PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H⁺-ATP Synthase

Highlights
- Phosphorylation of S39 of human IF1 by PKA prevents its binding to the ATP synthase
- Dephosphorylated IF1 binds and inhibits both activities of the H⁺-ATP synthase
- Dephosphorylated IF1 upregulates glycolysis in G2/M, hypoxia, and cancer
- Adrenergic stimulation upregulates heart ATP production by phosphorylation of IF1

Authors
Javier García-Bermúdez, María Sánchez-Aragó, Beatriz Soldevilla, Araceli del Arco, Cristina Nuevo-Tapiales, José M. Cuezva

Correspondence
jmcuezva@cbm.csic.es

In Brief
García-Bermúdez et al. identify a mechanism that regulates the activity of oxidative phosphorylation upon the changing energy demand of cells and tissues. The phosphorylation of the mitochondrial ATPase Inhibitory Factor 1 (IF1) in S39 by the activation of PKA abrogates its binding and inhibitory activity on the H⁺-ATP synthase.
PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H⁺-ATP Synthase

Javier García-Bermúdez,1 María Sánchez-Aragó,1 Beatriz Soldevilla,1 Araceli del Arco,1,2 Cristina Nuevo-Tapiales,1 and José M. Cuezva1,2*
1Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2Área de Bioquímica, Universidad de Castilla la Mancha, 45071 Toledo, Spain
*Correspondence: jmcezua@cbm.csic.es
http://dx.doi.org/10.1016/j.celrep.2015.08.052
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

The mitochondrial H⁺-ATP synthase synthesizes most of cellular ATP requirements by oxidative phosphorylation (OXPHOS). The ATPase Inhibitory Factor 1 (IF1) is known to inhibit the hydrolase activity of the H⁺-ATP synthase in situations that compromise OXPHOS. Herein, we demonstrate that phosphorylation of S39 in IF1 by mitochondrial protein kinase A abolishes its capacity to bind the H⁺-ATP synthase. Only dephosphorylated IF1 binds and inhibits both the hydrolase and synthase activities of the enzyme. The phosphorylation status of IF1 regulates the flux of aerobic glycolysis and ATP production through OXPHOS in hypoxia and during the cell cycle. Dephosphorylated IF1 is present in human carcinomas. Remarkably, mouse heart contains a large fraction of dephosphorylated IF1 that becomes phosphorylated and inactivated upon in vivo β-adrenergic stimulation. Overall, we demonstrate the essential function of the phosphorylation of IF1 in regulating energy metabolism and speculate that dephospho-IF1 might play a role in signaling mitohormesis.

INTRODUCTION

The mitochondrial H⁺-ATP synthase (Walker, 2013) synthesizes most of the ATP that is needed to sustain cellular activity in normal differentiated cells. This protein complex also participates in the execution of cell death (Sánchez-Aragó et al., 2013a) and in shaping mitochondrial ultrastructure (Paumard et al., 2002). In mitochondria, futile ATP hydrolysis by the H⁺-ATP synthase is inhibited by the ATPase Inhibitory Factor 1 (IF1) that reversibly binds to the enzyme (Walker, 2013). The structure of the inhibited F₁-ATPase complex with bound IF1 in the presence of ATP has been solved (Bason et al., 2014; Cabezón et al., 2003). Residues 1–37 in the mature IF1 stabilize the binding of the inhibitor to the αβ-interface in the F₁-ATPase domain, blocking rotary catalysis (Cabezón et al., 2003). The expression of IF1 varies greatly between different normal human tissues and is highly overexpressed in some prevalent human carcinomas (Sánchez-Aragó et al., 2013b; Sánchez-Cenizo et al., 2010). The physiological function ascribed to IF1 is to inhibit the hydrolase activity of the H⁺-ATP synthase when mitochondria becomes de-energized, such as in hypoxic cells (Campanella et al., 2008; Gledhill et al., 2007). However, data obtained in cancer (Formentini et al., 2012; Sánchez-Aragó et al., 2013b; Sánchez-Cenizo et al., 2010) and in stem cells (Sánchez-Aragó et al., 2013c), as well as in mouse models over-expressing an active IF1 in neurons (Formentini et al., 2014), support that, in the in vivo context, IF1 also inhibits the synthase activity of the H⁺-ATP synthase. Moreover, the IF1-mediated inhibition of the enzyme has been shown to trigger a mild reactive oxygen species (ROS) signal that promotes metabolic reprogramming and nuclear preconditioning aimed at preventing cell death (Formentini et al., 2012; Sánchez-Aragó et al., 2013b), two events that favor neuroprotection in vivo after challenging the brain of transgenic IF1-expressing mice with an excitotoxic insult (Formentini et al., 2014). In line with these findings, silencing of IF1 has been shown to ameliorate severe mitochondrial respiratory chain dysfunctions (Chen et al., 2014).

