Climate changes during the Early–Middle Triassic transition in the E. Iberian plate and their palaeogeographic significance in the western Tethys continental domain

Violeta Borruel-Abadíaa, José López-Gómezab, Raúl De la Horra, Belén Galán-Aballánb, José F. Barrenecheaca, Alfredo Archea, Ausonio Ronchic, Nicola Gretteder, Mariano Marzoe

a Instituto de Geociencias (CSIC, UCM), C/José Antonio Nováis 12, 28040 Madrid, Spain.

b Dept. of Stratigraphy, Faculty of Geology, Universidad Complutense de Madrid, 28040 Madrid, Spain.

c Dept. of Crystallography and Mineralogy, Faculty of Geology, Universidad Complutense de Madrid, 28040 Madrid, Spain.

d Dept. of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.

e Dept. of Stratigraphy, Palaeontology and Marine Geosciences, Faculty of Geology, Universitat de Barcelona, 08028 Barcelona, Spain.

*Corresponding author: Instituto de Geociencias (CSIC, UCM), C/José Antonio Novais 12, 28040 Madrid, Spain. Fax: +34 91 39444808, Telephone: + 34 91 3944783, E-mail: jlopez@geo.ucm.es (J. López-Gómez)

Abstract

Until recently the climate of the Early–Middle Triassic at low latitudes was broadly considered as generally temperate-warm with no major climate oscillations. This work examines the climate of this period through a detailed study of the sedimentary, plant, soil and mineral records of continental rocks (Buntsandstein facies) in eastern Iberian basins. Our findings indicate temporal climate variations for these near equator (10°–14°N) regions and unveil the significance of such variations in the southern Laurasian domain.
The climate of Iberia's Early Triassic was mainly dominated by alternating brief (< 0.4 ma) arid and semi-arid climate periods, with two main arid periods documented at the end of the Smithian and middle Spathian. However, an initial short subhumid to semi-arid period was also observed in the late Spathian. Remarkably, this latter period appears just after an unconformity related to the tectonically induced Hardegsen Event in western Europe. It is also of interest that this short subhumid climate period is concurrent with the beginning of faunal and floral recovery in the basins examined. The Early Triassic ended again with a short very arid period.

Although the beginning of the Anisian (Aegean) was represented by alternating arid and semi-arid to subhumid intervals, during the Bithynian and Pelsonian clearly wetter climates are recorded by the succession consisting of alternating semi-arid to semi-humid intervals. This general tendency was interrupted by three short but marked intervals, two humid intervals in the late Bithynian, and one arid period near the Bithynian/Pelsonian boundary.

Iberia was crossed by prominent irregular highs separating marked corridors or isolated areas. This palaeogeography, prevailing since Variscan tectonics, clearly conditioned dominant climates and their geographical distribution. No clear climate belts developed in these conditions. However, isolated internal climate zones separated by elevated areas are identified. This palaeogeographic configuration and the low latitudinal position of Iberia determined central Iberia highs in the southernmost border of Laurasia, beyond which more humid conditions clearly extended towards the equator reaching the present-day Moroccan Meseta and Argana Basin.

Keywords: Triassic climates, Buntsandstein, Iberia, Early Triassic, Pangaea
1. Introduction

The end-Permian mass extinction devastated both marine and terrestrial ecosystems (Benton, 2003; Erwin, 2006; Algeo et al., 2011). This event, besides being the most catastrophic known loss of biodiversity, was followed by an unusually long period of recovery throughout the Early Triassic (Payne et al., 2004; Kozur and Weems, 2011; Retallack et al., 2011; Benton and Newell, 2014). Takahashi et al. (in press) have even extended to the late Spathian, the global environmental perturbations that were likely responsible for the delayed recovery of life in the marine realm. However, recent studies (Hofmann et al., 2011, 2013) have also suggested that this latter idea should be abandoned.

Although there is increasing evidence indicating that this mass extinction was most probably triggered by a combination of different factors rather than a single event (Berner, 2002; Galfetti et al., 2007), numerous scenarios related to of the Siberian Traps Eruptions have been proposed (Wignall, 2001; Algeo et al., 2011; Benton and Newell, 2014), including CO₂ emissions and methane release which induced global warming. Recent modelling based on carbon isotope excursions (Payne and Kump, 2007; Kearsey et al., 2009; Romano et al., 2013) supports the latter scenario.

The activity of the Siberian Traps, which continued into Early Triassic times (Nikishin et al., 2002; Payne and Kump, 2007), is interpreted to have led to enhanced greenhouse climate conditions (Retallack et al., 2011; Romano et al., 2013). Global warming is widely thought to have played an important role in biotic crises (Montañez et al., 2007; Benton and Newell, 2014). This factor is considered responsible for intensifying unfavourable conditions for recovering ecosystems during the Early Triassic (Kozur and Weems, 2011), and even described as lethal during this time (Sun
et al., 2012). Although clear connections appear, ecosystem rebuilding and ecological recovery from this period varied between terrestrial and marine realms, and even between regions (Twitchett, 2006). Environmental stress during the Early Triassic in both realms could also have been driven by rapid change between longer intervals of global warming and shorter intervals of global cooling, as observed in faunal change studies (Kozur and Weems, 2011; Posenato, 2008). This interval of time and even the beginning of the Middle Triassic were therefore more complex and nuanced than a simple but dramatic global warming period.

