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Abstract 18 

Until recently the climate of the Early–Middle Triassic at low latitudes was broadly 19 

considered as generally temperate-warm with no major climate oscillations. This work 20 

examines the climate of this period through a detailed study of the sedimentary, plant, 21 

soil and mineral records of continental rocks (Buntsandstein facies) in eastern Iberian 22 

basins. Our findings indicate temporal climate variations for these near equator (10º–23 

14ºN) regions and unveil the significance of such variations in the southern Laurasian 24 

domain.   25 
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The climate of Iberia's Early Triassic was mainly dominated by alternating brief (< 0.4 26 

ma) arid and semi-arid climate periods, with two main arid periods documented at the 27 

end of the Smithian and middle Spathian.  However, an initial short subhumid to semi-28 

arid period was also observed in the late Spathian. Remarkably, this latter period 29 

appears just after an unconformity related to the tectonically induced Hardegsen Event 30 

in western Europe. It is also of interest that this short subhumid climate period is 31 

concurrent with the beginning of faunal and floral recovery in the basins examined. The 32 

Early Triassic ended again with a short very arid period.  33 

Although the beginning of the Anisian (Aegean) was represented by alternating arid and 34 

semi-arid to subhumid intervals, during the Bithynian and Pelsonian clearly wetter 35 

climates are recorded by the succession consisting of alternating semi–arid to semi-36 

humid intervals. This general tendency was interrupted by three short but marked 37 

intervals, two humid intervals in the late Bithynian, and one arid period near the 38 

Bithynian/Pelsonian boundary. 39 

Iberia was crossed by prominent irregular highs separating marked corridors or isolated 40 

areas. This palaeogeography, prevailing since Variscan tectonics, clearly conditioned 41 

dominant climates and their geographical distribution. No clear climate belts developed 42 

in these conditions. However, isolated internal climate zones separated by elevated 43 

areas are identified. This palaeogeographic configuration and the low latitudinal 44 

position of Iberia determined central Iberia highs in the southernmost border of 45 

Laurasia, beyond which more humid conditions clearly extended towards the equator 46 

reaching the present-day Moroccan Meseta and Argana Basin.   47 

Keywords: Triassic climates, Buntsandstein, Iberia, Early Triassic, Pangaea 48 
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1. Introduction 49 

 The end-Permian mass extinction devastated both marine and terrestrial 50 

ecosystems (Benton, 2003; Erwin, 2006; Algeo et al., 2011). This event, besides being 51 

the most catastrophic known loss of biodiversity, was followed by an unusually long 52 

period of recovery throughout the Early Triassic (Payne et al., 2004; Kozur and Weems, 53 

2011; Retallack et al., 2011; Benton and Newell, 2014). Takahashi et al. (in press) have 54 

even extended to the late Spathian, the global environmental perturbations that were 55 

likely responsible for the delayed recovery of life in the marine realm. However, recent 56 

studies (Hofmann et al., 2011, 2013) have also suggested that this latter idea should be 57 

abandoned.  58 

 Although there is increasing evidence indicating that this mass extinction was 59 

most probably triggered by a combination of different factors rather than a single event 60 

(Berner, 2002; Galfetti et al., 2007), numerous scenarios related to of the Siberian Traps 61 

Eruptions have been proposed (Wignall, 2001; Algeo et al., 2011; Benton and Newell, 62 

2014), including CO2 emissions and methane release which induced global warming.  63 

Recent modelling based on carbon isotope excursions (Payne and Kump, 2007; Kearsey 64 

et al., 2009; Romano et al., 2013) supports the latter scenario.  65 

 The activity of the Siberian Traps, which continued into Early Triassic times 66 

(Nikishin et al., 2002; Payne and Kump, 2007), is interpreted to have led to enhanced 67 

greenhouse climate conditions (Retallack et al., 2011; Romano et al., 2013). Global 68 

warming is widely thought to have played an important role in biotic crises (Montañez 69 

et al., 2007; Benton and Newell, 2014). This factor is considered responsible for 70 

intensifying unfavourable conditions for recovering ecosystems during the Early 71 

Triassic (Kozur and Weems, 2011), and even described as lethal during this time (Sun 72 
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et al., 2012). Although clear connections appear, ecosystem rebuilding and ecological 73 

recovery from this period varied between terrestrial and marine realms, and even 74 

between regions (Twitchett, 2006). Environmental stress during the Early Triassic in 75 

both realms could also have  been driven by rapid change between longer intervals of 76 

global warming and shorter intervals of global cooling, as observed in faunal change 77 

studies (Kozur and Weems, 2011; Posenato, 2008). This interval of time and even the 78 

beginning of the Middle Triassic were therefore more complex and nuanced than a 79 

simple but dramatic global warming period.  80 

 Climate variations between terrestrial and marine realms and different regions 81 

were probably related to the particular palaeogeographic configuration of Pangaea 82 

(Kiehl and Shields, 2005; Sellwood and Valdes, 2007). Pangea was approximately 83 

centred on the equator, stretching almost from pole to pole and surrounded by the 84 

Panthalassa Ocean (Muttoni et al., 2009; Roscher et al., 2011) (Fig. 1). A wide oceanic 85 

gulf, the Tethys sea, latitudinally confined to the tropical-subtropical belt, developed on 86 

its eastern side. A configuration like this with a vast expanse of exposed land at low and 87 

mid-latitudes centred on the equator with a warm Tethys sea would have determined 88 

summer heating in circum-Tethyan continental areas with a strong monsoonal regime 89 

and extreme continentality. Such a continental climate would have entailed hot 90 

summers and relatively cold winters (Kutzbach and Gallimore, 1989), along with a 91 

remarkably high tropical sea-surface temperature with peaks of up to 40ºC during the 92 

Early Triassic (Joachimski et al., 2012).         93 

 Despite intense research on the greenhouse climates of Mesozoic times, the 94 

climate of the Early Triassic has been relatively ignored until recently. Some decades 95 

ago, the Triassic climate was considered that of a general hot-house with ice free poles 96 



 

5 

 

without major oscillations. However, recent interesting studies (e.g. Kidder and 97 

Worsley, 2004; Sellwood and Valdes, 2007; Galfetti et al., 2007; Twitchett, 2007; Preto 98 

et al., 2010; Stefani et al., 2010; Retallack et al., 2011; Bourquin et al., 2011; Sun et al., 99 

2012; Romano et al., 2013; Benton and Newell, 2014, among others) have revealed a 100 

more complex scenario with climate oscillations, non-zonal patterns and presence of a 101 

global monsoon system.  102 

 This contribution considers climate variation over the late Early Triassic - early 103 

Middle Triassic time-interval in the Iberian Plate and adjacent areas, its features and 104 

palaeogeographical aftermath in the Western Tethys continental realm. Specifically, we 105 

examined the effects of these variations on terrestrial life and relationships with 106 

pertinent environmental changes and compared our data with those already described 107 

for nearby palaeolatitudinal areas.  108 

 109 

2. Geologic and stratigraphic setting. 110 

 During the Early Triassic, the Iberian plate occupied the eastern flank of the 111 

Pangea supercontinent (Fig. 1A) as a small plate close to the southernmost part of the 112 

ancient Laurasia megacontinent (Ziegler and Stampfli, 2001; Stampfli and Borel, 2002; 113 

Muttoni et al., 2009; Domeier et al., 2012). During the Early Permian, different basins 114 

developed on the eastern side of the plate, while the western portion remained stable to 115 

form what today constitutes the so-called Hercynian Massif. Basins initially developed 116 

as small isolated troughs, but later these gave rise to a complex system of inter-117 

connected rift basins in Central and Western Europe during the Early Triassic (van 118 

Wees et al., 1998; De Vicente et al., 2009). 119 
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 The eastern Iberian basins include three main rift systems: the Iberian, Catalan 120 

and Pyrenean-Cantabrian basins, or their respective present-day ranges after Cenozoic 121 

inversion (Fig. 1B). Some other small basins contemporaneously developed east of the 122 

Iberian plate in present-day Sardinia and the Balearic Islands (Ramos, 1995; Bercovici 123 

et al., 2009; Cassinis et al., 2003) and show a similar sedimentary record for the Early-124 

early Middle Triassic (Bourquin et al., 2007, 2011; Cassinis et al., 2012; López-Gómez 125 

et al., 2012; Galán-Abellán et al., 2013a; Ronchi et al., 2014) (Fig 2). It basically 126 

consists of a succession of two-three units of continental origin, each representing one 127 

tectono-sedimentary sequence related to different reactivation phases of the rift systems 128 

that developed during the Permian (Arche and López-Gómez, 1996; van Wees et al., 129 

1998; Vargas et al., 2009). The succession shows a general fining-upward tendency, and 130 

the units may be separated by hiatuses. This continental sedimentary sequence ends 131 

with the westward ingression of the Tethys sea across these areas during the middle 132 

Anisian (Ziegler, 1988; Kozur and Bachmann, 2008; Bourquin et al., 2011; Escudero-133 

Mozo et al., 2015). 134 

 The three units of the tectono-sedimentary cycle are not always recorded in the 135 

outcrops of the different basins. However, when they do appear, they show similar 136 

sedimentary characteristics and lateral continuity. As across most of Western Europe, 137 

the beginning of the Triassic sedimentary cycle is marked by an unconformity on the 138 

Upper Permian rocks, representing a time-span of 6–10 m.a. (Bourquin et al., 2011) to 139 

15 m.a. (Durand, 2006).  140 

 141 

2.1. The Iberian Ranges 142 
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 The beginning of the Triassic continental sedimentary cycle in the E Iberian 143 

Ranges comprises three lithostratigraphic units (Fig. 2): Valdemeca Conglomerates Unit 144 