Despite the main role of IF1 in pathophysiology, the mechanisms that regulate its activity in vivo are basically unknown. Previous phosphoproteomic analyses have reported that IF1 is phosphorylated in S39 in skeletal muscle (Zhao et al., 2011) and cancer cell lines (Sharma et al., 2014; Zhou et al., 2013). The phosphorylation of human IF1 in S63 has also been reported (Christensen et al., 2010; Zhou et al., 2013). In this study, we show that activation of PKA phosphorylates IF1 and that phosphorylation of S39 in IF1 interferes with its ability to interact with the H⁺-ATP synthase. Remarkably, phosphorylation of IF1 affects both the synthetic and hydrolytic activities of the enzyme and contributes to in vivo metabolic reprogramming for adaptation to different physiological contexts.

RESULTS

IF1 Is Phosphorylated in Some Human Cancer Cell Lines

Protein extracts of colon (HCT116), cervix (HeLa), breast (BT549), lung (HOP62), and ovarian (OVCAR8) cancer cell lines
fractionated on two-dimensional (2D) gels revealed the existence of protein isoforms of IF1 that differed in the isoelectric point (pI) depending on the cell line considered (Figure 1A). Focusing of β-F1-ATPase was used as a control (Figure 1A). In breast and lung cancer cells, the main isoform of IF1 has a pI of 8.9, close to the theoretical pI of the protein. In contrast, in colon, cervix, and ovarian cancer cells, IF1 appeared as two main isoforms, with pIs in the range of 7.6–8.1 (Figure 1A). The existence of more acidic isoforms differing in the pI of the protein suggested the covalent modification of IF1 by phosphorylation. This was confirmed in HCT116 cells by treatment of cell lysates with CiP (calf-intestinal alkaline phosphatase), which promoted the shift of IF1 to the basic region of the gel (pI = 8.9) (Figure 1B). Immunoprecipitation experiments with anti-IF1 of cellular extracts preincubated or not with CiP and blotted with anti-phospho-Ser antibody confirmed the presence of phosphorylated serines in IF1 in HCT116 and SHSY5Y cells (Figure 1C). (Figure 1D). Treatment of the cells with two different inhibitors of the activity of PKA—the pseudosubstrate inhibitory peptide PKI (protein kinase inhibitor) or the competitive inhibitor H89 (Figure 1D)—revealed IF1 in its dephosphorylated state (pI = 8.9) (Figure 1D). In contrast, when cells were treated with the membrane-permeable PKA activator dibutyryl cAMP (db-cAMP), all IF1 was phosphorylated (pI = 7.6–8.1) (Figure 1D) in the absence of relevant changes on the content of IF1 (Figure 1E).

Western blots of immunoprecipitated IF1 from BT549 cells, which showed most of IF1 in its dephosphorylated state (pI = 8.9) (Figure 1D), revealed no immunoreactivity toward the specific PKA anti-phospho-Ser antibody when the cells were left untreated or treated with the PKA inhibitor H89 (Figure 1F). In contrast, phosphorylated IF1 was immunoprecipitated from BT549 cells treated with db-cAMP or with the adenylyl cyclase activator forskolin (Frsk) (Figure 1F), further supporting the differential regulation of IF1 phosphorylation by PKA in different
cancer cells (Figure 1A). In vitro PKA phosphorylation assays of IF1 resulted unsuccessfully (Figures S1A and S1B), suggesting that phosphorylation of IF1 might require scaffolding proteins.

Dephosphorylation of IF1 Promotes Its Binding to the F1-ATPase Complex
First, we studied the effect of IF1 phosphorylation on its capacity to bind the F1-ATPase complex (Figure 2A). Co-immunoprecipitation experiments of IF1 with a polyclonal antibody against the β-F1-ATPase subunit were carried out in HCT116 cells that were left untreated or treated with inhibitors (H89 and PKI) or the activator (db-cAMP) of IF1 phosphorylation (Figure 2A). Basal untreated HCT116 cells or cells treated with db-cAMP showed no co-immunoprecipitation of IF1 with the β subunit of the H+-ATP synthase (Figure 2A). In contrast, cells treated with H89 and PKI—and, hence, with most of IF1 in its dephosphorylated state—showed high levels of IF1 co-immunoprecipitated with β-F1-ATPase (Figure 2A). Similar experiments were carried out using another antibody against the F1-ATPase complex, confirming that the dephosphorylation status of IF1 is required for its interaction and binding to the H+-ATP synthase (Figure 2B). Interestingly, we noted that, in some experiments, a low amount of IF1 could be immunoprecipitated from control HCT116 cells (compare CRL in Figures 2A and 2B), suggesting a potential regulation of the phosphorylation of IF1 upon cellular conditions (discussed later). Consistent with these findings, Blue Native (BN) gels of mitochondrial membrane proteins from HCT116 cells revealed that the amount of IF1 bound to the ATP synthase...
was increased in cells treated with H89 when compared to control or Frsk-treated cells (Figure 2G).