Climate variations between terrestrial and marine realms and different regions were probably related to the particular palaeogeographic configuration of Pangaea (Kiehl and Shields, 2005; Sellwood and Valdes, 2007). Pangea was approximately centred on the equator, stretching almost from pole to pole and surrounded by the Panthalassa Ocean (Muttoni et al., 2009; Roscher et al., 2011) (Fig. 1). A wide oceanic gulf, the Tethys sea, latitudinally confined to the tropical-subtropical belt, developed on its eastern side. A configuration like this with a vast expanse of exposed land at low and mid-latitudes centred on the equator with a warm Tethys sea would have determined summer heating in circum-Tethyan continental areas with a strong monsoonal regime and extreme continentality. Such a continental climate would have entailed hot summers and relatively cold winters (Kutzbach and Gallimore, 1989), along with a remarkably high tropical sea-surface temperature with peaks of up to 40ºC during the Early Triassic (Joachimski et al., 2012).

Despite intense research on the greenhouse climates of Mesozoic times, the climate of the Early Triassic has been relatively ignored until recently. Some decades ago, the Triassic climate was considered that of a general hot-house with ice free poles
without major oscillations. However, recent interesting studies (e.g. Kidder and Worsley, 2004; Sellwood and Valdes, 2007; Galfetti et al., 2007; Twitchett, 2007; Preto et al., 2010; Stefani et al., 2010; Retallack et al., 2011; Bourquin et al., 2011; Sun et al., 2012; Romano et al., 2013; Benton and Newell, 2014, among others) have revealed a more complex scenario with climate oscillations, non-zonal patterns and presence of a global monsoon system.

This contribution considers climate variation over the late Early Triassic - early Middle Triassic time-interval in the Iberian Plate and adjacent areas, its features and palaeogeographical aftermath in the Western Tethys continental realm. Specifically, we examined the effects of these variations on terrestrial life and relationships with pertinent environmental changes and compared our data with those already described for nearby palaeolatitudinal areas.

2. Geologic and stratigraphic setting.

During the Early Triassic, the Iberian plate occupied the eastern flank of the Pangea supercontinent (Fig. 1A) as a small plate close to the southernmost part of the ancient Laurasia megacontinent (Ziegler and Stampfli, 2001; Stampfli and Borel, 2002; Muttoni et al., 2009; Domeier et al., 2012). During the Early Permian, different basins developed on the eastern side of the plate, while the western portion remained stable to form what today constitutes the so-called Hercynian Massif. Basins initially developed as small isolated troughs, but later these gave rise to a complex system of interconnected rift basins in Central and Western Europe during the Early Triassic (van Wees et al., 1998; De Vicente et al., 2009).
The eastern Iberian basins include three main rift systems: the Iberian, Catalan and Pyrenean-Cantabrian basins, or their respective present-day ranges after Cenozoic inversion (Fig. 1B). Some other small basins contemporaneously developed east of the Iberian plate in present-day Sardinia and the Balearic Islands (Ramos, 1995; Bercovici et al., 2009; Cassinis et al., 2003) and show a similar sedimentary record for the Early-early Middle Triassic (Bourquin et al., 2007, 2011; Cassinis et al., 2012; López-Gómez et al., 2012; Galán-Abellán et al., 2013a; Ronchi et al., 2014) (Fig 2). It basically consists of a succession of two-three units of continental origin, each representing one tectono-sedimentary sequence related to different reactivation phases of the rift systems that developed during the Permian (Arche and López-Gómez, 1996; van Wees et al., 1998; Vargas et al., 2009). The succession shows a general fining-upward tendency, and the units may be separated by hiatuses. This continental sedimentary sequence ends with the westward ingress of the Tethys sea across these areas during the middle Anisian (Ziegler, 1988; Kozur and Bachmann, 2008; Bourquin et al., 2011; Escudero-Mozo et al., 2015).

The three units of the tectono-sedimentary cycle are not always recorded in the outcrops of the different basins. However, when they do appear, they show similar sedimentary characteristics and lateral continuity. As across most of Western Europe, the beginning of the Triassic sedimentary cycle is marked by an unconformity on the Upper Permian rocks, representing a time-span of 6–10 m.a. (Bourquin et al., 2011) to 15 m.a. (Durand, 2006).

2.1. The Iberian Ranges
The beginning of the Triassic continental sedimentary cycle in the E Iberian Ranges comprises three lithostratigraphic units (Fig. 2): Valdemeca Conglomerates Unit (VC), Cañizar Sandstones Fm. (CS), and Eslida Mudstones and Sandstones Fm. (EMS). The Valdemeca Unit was initially considered as the lower subunit of the Cañizar Fm. (López-Gómez and Arche, 1993) but later defined as a single unit (De la Horra et al., 2005).

The Cañizar Fm. mostly consists of red-pink, medium-grain arkoses, 80–110 m thick, and laterally corresponds to the Rillo the Gallo Fm. to the west. This formation has been divided into six subunits (C1 to C6) separated by major boundary surfaces (mbs) laterally recognized over hundred kilometres (López-Gómez et al., 2012) (Fig. 3A). It is interpreted as sandy braided fluvial deposits, with some aeolian reworking, evolving to dominantly aeolian deposits in the northern and eastern zones (Soria et al., 2011; López-Gómez et al., 2011). The upper subunits (C5 and C6) are separated from the rest by a prominent major boundary surface (mbs-5) that marks the reactivation of sedimentation and development of a more energetic fluvial system in most of the Iberian Ranges (López-Gómez et al., 2012).