(VC), Cañizar Sandstones Fm. (CS), and Eslida Mudstones and Sandstones Fm. (EMS). 145 

The Valdemeca Unit was initially considered as the lower subunit of the Cañizar Fm. 146 

(López-Gómez and Arche, 1993) but later defined as a single unit (De la Horra et al., 147 

2005).  148 

 The Cañizar Fm. mostly consists of red-pink, medium-grain arkoses, 80–110 m 149 

thick, and laterally corresponds to the Rillo the Gallo Fm. to the west. This formation 150 

has been divided into six subunits (C1 to C6) separated by major boundary surfaces 151 

(mbs) laterally recognized over  hundred kilometres (López-Gómez et al., 2012) (Fig. 152 

3A). It is interpreted as sandy braided fluvial deposits, with some aeolian reworking, 153 

evolving to dominantly aeolian deposits in the northern and eastern zones (Soria et al., 154 

2011; López-Gómez et al., 2011). The upper subunits (C5 and C6) are separated from 155 

the rest by a prominent major boundary surface (mbs-5) that marks the reactivation of 156 

sedimentation and development of a more energetic fluvial system in most of the 157 

Iberian Ranges (López-Gómez et al., 2012). 158 

 The Eslida Fm. consists of red siltstones and intercalated decimetric sandstone 159 

bodies of arkosic composition (Fig. 3B). The formation's thickness is up to 660 m, 160 

thinning to the SE and NW, and it is subdivided into six subunits (Ems-1 to Ems-6) 161 

based on their sedimentary characteristics (Arche and López-Gómez, 1999). The unit 162 

was deposited only in the central-eastern Iberian Ranges, as the western and 163 

easternmost areas of the Iberian Basin were elevated during the time of deposition, 164 

while the central area experienced intense subsidence (Arche and López-Gómez, 2005). 165 

This geographical arrangement has determined marked lateral thickness variations (Fig. 166 
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2). As a result of this control, in the sections examined here only the four younger 167 

subunits (Ems-3 to Ems-6) of the Eslida Fm. were deposited. The transition of the 168 

Eslida Fm. to the first deposits of marine origin is represented by Röt facies, the so-169 

called Marines Fm. (M) in this area, mostly identified through marls, clays and gypsum 170 

(Arche and López-Gómez, 1999). 171 

 172 

2.2. Pyrenean Ranges 173 

 The beginning of the Triassic continental cycle in the E. Pyrenees (so-called 174 

Catalan Pyrenees) was broadly defined as the "Buntsandstein cycle" by Gisbert (1981, 175 

1983), without more detailed subdivisions (Fig. 2). This cycle, which shows an average 176 

thickness of about 200 m across the whole area considered, lies, via a marked angular 177 

unconformity (30°– 60°), on Permian rocks (Mey et al., 1968; Naetegaal et al., 1969; 178 

Gisbert, 1981; Ronchi et al., 2014; Gretter, 2014). The lowermost part of the 179 

Buntsandstein consists of coarse-grained conglomerates with deeply erosive base (i.e. 180 

the Iguerri member of Nagtegaal et al., 1969) and sandstones of gravel braided fluvial 181 

systems, channel and aeolian sand-sheets. Overlying these base layers, the upper portion 182 

of the Buntsandstein is composed of reddish sandstones, bioturbated mudstones and 183 

siltstones of a playa lake environment. Near the top, siltstones and claystones locally 184 

change into dark red fine levels until the contact with the Muschelkalk sequence. These 185 

“transition” layers probably represent the Röt facies in the Catalan Pyrenees. The 186 

contact between the upper fine deposits and dolomites of the first marine incursion 187 

probably represents a hiatus that lasts until the Anisian (Escudero-Mozo et al., 2014).    188 

  189 
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2.3. Catalan Ranges 190 

 The beginning of the Triassic continental sedimentary cycle in the Catalan 191 

Ranges is differently represented in the three sectors into which the ranges were 192 

subdivided (Calvet and Marzo, 1994). The cycle features three units in each of the three 193 

sectors, represented in sections 6, 7 and 8 (Fig. 2), that are broadly considered time-194 

equivalent (Galán-Abellán et al., 2013a). These units, which change in name from south 195 

to north, were initially described by Marzo (1986) and more recently by Galán-Abellán 196 

et al. (2013a). They are (Fig. 2): Prades Upper Conglomerates (PUC), Prades Lower 197 

Sandstones (PLS), and Aragall Sandstones and Mudstones (ASM) in the southern 198 

sector; Garraf Upper Conglomerates (GUC), Eramprunyà Sandstones (ES) and Aragall 199 

Sandstones and Mudstones (ASM) in the central sector; and Riera de San Jaume 200 

Sequence (RSJ) and the Figaró Mudstones and Sandstones (FMS) in the northern sector. 201 

 The Prades Conglomerates unit, Garraf Conglomerates unit and the lower part of 202 

the San Jaume Sequence were interpreted as deposited by gravelly braided fluvial 203 

systems related to proximal alluvial fans. The Prades Sandstones unit was interpreted as 204 

fluvio-aeolian deposits, the Eramprunyà Sandstones unit as sandy braided fluvial 205 

deposits with intercalated aeolian sandstones, and the upper part of the San Jaume 206 

Sequence as sandy braided fluvial deposits. The Aragall and  Figarò units were 207 

interpreted as mixed-load, sinuous, fluvial systems developed in wide muddy 208 

floodplains deposits (Marzo, 1980).  209 

 210 

2.4. Sedimentary cycle age  211 
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 The sedimentary cycle of the Iberian Ranges has been dated according to 212 

palynological assemblages obtained in the Cañizar and Eslida Fms., as well as in the 213 

overlying Marines Fm. (Boulouard and Viallard, 1982; Doubinger et al., 1990; Díez et 214 

al., 2010), and according to one foraminifer association obtained in, the Landete Fm. 215 

(Escudero-Mozo et al., 2015). The base of the Valdemeca Unit has been dated as 216 

Smithian, the uppermost Cañizar Fm. is Aegean in age, and the uppermost Eslida Fm. 217 

Bithynian (López-Gómez et al., 2012) (Fig. 2). 218 

 The equivalent sedimentary cycle in the Catalan Ranges shows a scarce fossil 219 

record that consists of a Pleuromeia plant specimen in the uppermost part of the 220 

Eramprunyà Unit (Galán-Abellán et al., 2013a), and some isolated footprints reptiles 221 

and fragments of bones in the El Figarò Unit (Gaete et al., 1994; Fortuny et al., 2011).  222 

These are neither sufficient nor representative to indicate the precise age of the 223 

beginning of this sedimentation cycle. Díez et al. (2013) examined  a pollen assemblage 224 

above this cycle, in the Upper Evaporitic Unit (UE) or Röt facies, indicating a 225 

Bithynian-Pelsonian age. A magnetostratigraphic study of the cycle in the Riera de San 226 

Jaume Sequence (RSJ in Fig. 2) (Dinarès-Turell et al., 2005), assigns the lower part of 227 

the cycle to the Spathian and the upper part to the Illyrian. Finally, a precise Pelsonian 228 

age obtained for Ammonites in the marine carbonate sediments just above this 229 

continental cycle (Escudero-Mozo et al., 2014) (Fig. 2), point roughly to an equivalence 230 

between this sedimentary cycle and the one described for the Iberian Ranges.      231 

 In the E Pyrenees, an early Anisian age based on palynomorph assemblages 232 

(Broutin et al., 1988; Calvet et al., 1993; Díez, 2000; Díez et al., 2005) was obtained for 233 

the upper dark red fine clastic deposits of the "Buntsandstein cycle". Based on these 234 

palynological studies, we attribute the lower coarser part of this sedimentary cycle a late 235 
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Early Triassic age. Thus, the age of this cycle, as well as its general lithological 236 

succession would be broadly time-equivalent to those described in both the Iberian and 237 

Catalan Ranges (Fig. 2).  238 

 239 

3. Methods 240 

 The multidisciplinary approach used includes a stratigraphic and sedimentologic 241 

study, palaeosol characterisation, and a description of the palaeontologic contents and 242 

petrology of fine sediments. Figure 4 shows a scheme of the general data described for 243 

the units in the different areas. Given strong correlation between the genesis of many 244 

sedimentary rocks and climate change, our stratigraphic and sedimentologic 245 

descriptions and interpretations of the units, are based, among other data, on those  246 

which allow to obtain temperature, wind direction and precipitation information. 247 

Despite the difficulty in obtaining precise ages of continental Triassic rocks, detailed 248 

stratigraphic information is necessary as climate change can occur over short time 249 

scales, and some continental deposits will not record a specific climate event, as 250 

accretion may be very slow (Benton and Newell, 2014).  251 

 Based on plant fossils and sediments, our goal was to reconstruct climate 252 

variations throughout each unit. This approach was able to identify, for example, 253 

correlations between the ecology and growth of floras and different alluvial 254 

environments. Preserved palaeosols were used as proxies for precipitation trends and 255 

climate seasonality. Further, clay minerals in the profiles examined were used as 256 

additional evidence of climate control, as different clay minerals form by chemical 257 

weathering under different humidity conditions. Finally, vertebrate ichnites and an 258 
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isolated insect data were also used for palaeogeographic reconstruction. All these data 259 

were compared with those from near Tethys areas to construct plausible 260 

palaeogeographic scenarios for the studied time-interval. 261 

 262 

4. The sedimentary record 263 

4.1. Stratigraphy and sedimentology 264 

 Our sedimentologic analysis was mostly based on data from prior work on these 265 

units, which are here synthesized. Ten selected sections were examined in detail: five in 266 

the E Iberian Ranges, two in the E Pyrenees and three in the Catalan Ranges (Fig. 5). 267 