Dephosphorylated IF1 Inhibits Both the Synthase and Hydrolase Activities of the H⁺-ATP Synthase

HCT116 cells were incubated with H89 or db-cAMP or were left untreated prior to mitochondrial extraction to study the effect of IF1 phosphorylation on the hydrolase and synthase activities of the enzyme (Figures 2D and 2E). Mitochondria from H89-treated cells containing dephosphorylated IF1 showed a diminished ATP hydrolase activity when compared to controls (Figure 2D), suggesting that phosphorylation of IF1 prevents its inhibitory action on the hydrolase. db-cAMP-treated cells displayed almost the same ATP hydrolase activity as that of control untreated cells (Figure 2D). Likewise, determination of the ATP synthetic activity of the enzyme in isolated mitochondria revealed that the production of ATP when IF1 is in its dephosphorylated state (H89 in Figure 2E) is diminished when compared to control mitochondria and similar to that of mitochondria incubated with oligomycin (OL) (Figure 2E). A slightly enhanced ATP synthetic activity was observed in cells treated with db-cAMP (Figure 2E).

Moreover, the ATP synthetic activity of the enzyme assessed in digitonin-permeabilized HCT116 cells treated with H89 showed a significant inhibition when compared to control cells (Figure 2F). In contrast, cells treated with db-cAMP significantly increased the rate of ATP synthesis in this situation (Figure 2F). Overall, the results support that dephosphorylated IF1 binds and inhibits the H⁺-ATP synthase both in hydrolytic and synthetic modes, whereas phosphorylated IF1 is unable to bind and, hence, to interfere with the normal and reverse activities of the H⁺-ATP synthase.

Phosphorylation of Serine 39 Is the Switch-Off Button

To identify the potential serine residues involved in regulating the activity of IF1 on the H⁺-ATP synthase we created the phospho-mutant (S27A, S39A, and S63A) and phospho-mimetic (S27E, S39E, and S63E) point mutants of the serine residues present in the mature IF1 protein (Figure S1C; Table S1). To comply with the nomenclature of previous phosphoproteomic studies, the mutants are defined by residue number in the full-length IF1 sequence unless explicitly mentioning the residue in the mature protein. Transfection of HCT116 cells with a plasmid encoding the wild-type version of IF1 triggered a large overexpression of the dephosphorylated protein (Figure 3A) and the partial inhibition of the synthesis of ATP when compared to control cells transfected with the empty vector (EV) (Figure 3B). It should be noted that the cellular stress triggered by transfection already promoted dephosphorylation of IF1 (EV; Figure 3A). Analysis of the effect of the expression of the phospho-mutant and phospho-mimetic constructs on ATP synthase activity in permeabilized cells revealed that only S39A had a significant negative effect on the activity when compared to the wild-type IF1 or to the corresponding phospho-mimetic S39E, which presented a similar ATP output to EV-transfected cells (Figure 3B). Consistent with a role for the phosphorylation of S39 in regulating IF1 activity, we observed that Frsk-treated cells overexpressing S39A did not relieve the inhibition on the ATP synthase activity (Figure 3C), as it occurs in cells expressing wild-type IF1 (Figure 3C). As expected, cells expressing S39E showed higher ATP synthase activities than cells expressing wild-type IF1, further revealing no major differences when incubated with H89 or Frsk (Figure 3C).

As shown earlier (Figures 2A and 2B), the inhibition of the ATP synthase correlated with the binding of IF1 to F1-ATPase as revealed by co-immunoprecipitation of the inhibitory S39A mutant with β-F1-ATPase (Figure 3D) and the negligible pull-down of the non-inhibitory S39E in the same situation (Figure 3D). Co-immunoprecipitation of S39A and β-F1-ATPase also occurred when cells were treated with Frsk (Figure 3E). Moreover, BN gels also showed that interaction with the ATP synthase only occurs when the S39A mutant is being expressed (Figure 3F). Overall, the results support that phosphorylation of S39 is a main player in preventing the binding and inhibition of IF1 on the ATP synthase.

Dephosphorylated IF1 Inhibits OXPHOS and Enhances Aerobic Glycolysis

Consistent with previous findings showing that PKA-mediated phosphorylation affects the activity of mitochondrial respiratory complexes, we observed that cells treated with H89 and PKI had reduced respiratory rates (Figure 4A). OL-sensitive respiration (OSR) is a measure of the activity of the H⁺-ATP synthase. To verify that the effect of PKA on OSR was mainly due to IF1 and not to the effect of PKA on other proteins of the OXPHOS (oxidative phosphorylation) system, we performed the same experiments but in silenced IF1 cells (Figure 4B). The results revealed that silencing of IF1 reverted the effect of H89 on OSR (Figure 4B), supporting that dephosphorylated IF1 is inhibiting the synthetic activity of the H⁺-ATP-synthase in cells in culture.