The Eslida Fm. consists of red siltstones and intercalated decimetric sandstone bodies of arkosic composition (Fig. 3B). The formation's thickness is up to 660 m, thinning to the SE and NW, and it is subdivided into six subunits (Ems-1 to Ems-6) based on their sedimentary characteristics (Arche and López-Gómez, 1999). The unit was deposited only in the central-eastern Iberian Ranges, as the western and easternmost areas of the Iberian Basin were elevated during the time of deposition, while the central area experienced intense subsidence (Arche and López-Gómez, 2005). This geographical arrangement has determined marked lateral thickness variations (Fig.
2). As a result of this control, in the sections examined here only the four younger subunits (Ems-3 to Ems-6) of the Eslida Fm. were deposited. The transition of the Eslida Fm. to the first deposits of marine origin is represented by Röt facies, the so-called Marines Fm. (M) in this area, mostly identified through marls, clays and gypsum (Arche and López-Gómez, 1999).

2.2. Pyrenean Ranges

The beginning of the Triassic continental cycle in the E. Pyrenees (so-called Catalan Pyrenees) was broadly defined as the "Buntsandstein cycle" by Gisbert (1981, 1983), without more detailed subdivisions (Fig. 2). This cycle, which shows an average thickness of about 200 m across the whole area considered, lies, via a marked angular unconformity (30°–60°), on Permian rocks (Mey et al., 1968; Naetegaal et al., 1969; Gisbert, 1981; Ronchi et al., 2014; Gretter, 2014). The lowermost part of the Buntsandstein consists of coarse-grained conglomerates with deeply erosive base (i.e. the Iguerri member of Nagtegaal et al., 1969) and sandstones of gravel braided fluvial systems, channel and aeolian sand-sheets. Overlying these base layers, the upper portion of the Buntsandstein is composed of reddish sandstones, bioturbated mudstones and siltstones of a playa lake environment. Near the top, siltstones and claystones locally change into dark red fine levels until the contact with the Muschelkalk sequence. These “transition” layers probably represent the Röt facies in the Catalan Pyrenees. The contact between the upper fine deposits and dolomites of the first marine incursion probably represents a hiatus that lasts until the Anisian (Escudero-Mozo et al., 2014).
2.3. Catalan Ranges

The beginning of the Triassic continental sedimentary cycle in the Catalan Ranges is differently represented in the three sectors into which the ranges were subdivided (Calvet and Marzo, 1994). The cycle features three units in each of the three sectors, represented in sections 6, 7 and 8 (Fig. 2), that are broadly considered time-equivalent (Galán-Abellán et al., 2013a). These units, which change in name from south to north, were initially described by Marzo (1986) and more recently by Galán-Abellán et al. (2013a). They are (Fig. 2): Prades Upper Conglomerates (PUC), Prades Lower Sandstones (PLS), and Aragall Sandstones and Mudstones (ASM) in the southern sector; Garraf Upper Conglomerates (GUC), Eramprunyà Sandstones (ES) and Aragall Sandstones and Mudstones (ASM) in the central sector; and Riera de San Jaume Sequence (RSJ) and the Figarò Mudstones and Sandstones (FMS) in the northern sector.

The Prades Conglomerates unit, Garraf Conglomerates unit and the lower part of the San Jaume Sequence were interpreted as deposited by gravelly braided fluvial systems related to proximal alluvial fans. The Prades Sandstones unit was interpreted as fluvio-aeolian deposits, the Eramprunyà Sandstones unit as sandy braided fluvial deposits with intercalated aeolian sandstones, and the upper part of the San Jaume Sequence as sandy braided fluvial deposits. The Aragall and Figarò units were interpreted as mixed-load, sinuous, fluvial systems developed in wide muddy floodplains deposits (Marzo, 1980).

2.4. Sedimentary cycle age
The sedimentary cycle of the Iberian Ranges has been dated according to palynological assemblages obtained in the Cañizar and Eslida Fms., as well as in the overlying Marines Fm. (Boulouard and Viaillard, 1982; Doubinger et al., 1990; Díez et al., 2010), and according to one foraminifer association obtained in, the Landete Fm. (Escudero-Mozo et al., 2015). The base of the Valdemeca Unit has been dated as Smithian, the uppermost Cañizar Fm. is Aegean in age, and the uppermost Eslida Fm. Bithynian (López-Gómez et al., 2012) (Fig. 2).

The equivalent sedimentary cycle in the Catalan Ranges shows a scarce fossil record that consists of a Pleuromeia plant specimen in the uppermost part of the Eramprunyà Unit (Galán-Abellán et al., 2013a), and some isolated footprints reptiles and fragments of bones in the El Figarò Unit (Gaete et al., 1994; Fortuny et al., 2011). These are neither sufficient nor representative to indicate the precise age of the beginning of this sedimentation cycle. Díez et al. (2013) examined a pollen assemblage above this cycle, in the Upper Evaporitic Unit (UE) or Röt facies, indicating a Bithynian-Pelsonian age. A magnetostratigraphic study of the cycle in the Riera de San Jaume Sequence (RSJ in Fig. 2) (Dinarès-Turell et al., 2005), assigns the lower part of the cycle to the Spathian and the upper part to the Illyrian. Finally, a precise Pelsonian age obtained for Ammonites in the marine carbonate sediments just above this continental cycle (Escudero-Mozo et al., 2014) (Fig. 2), point roughly to an equivalence between this sedimentary cycle and the one described for the Iberian Ranges.