Sections commonly show large thickness variations among the different basins. 268 

Sedimentation-free areas occur at the basin margins, while prominent depocentres 269 

developed away from those areas, where the sedimentary record may approach 400 m in 270 

thickness. All sections of the three basins show a hiatus that roughly corresponds to the 271 

Aegean but also to the early Bithynian in some cases. This time-span without 272 

sedimentation grossly separates coarser from finer siliciclastic sediments, probably 273 

related to general plate reorganization, as  discussed below.   274 

 The depositional systems corresponding to these units were reconstructed 275 

through detailed sedimentologic facies description and interpretation. Different 276 

architectural elements were also based on facies associations, their hierarchies and 277 

stacking pattern characteristics. 278 

 The study of the units allowed us to differentiate 19 facies and eight associated 279 

or secondary facies. Some of these facies are described according to Miall's 280 

nomenclature (1992, 1996); all are summarized in figure 6. Thirteen facies were 281 
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ascribed to alluvial sediments, while six (ae1 to ae6) were differentiated into aeolian 282 

sediments. These latter facies are locally completed with eight secondary or associated 283 

facies.  284 

 The facies described as alluvial sediments are basically represented by 285 

sandstones, conglomerates or both, while those described in aeolian sediments are 286 

basically comprised of sandstones. 287 

 Facies and associations between them constitute sedimentary bodies or 288 

architectural elements (sensu Miall, 1992, 1996), each with a particular external 289 

geometry and internal vertical stacking pattern. Sedimentary environments were 290 

reconstructed from the analysis and interpretation of these architectural elements. Nine 291 

architectural elements identified across the studied units are summarized in figure 7. Six 292 

of these elements were related to a fluvial sedimentary environment, and the remaining 293 

three to an aeolian sedimentary environment.  294 

 The fluvial sedimentary environment includes megaripples, channel fill, lateral 295 

accretion, gravel bars, unconfined or semiconfined clast bodies and floodplain 296 

architectural elements, while the aeolian sedimentary environment includes dune, 297 

sandsheet and interdune architectural elements. The vertical succession of these 298 

elements in the studied sections (Fig. 5) reflects sedimentary evolution through the 299 

different units and the basins they filled. 300 

 Sedimentation in the basins probably started not before the early Smithian. In all 301 

cases, the general deposition trend is fining upward. This tendency is interrupted at the 302 

boundary between two main cycles of deposition (Fig. 4). The lower one, with a coarser 303 

lithology, may start with gravel bar successions (GB), normally amalgamated into 304 
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macroforms (Fig. 8a, f). These represent gravelly braided fluvial systems with punctuate 305 

aeolian reworking in the S Iberian Ranges and Catalan Ranges. Although less frequent, 306 

the GM architectural element (Fig. 8b) may also appear in this lower part of the cycle, 307 

indicating flash floods or unconfined deposits related to arid or semi-arid climate areas 308 

(Durand, 2006, 2008; De la Horra et al., 2005, 2008, 2011; Bourquin et al., 2007, 2011).  309 

The upper part of this lower coarser cycle of deposition is basically represented by 310 

sandy braided fluvial systems (SB, CH) (Fig. 8c) intercalated into aeolian dune field 311 

complexes (E1, E2, E3) that tend to be more frequent towards the central Iberian 312 

Ranges and south Catalan Ranges (Figs. 8d, e, h and 9A). In the S Iberian Ranges, 313 

above major boundary surface 5 (mbs 5), clear reactivation in the general depositional 314 

system allowed for the punctate development of gravel bars in the fluvial systems and a 315 

general increase in water fluxes (López-Gómez et al., 2012). Dominant palaeocurrent 316 

trends in the E Iberian Ranges point 95º–150º in the fluvial systems and 195º–270º in 317 

the aeolian systems. In the Catalan Ranges, dominant palaeocurrents in the fluvial 318 

systems point 130º–185º, and are bidirectional 75º–120º and 235º–285º in the aeolian 319 

systems. In the E Pyrenees, dominating palaeocurrents trend 275º–320º.     320 

 The upper part of the sedimentary cycle is not completely represented in the S 321 

Iberian Ranges and, as stated above, only records its four youngest subunits (Ems-3, 322 

Ems-4, Ems-5 and Ems-6) in the Cedrillas-Corbalán section, and is even less detectable 323 

in the other sections, with a minimum in the Río Mayor section, where this formation 324 

was not deposited (Fig. 5). These four subunits are composed of fine sediments with 325 

intercalated sandstone levels (Figs. 3b, 8f) that become abundant in Ems-5. They mostly 326 

represent sandy braided (SB, CH) fluvial systems crossing huge floodplain (FF) areas 327 

where soils developed (Fig. 9B) (Arche and López-Gómez, 2005) and isolated coal 328 
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seems in the Castellar N´Hug area (Fig. 5). Some small aeolian dune systems (E1) 329 

developed intercalated in the fine deposits in the upper (Ems-6) Torre de Las Arcas - 330 

Peñarroyas section, while some sandy meandering (LA) fluvial systems developed in 331 

the lower part of the same section (Ems-4). The middle portion of this section (Ems-5), 332 

however, represents the reactivation of the whole sedimentary system, with a record 333 

reduced in fine deposits and an increase in migrating channels and bar development 334 

(Fig. 9C) (Borruel-Abadía et al., 2014). Punctually, some aeolian reworking is observed 335 

in the fluvial systems of the Torre de las Arcas–Peñarroyas section, in subunit Ems-5.  336 

4.2. Mineralogy  337 

 Our mineralogical composition study focuses on the Iberian and Catalan Ranges, 338 

as there are no data available on the mineral composition of the Triassic units in the 339 

selected area of the Pyrenees. In the Iberian Ranges, the mineralogical composition of 340 

the Cañizar and Eslida Fms. was firstly described by Alonso-Azcárate et al. (1997) in a 341 

general study, and completed in a more detailed study by Galán-Abellán et al. (2013b). 342 

 343 

 Sandstones from both the Cañizar and Eslida Fms. are quartz-arenites and 344 

subarkoses, with quartz, K–feldspar, lithic fragments of slates and phyllites, detrital 345 

mica, and accessory phases like rutile, zircon, ilmenite, monazite, apatite, tourmaline 346 

and, less frequently, xenotime. The matrix includes illite, hematite and less kaolinite in 347 

samples from the eastern sector of the basin, where it is extensively replaced by dickite 348 

(Martín-Martín et al., 2007). No primary porosity has been detected, and secondary 349 

porosity is filled with kaolinite, quartz, illite and iron oxide cements. In addition, 350 

samples from both units contain strontium-rich aluminium phosphate sulphate minerals 351 

(APS minerals). However, these phases are more abundant in the basal part of the 352 
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Cañizar Fm., where they commonly replace lithic fragments. In samples from the Eslida 353 

Fm., these APS minerals occur as tiny (>3 m) disseminated pseudocubic crystals. 354 

Textural relationships strongly suggest that APS minerals are early diagenetic in origin, 355 

and precipitated shortly after sedimentation, most probably under the influence of acidic 356 

meteoric waters (Galán-Abellán et al., 2013b).  357 

 358 

  As mentioned before, the Cañizar Fm. is almost exclusively formed by 359 

sandstones. On the other hand, the Eslida Fm. includes mudstone and siltstone layers 360 

intercalated with sandstones. A remarkable feature of the Eslida Fm. is the local 361 

occurrence of carbonate (formed by dolomite or calcite) concretions in some palaeosols 362 

within these fine layers. Clay minerals in the mudstones are mainly illite, with minor 363 

amounts of pyrophyllite or kaolinite (the latter replaced by dickite), which are more 364 

abundant in the eastern sections. The illite crystallinity (IC) data indicate that most 365 

sections in the Iberian Ranges reached deep diagenetic conditions (0.44º to 075º Δ2Ө; 366 

Benito et al., 2005), in agreement with the illite and dickitized kaolinite assemblage. 367 

However, the presence of pyrophyllite and lower IC data (0.41 to 0.28º Δ2Ө) in some 368 

sections (those showing the maximum thickness of the Eslida Fm.) are indicative of 369 

very low grade metamorphism (Alonso-Azcárate et al., 1997; Benito et al., 2005). 370 

 371 

A preliminary approach to the mineralogical composition of the Early-Middle 372 

Triassic rocks of the Catalan Ranges was performed by Galán-Abellán (2011) in the 373 

Eramprunyà unit (ES) and Aragall unit (ASM) in the central sector, and in the El Figarò 374 

unit (FMS) in the northern sector (Fig. 2). Mineral assemblages are rather similar to 375 

those found in the Iberian Ranges, and include quartz, hematite, illite and kaolinite, and 376 
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minor amounts of feldspar. Dolomite and calcite rarely occur in the ES, but are frequent 377 

in samples from both the ASM and FMS units. APS minerals are also found as 378 

accessory phases in some samples. Sandstones and siltstones in the Catalan Ranges 379 

show a lower degree of diagenesis, as revealed by IC data. Late diagenetic processes 380 

promoted the development of secondary porosity, subsequently cemented by carbonate 381 

(calcite and dolomite), which obliterated the original mineral assemblage.  382 

 Because of the large proportion of detrital phases and of the deep diagenetic to 383 

very low metamorphic conditions, these mineral assemblages cannot be directly used to 384 

decipher the palaeoclimatic conditions that prevailed during the sedimentation of these 385 

units. However, as will be discussed later, variations in clay mineral formation is related 386 

to chemical weathering intensification, a process dependent on atmospheric 387 

temperatures (Velde and Meunier, 2008). 388 

    389 

5. Palaeobotany 390 

Anisian Triassic plant remains have been recovered in both the Iberian and 391 

Catalan Ranges. In the Pyrenean Ranges, palynomorph assemblages have been only 392 

reported for the Buntsandstein facies (Broutin et al., 1988; Calvet et al., 1993; Díez, 393 