The inhibition of OXPHOS by IF1 is balanced by a burst in aerobic glycolysis (Sánchez-Cenizo et al., 2010). Hence, we determined the glycolytic flux by measuring the internal rate of lactate production (Figure 4C). Aerobic glycolysis was upregulated in cells treated with PKA inhibitors and was not affected when cells were incubated with db-cAMP (Figure 4C). Silencing of IF1 prior treatment with both PKA inhibitors also resulted in blunting the upregulation of aerobic glycolysis (Figure 4D). Overall, we show that the phosphorylation of IF1 determines its biological activity and, therefore, that its regulation mediates cellular reprogramming of energy metabolism.

IF1 and the Flux of Energy Provision Pathways

We compared the phosphorylation of IF1 of HCT116 cells growing in the presence of OL versus that of cells growing in the presence of 2-deoxyglucose (2DG) (Figure 5A), which are known to regulate the flux of energy metabolism through glycolysis and OXPHOS, respectively (Figure 5A) (Sánchez-Aragó et al., 2010). Despite the presence of OL, we observed that a fraction (~30%) of IF1 becomes dephosphorylated when HCT116 cells are incubated with OL (Figure 5A). Incubation of the cells with 2DG, which upregulates OXPHOS, does not significantly affect the phosphorylation of IF1 (Figure 5A). Similar experiments in BT549 cells that have most of IF1 dephosphorylated in basal state (Figure 1A) revealed the opposite situation showing a shift of a fraction of IF1 (~30%) toward a more
phosphorylated state when the cells are incubated in the presence of 2DG (Figure 5B). Consistently, changes in the phosphorylation status of IF1 in BT549 cells also correlated with an increase in the activity of OXPHOS, as revealed by OSR and the reduction of aerobic glycolysis (Figure 5B).

IF1 and Progression through the Cell Cycle

Cell cycle progression is known to affect the relative activity of the main energy provision pathways of the cell (Chen et al., 2007). Whereas the G1 phase is largely dependent on OXPHOS, the reductive G2/M phase depends on aerobic glycolysis and is largely independent of oxygen consumption. Hence, we compared the phosphorylation of IF1 of HCT116 cells arrested in G1 by incubation with the DNA-polymerase inhibitor aphidicolin (Figure 5C) versus that of cells arrested in G2/M by incubation with nocodazole, a disruptor of the mitotic spindle (Figure 5C). The results showed that most of IF1 was phosphorylated in G1 cells, whereas dephosphorylated IF1 was present in cells arrested in G2/M (Figure 5D). Consistently, the changes in IF1 phosphorylation nicely correlated with the relative activity of OXPHOS and aerobic glycolysis in the different phases of the cell cycle, with dephosphorylated IF1 being concurrent with repressed OXPHOS and an enhanced aerobic glycolysis of the cells (Figure 5D).

IF1 and Cellular Hypoxia

Cellular hypoxia, induced either by oxygen deprivation or chemically by incubation of the cells with CoCl2, promotes the arrest of OXPHOS (OSR in Figure 6A) and triggers aerobic glycolysis (Figure 6A). Consistently, we observed the shift of IF1 toward the dephosphorylated state in hypoxic cells (Figure 6B). The concurrent inhibition of both the ATP hydrolase (Figure 6C) and ATP synthetic (Figure 6D) activities of the H+ -ATP synthase by hypoxia was confirmed in isolated mitochondria (Figure 6C) and in permeabilized HCT116 cells (Figure 6D), respectively. Interestingly, silencing of IF1 in cells treated with CoCl2 blunted the inhibition of the hydrolase and synthetic activities of the H+ -ATP synthase (Figure S2). Moreover, incubation of the cells with CoCl2 in the presence of Frsk enhanced both the ATPase (Figure 6C) and synthase (Figure 6D) activities of the enzyme. Consistently, the IF1-mediated inhibition of the ATP synthase in CoCl2-treated cells also correlated with an enhanced binding of IF1 onto the
enzyme, as revealed by BN gels (Figure 6E), further supporting the role of IF1 in reprogramming energy metabolism.

IF1 Is Dephosphorylated in Prevalent Human Carcinomas

We have recently stressed the contribution of IF1 to the glycolytic phenotype in some human carcinomas (Formentini et al., 2012; Sánchez-Aragó et al., 2013b; Sánchez-Cenizo et al., 2010). To assess the phosphorylation status of IF1 in tumor samples from human patients, we used phosphate-affinity (Phos-tag) PAGE and western blotting (Kinoshita et al., 2009). Consistently, incubation of the samples with the phosphatase (CIP in Figure 6F) abrogates the differences in electrophoretic migration between phospho-IF1 (p-IF1) and IF1. Phos-tag immunoblot analysis indicated that most colorectal carcinomas (Figure 6H), breast adenocarcinomas (Figure 6G), and lung squamous cell carcinomas (Figure 6H) and adenocarcinomas (Figure 6I) have IF1 in its dephosphorylated state, strongly supporting a role for IF1 as inhibitor of the H+-ATP synthase and, hence, of OXPHOS in human cancers.