In the E Pyrenees, an early Anisian age based on palynomorph assemblages (Broutin et al., 1988; Calvet et al., 1993; Díez, 2000; Díez et al., 2005) was obtained for the upper dark red fine clastic deposits of the "Buntsandstein cycle". Based on these palynological studies, we attribute the lower coarser part of this sedimentary cycle a late
Early Triassic age. Thus, the age of this cycle, as well as its general lithological succession would be broadly time-equivalent to those described in both the Iberian and Catalan Ranges (Fig. 2).

3. Methods

The multidisciplinary approach used includes a stratigraphic and sedimentologic study, palaeosol characterisation, and a description of the palaeontologic contents and petrology of fine sediments. Figure 4 shows a scheme of the general data described for the units in the different areas. Given strong correlation between the genesis of many sedimentary rocks and climate change, our stratigraphic and sedimentologic descriptions and interpretations of the units, are based, among other data, on those which allow to obtain temperature, wind direction and precipitation information. Despite the difficulty in obtaining precise ages of continental Triassic rocks, detailed stratigraphic information is necessary as climate change can occur over short time scales, and some continental deposits will not record a specific climate event, as accretion may be very slow (Benton and Newell, 2014).

Based on plant fossils and sediments, our goal was to reconstruct climate variations throughout each unit. This approach was able to identify, for example, correlations between the ecology and growth of floras and different alluvial environments. Preserved palaeosols were used as proxies for precipitation trends and climate seasonality. Further, clay minerals in the profiles examined were used as additional evidence of climate control, as different clay minerals form by chemical weathering under different humidity conditions. Finally, vertebrate ichnites and an
isolated insect data were also used for palaeogeographic reconstruction. All these data were compared with those from near Tethys areas to construct plausible palaeogeographic scenarios for the studied time-interval.

4. The sedimentary record

4.1. Stratigraphy and sedimentology

Our sedimentologic analysis was mostly based on data from prior work on these units, which are here synthesized. Ten selected sections were examined in detail: five in the E Iberian Ranges, two in the E Pyrenees and three in the Catalan Ranges (Fig. 5). Sections commonly show large thickness variations among the different basins. Sedimentation-free areas occur at the basin margins, while prominent depocentres developed away from those areas, where the sedimentary record may approach 400 m in thickness. All sections of the three basins show a hiatus that roughly corresponds to the Aegean but also to the early Bithynian in some cases. This time-span without sedimentation grossly separates coarser from finer siliciclastic sediments, probably related to general plate reorganization, as discussed below.

The depositional systems corresponding to these units were reconstructed through detailed sedimentologic facies description and interpretation. Different architectural elements were also based on facies associations, their hierarchies and stacking pattern characteristics.

The study of the units allowed us to differentiate 19 facies and eight associated or secondary facies. Some of these facies are described according to Miall's nomenclature (1992, 1996); all are summarized in figure 6. Thirteen facies were
ascribed to alluvial sediments, while six (ae1 to ae6) were differentiated into aeolian sediments. These latter facies are locally completed with eight secondary or associated facies.

The facies described as alluvial sediments are basically represented by sandstones, conglomerates or both, while those described in aeolian sediments are basically comprised of sandstones.

Facies and associations between them constitute sedimentary bodies or architectural elements (*sensu* Miall, 1992, 1996), each with a particular external geometry and internal vertical stacking pattern. Sedimentary environments were reconstructed from the analysis and interpretation of these architectural elements. Nine architectural elements identified across the studied units are summarized in figure 7. Six of these elements were related to a fluvial sedimentary environment, and the remaining three to an aeolian sedimentary environment.

The fluvial sedimentary environment includes megaripples, channel fill, lateral accretion, gravel bars, unconfined or semiconfined clast bodies and floodplain architectural elements, while the aeolian sedimentary environment includes dune, sandsheet and interdune architectural elements. The vertical succession of these elements in the studied sections (Fig. 5) reflects sedimentary evolution through the different units and the basins they filled.

Sedimentation in the basins probably started not before the early Smithian. In all cases, the general deposition trend is fining upward. This tendency is interrupted at the boundary between two main cycles of deposition (Fig. 4). The lower one, with a coarser lithology, may start with gravel bar successions (GB), normally amalgamated into
macroforms (Fig. 8a, f). These represent gravelly braided fluvial systems with punctuate aeolian reworking in the S Iberian Ranges and Catalan Ranges. Although less frequent, the GM architectural element (Fig. 8b) may also appear in this lower part of the cycle, indicating flash floods or unconfined deposits related to arid or semi-arid climate areas (Durand, 2006, 2008; De la Horra et al., 2005, 2008, 2011; Bourquin et al., 2007, 2011). The upper part of this lower coarser cycle of deposition is basically represented by sandy braided fluvial systems (SB, CH) (Fig. 8c) intercalated into aeolian dune field complexes (E1, E2, E3) that tend to be more frequent towards the central Iberian Ranges and south Catalan Ranges (Figs. 8d, e, h and 9A). In the S Iberian Ranges, above major boundary surface 5 (mbs 5), clear reactivation in the general depositional system allowed for the punctate development of gravel bars in the fluvial systems and a general increase in water fluxes (López-Gómez et al., 2012). Dominant palaeocurrent trends in the E Iberian Ranges point 95º–150º in the fluvial systems and 195º–270º in the aeolian systems. In the Catalan Ranges, dominant palaeocurrents in the fluvial systems point 130º–185º, and are bidirectional 75º–120º and 235º–285º in the aeolian systems. In the E Pyrenees, dominating palaeocurrents trend 275º–320º.

