CP violation at 5σ in case of

a positive hint at T2K+NOνA is T2HK. In this case, G also reaches a plateau

for a rather low T2K+NOνA exposure, and running T2K+NOνA beyond 2020
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does not increase their combined discovery potential significantly. The perfor-

mance of T2HK, however, is strongly affected by our present ignorance of the

neutrino mass hierarchy. If the hierarchy is still unknown at the time of T2HK

data taking, then G ∼ 0.45. On the other hand, if some other experiment is

able to measure the hierarchy, we see that G increases significantly to ∼ 0.75.

Eventually, LBNE is the only facility whose gain fraction increases linearly with

T2K+NOνA exposure. In this case, keeping both experiments running adds

information to the new facility data, reaching G ∼ 0.45 if T2K+NOνA keep

running until 2030 (G ∼ 0.1 when the 10 kton version is considered).

3. In case T2K+NOνA are not able to detect CP violation at the 90% CL, all

of the considered super-beams will have a very low discovery probability, even

though for low T2K+NOνA exposure (say, until 2020) we can still see some

hierarchy in the performances of T2HK and LBNE-33 kton (for which we get

Ḡ ∼ 0.2 and Ḡ ∼ 0.1, respectively). If we keep running T2K+NOνA until 2030

with still no hint of CP violation, then the chances that one of these facilities

will be able to discover CP violation at 5σ will all be below 10%. On the other

hand, the gain fraction Ḡ at NF10 ranges from Ḡ ∼ 0.6 in 2020 to Ḡ ∼ 0.35

in 2030. This is the only facility with a non-negligible probability to discover

CP violation in the leptonic sector if no hint of it is present even after running

T2K+NOνA until 2030.

4. The discovery of the true neutrino mass hierarchy at 5σ is not a good observable

to compare the performances of new facilities, as all of them (with the exception

of T2HK) have been designed to maximize their probability to achieve this goal.

However, it should be stated that if T2K+NOνA detect a 90% CL hint on the

true hierarchy by 2020, then the chances that T2HK can confirm such hint at

5σ are as high as 60% (all other facilities have G = 1 in this case). On the

other hand, if T2K+NOνA have not seen a preferred hierarchy by 2020, then

the chances that T2HK can detect the true hierarchy at 5σ fall to less than

5%. In this case, while NF10 and LBNE-33 kton still show Ḡ = 1, the smaller

version of LBNE will have a very good chance to discover the neutrino mass

hierarchy but it will not be guaranteed (with Ḡ ranging from 0.85 to 0.90 if

T2K+NOνA are kept running until 2020 or 2030, respectively).
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