Activation of PKA Triggers the Phosphorylation and Inactivation of IF1 in Heart In Vivo

Stimulation of cardiac β-adrenoceptors is crucial to increase heart function under stress (Steinberg and Brunton, 2001). Their coupling to stimulatory G proteins (Gs) triggers the activation of adenylyl cyclase, which generates the cAMP involved in downstream signaling through the activation of PKA. To test in vivo the relevance of IF1 phosphorylation, we treated mice with clenbuterol, a β-adrenergic agonist, and assayed the phosphorylation status of IF1 in parallel with the ATP synthase and hydrolase activities of the enzyme in isolated heart mitochondria. Other...
mice were treated with propranolol, a β-adrenergic antagonist. Interestingly, ~50% of IF1 in mouse heart is found in its phosphorylated state (mouse 2 in Figure 7A). The administration of clenbuterol promotes a sharp increase in the phosphorylation of IF1 (mice 1, 4, and 5 in Figure 7A) that is abrogated by incubation of heart extracts with CIP (mice 1, 4, and 5 in Figure 7A). Consistently, in this situation, we observed a sharp increase in the concentration of cAMP in isolated heart mitochondria (Figure 7B). In contrast, the administration of propranolol shifted the phosphorylation status of IF1 toward its dephosphorylated state (mouse 3 in Figure 7A) and had no effect on intramitochondrial cAMP (Figure 7B). Remarkably, a short 10-min incubation of isolated mitochondria in the presence of the membrane-permeable db-cAMP triggered the rapid and complete phosphorylation of IF1 (Figure 7C), supporting the participation of mitochondrial PKA in the regulation of IF1 phosphorylation. Overall, these findings support the hypothesis that, under β-adrenergic activation, when the energy demand is enhanced, most of the IF1 reserve of the cell becomes inactivated to prevent its binding to the H+-ATP synthase in order to favor a higher output of ATP. Consistent with this suggestion, we observed that both the ATP hydrolytic (Figure 7D) and synthetic (Figure 7E) activities of the H+-ATP synthase assayed in isolated heart mitochondria of clenbuterol-treated mice were significantly higher than that in mitochondria of control, saline-treated mice. In agreement with the shift toward dephosphorylated IF1 upon propranolol administration (Figure 7A), we observed that both activities of the H+-ATP synthase were significantly reduced when compared to those of saline-treated mice (Figures 7D and 7E).

DISCUSSION

A long-standing principle is that IF1, the intrinsically disordered inhibitor of the H+-ATP synthase (Bason et al., 2014; Gordon-Smith et al., 2001), is a unidirectional inhibitor of ATP hydrolysis, having no direct effect on ATP synthesis when in the presence of a proton motive force (Walker, 2013). However, previous data from our laboratory obtained in cells (Formentini et al., 2012; Sánchez-Aragó et al., 2013b, 2013c), and in a mouse model overexpressing an active IF1 in neurons (Formentini et al., 2014), support that in vivo IF1 also inhibits the synthase activity of the H+-ATP synthase. Herein, we demonstrate that, when
IF1 is dephosphorylated, it inhibits both the synthase and hydrolase activities of the enzyme, as assessed in permeabilized cells and in isolated mitochondria from cells and mouse hearts. We show that IF1 is subjected to reversible post-translational modification by phosphorylation, most probably through the activation of mitochondrial PKA. Mechanistically, we demonstrate that phosphorylation of IF1 in S39 impedes its interaction with the H⁺-ATP synthase, hampering in this way its potential as an inhibitor of the enzyme. Moreover, we unveil the relevance that the phosphorylation of IF1 has for understanding the physiological role that this protein plays in the mitochondrial adaptations that require metabolic rewiring, such as in the response to an increased demand for ATP provision by OXPHOS in vivo or in the activation of aerobic glycolysis during progression through the cell cycle, in hypoxia, and in human carcinomas. Overall, the phosphorylation of IF1 acts as the molecular switch that regulates the inhibitory activity of IF1 on the synthase, hence revealing a mechanism to coordinate metabolic activity in the cytoplasm and in mitochondria in response to changes in cellular signaling aimed at satisfying the fluctuating energy demand.

Figure 6. Hypoxia and Cancer Trigger the Dephosphorylation of IF1

(A–D) HCT116 cells were left untreated (CRL, closed bar), treated with CoCl₂ (gray bar), or subjected to oxygen deprivation (open bar). CoCl₂ treatment was also added along with H89 (hatched bar) or Frsk (dotted bar). The OCR and initial rates of lactate production (A) and the analysis of IF1 phosphorylation (B) were determined. In (C), hydrolase activity of the H⁺-ATP synthase was determined in isolated mitochondria. In (D), rates of ATP production in permeabilized HCT116 cells are given. The histograms in (A), (C), and (D) indicate the mean ± SEM of three experiments.

(E) BN immunoblot of mitochondrial membranes from HCT116 cells treated with Frsk or CoCl₂. The co-migration of the ATP synthase (FoF1) with IF1 is shown by blotting with anti-β-F1-ATPase and anti-IF1 antibodies, respectively. The histogram shows the IF1/βF1 ratio of three different experiments.