The upper part of the sedimentary cycle is not completely represented in the S Iberian Ranges and, as stated above, only records its four youngest subunits (Ems-3, Ems-4, Ems-5 and Ems-6) in the Cedrillas-Corbalán section, and is even less detectable in the other sections, with a minimum in the Río Mayor section, where this formation was not deposited (Fig. 5). These four subunits are composed of fine sediments with intercalated sandstone levels (Figs. 3b, 8f) that become abundant in Ems-5. They mostly represent sandy braided (SB, CH) fluvial systems crossing huge floodplain (FF) areas where soils developed (Fig. 9B) (Arche and López-Gómez, 2005) and isolated coal
seems in the Castellar N’Hug area (Fig. 5). Some small aeolian dune systems (E1) developed intercalated in the fine deposits in the upper (Ems-6) Torre de Las Arcas–Peñarroyas section, while some sandy meandering (LA) fluvial systems developed in the lower part of the same section (Ems-4). The middle portion of this section (Ems-5), however, represents the reactivation of the whole sedimentary system, with a record reduced in fine deposits and an increase in migrating channels and bar development (Fig. 9C) (Borruel-Abadía et al., 2014). Punctually, some aeolian reworking is observed in the fluvial systems of the Torre de las Arcas–Peñarroyas section, in subunit Ems-5.

4.2. Mineralogy

Our mineralogical composition study focuses on the Iberian and Catalan Ranges, as there are no data available on the mineral composition of the Triassic units in the selected area of the Pyrenees. In the Iberian Ranges, the mineralogical composition of the Cañizar and Eslida Fms. was firstly described by Alonso-Azcárate et al. (1997) in a general study, and completed in a more detailed study by Galán-Abellán et al. (2013b).

Sandstones from both the Cañizar and Eslida Fms. are quartz-arenites and subarkoses, with quartz, K–feldspar, lithic fragments of slates and phyllites, detrital mica, and accessory phases like rutile, zircon, ilmenite, monazite, apatite, tourmaline and, less frequently, xenotime. The matrix includes illite, hematite and less kaolinite in samples from the eastern sector of the basin, where it is extensively replaced by dickite (Martín-Martín et al., 2007). No primary porosity has been detected, and secondary porosity is filled with kaolinite, quartz, illite and iron oxide cements. In addition, samples from both units contain strontium-rich aluminium phosphate sulphate minerals (APS minerals). However, these phases are more abundant in the basal part of the
Cañizar Fm., where they commonly replace lithic fragments. In samples from the Eslida Fm., these APS minerals occur as tiny (>3 µm) disseminated pseudocubic crystals. Textural relationships strongly suggest that APS minerals are early diagenetic in origin, and precipitated shortly after sedimentation, most probably under the influence of acidic meteoric waters (Galán-Abellán et al., 2013b).

As mentioned before, the Cañizar Fm. is almost exclusively formed by sandstones. On the other hand, the Eslida Fm. includes mudstone and siltstone layers intercalated with sandstones. A remarkable feature of the Eslida Fm. is the local occurrence of carbonate (formed by dolomite or calcite) concretions in some palaeosols within these fine layers. Clay minerals in the mudstones are mainly illite, with minor amounts of pyrophyllite or kaolinite (the latter replaced by dickite), which are more abundant in the eastern sections. The illite crystallinity (IC) data indicate that most sections in the Iberian Ranges reached deep diagenetic conditions (0.44º to 0.75º Δ2Ө; Benito et al., 2005), in agreement with the illite and dickitized kaolinite assemblage. However, the presence of pyrophyllite and lower IC data (0.41 to 0.28º Δ2Ө) in some sections (those showing the maximum thickness of the Eslida Fm.) are indicative of very low grade metamorphism (Alonso-Azcárate et al., 1997; Benito et al., 2005).

A preliminary approach to the mineralogical composition of the Early-Middle Triassic rocks of the Catalan Ranges was performed by Galán-Abellán (2011) in the Eramprunyà unit (ES) and Aragall unit (ASM) in the central sector, and in the El Figarò unit (FMS) in the northern sector (Fig. 2). Mineral assemblages are rather similar to those found in the Iberian Ranges, and include quartz, hematite, illite and kaolinite, and
minor amounts of feldspar. Dolomite and calcite rarely occur in the ES, but are frequent in samples from both the ASM and FMS units. APS minerals are also found as accessory phases in some samples. Sandstones and siltstones in the Catalan Ranges show a lower degree of diagenesis, as revealed by IC data. Late diagenetic processes promoted the development of secondary porosity, subsequently cemented by carbonate (calcite and dolomite), which obliterated the original mineral assemblage.

Because of the large proportion of detrital phases and of the deep diagenetic to very low metamorphic conditions, these mineral assemblages cannot be directly used to decipher the palaeoclimatic conditions that prevailed during the sedimentation of these units. However, as will be discussed later, variations in clay mineral formation is related to chemical weathering intensification, a process dependent on atmospheric temperatures (Velde and Meunier, 2008).