2000; Díez et al., 2005), indicating an Anisian age. Studies of these records have been 394 

scarce but some include a detailed compilation of prior references and provide tentative 395 

palaeoenvironmental reconstructions. In the eastern Pyrenees only the palynomorph 396 

assemblages previously mentioned and some undetermined flora fragments have been 397 

found to date.  398 

5.1. Iberian Ranges 399 
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Although without specifying a precise stratigraphic or geographic position, 400 

Schmidt (1937, in Dobruskina, 1994), describe a Triassic macroflora in the S Iberian 401 

Ranges, identifying Pleuromeia sternbergii (  nster) Corda.  402 

There are no reports of macrofloral remains in the Cañizar Fm. (Figs. 5 and 9A). 403 

The only remains in the units of the Iberian Ranges examined appear in the Eslida Fm. 404 

In this unit, different floral associations indicate an upward decrease in floral diversity. 405 

In the Eslida Fm., floral associations types can be distinguished depending on the plant 406 

remains found. The first, found in subunits Ems-3 and Ems-4 (Fig. 9B), features a 407 

macroflora composed of riparian vegetation including semiarborescent lycophytes 408 

(Pleuromeia), sphenophytes (at least Equisetites, perhaps also Neocalamites) and more 409 

hygrophytic conifers, such as Pelourdea (Borruel-Abadía et al., 2014) (Fig. 10a, b, c). 410 

The vegetation of the lowlands is characterized by drier conditions, where various 411 

species of arboreous conifers developed, such as Voltzia, and shrubby ones such as 412 

Albertia. The possible hinterland vegetation consists of conifers along with shrubs 413 

(Albertia) and trees (Voltzia) (Fig. 10d). These associations are laterally arranged but 414 

also appear vertically alternating, probably indicating the alternation of drier and more 415 

humid conditions, possibly in a seasonal climate, but also indicating a position more or 416 

less distal to channels (Borruel-Abadía et al., 2014). 417 

In subunit Ems-5 of the Eslida Fm., where CH and SB architectural elements 418 

dominate, large indeterminate fragments of putative conifers have been found, probably 419 

as a result of their greater resistance to transport (Borruel-Abadía et al., 2014) (Fig. 9C). 420 

However, this could also be the outcome of a more sparse vegetation that does not 421 

protect soils from erosion.  Besides, the presence of conifers only could indicate a shift 422 

to more arid conditions, taphonomic selection or a combination of both.  423 
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In subunit Ems-6 of the Eslida Fm., only a Pleuromeia fragment and speciments 424 

of bad preserved Peltaspermum, maybe part of a fern with seeds, have been identified. 425 

This is striking because in subunits Ems-3 and Ems-4 showing similar sedimentation 426 

and preservation characteristics, a larger number of specimens have been discovered. 427 

This could be due to arid conditions near inland sabkhas inferred from sedimentologic 428 

criteria (Borruel-Abadía et al., 2014). 429 

The only pollen assemblage described in the Eslida Fm. consists of conifers, ferns 430 

and seed ferns, and contains Podocarpeaepollenite, Minotosaccus, Platysaccus, 431 

Succintisporites and Cristatitriletes (Boulouard and Viallard, 1982). 432 

In the N Iberian Ranges, in equivalent stratigraphic positions, Díez et al. (1996) 433 

and Díez (2000) described a similar Anisian association composed of Darneya sp., 434 

Darneya peltata, Equisetites sp., Neocalamites sp., Neocalamites cf. carrerei, 435 

Willsiostrobus sp., Willsiostrobus rhomboidalis, Pelourdea vogesiaca, Albertia sp., 436 

Voltzia sp., Voltzia heterophylla and Voltzia walchiaeformis. In this latter area, two 437 

palynomorph assemblages have been described in the Cálcena Fm. (Arribas, 1984) in a 438 

possible stratigraphic location equivalent to the upper part of the Eslida Fm., that mainly 439 

contains conifers and ferns (Alisporites, Chordasporites, Triadispora, Verrucosisporites 440 

and Volziaceaesporites) (Díez et al., 2007). 441 

Palaeoenvironmental reconstructions of these associations point to a riparian 442 

vegetation comprising plants living near the water body (permanent floodplain ponds or 443 

river) subjected to periodical floods. The vegetation around the water bodies is 444 

composed of sphenophytes (Equisetites and Neocalamites) and hygrophytic conifers 445 

such as Pelourdea (see also Kustatscher et al., 2014). Further from the water body, 446 

lowland vegetation is characterized by drier conditions, and includes various species of 447 



 

20 

 

conifers such as Voltzia, Albertia. Possible hinterland vegetation (permanent ground or 448 

seasonally dry) comprises conifers (Voltzia, Albertia, Willsiostrobus and Darneya).  449 

5.2. Catalan Coastal Ranges  450 

In the Catalan Ranges, the first macrofloral remains appear in the so-called 451 

“Lower Buntsandstein”, and take the form of a putative Pleuromeia, located in the 452 

upper part of the Eramprunyà Unit, which is equivalent to the top of the Cañizar Fm. 453 

(Galán-Abellán et al., 2013a). 454 

In the “Upper Buntsandstein”, in green shales with malachite, Almera (1909) 455 

described an association composed of remains of Albertia sp., Calamites sp., Voltzia 456 

heterophylla and Pecopteris sulziana. Two similar bands with macrofloral remains were 457 

reported by Calzada (1987). The lower one only contains Equisetites sp. and the higher 458 

one Aethophyllum sp. and Equisetites cf. mougeotti. Original lithostratigraphic 459 

descriptions of the levels where the samples were obtained point to the El Figarò Unit, 460 

in a stratigraphically equivalent level towards the top of the Eslida Fm. (Galán-Abellán 461 

et al., 2013a). 462 

In the Catalan Ranges (El Figarò Unit), hygrophytic taxa that grew in the wetter 463 

areas around ponds and along river banks can also be observed such as sphenophytes 464 

(Equisetites and Calamites) and ferns (Pecopteris sulziana). The vegetation of the 465 

lowlands is characterized by species of arboreous conifers, such as Voltzia and 466 

Aethophyllum, and shrubby species, such as Albertia, as well as ferns in the understory 467 

(Aethophyllum and Pecopteris).  468 

Macrofloral remains found in the Son Serralta Fm. of Majorca (Calafat-Colom, 469 

1988; Álvarez-Ramis et al., 1995) are similar to the ones described in the El Figarò Unit 470 
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of the Catalan Ranges, and consist of Aethophyllum stipulare, Albertia sp., Anomopteris 471 

mougeotti, Endolepis sp., Equisetites sp., Equisetites mougeotii, Neuropteridium sp., 472 

Schizoneura-Echinostachys paradoxa, Voltzia heterophylla Brongniart, Voltzia 473 

walchiaeformis, Willsiostrobus hexasacciphorus, Willsiostrobus sp. and Pelourdea cf. 474 

vogesiaca. This assemblage is attributed to the middle Anisian in view of the 475 

palynological analysis published by Ramos and Doubinger (1989). 476 

 In NW Sardinia, inside a whitish horizon in the Cala Viola sandstones, Pecorini 477 

(1962) found estherias and plant remains (Equisetum cf. mougeotii), and attributed such 478 

a formation to the Lower Triassic. Two distinct palynomorph associations of 479 

(?)Scythian-early Anisian and late Anisian age from the subsurface are reported in 480 

comparable deposits (Pittau and Del Rio, 2002). 481 

 482 

6. Palaeosols 483 

Our palaeosol study mainly focused on some profiles of the Eslida Fm., in the 484 

Gátova stratigraphic section of the Iberian Ranges (Fig. 11). Only levels showing root 485 

traces, soil structure, and soil horizons were considered paleosols (Retallack, 1988, 486 

2005). These palaeosols have been differentiated and classified into a field scheme of 487 

pedotypes using established criteria (Retallack, 1997). The USDA Soil Taxonomy 488 

system (Soil Survey Staff, 1999) was used to define horizons using letters (such as A, 489 

Bt and Bk) and to designate diagnostic horizons. The classification of Machette (1985) 490 

was used for the state of carbonate accumulation, and the degree of development of the 491 

palaeosol was estimated using the scale of Retallack (1988).  492 
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The first evidence  of pedogenesis was observed at the top of subunit Ems-3 and  493 

base of subunit Ems-4, in silty red floodplain facies. Vertical root traces and a thick (5-494 

10 mm) platy structure are related to the thin ochric epipedons and incipient subsurface 495 

clayey horizons of pedotype Gat-A (Fig. 11A). Root traces are scarce, short (5-10 cm) 496 

and preserved by infills of red or green clay. Dispersed powdery carbonate and 497 

carbonate nodules (stage I-II, Machette, 1985) occur in the subsurface clayey horizons, 498 

only a few centimetres beneath the soil surface (5-10cm), but this calcareous level does 499 

not constitute a calcic (Bk) horizon. Nodules are horizontally elongated (2-5 cm) but 500 

thin (0.5-1 cm) and show a lenticular shape. The shallow scarce root traces, the only 501 

slightly altered bedding, and short distance to the carbonate disc-shaped nodules are 502 

indicative of a sparse vegetation that probably developed under dry conditions for most 503 

of the year (Retallack, 2005). These palaeosols represent weakly developed silty to 504 

sandy Entisols of flat land surfaces, which were not frequently flooded and developed 505 

under arid climates. 506 

The upper part of subunit E4 displays palaeosols at carbonate accumulation stage II-507 