(F–I) Phos-tag SDS-PAGE analysis of the phosphorylation of IF1 in human extracts of colorectal carcinomas (CRC) in (F), breast carcinomas (BC) in (G), lung squamous cell carcinomas (LSC) in (H), and lung adenocarcinomas (LAC) in (I). Histograms represent the percentage of phospho-IF1 (p-IF1, open bars) and dephosphorylated IF1 (IF1, closed bars) in the samples. Bars indicate the mean ± SEM. The number of studied patients is indicated. *p < 0.05 when compared to CRL by Student’s t test.
Previous reports have described the phosphorylation of S39 and S63 of human IF1, which, in the mature protein, correspond to S14 and S38, respectively (see Figure S1C). Herein, we show that phosphorylation of S39/S14 determines the biological activity of the protein by preventing its interaction with the H+-ATP synthase. Phosphorylation of IF1 is not restricted to a small fraction of the protein but rather can affect the whole pool of IF1, as revealed in different metabolic situations. IF1 has been described as an intrinsically disordered protein (Gordon-Smith et al., 2001), as this conformation of the inhibitor is essential for its initial interaction with the F1-ATPase domain of the H+-ATP synthase (Bason et al., 2014) (Figure 7F). Intrinsically disordered proteins are important components of cellular signaling, because conformational disorder-to-order transitions mediate biological function (Wright and Dyson, 2015) and protein phosphorylation is known to regulate these transitions (Bah et al., 2015). Hence, we suggest that phosphorylation of S39/S14 might promote the folding of the intrinsically disordered IF1 and that this conformational transition would impede its capacity to grasp and enter its binding site on F1-ATPase (Figure 7F) (Bason et al., 2014). We cannot exclude that steric hindrance and/or electrostatic repulsions of the phosphorylated S39/S14 could also contribute in interfering the binding of IF1. Interestingly, the highly conserved S39/S14 is placed at the initiation of the single α-helical turn that interacts with the γ-subunit (Figure 7G) (Bason et al., 2014).

The activity of PKA is involved in the phosphorylation of IF1, triggering the activation of the synthase and hydrolase activities of the H+-ATP synthase and thus supporting that IF1, when bound to the enzyme, inhibits both activities (Figure 7H). The activation of OXPHOS mediated by cAMP/PKA signaling is in agreement with previous reports by others (Acín-Perez et al., 2009; Di Benedetto et al., 2013; Livigni et al., 2006; Papa et al., 2008). However, it should be noted that the physiological relevance, mitochondrial substrates, and the site of PKA action are still a matter of debate (Di Benedetto et al., 2014; Valsecchi et al., 2013), despite PKA being described in the mitochondria of a wide range of mammalian species (Pagliarini and Dixon, 2006). Moreover, PKA has been recently described to be associated with high-molecular-weight complexes of the inner mitochondrial membrane (Acín-Perez et al., 2014). In this line, it is well established that the activation of the β-adrenergic/adenyl cyclase/cAMP/PKA signaling pathway in cardiac muscle results in the phosphorylation and activation of protein targets involved in the provision of metabolic precursors for oxidative purposes (Christian et al., 1969), concurrently with a raise of cytoplasmic Ca2+ (Kamp and Hell, 2000), which is a key element for the activation of OXPHOS (Glancy and Balaban, 2012). Intracellular Ca2+ triggers the contraction of muscle fibers and is subsequently sequestered by mitochondria (Rizzuto et al., 2012), where it could activate the soluble adenyl cyclase that has been shown to be regulated by bicarbonate (Acín-Perez et al., 2009) and Ca2+ (Di Benedetto et al., 2013), building up intramitochondrial cAMP, as we have observed in the heart mitochondria of clenbuterol-treated mice. Since cAMP is not permeable across mitochondrial membranes (Di Benedetto et al., 2013) and we have observed the rapid phosphorylation of IF1 in isolated mitochondria in response to the permeable db-cAMP, we suggest that phosphorylation of IF1, similarly to COXIV-1 (Acín-Perez et al., 2011), could be exerted inside mitochondria by PKA or a PKA-like enzyme (Figure 7H) (Acín-Perez et al., 2009; Di Benedetto et al., 2014; Valsecchi et al., 2013).

In our hands, PKA is unable to phosphorylate IF1 in vitro assays, suggesting the requirement of additional proteins for IF1 phosphorylation. Three major A-kinase anchor proteins (AKAPs) targeting PKA to mitochondria have been described: AKAP-121 (Huang et al., 1997) and WAVE-1 (Danial et al., 2003), which tether PKA to the outer mitochondrial membrane, and sphingosine kinase interacting protein (SKIP), which is mainly enriched in the inner mitochondrial membrane (Means et al., 2011). Targeting of AKAP-121 to mitochondria produces a burst in OXPHOS (Livigni et al., 2006). Hence, we cannot rule out that IF1 might be phosphorylated by mitochondrial PKA assisted by as-yet-unidentified anchoring proteins. Moreover, it is reasonable to suggest that dephosphorylation of IF1—and, hence, the activation of its inhibitory function—might be exerted by a mitochondrial phosphatase (Figure 7H). However, since IF1 is a mitochondrial protein with a very short half-life of ~120 min (Sánchez-Arago et al., 2013b), it is also possible that its high rate of turnover could reestablish its potential inhibitory activity on the H+-ATP synthase.