5. Palaeobotany

Anisian Triassic plant remains have been recovered in both the Iberian and Catalan Ranges. In the Pyrenean Ranges, palynomorph assemblages have been only reported for the Buntsandstein facies (Broutin et al., 1988; Calvet et al., 1993; Díez, 2000; Díez et al., 2005), indicating an Anisian age. Studies of these records have been scarce but some include a detailed compilation of prior references and provide tentative palaeoenvironmental reconstructions. In the eastern Pyrenees only the palynomorph assemblages previously mentioned and some undetermined flora fragments have been found to date.

5.1. Iberian Ranges
Although without specifying a precise stratigraphic or geographic position, Schmidt (1937, in Dobruskina, 1994), describe a Triassic macroflora in the S Iberian Ranges, identifying *Pleuromeia sternbergii* (Münster) Corda.

There are no reports of macrofloral remains in the Cañizar Fm. (Figs. 5 and 9A). The only remains in the units of the Iberian Ranges examined appear in the Eslida Fm. In this unit, different floral associations indicate an upward decrease in floral diversity. In the Eslida Fm., floral associations types can be distinguished depending on the plant remains found. The first, found in subunits Ems-3 and Ems-4 (Fig. 9B), features a macroflora composed of riparian vegetation including semi-arborescent lycophytes (*Pleuromeia*), sphenophytes (at least *Equisetites*, perhaps also *Neocalamites*) and more hygrophytic conifers, such as *Pelourdea* (Borruel-Abadía et al., 2014) (Fig. 10a, b, c).

The vegetation of the lowlands is characterized by drier conditions, where various species of arboreous conifers developed, such as *Voltzia*, and shrubby ones such as *Albertia*. The possible hinterland vegetation consists of conifers along with shrubs (*Albertia*) and trees (*Voltzia*) (Fig. 10d). These associations are laterally arranged but also appear vertically alternating, probably indicating the alternation of drier and more humid conditions, possibly in a seasonal climate, but also indicating a position more or less distal to channels (Borruel-Abadía et al., 2014).

In subunit Ems-5 of the Eslida Fm., where CH and SB architectural elements dominate, large indeterminate fragments of putative conifers have been found, probably as a result of their greater resistance to transport (Borruel-Abadía et al., 2014) (Fig. 9C). However, this could also be the outcome of a more sparse vegetation that does not protect soils from erosion. Besides, the presence of conifers only could indicate a shift to more arid conditions, taphonomic selection or a combination of both.
In subunit Ems-6 of the Eslida Fm., only a *Pleuromeia* fragment and specimens of bad preserved *Peltaspernum*, maybe part of a fern with seeds, have been identified. This is striking because in subunits Ems-3 and Ems-4 showing similar sedimentation and preservation characteristics, a larger number of specimens have been discovered. This could be due to arid conditions near inland sabkhas inferred from sedimentologic criteria (Borrue1-Abadía et al., 2014).

The only pollen assemblage described in the Eslida Fm. consists of conifers, ferns and seed ferns, and contains *Podocarpeaepollenite, Minotosaccus, Platysaccus, Succintisporites* and *Cristatitriletes* (Boulouard and Viallard, 1982).

In the N Iberian Ranges, in equivalent stratigraphic positions, Díez et al. (1996) and Díez (2000) described a similar Anisian association composed of *Darneya* sp., *Darneya peltata, Equisetites* sp., *Neocalamites* sp., *Neocalamites* cf. *carrerei*, *Willsiostrobus* sp., *Willsiostrobus rhomboidalis, Pelourdea vogesiaca, Albertia* sp., *Voltzia* sp., *Voltzia heterophylla* and *Voltzia walchiaeformis*. In this latter area, two palynomorph assemblages have been described in the Cálcena Fm. (Arribas, 1984) in a possible stratigraphic location equivalent to the upper part of the Eslida Fm., that mainly contains conifers and ferns (*Alisporites, Chordasporites, Triadispora, Verrucosisporites and Volziaceaesporites*) (Díez et al., 2007).

Palaeoenvironmental reconstructions of these associations point to a riparian vegetation comprising plants living near the water body (permanent floodplain ponds or river) subjected to periodical floods. The vegetation around the water bodies is composed of sphenophytes (*Equisetites* and *Neocalamites*) and hygrophytic conifers such as *Pelourdea* (see also Kustatscher et al., 2014). Further from the water body, lowland vegetation is characterized by drier conditions, and includes various species of
conifers such as *Voltzia, Albertia*. Possible hinterland vegetation (permanent ground or seasonally dry) comprises conifers (*Voltzia, Albertia, Willsiostrobus* and *Darneya*).

5.2. Catalan Coastal Ranges

In the Catalan Ranges, the first macrofloral remains appear in the so-called “Lower Buntsandstein”, and take the form of a putative *Pleuromeia*, located in the upper part of the Eramprunyà Unit, which is equivalent to the top of the Cañizar Fm. (Galán-Abellán et al., 2013a).

In the “Upper Buntsandstein”, in green shales with malachite, Almera (1909) described an association composed of remains of *Albertia* sp., *Calamites* sp., *Voltzia heterophylla* and *Pecopteris sulziana*. Two similar bands with macrofloral remains were reported by Calzada (1987). The lower one only contains *Equisetites* sp. and the higher one *Aethophyllum* sp. and *Equisetites* cf. *mougeotti*. Original lithostratigraphic descriptions of the levels where the samples were obtained point to the El Figarò Unit, in a stratigraphically equivalent level towards the top of the Eslida Fm. (Galán-Abellán et al., 2013a).

