Peripheral Amyloid Levels Present Gender Differences Associated with Aging in AβPP/PS1 Mice

Lara Ordóñez-Gutiérrez, Marta Antón and Francisco Wandosell∗
Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) C/ Nicolás Cabrera 1, Universidad Autónoma Madrid, Madrid, Spain

Handling Associate Editor: Ricardo Allegri

Accepted 17 October 2014

Abstract. The accumulation of amyloid-β (Aβ) peptide is one of the major neuropathological hallmarks of Alzheimer’s disease (AD). We have analyzed whether the progression of amyloidosis differentially affects males and females along aging in AβPP/PS1 transgenic mice. The levels of peripheral amyloid, Aβ40 and Aβ42, are not modified in either sex until 9 months of age. After that, however, there is an increase in amyloid levels in plasma among females and a decrease among males. These findings could be essential to design gender-specific strategies in other in vivo experiments or even in AD treatments.

Keywords: Aging, Alzheimer’s disease models, amyloid-β, AβPP/PS1, peripheral amyloid, transgenic mice

Alzheimer’s disease (AD) is the most common neurodegenerative disorder characterized by two pathological features in the brain, extracellular amyloid plaques and intracellular neurofibrillary tangles [1, 2]. Most of AD cases are sporadic (unknown cause); however a minor population of AD is from genetic origin, known as familial AD and related to any mutation in the amyloid-β protein precursor (AβPP) [3], Presenilin 1 [4], or Presenilin 2 [5]. In the study of AD and in order to find therapies, different transgenic mouse models expressing AβPP and/or PS1/2 human mutations have been reported. These transgenic mice accumulate Aβ as diffuse neuritic plaques [6]. These models are a useful tool for evaluating the effects of potential therapeutic drugs designed to target Aβ, even though the tau pathology is not completely reflected in these models [7–9].

The initial mechanisms of pathology in sporadic AD remain unclear, however, some risk factors have been reported with age a strong one (see i.e., [10, 11]). Epidemiological studies show an increased risk of AD with the age-related loss of sex steroid hormones. Clinical studies have shown that females present an increased risk of developing AD when compared with males [12–14].

Our aim in the present study is to evaluate whether a double-transgenic (AβPP/PS1) mouse model presented differences associated with aging and/or gender. Thus, we have analyzed Aβ production and accumulation, and some additional brain markers over the life-span of AβPP/PS1 mice [15], evaluating males and females separately. Aβ40 and Aβ42 levels have been analyzed in brain tissue and in peripheral circulation (blood/plasma). It has been suggested that Aβ is kept in equilibrium.

ISSN 1387-2877/15/335.00 © 2015 – IOS Press and the authors. All rights reserved
between brain and blood through the blood-brain barrier, and that peripheral sequestration of Aβ may shift this equilibrium from the brain, which can reduce Aβ in the brain following a reduction in the levels in peripheral blood ("sink" effect) [7, 8]. As a general procedure, one hemibrain was snap frozen for subsequent homogenization either by ELISA or Western blot and the other fixed for histology studies (more detail in Supplementary Material) [16]. Blood samples were taken by submandibular vein puncture [17] to isolate plasma fraction in EDTA.

The levels of Aβ40 and Aβ42 in plasma showed important differences between males and females (Fig. 1A, B). The concentration of Aβ40 in female plasma from 3 to 15 months increased by more than 80%, while it decreased by 40% in males. The oldest mice tested, 15 months, showed that the levels of Aβ40 in females were more than 4-fold higher than in males. In the analysis of Aβ42, slighter differences were found; Aβ42 levels in female plasma were 25% more abundant at 15 months than at 3 months. Meanwhile, male levels decreased by nearly 20% from 3 months to 15 months. Older mice showed that females’ plasma levels were 1.3 times higher than in males (p = 0.007) at 15 months. Some previous reports had found that AβPP23 transgenic mice didn’t show any differences in the concentration of Aβ in plasma with age [18]. However, other studies with AβPP2576 strain males confirmed our findings [19]. Nevertheless, this is the first time age-associated differences in plasma Aβ levels are described between males and females.

The Aβ42/Aβ40 ratio is another important marker that may reflect cognitive decline and neurodegeneration [20, 21]. This value showed gender differences in mice older than 12 months. The Aβ42/Aβ40 ratio changes with age from 3 to 15 months: it is nearly 30% higher in males and more than 50% lower in females (Fig. 1C). Higher toxicity has been described in PP/PS1 male and female mice tested, 15 months, showing that the levels of Aβ42/Aβ40 ratio in plasma and the progression of AD [22]. The difference between Aβ42/Aβ40 has been seen by some authors as confirmation that Aβ42 deposition precedes Aβ40 and that all Aβ-positive plaques include Aβ42 but do not necessarily contain Aβ40 [23].

All these data are really important and must be taken into account in all experiments designed with these transgenic mice in any therapeutic assay designed or to be designed. Of course, these results make it impracticable to mix sexes in any assay with mice older than 10–12 months, particularly if the studies are testing the level of Aβ in plasma.

AβPP/PS1 mice showed Aβ plaques in the brain from 3 months of age (diffuse plaques) and levels were highest at 12–15 months of age [24]. We have checked the levels of Aβ40 in a large number of brain samples (37 males and 33 females), from one to 15 months with the same ELISA kit used in plasma analysis. There were no statistically significant differences (gender related) along the life-span analyzed. However, the increase in the concentration seemed to be faster in females, reaching the plateau before males (Fig. 1D). These data contrast with previous published figures that found differences between males and females at all age points studied [24]. Our levels may show higher deviations between individuals.