The primary biological role suggested for IF1 is to act as the mitochondrial protein that, in situations that compromise the proton motive force (hypoxia), prevents ATP hydrolysis and the waste of biological energy (Campanella et al., 2008; Gieddhill et al., 2007; Walker, 2013) (Figure 7H). In line with this idea, the disaggregation and activation of IF1 appear to be controlled by the ionic state of a histidine residue (H49) that is thought to provide a pH-sensitive switch between inactive and active states of the protein at relatively low values of intramitochondrial pH (Cabezon et al., 2000). The mechanisms that we are now describing in no way compromises our understanding of the regulation of IF1 function by pH but rather amplifies it because only dephosphorylated IF1 is able to bind the synthase and inhibit its hydrolase activity. Moreover, it illuminates the paradox that we have previously stressed regarding the high expression levels of IF1 found in tissues with high energy demand (brain, kidney, liver, and heart) (Sánchez-Arago et al., 2013b; Sánchez-Cenizo et al., 2010). In fact, we demonstrate a mechanism for the silencing of the inhibitory activity of IF1 on the H+-ATP synthase (Figure 7H) that might affect a fraction of the expressed protein in these tissues. Indeed, the presence of the bulk of IF1 in mouse heart in both its phospho- and dephosphorylated states offers the possibility of a reservoir for an enhanced tissue capacity of OXPHOS in response to a burst of metabolic demand, as we have shown after treatment of mice with clenbuterol and the subsequent enhanced production of ATP by mitochondria (Figure 7).

Provided that dephospho-IF1 binds and inhibits the ATP synthetic activity of the enzyme, the question is, what might be the role for a fraction of inhibitory IF1 in highly demanding tissues? One answer might be that this fraction of IF1 is being used for the fine adjustment of the mitochondrial output of ATP. Perhaps, although a speculation at the present stage is that the inhibition of a fraction of the available H+-ATP synthase by IF1 might be involved in cellular tuning by “mitohormesis” (Yun and Finkel, 2014). Indeed, IF1-mediated inhibition of the H+-ATP synthase
Figure 7. In Vivo Stimulation of PKA Promotes IF1 Phosphorylation and Its Inactivation
Mice were intraperitoneally injected with PBS (CRL; black traces and bars), 1 mg/kg clenbuterol (CLEN; red traces and bars), or 10 mg/kg propranolol (PROP; blue traces and bars).
(A) Phos-tag SDS-PAGE analysis of the phosphorylation of IF1 (p-IF1). CIP treatment of CLEN samples (green bars) were included as control. pIF1/total IF1 ratio is shown.
(B) cAMP in isolated heart mitochondria from mice treated as indicated.

(legend continued on next page)
has been shown to promote the production of superoxide radical (Formentini et al., 2012; Sánchez-Aragó et al., 2013b), a reactive oxygen species (ROS) signal of mild intensity that triggers nuclear reprogramming aimed at the activation of defense mechanisms to prevent cell death both in cancer cells (Formentini et al., 2012; Sánchez-Aragó et al., 2013b) and in neurons in vivo (Formentini et al., 2014) (Figure 7H). This speculation is further supported by the recent observations that the generation of mitochondrial ROS (Schaar et al., 2015) and the inhibition of the H+-ATP synthase (Chin et al., 2014) positively affect lifespan extension, hence claiming a relevant role for IF1 and the H+-ATP synthase in cell physiology.

EXPERIMENTAL PROCEDURES

Human Tumor Samples and Mouse Studies

Frozen tissue sections obtained from surgical specimens of untreated breast, lung, and colon cancer patients were processed. The project was approved by the Ethical Committee of the Universidad Autónoma de Madrid (CEI-24-571). For details, see the Supplemental Information. For mouse experiments, 12- to 20-week-old mice of the FVB genetic background were injected intraperitoneally with sterile PBS (GIBCO), 1 mg/kg clenbuterol (Sigma), or 10 mg/kg propyanol hydrochloride (Sigma) and sacrificed 12 hr after.

Cell Lines, Treatments, and siRNA Silencing

Human colorectal carcinoma HCT116 cells were grown in McCoy's 5A media. Details for other cell lines are provided in the Supplemental Information. Cells were treated with PKA agonists (100 μM db-cAMP or 40 μM forskolin) or inhibitors (10 μM competitive inhibitor H89 or 1 μM PKI fragment 6–22) for 12 hr before processing. Suppression of IF1 expression in HCT116 cells was performed using siPORT NeoFX Transfection Agent (Ambion) and a specific small interfering RNA (siRNA) (QIAGEN S100908075) at a final concentration of 20 nM. An inefficient siRNA sequence, Silencer Select Negative Control #1 (Ambion), was used as a control. For hypoxic stress, cells were treated either with 200 μM CoCl2 for 12 hr or deprived of oxygen (1% O2) for the indicated times in a Hypoxic Workstation H5S (Don Whitley Scientific). Dephosphorylation of proteins with CiP (New England Biolabs) was carried out by incubation of 50 μg of cellular extracts at 37°C for 1 hr with 20 U of CIP. Protein concentration was determined using the Bradford reagent using BSA as standard.