In the Catalan Ranges (El Figarò Unit), hygrophytic taxa that grew in the wetter areas around ponds and along river banks can also be observed such as sphenophytes (*Equisetites* and *Calamites*) and ferns (*Pecopteris sulziana*). The vegetation of the lowlands is characterized by species of arboreous conifers, such as *Voltzia* and *Aethophyllum*, and shrubby species, such as *Albertia*, as well as ferns in the understory (*Aethophyllum* and *Pecopteris*).

Macrofloral remains found in the Son Serralta Fm. of Majorca (Calafat-Colom, 1988; Álvarez-Ramis et al., 1995) are similar to the ones described in the El Figarò Unit.

In NW Sardinia, inside a whitish horizon in the Cala Viola sandstones, Pecorini (1962) found estherias and plant remains (*Equisetum cf. mougeotii*), and attributed such a formation to the Lower Triassic. Two distinct palynomorph associations of (?)Scythian-early Anisian and late Anisian age from the subsurface are reported in comparable deposits (Pittau and Del Rio, 2002).

6. Palaeosols

Our palaeosol study mainly focused on some profiles of the Eslida Fm., in the Gátova stratigraphic section of the Iberian Ranges (Fig. 11). Only levels showing root traces, soil structure, and soil horizons were considered paleosols (Retallack, 1988, 2005). These palaeosols have been differentiated and classified into a field scheme of pedotypes using established criteria (Retallack, 1997). The USDA Soil Taxonomy system (Soil Survey Staff, 1999) was used to define horizons using letters (such as A, Bt and Bk) and to designate diagnostic horizons. The classification of Machette (1985) was used for the state of carbonate accumulation, and the degree of development of the palaeosol was estimated using the scale of Retallack (1988).
The first evidence of pedogenesis was observed at the top of subunit Ems-3 and base of subunit Ems-4, in silty red floodplain facies. Vertical root traces and a thick (5-10 mm) platy structure are related to the thin ochric epipedons and incipient subsurface clayey horizons of pedotype Gat-A (Fig. 11A). Root traces are scarce, short (5-10 cm) and preserved by infills of red or green clay. Dispersed powdery carbonate and carbonate nodules (stage I-II, Machette, 1985) occur in the subsurface clayey horizons, only a few centimetres beneath the soil surface (5-10cm), but this calcareous level does not constitute a calcic (Bk) horizon. Nodules are horizontally elongated (2-5 cm) but thin (0.5-1 cm) and show a lenticular shape. The shallow scarce root traces, the only slightly altered bedding, and short distance to the carbonate disc-shaped nodules are indicative of a sparse vegetation that probably developed under dry conditions for most of the year (Retallack, 2005). These palaeosols represent weakly developed silty to sandy Entisols of flat land surfaces, which were not frequently flooded and developed under arid climates.

The upper part of subunit E4 displays palaeosols at carbonate accumulation stage II-III in the floodplain facies (Machette, 1985). These moderately developed silty red palaeosols are characterized by a partially eroded Bt clayey horizon, from which root traces emanate downwards into a Bk calcic horizon of slightly coalescing carbonate nodules measuring 0.5-2 cm (pedotype Gat-B; Fig. 11B). Columnar and subangular blocky structures are observed in the Bt horizon, which is also burrowed by several channels of roots of small size (up to 12 cm in length). Bk horizon thickness is up to 20 cm and entire profiles are generally 30 to 40 cm. The Gat-B pedotype was classified as an Inceptisol (Soil Survey Staff, 1999).
Under arid climates, thicker Bk horizons are usually interpreted as indicative of a longer time of pedogenic development (Gile et al., 1966). However, in non-extreme arid climates, thicker Bk horizons are the result of seasonal variations in soil wetting depth (Retallack, 2005) and greater plant activity (Alonso-Zarza et al., 2003). As the thickness of the Bk horizon does not exceed 30 cm, there is no evident seasonal variation in rainfall (Retallack, 2005). However, the greater presence of root traces suggests better conditions for plant growth, and, thus, this part of subunit Ems-4 was deposited under conditions of slightly higher mean annual rainfall than for the Ems-3 - Ems-4 transition.