III in the floodplain facies (Machette, 1985). These moderately developed silty red 508 

palaeosols are characterized by a partially eroded Bt clayey horizon, from which root 509 

traces emanate downwards into a Bk calcic horizon of slightly coalescing carbonate 510 

nodules measuring 0.5-2 cm (pedotype Gat-B; Fig. 11B). Columnar and subangular 511 

blocky structures are observed in the Bt horizon, which is also burrowed by several 512 

channels of roots of small size (up to 12 cm in length). Bk horizon thickness is up to 20 513 

cm and entire profiles are generally 30 to 40 cm. The Gat-B pedotype was classified as 514 

an Inceptisol (Soil Survey Staff, 1999). 515 
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Under arid climates, thicker Bk horizons are usually interpreted as indicative of a 516 

longer time of pedogenic development (Gile et al., 1966). However, in non-extreme arid 517 

climates, thicker Bk horizons are the result of seasonal variations in soil wetting depth 518 

(Retallack, 2005) and greater plant activity (Alonso-Zarza et al., 2003). As the thickness 519 

of the Bk horizon does not exceed 30 cm, there is no evident seasonal variation in 520 

rainfall (Retallack, 2005). However, the greater presence of root traces suggests better 521 

conditions for plant growth, and, thus, this part of subunit Ems-4 was deposited under 522 

conditions of slightly higher mean annual rainfall than for the Ems-3 - Ems-4 transition.  523 

The base of the Ems-5 subunit features palaeosols developed on abandoned channel 524 

deposits of the fluvial system (pedotype Gat-C; Fig. 11C). These palaeosols are 525 

characterized by poor alteration of the bedding as long root traces penetrate channelized 526 

sand bars. The most common type is composed of a single vertical root up to 1.5 m long 527 

and 4 cm thick, with rootlets radiating downwards another 20-30 cm from the lower part 528 

of the main root (Fig. 11D). This pattern is similar to modern adventitious prop roots 529 

that support trees in soft sandy sediments. Also observed were dispersed small lateral 530 

roots and main roots or taproots up to 45 cm long and 5 cm thick, with little branching, 531 

profuse hair roots, and ending in rounded tap roots (Fig. 11E). Due to poor alteration of 532 

the parent material, the sandy Gat-C pedotype was classified as a Fluvent in the order 533 

Entisol (Soil Survey Staff, 1999), also possibly indicating high erosion rates and an arid 534 

climate. In their study of the palaeoflora of the Eslida Fm., Borruel-Abadía et al. (2014) 535 

found no lycophytes, sphenophytes and hygrophytic conifers in this subunit. As only 536 

conifer remains were found, these authors proposed a drier climate (Borruel-Abadía et 537 

al., 2014). However, in spite of this dry climate, the growing well-sized trees were 538 

possible in some areas (Fig. 9C). 539 
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The E6 subunit is characterized by the presence of silty palaeosols with profuse 540 

drab-haloed root traces (Fig. 11). A light red horizon with fine subangular blocky 541 

structure lies on top of a clayey Bt horizon with a dense pattern of fibrous root systems. 542 

Very few dispersed carbonate nodules were observed at a depth of 35 cm from the 543 

profile top. These weakly developed palaeosols do not reach the criteria for Alfisols and 544 

were classified as Inceptisols. Drab-haloed root traces are usually interpreted as 545 

chemical reduction related to anaerobic bacterial activity in stagnant water (Retallack, 546 

1997). However, the Gat-D pedotype lacks a gleyed superficial horizon and the drab-547 

haloed root traces are probably the outcome of anaerobic decay in the rhizospere and 548 

other areas after burial. Observed features of the Gat-D pedotype (Fig. 11E) point to 549 

oxidizing dry soils though periodic waterlogging cannot be ruled out.  550 

 In the northern area of the Catalan Ranges, the development of caliche was 551 

described by Marzo et al. (1974) and Marzo (1980) in the middle part of the El Figaró 552 

unit. This may appear in floodplains or close to meandering channels and was 553 

interpreted as early mature caliche resulting from short subaerial exposures in semiarid 554 

conditions.  555 

7. Discussion 556 

7.1.  Climate variations 557 

 Through a detailed study of the sedimentary characteristics and fossil contents of 558 

selected lithostratigraphical units of the S Iberian Ranges, E Pyrenees and Catalan 559 

Ranges, we were able to identify different phases of climate installation and 560 

development during the Early-Middle Triassic.  Despite the fact that these basins were 561 

hundreds of kilometres apart and adopted their own characteristics during their refill, 562 
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common sedimentary features appear in the sedimentary record of the time-interval 563 

examined. 564 

 Some of these features, described above and shown in figure 5, are provided in 565 

figure 12 as climate indicators. The more remarkable indicators detected in most of the 566 

studied sections are here considered representative of the entire study area.  Punctuate 567 

sedimentary characteristics of some sections are used as regional or local climate 568 

indicators. 569 

 The first sedimentary record of the basins examined starts during the late 570 

Smithian and continues in the Spathian until its interruption at the beginning of the 571 

Anisian (López-Gómez et al., 2012; Galán-Abellán et al., 2013a; Ronchi et al., 2014). 572 

Although it seems there were no clear humid nor subhumid climate stages during that 573 

time, remarkable arid and semi-arid climate period alternations were observed. Three 574 

clear arid periods, usually well represented by aeolian dune field sedimentation, 575 

developed at the end Smithian, transition to the Spathian, middle Spathian and transition 576 

to the Aegean (Fig. 12). In addition, several authors (De la Horra et al., 2005, 2008, 577 

2011; Durand, 2006, 2008; Bourquin et al., 2007; 2011; Cassinis et al. 2007) suggest a 578 

(hyper)-arid period during the first of these time-intervals when plant remains are absent 579 

(Durand, 2006, 2008; Bourquin et al., 2007, 2011). The durations of these three arid 580 

phases are probably decreasing from the oldest to the youngest, and thus, involved the 581 

development of major semi-arid stages. As the studied Early Triassic time-interval 582 

represents about 1.5 m.a., each of the three alternating arid to semi-arid intervals would 583 

be shorter than 0.4 m.a. Semi-arid intercalated stages were represented by developing 584 

braided fluvial systems in all the basins. In some cases, these depositional systems were 585 



 

26 

 

laterally interconnected with the development of small aeolian field dunes (López-586 

Gómez et al., 2012).  587 

 The presence of major boundary surface 5 (mbs5) in the different sections of the 588 

study basins (Fig. 12), its age and characteristics, was considered as an important 589 

regional event (López-Gómez et al., 2012; Galán-Abellán et al., 2013a), probably 590 

related to the Hardegsen unconformity described in Western Europe (e.g. Aigner and 591 

Bachmann, 1992; Bourquin et al., 2007, 2009) and linked to stages of tectonic activity 592 

at the end of the Early Triassic. In our basins, this regional change is also reflected by 593 

low angle unconformities in sections near the basin border, and coincides with a more 594 

humid stage after an arid episode and the start of life recovery after the Permian-Triassic 595 

crisis (López-Gómez et al., 2012).     596 

 Despite the development of these generalized and laterally continued climate 597 

stages, some areas in the E. Iberian Ranges (Gátova section) and E Pyrenees (Castellar 598 

N'Hug) hardly show aeolian sediments. On the contrary, in the southern Catalan Basin 599 

(S. Gregori section), almost the whole sedimentary record consists of aeolian sediments. 600 

These punctate geographical differences, as detailed below, point to a dishomogeneous 601 

climate distribution and to climate control.  602 

 After a sedimentary interruption and slight erosion event during the Aegean, a 603 

new cycle of sedimentation started at the beginning of the Bithynian (Fig. 12). This new 604 

cycle, represented by the Eslida Fm., the "upper Buntsandstein" or  El Figarò Unit in the 605 

Iberian Ranges, E. Pyrenees and Catalan Ranges, respectively, was related to tectonic 606 

reactivation and new re-organization and orientation of the rift basins in Iberia (Arche 607 

and López-Gómez, 1996, 2005). Mudstones and siltstones represent the main 608 

lithological change compared to the previous cycle. However tectonics was not the only 609 
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reason for these lithological variations, and rather, a change in climate allowed for the 610 

sedimentation of different deposits and the emergence of new alluvial sedimentary 611 

styles. 612 

 The development of extensive meandering fluvial systems, and the appearance 613 

of sphenophytes, conifers and isolated coal levels in subunits Ems-3 and Ems-4 614 

suggests the presence of the two short humid phases in the middle Bithynian (Fig. 12). 615 

These characteristics were widely developed during these stages in different areas of the 616 

three study basins. The two humid stages, however, only represented interruptions of a 617 

more prolonged period of alternating subhumid and semi-arid stages that lasted until the 618 

end of the Bithynian and continued into the beginning of the Pelsonian, when 619 

sedimentation of the Röt facies (Marines Fm.) reflects the transition to the first Tethys 620 

sea incursion (Muschelkalk facies) in Iberia (Escudero-Mozo et al., 2014). The 621 

proximity in time of these two humid stages could mean their interpretation as a single 622 

humid interval in some sections.  623 

 Based on the sedimentary record, as shown by the frequent reactivation surfaces 624 

presence, on the appearance of hinterland vegetation of conifers (Voltzia, Albertia, 625 