In parallel we have analyzed the level of brain amyloid deposition at different age by immunohistochemistry as described in the Supplementary Material. The quantification of plaques showed that males reached the plateau before females, at 9 months (p = 0.009), just the opposite of what we found in the ELISA tests (Fig. 2A–C). Although Aβ concentrations increased more in females, the number of plaques was smaller than in males. This observation confirms that the deposition kinetic varies greatly between the sexes.

PP/PS1 Differences in Amyloid

We can conclude that AβPP/PS1 transgenic mice show slight gender differences in the kinetic of accumulation but not in the final amount of amyloid accumulated at older age. The number and complexity of the plaques increase exponentially with age, being surrounded by reactive glia (Fig. 2B). These mature plaques finally occupied a significant portion of the brain tissue; the quantification showed no significant differences; males versus females. Surprisingly this final accumulation, at least in our colony, doesn’t imply any significant reduction in the survival rate, as reported in some AβPP/PS1 colonies [1, 16]. In addition, some mice reach surprisingly high ages of 24 months in overall good health. However, we have observed some bladder malfunction presented as a swollen bladder that affects differentially both sexes (Supplementary Fig. 1B). Males showed these problems from the very beginning of their lives, while females do not present any before 10 months of age (Supplementary Fig. 1A). This event could be related to unknown deposits in the urine that are not Aβ-positive unless by ELISA (data not shown). Although changes in bladder intervation have been described in AβPP/PS1 mice [25], we can confirm that this event shows gender differences too.

Finally, we have checked some biochemical parameters following molecular markers by Western blot in brain samples (described in Supplementary Material).
Fig. 1. Aβ levels in plasma and brain samples of males (blue square) and females (pink triangle) transgenic mice. Levels of plasma Aβ40 (A) and Aβ42 (B) in mice (from 3 to 15 months) were obtained by ELISA. C) Ratio Aβ42/Aβ40 in plasma from 3 to 15 months. D) Aβ42 burden in brain samples of transgenic mice from 1 to 15 months. When statistically significant \(p \leq 0.01 \) (t-test). Western blot analysis of some biochemical markers in the mice brains; 6 and 15 months, male, female, transgenic and wild type, Aβ and β-secretase levels (E), synaptic markers (F) and kinases (G).
Fig. 2. Histology analysis of males and females transgenic mice brains from 3 to 15 months. A) Representative images of immunohistochemistry studies (6e10 antibody). B) Comparison of the increase in Aβ plaques deposition and glial reaction between 3- and 23-months-old mice. Aβ plaques (in red) marked with 6e10 antibody and glial (in green) marked with GFAP antibody. DAPI in blue was used to stain nuclei. C) Graph of the percentage of area occupied by plaques obtained by Image J software. When statistically significant "∗∗p ≤ 0.01 (t-test).
Levels of β-secretase (BACE), PHEF1, GFAP and Aβ (monomer and oligomer) have been checked in all the groups analyzed: 6 and 15 months, transgenic and wild-type (wt), males and females (Supplementary Fig. 1C). We have compared the levels of some relevant kinases for tau phosphorylation, such as Akt, GSK3, and Erk (Fig. 1G); and some synaptic proteins such as PSD95, p120, p-Synapsin and N-Catenin (Fig. 1F).

It is very relevant that the levels of p-synapsin, p120 and PSD95 are increased in old transgenic females being higher than transgenic males. Moreover, 15 months transgenic females showed higher levels of p120 and PSD95 than wt at the same age. Levels of N-catenin were higher in transgenic females than transgenic males at 6 months of age but no differences were found in older mice with this marker. In general, we can observe that 6 months mice did not show any modification in the synaptic markers; however we can see very increased levels in old transgenic females.

Kinas determination showed different results. wt females showed higher levels of pAKT than transgenic females at 6 months; however pAKT levels were not modified at 15 months. When we analyze p-Erk we can observe that 6 months mice did not show any modification in the synaptic markers; however we can see very increased levels in old transgenic females.

In conclusion, both genders accumulate plaques in the brain exponentially with age and they both have detectable levels of Aβ in plasma. However, the evolution of Aβ levels is divergent, so it is tempting to propose that an “aging factor” differentially affects male and female specimens in this AD model. These gender differences may be related to sex hormones; being even though some hypotheses point to oestrogen being even though some hypotheses point to oestrogen being lower in menopause, while females showed no differences. Finally, pGSK3 was not modified in any group.

ACKNOWLEDGMENTS

This work was supported by grants from the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; an initiative of the ISCIII). In addition, work in FW’s lab was supported by grants from the “Plan Nacional”, “Dirección General de Ciencia y Tecnología -DGCYT-”, SAF2012-39148-C03-01; CAM.S2010/BMD-231-(2010-14) and EU-FP7-2009-CT222887, and an Institutional grant from the “Fundación Areces”.

The funders of this study had no role in the study design, data collection and analysis, the decision to publish or the preparation of the manuscript.

Authors’ disclosures available online (http://www.j-alz.com/disclosures/view.php?id=2604).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the electronic version of this article: http://dx.doi.org/10.3233/JAD-141158.

REFERENCES