IF1 Mutants

Site-directed mutagenesis of IF1 to generate the phospho-mutants S27A, S39A, and S63A and phospho-mimetic S27E, S39E, and S63E constructs was performed with QuickChange Lightning (Agilent Technologies) using the primers indicated in Table S1 and the pCMV-SPORT6-IF1 plasmid (Sánchez-Cenizo et al., 2010).

2D and BN Gel Electrophoresis

Isoelectric focusing (IEF) was performed with 13-cm Immobiline DryStrips of different pH gradients (pH 3–10 L [linear], pH 3–11 NL [nonlinear], or pH 6–11 L; GE Healthcare) using an Etan ITPGPhor3 IEF unit (GE Healthcare). For BN gels, isolated mitochondria were suspended in 50 mM Tris-HCl, pH 7.0, containing 1 M 6-amino-hexanoic acid, at a final concentration of 10 mg/ml. The membranes were solubilized by the addition of 10% digitonin. 5% Serva Blue G dye in 1 M 6-amino-hexanoic acid was added to the solubilized membranes. Additional details for 2D and BN gels are provided in the Supplemental Information.

Immunoblot Analysis

Details of protein fractionation on SDS-PAGE and of the antibodies used in western blots are provided in the Supplemental Information.

Immunoprecipitation Assays

Cells were lysed on ice in buffer (50 mM Tris-HCl, pH 6.0, 150 mM NaCl, 0.5% Nonidet P40), complete EDTA-free protease inhibitor cocktail (Roche), and phosphatase inhibitor cocktail (Sigma). Protein from cell lysates (400 μg) was incubated with 12 μg of the indicated antibody bound to EZ View Red Protein G Affinity Gel at 4°C.

Aerobic Glycolysis and Oxygen Consumption Rates

The oxygen consumption rates (XF24 Extracellular Flux Analyzer, Seahorse Bioscience) and the initial rate of lactate production were determined as previously described (Sánchez-Cenizo et al., 2010).

Determination of the H+-ATP Synthase Activities

Mitochondria isolated from HCT116 cells or from mouse hearts were used for the determination of the hydrolase activity of the enzyme (Formentini et al., 2014). The ATP synthetic activity was determined in isolated mitochondria and in digitonin-permeabilized cells (Vives-Bauza et al., 2007). Aliquots, taken at indicated time intervals, were precipitated with 6% HClO4 and neutralized with 10% KOH, and the ATP content was determined using the ATP Bioluminiscence Assay Kit (Roche) to assess the linear rate of ATP synthesis (Mourier et al., 2014). Inhibition of the hydrolase and synthase activities of the H+-ATP synthase was accomplished by the addition of 30 μM OL.

Determination of cAMP

cAMP levels were determined in 200 μg of isolated heart mitochondrial protein using the cAMP Direct Immunoassay Kit (Abcam).

Phosphate-Affinity PAGE Assay

Samples were resuspended in Phos-tag buffer (Wako Chemicals). To detect phosphorylated IF1, 30 μg of the sample was loaded in 10% polyacrylamide gels containing 80 μM Phos-tag acrylamide and 160 μM MnCl2. Gels were transferred onto nitrocellulose membranes in the presence of 0.1 mM EDTA and further blotted against anti-IF1.
Statistical Analysis
Statistical analyses were performed using a two-tailed Student’s t test. The results shown are means ± SEM. *p < 0.05 was considered statistically significant.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, two figures, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.08.052.

AUTHOR CONTRIBUTIONS
J.G.-B., M.S.-A., B.S., A.d.A., and C.N.-T. carried out experiments and analyzed data. J.G.-B. and M.S.-A. contributed in design of the paper. J.M.C. designed the study, carried out the analyses and interpretation of data, and wrote the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS
The technical assistance of M. Chamorro and C. Nunez de Arenas is acknowledged. J.G.-B. and C.N.-T. were supported by pre-doctoral fellowships from FPI-MIICNN/MINECO and Fondo Social Europeo, Spain. This work was supported by grants from Ministerio de Economı´a y Competitividad (SAF2013-FPI-MICINN/MINECO and Fondo Social Europeo, Spain). The technical assistance of M. Chamorro and C. Nunez de Arenas is acknowledged. J.G.-B. and C.N.-T. were supported by pre-doctoral fellowships from FPI-MIICNN/MINECO and Fondo Social Europeo, Spain. The CBMSO received an institutional grant from the FRA. The FRA.

Received: April 16, 2015
Revised: July 28, 2015
Accepted: August 17, 2015

REFERENCES