Willsiostrobus and Darneya) and on soil development as the presence of thicker Bk 626 

horizons in non-extreme arid conditions, subhumid stages would consist here of 627 

seasonal precipitation, whereby extreme temperatures and rainfall were probably not 628 

persistent plant development, soil growth and permanent or semi-permanent flows in 629 

river systems are described.  630 

However, a short semi-arid stage is inferred at the end of the Bhitinian. This stage, 631 

which is even represented by small aeolian dunes in the Iberian Basin (Torre de las 632 
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Arcas–Peñarroyas section), was also marked by the presence of xerophytic vegetation, 633 

and presence of unconfined braided fluvial systems.  634 

7.2. Palaeoclimatic and palaeogeographic implications 635 

 The simplistic hot-house scenario for the Early-Middle Triassic, evoking strong 636 

monsoon circulation and seasonal rain without zonal patterns (Kiehl and Shields, 2005; 637 

Preto et al., 2010), has been recently modified by the incorporation of detailed regional 638 

data to define a more complete evolution model for this period of time (Romano et al., 639 

2013; Sun et al., 2012). 640 

 Although temperatures had risen rapidly during the end-Permian mass 641 

extinction, they reached exceptionally high values in the Early Triassic (Brayard et al., 642 

2010). These high temperatures also experienced large abrupt changes such as that 643 

observed in the Smithian-Spathian transition of up to 40º at the equator (Sun et al., 644 

2012), which was probably the consequence of a carbon cycle disturbance caused by a 645 

sequence of large-scale CO2 injections from the Siberian Large Igneous Province 646 

(Payne et al., 2004; Galfetti et al., 2007; Romano et al., 2013). 647 

 The latest Smithian was a time of warm and equable climate, expressed as an 648 

almost flat pole to equator sea surface temperature gradient, compared to the steep 649 

gradient at the beginning of the Spathian, indicating clear latitudinally differentiated 650 

climate conditions (Kidder and Worsley, 2004; Preto et al., 2010) inducing a 651 

synchronous major change in both terrestrial and marine ecosystems (Galfetti et al., 652 

2007). This change was observed in the present study area, where aeolian-fluvial 653 

sedimentation at the end of the Smithian underwent a sudden change towards pure 654 

fluvial sedimentation of a semi-arid nature at the beginning of the Spathian (Fig. 12) 655 

(Bourquin et al., 2011; López-Gómez et al., 2012; Galán-Abellán et al., 2013a). 656 
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However, the new fluvial sedimentation trend that started at the beginning of the 657 

Spathian in these areas was not permanent as new arid conditions once again arose.   658 

 These high temperature values together with their changing character, thwarted 659 

ecosystem recovery during the Early Triassic (Retallack et al., 2011; Sun et al., 2012). 660 

In the Iberian Plate, no fossil record is known until the late Spathian (López-Gómez et 661 

al., 2012; Galán-Abellán et al., 2013a; Borruel-Abadía et al., 2014) (Fig. 12), clearly 662 

coinciding with the first recognized humid and cooler stage in the Triassic rocks of this 663 

area, about 5 m.a. after the PTB. A taphonomic filter is initially discarded as this 664 

absence includes plants, tetrapods, insects, soils and bioturbation. Until this time, arid 665 

and semi-arid conditions were mainly the dominant environmental conditions 666 

represented in all the study basins, with a remarkable late Smithian arid stage followed 667 

by a cooler period in the earliest Spathian. This latter stage may coincide with the 668 

marine cooling event related to strong recovery of many clades described by Brayard et 669 

al. (2009), Romano et al. (2013), Sun et al. (2012, 2015) and Chen and Benton (2012).  670 

 A humid climate stage can enhance subaerial weathering with consequences on 671 

ocean nutrient fluxes (Payne et al., 2004; Twitchett, 2007; Algeo and Twitchett, 2010; 672 

Benton and Newell, 2014). Higher ocean nutrient levels may initially increase 673 

productivity, which indicates continent-ocean connections (Algeo et al., 2011). These 674 

latter authors propose a chemical weathering stage by the late Spathian accounting for 675 

the marine productivity increase. This stage fits in well with the one postulated for the 676 

Iberian plate and its possible extension in Western Europe. Its association with the 677 

recovery of continental life described here reinforces the idea of continental-marine 678 

connections described by Algeo et al. (2011). 679 
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 Tectonic activity, as described above, can play a role in opening continental 680 

corridors, as could have happened in the Iberian Plate. These new routes appearing in 681 

the megacontinent would promote rifting connections and alluvial fluxes, incorporating 682 

more oxygenated waters to the sea and contributing to life recovery. Diedrich (2008) 683 

described millions of reptile tracks during the Early-Middle Triassic as a consequence 684 

of fauna migration across corridors and bridges in Central Europe. In the Iberian and 685 

Catalan Ranges, the first reptile tracks were localized in the uppermost Cañizar Fm., 686 

latest Spathian (Gand et al., 2010) (Fig. 12), just after the cited unconformity, and were 687 

lacertoid three digit prints of Rhynchosauroides. Above these levels, and already in the 688 

Anisian (mainly Bithynian), footprints of specimens of both Lacertoïd and Crocodiloïd 689 

groups are common (Gand et al., 2010; Fortuny, 2011) and coincide with the 690 

appearance of the first Mesozoic (triadotypomorphan) insect in Spain, rubra sp. nov. 691 

(Béthoux et al., 2009).  692 

Plant fossils have been used for climate reconstruction based on their ecology 693 

inferred from living relatives. Climate is commonly recorded in the sedimentary record 694 

by vegetation, and the effects this vegetation has on sediment erodibility, sediment yield 695 

and channel style, among others (Miall, 1996). The early Anisian floral associations of 696 

both the Iberian and Catalan Ranges are similar and mainly composed of conifers and 697 

sphenophytes. These floral associations resemble that of the “Grès à Voltzia” Fm. of 698 

north–eastern France (Grauvogel-Stamm, 1978). It is likely that the plants of the “Grès 699 

à Voltzia” that already appear in the Pleuromeia flora (Fuchs et al., 1991; Mader, 1990; 700 

Grauvogel-Stamm, 1999) escaped the end-Permian life crisis in extrabasin refugia. 701 

Pleuromeia-like fossils reveal that Pleuromeia may have survived into the Anisian in 702 

the Iberian Ranges. Moreover, as shown by Grauvogel-Stamm and Ash (2005), 703 
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lycophytes played an important role in the recovery of land plants in the Early Triassic 704 

and could have adapted to unfavourable arid conditions. The replacement of the 705 

Pleuromeia flora by conifer-dominated or Voltzia flora may be the consequence of a 706 

change in climate and growth conditions, enabling the Voltzia flora to invade basin 707 

lowlands (Grauvogel-Stamm and Ash, 2005). 708 

The plant associations of the Iberian and Catalan Ranges point to alternating 709 

seasonally dry and more humid conditions (Borruel-Abadía et al., 2014). Riparian 710 

vegetation, that is, plants living near the water body (permanent floodplain ponds or 711 

river), was exposed to periodical flooding. The vegetation around the water bodies was 712 

composed of semiarborescent lycophytes, sphenophytes and more hygrophytic conifers. 713 

Further from the water bodies, lowland vegetation was characterized by drier 714 

conditions, where several species of arboreous and shrubby conifers, and ferns grew. 715 

Clearings were colonized by ferns mixed with some conifers, and the possible 716 

hinterland vegetation (permanent ground or seasonally dry) consisted of conifers with 717 

shrubs and trees. The first more humid short stage, recognized in the early Anisian 718 

(Bithynian) in both the Iberian and Catalan Ranges sections, appears in subunits Ems-3 719 

and Ems-4 related to a riparian-dominated vegetation. 720 

Such alternations of dry and more humid conditions shown by the vertical 721 

distribution of early Anisian plants in the sections examined, fits in well with changes in 722 

river channel style in the same units described by Arche and López-Gómez (2005). 723 

Further, Borruel-Abadía et al. (2014) linked fossil plants to different fluvial 724 

architectural elements depending on the hygrophytic to semi-arid xerophytic deposition 725 

of the Eslida Fm. A second more humid early Anisian (Bithynian) short stage was 726 

observed in the Ems-4 subunit of this formation in the Iberian Ranges related to 727 
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superimposed meandering fluvial systems and associated riparian vegetation. In similar 728 

studies, Smith (1995) interpreted the facies transition in the Permian-Triassic Karoo 729 

Basin as a change in fluvial style from meandering to low sinuosity channels with 730 

general drying of floodplain habitats. Davis and Gibling (2010) described a sharp 731 

increase in the abundance of meandering rivers in the middle Palaeozoic due to 732 

colonization of terrestrial environments by vegetation. The soils of the sections here 733 

examined formed in the floodplains during long sedimentation pauses.  734 

Although they are poorly developed, pedotype characteristics also revealed clearly 735 

alternating climate conditions. According to the information obtained from the Eslida 736 

palaeosols, a general trend of seasonal, alternating drier and slightly humid or semi-arid 737 

climate conditions was inferred. The unit is represented by poorly developed soils with 738 

shallow calcareous horizons in the lower part of the Eslida Fm. indicative of arid 739 

conditions (pedotypes Gat-A), which moved towards slightly higher mean annual 740 

palaeoprecipitation (pedotype Gat-B) and possibly better conditions for tree growth 741 

(Gat-C). The top of the unit is marked by pedotype Gat-D, with a dense and laterally 742 

continuous pattern of fibrous root systems, indicating a well-developed vegetative cover 743 

formed under a more seasonally semi-arid climate. Despite such different climate 744 

conditions, however, it is difficult to identify clear monsoon characteristics in the 745 

sedimentary record, as they can be easily confused with other seasonal effects (Miall, 746 

1996). 747 

 Faster soil reaction rates in the Anisian cycle of sedimentation in response to 748 

warmer temperatures probably intensified chemical weathering (e.g. Korte et al., 2005) 749 

providing clay minerals as crucial data for inferring palaeoclimates. This type of 750 

mineralogy has been frequently used to detect changes in the climate conditions 751 
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prevailing during their sedimentation (Righi and Meunier, 1995; Hong et al., 2007; 752 

Wang et al., 2013).  However, diagenetic alteration and source rock composition should 753 

always be considered (Chamley, 1989; Hillier, 1995; Yakimenco et al., 2000). The 754 

mineral assemblages of the Cañizar and Eslida Fms. in the Iberian Ranges can hardly be 755 

used for this purpose, as the original clay mineralogy has been largely obliterated by 756 

deep diagenetic and even very low grade metamorphic processes, as evidenced by the 757 

presence of dickite and pyrophyllite, respectively, and by illite crystallinity data. In the 758 

Catalan Ranges, the generation of secondary porosity and subsequent carbonate cement 759 

precipitation during late diagenesis also make it difficult to recognize the original 760 

mineral assemblage. In addition, most clay minerals in these units are probably detrital 761 

(Alonso-Azcárate et al., 1997) even in the clay fraction, and it is hard to distinguish 762 

between authigenic and detrital particles. Consequently, the mineral   cannot be linked 763 

to a specific climate. However, the presence of pyrophyllite or dickite in samples from 764 

both units can be regarded as indirect evidence of the presence of kaolinite in the 765 

original clay mineral assemblage, which would have been transformed during 766 

diagenesis or very low grade metamorphism. According to Martín-Martín et al. (2007) 767 

and Galán-Abellán et al. (2013b), kaolinite formed by weathering of detrital micas and 768 

to a lesser extent of K-feldspar, and this alteration implies relatively humid conditions 769 

and low pH values to allow for the hydrolysis of these phases. These low pH values, 770 

probably the outcome of higher levels of atmospheric CO2 along with volcanic SO2 771 

release (Wignall, 2007; Self et al., 2008), are indicated by the presence of APS minerals 772 

in both the Cañizar and the Eslida Fms. (Galán-Abellán et al., 2013b). Indeed, a low pH 773 

could have been an additional environmental stressor for continental biota. 774 
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 During the end of the Early Triassic, the Iberian plate was located in the northern 775 

hemisphere, facing the Tethys between 10ºN and 14ºN (Dinarés-Turell et al., 2005; 776 

Bourquin et al., 2011; Domeier et al., 2012). Interestingly, the latitudinal position of 777 

Iberia during the Early Triassic was one of generally wetter conditions than most of the 778 

rest of Europe (Fig. 13). During this time, river systems flowed to the sea, but 779 

punctually these systems were interrupted by aeolian dune fields (Galán-Abellán et al., 780 

2013a). These interruptions, nevertheless, diminished in time and space during the 781 

beginning of the Anisian, when alternating wet-dry conditions prevailed. 782 

 The Iberian plate had different climate domains of irregular extension arising 783 

from its pronounced orography. The Iberian plate, being part of the ancient boundary 784 

between Gondwana and Laurasia during the assembly of Pangea, experienced 785 

significant deformation identified in part of the highly curved Variscan belt of 786 

southwestern Europe (Weil et al., 2001; Martínez-Catalán, 2011). Such intense 787 

deformation led to the development of mountain belts continuing well into the Permian 788 

and even Early-Middle Triassic (López-Gómez et al., 2012). Mountain orography 789 

induces atmospheric circulation changes. Fluteau et al. (2001) compared different 790 

palaeogeographic scenarios in the Late Permian by testing palaeo-elevations through 791 

sensitivity experiments. These authors noted a substantial increase in aridity in the 792 

elevated Variscan belt that contributed to the development of aeolian facies and 793 

xeromorphic vegetation. These latter authors also estimated an altitude between 2000 - 794 

3000 m in southern Europe for the Late Permian, elevations that persisted until the 795 

Olenekian controlling climate and palaeodrainages (Bourquin et al., 2011). The tectonic 796 

influence on climate has been evidenced either during Triassic times by Oyarzum et al. 797 

(1999) and Fluteau (2003). 798 
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 Three important highs controlled climate change in Iberia during the Late 799 

Triassic: the Ateca-Montalbán High (AMH), Ebro High (EH) and Girona High (GH) 800 

(Fig. 13). These elevated areas and dominant E and NE winds led to the development of 801 

the alluvial systems and aeolian dune fields represented by the Cañizar Fm. in the 802 

Iberian Ranges (López-Gómez et al., 2012), Eramprunyà Unit in the Catalan Ranges 803 

(Galán-Abellán et al., 2013a) or the "Upper Buntsandstein" in the E Pyrenees Ranges. 804 

These palaeohighs, differing in their palaeogeographic morphology, size and 805 

orientation, allowed for the development of a vast dune field area enclosed between the 806 

Ebro and the Ateca-Montalbán Highs in the middle Spathian (Fig. 13). Fluvial systems 807 

were simultaneously surrounding these dune fields across narrow corridors, and most 808 

probably they never reached the Tethys developing an endorreheic system. South of the 809 

Ateca-Montalbán High, however, practically no aeolian sands were deposited except in 810 

punctuate levels of isolated areas (Galán-Abellán et al., 2013a).  811 

 This arid period of the middle Spathian alternated with semiarid periods (Fig. 812 

12). During the latter intervals, fluvial drainage was more extensive and most of dune 813 

field areas disappeared or were reduced to smaller areas (Fig. 12). In the late Spathian 814 

and early Anisian, more humid periods appeared and plants and animals started to 815 

colonize. 816 

 The Ateca-Montalbán High was a geographical boundary with the more humid 817 

areas towards the equator, in the E Argana Basin (Morocco). Here, no aeolian sediments 818 

were recorded during the Early Triassic (Tourani et al., 2010; Klein et al., 2010). These 819 

climate boundaries are consistent with mean annual precipitation simulations by 820 

Bourquin et al. (2007), indicating more than double precipitation in Argana with respect 821 

to the Iberian Plate (from <0.1 mm/day to >1 mm/day) during the Olenekian. In 822 
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contrast, more extensive arid areas than those of the Iberian plate developed during this 823 

time in Central and Southern Europe (Bourquin et al., 2009, 2011). Interestingly, the 824 

first tetrapod footprints in the Iberian Plate are recorded in the early Anisian (Fortuny, 825 

2011) during a more humid period, probably as result of migrations from the still 826 

prevailing more arid conditions of central Europe.             827 

 As previously exposed, the causes driving the inferred climate changes during 828 

the Early Triassic have been broadly discussed by different authors, including those 829 

related to different volcanism pulses in Siberia. In the Iberian Plate, and probably in 830 

neighboring Western Europe areas, tectonics related to the Hardegsen event could have 831 

also reactivated already elevated areas. This new palaeogeographic scenario could allow 832 

the opening of corridors in land favoring the development and reactivation of drainage 833 

networks and the beginning a more humid episode at the end of the Spathian, also 834 

favored by the near equator latitudinal position of Iberia. These circumstances, 835 

humidity, corridors and more oxygenated waters would have contributed to the fauna 836 

and flora recovery in these basins at the end of the Early Triassic.      837 

8. Conclusions 838 

 The continental rocks (Buntsandstein facies) and fossils of eastern Iberia's basins 839 

provide insight into the climate of the western Tethys domain during the Early-Middle 840 

Triassic. This study suggests climate variations for these near equator (10º–14ºN) areas.  841 

 The Early Triassic was mainly dominated by alternating periods, normally 842 

shorter than 0.4 m.a., of arid to semi-arid climates. Two main arid periods marked by 843 

aeolian field dune development occurred at the end of the Smithian and middle of the 844 

Spathian. 845 
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 The late Spathian features a first short subhumid to semi-arid period in Iberia 846 

just after an unconformity related to the western European tectonically induced 847 

Hardegsen event that could be related with the beginning of fauna and flora recovery in 848 

the study basins. After another short arid period at the end of the Olenekian, the 849 

beginning of the Anisian (Aegean) was marked by short periods of alternating arid and 850 

semi-arid to subhumid intervals. The Bithynian and Pelsonian clearly represent a wetter 851 

time, showing alternating semi-arid to subhumid intervals interrupted by two short 852 

humid episodes in the late Bithynian but also a short isolated arid interval near the 853 

Bithynian/Pelsonian boundary. 854 

 Climates in Iberia during this period of time were clearly conditioned by relict 855 

Variscan. As a result, isolated internal climate zones separated by elevated areas 856 

appeared. South of the Ateca-Montalbán High, the generalized wetter climate during the 857 

late Olenekian - early Anisian extended towards the equator to the present-day 858 

Moroccan Meseta and Argana Basin.     859 
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Figure captions  1472 

 1473 

Fig. 1. Early Triassic global map showing the configuration of the continents (modified 1474 

from Golonka and Ford, 2000; Yin and Song, 2013). The amplified area corresponds to 1475 

the Iberian peninsula and the present-day basin and ranges: 1- Pyrenean Ranges, 2- 1476 

Catalan Ranges, 3- Ebro Basin, 4- Duero Basin, 5Iberian Ranges, 6- Tagus Basin, 7- 1477 

Guadalquivir Basin, 8- Betic Ranges, 9- Iberian Massif, 10- Balearic Islands. 1478 

 1479 

Fig. 2. Lithostratigraphic scheme of the Middle Permian – Middle Triassic units of the 1480 

studied areas and their comparison with coeval units of NE Sardinia and Minorca. 1481 

Numbers 1 to 12 represent sections cited in the text: 1- Río Mayor, 2- Gátova, 3- 1482 

Cedrillas-Corbalán, 4- Torre de Las Arcas - Peñarroyas, 5- Benicassim, 6- Novés, 7- 1483 

Castellar d´Hug, 8- San Gregori, 9: Cervelló, 10- El Brull-Figaró, 11- Cala Pilar, 12- 1484 

Cala Viola. Their geographical location are indicated down to the right in the figure. 1485 

 1486 

Fig. 3. a) The Cañizar Fm. in S. Iberian Ranges. Lines represent major boundaries 1487 

surfaces (MBS) and separate subunits (A to F). The lower contact is an unconformity 1488 

that separates the Triassic to the Permian (Alcotas Fm.) (Photograph modified from 1489 

López-Gómez et al., 2012). b) The Eslida Fm. in the E Iberian Ranges. 1490 

 1491 

Fig. 4. Main characteristics and references of the lithological units of the studied areas. 1492 

 1493 

Fig. 5. Studied Lower-Middle Triassic sections and their main sedimentary and 1494 

paleontological characteristics of the S. Iberian Ranges, E. Pyrenees and Catalan 1495 

Ranges. Their geographical locations are indicated in figure 2. Description of the 1496 
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architectural elements is shown in figure 7. C1 to C6 and Ems-3 to Ems-6 represents 1497 

subunits of the Cañizar Fm. and Eslida Fm. respectively.  1498 

 1499 

Fig. 6. Description, interpretation and codes of the main and secondary fluvial and 1500 

aeolian facies.  1501 

 1502 

Fig. 7. Fluvial and aeolian architectural elements showing their codes, facies 1503 

associations, hierarchy and vertical stacking patterns, and selected references. 1504 

 1505 

Fig. 8. Pictures of the different described architectural elements: a) element GB in the 1506 

Garraf Upper Conglomerates Unit (GUC), Catalan Ranges; b) element GM in the 1507 

Prades Upper Conglomerates Unit (PUC), Catalan Ranges; c) SB and CH elements in 1508 

the Cañizar Fm. (CS), Iberian Ranges; d) E1 element in Prades Lower Sandstone Unit 1509 

(PLS), Catalan Ranges; e) E2 and E3 elements in Prades Lower Sandstone (PLS), 1510 

Catalan Ranges; f) FF element in Figaró Sandstones and Mudstones (FSM), Catalan 1511 

Ranges; f) GB element in the lowermost part of the "Buntsandstein" deposits of the 1512 

Noves section, Pyrenean Ranges; h) E1 element in the lower Buntsandstein of the 1513 

Noves section, Pyrenean Ranges. See figure 5 for the location of these units and 1514 

sections. 1515 

 1516 

Fig. 9. Sketches of 3D evolution of three selected stages of the Buntsandstein of the 1517 

Iberian Ranges showing alluvial evolution and macroflora distribution (modified from 1518 

Borruel-Abadía et al., 2014).  1519 

 1520 
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Fig. 10. Specimens of macroflora from the Eslida Fm. in the Iberian Ranges. a: 1521 

Pleuromeia sternbergii (Münster) Corda ex Giebe, 1953; b: Sphenophytes, most likely 1522 

Equisetitesmougeotii Brongniart 1828; c: Pelourdea vogesiaca (Schimper et Mogeot) 1523 

Seaward 1917; d: Albertia latifolia Schimper et Mougeot 1944. Scale bar: 1 cm. 1524 

 1525 

Fig. 11. A) Dispersed carbonate nodules are circled in the subsurface horizon of the 1526 

Gat-A pedotype. Black arrows are pointing to small green root traces. B) Calcareous, 1527 

rooted, and endurated yellow B horizons are irregularly truncated in the Pedotype Gat-1528 

B. C) Adventitious prop roots (marked in white) emanating from a main root in the Gat-1529 

C pedotype. White arrow is pointing to the top of another unmarcked prop root pattern. 1530 

D) Deep penetrating tap root with root apex (r) related to Gat-C paleosols.  E) Drab-1531 

haloes of light green silt around root traces in the pedotype Gat-D. 1532 

 1533 

Fig. 12. Synthesis of the main climate stages and their vertical alternating disposition 1534 

during the Smithian to Pelsonian time – interval in the continental units (Buntsandstein) 1535 

of the S. Iberian Ranges, E. Pyrenees and Catalan Ranges, and their relationship with 1536 

fossil content. Sections (numbers 1 to 10) are located and named in figures 2 and 5. 1537 

 1538 

Fig. 13. Early Triassic palaeogeographical reconstruction of Iberia and neighbour areas. 1539 

Basins in Iberia were separated by elevated areas linked to the development of rift 1540 

systems. Palaeolatitudes and sedimentary environments are partially based on Ziegler 1541 

(1988), Dercourt et al. (1993), Mckie and Williams (2009), Bourquin et al. (2011) and 1542 

Tyrrell et al. (2012). 1543 

 1544 

 1545 
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Figure captions  

 

Fig. 1. Early Triassic global map showing the configuration of the continents (modified 

from Golonka and Ford, 2000; Yin and Song, 2013). The amplified area corresponds to 

the Iberian peninsula and the present-day basin and ranges: 1- Pyrenean Ranges, 2- 

Catalan Ranges, 3- Ebro Basin, 4- Duero Basin, 5Iberian Ranges, 6- Tagus Basin, 7- 

Guadalquivir Basin, 8- Betic Ranges, 9- Iberian Massif, 10- Balearic Islands. 

 

Fig. 2. Lithostratigraphic scheme of the Middle Permian – Middle Triassic units of the 

studied areas and their comparison with coeval units of NE Sardinia and Minorca. 

Numbers 1 to 12 represent sections cited in the text: 1- Río Mayor, 2- Gátova, 3- 

Cedrillas-Corbalán, 4- Torre de Las Arcas - Peñarroyas, 5- Benicassim, 6- Novés, 7- 

Castellar d´Hug, 8- San Gregori, 9: Cervelló, 10- El Brull-Figaró, 11- Cala Pilar, 12- 

Cala Viola. Their geographical location are indicated down to the right in the figure. 

 

Fig. 3. a) The Cañizar Fm. in S. Iberian Ranges. Lines represent major boundaries 

surfaces (MBS) and separate subunits (A to F). The lower contact is an unconformity 

that separates the Triassic to the Permian (Alcotas Fm.) (Photograph modified from 

López-Gómez et al., 2012). b) The Eslida Fm. in the E Iberian Ranges. 

 

Fig. 4. Main characteristics and references of the lithological units of the studied areas. 

 

Fig. 5. Studied Lower-Middle Triassic sections and their main sedimentary and 

paleontological characteristics of the S. Iberian Ranges, E. Pyrenees and Catalan 

Ranges. Their geographical locations are indicated in figure 2. Description of the 

Figure Caption



architectural elements is shown in figure 7. C1 to C6 and Ems-3 to Ems-6 represents 

subunits of the Cañizar Fm. and Eslida Fm. respectively.  

 

Fig. 6. Description, interpretation and codes of the main and secondary fluvial and 

aeolian facies.  

 

Fig. 7. Fluvial and aeolian architectural elements showing their codes, facies 

associations, hierarchy and vertical stacking patterns, and selected references. 

 

Fig. 8. Pictures of the different described architectural elements: a) element GB in the 

Garraf Upper Conglomerates Unit (GUC), Catalan Ranges; b) element GM in the 

Prades Upper Conglomerates Unit (PUC), Catalan Ranges; c) SB and CH elements in 

the Cañizar Fm. (CS), Iberian Ranges; d) E1 element in Prades Lower Sandstone Unit 

(PLS), Catalan Ranges; e) E2 and E3 elements in Prades Lower Sandstone (PLS), 

Catalan Ranges; f) FF element in Figaró Sandstones and Mudstones (FSM), Catalan 

Ranges; f) GB element in the lowermost part of the "Buntsandstein" deposits of the 

Noves section, Pyrenean Ranges; h) E1 element in the lower Buntsandstein of the 

Noves section, Pyrenean Ranges. See figure 5 for the location of these units and 

sections. 

 

Fig. 9. Sketches of 3D evolution of three selected stages of the Buntsandstein of the 

Iberian Ranges showing alluvial evolution and macroflora distribution (modified from 

Borruel-Abadía et al., 2014).  

 



Fig. 10. Specimens of macroflora from the Eslida Fm. in the Iberian Ranges. a: 

Pleuromeia sternbergii (Münster) Corda ex Giebe, 1953; b: Sphenophytes, most likely 

Equisetitesmougeotii Brongniart 1828; c: Pelourdea vogesiaca (Schimper et Mogeot) 

Seaward 1917; d: Albertia latifolia Schimper et Mougeot 1944. Scale bar: 1 cm. 

 

Fig. 11. A) Dispersed carbonate nodules are circled in the subsurface horizon of the 

Gat-A pedotype. Black arrows are pointing to small green root traces. B) Calcareous, 

rooted, and endurated yellow B horizons are irregularly truncated in the Pedotype Gat-

B. C) Adventitious prop roots (marked in white) emanating from a main root in the Gat-

C pedotype. White arrow is pointing to the top of another unmarcked prop root pattern. 

D) Deep penetrating tap root with root apex (r) related to Gat-C paleosols.  E) Drab-

haloes of light green silt around root traces in the pedotype Gat-D. 

 

Fig. 12. Synthesis of the main climate stages and their vertical alternating disposition 

during the Smithian to Pelsonian time – interval in the continental units (Buntsandstein) 

of the S. Iberian Ranges, E. Pyrenees and Catalan Ranges, and their relationship with 

fossil content. Sections (numbers 1 to 10) are located and named in figures 2 and 5. 

 

Fig. 13. Early Triassic palaeogeographical reconstruction of Iberia and neighbour areas. 

Basins in Iberia were separated by elevated areas linked to the development of rift 

systems. Palaeolatitudes and sedimentary environments are partially based on Ziegler 

(1988), Dercourt et al. (1993), Mckie and Williams (2009), Bourquin et al. (2011) and 

Tyrrell et al. (2012). 
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