The base of the Ems-5 subunit features palaeosols developed on abandoned channel deposits of the fluvial system (pedotype Gat-C; Fig. 11C). These palaeosols are characterized by poor alteration of the bedding as long root traces penetrate channelized sand bars. The most common type is composed of a single vertical root up to 1.5 m long and 4 cm thick, with rootlets radiating downwards another 20-30 cm from the lower part of the main root (Fig. 11D). This pattern is similar to modern adventitious prop roots that support trees in soft sandy sediments. Also observed were dispersed small lateral roots and main roots or taproots up to 45 cm long and 5 cm thick, with little branching, profuse hair roots, and ending in rounded tap roots (Fig. 11E). Due to poor alteration of the parent material, the sandy Gat-C pedotype was classified as a Fluvent in the order Entisol (Soil Survey Staff, 1999), also possibly indicating high erosion rates and an arid climate. In their study of the palaeoflora of the Eslida Fm., Borruel-Abadía et al. (2014) found no lycophytes, sphenophytes and hygrophytic conifers in this subunit. As only conifer remains were found, these authors proposed a drier climate (Borruel-Abadía et al., 2014). However, in spite of this dry climate, the growing well-sized trees were possible in some areas (Fig. 9C).
The E6 subunit is characterized by the presence of silty palaeosols with profuse drab-haloed root traces (Fig. 11). A light red horizon with fine subangular blocky structure lies on top of a clayey Bt horizon with a dense pattern of fibrous root systems. Very few dispersed carbonate nodules were observed at a depth of 35 cm from the profile top. These weakly developed palaeosols do not reach the criteria for Alfisols and were classified as Inceptisols. Drab-haloed root traces are usually interpreted as chemical reduction related to anaerobic bacterial activity in stagnant water (Retallack, 1997). However, the Gat-D pedotype lacks a gleyed superficial horizon and the drab-haloed root traces are probably the outcome of anaerobic decay in the rhizosphere and other areas after burial. Observed features of the Gat-D pedotype (Fig. 11E) point to oxidizing dry soils though periodic waterlogging cannot be ruled out.

In the northern area of the Catalan Ranges, the development of caliche was described by Marzo et al. (1974) and Marzo (1980) in the middle part of the El Figaró unit. This may appear in floodplains or close to meandering channels and was interpreted as early mature caliche resulting from short subaerial exposures in semiarid conditions.

7. Discussion

7.1. Climate variations

Through a detailed study of the sedimentary characteristics and fossil contents of selected lithostratigraphical units of the S Iberian Ranges, E Pyrenees and Catalan Ranges, we were able to identify different phases of climate installation and development during the Early-Middle Triassic. Despite the fact that these basins were hundreds of kilometres apart and adopted their own characteristics during their refill,
Some of these features, described above and shown in figure 5, are provided in figure 12 as climate indicators. The more remarkable indicators detected in most of the studied sections are here considered representative of the entire study area. Punctuate sedimentary characteristics of some sections are used as regional or local climate indicators.

The first sedimentary record of the basins examined starts during the late Smithian and continues in the Spathian until its interruption at the beginning of the Anisian (López-Gómez et al., 2012; Galán-Abellán et al., 2013a; Ronchi et al., 2014). Although it seems there were no clear humid nor subhumid climate stages during that time, remarkable arid and semi-arid climate period alternations were observed. Three clear arid periods, usually well represented by aeolian dune field sedimentation, developed at the end Smithian, transition to the Spathian, middle Spathian and transition to the Aegean (Fig. 12). In addition, several authors (De la Horra et al., 2005, 2008, 2011; Durand, 2006, 2008; Bourquin et al., 2007; 2011; Cassinis et al. 2007) suggest a (hyper)-arid period during the first of these time-intervals when plant remains are absent (Durand, 2006, 2008; Bourquin et al., 2007, 2011). The durations of these three arid phases are probably decreasing from the oldest to the youngest, and thus, involved the development of major semi-arid stages. As the studied Early Triassic time-interval represents about 1.5 m.a., each of the three alternating arid to semi-arid intervals would be shorter than 0.4 m.a. Semi-arid intercalated stages were represented by developing braided fluvial systems in all the basins. In some cases, these depositional systems were
lateral interconnected with the development of small aeolian field dunes (López-Gómez et al., 2012).

The presence of major boundary surface 5 (mbs5) in the different sections of the study basins (Fig. 12), its age and characteristics, was considered as an important regional event (López-Gómez et al., 2012; Galán-Abellán et al., 2013a), probably related to the Hardegsen unconformity described in Western Europe (e.g. Aigner and Bachmann, 1992; Bourquin et al., 2007, 2009) and linked to stages of tectonic activity at the end of the Early Triassic. In our basins, this regional change is also reflected by low angle unconformities in sections near the basin border, and coincides with a more humid stage after an arid episode and the start of life recovery after the Permian-Triassic crisis (López-Gómez et al., 2012).

Despite the development of these generalized and laterally continued climate stages, some areas in the E. Iberian Ranges (Gátova section) and E Pyrenees (Castellar N'Hug) hardly show aeolian sediments. On the contrary, in the southern Catalan Basin (S. Gregori section), almost the whole sedimentary record consists of aeolian sediments. These punctate geographical differences, as detailed below, point to a dishomogeneous climate distribution and to climate control.

After a sedimentary interruption and slight erosion event during the Aegean, a new cycle of sedimentation started at the beginning of the Bithynian (Fig. 12). This new cycle, represented by the Eslida Fm., the "upper Buntsandstein" or El Figarò Unit in the Iberian Ranges, E. Pyrenees and Catalan Ranges, respectively, was related to tectonic reactivation and new re-organization and orientation of the rift basins in Iberia (Arche and López-Gómez, 1996, 2005). Mudstones and siltstones represent the main lithological change compared to the previous cycle. However tectonics was not the only
reason for these lithological variations, and rather, a change in climate allowed for the
sedimentation of different deposits and the emergence of new alluvial sedimentary
styles.

The development of extensive meandering fluvial systems, and the appearance
of sphenophytes, conifers and isolated coal levels in subunits Ems-3 and Ems-4
suggests the presence of the two short humid phases in the middle Bithynian (Fig. 12).
These characteristics were widely developed during these stages in different areas of the
three study basins. The two humid stages, however, only represented interruptions of a
more prolonged period of alternating subhumid and semi-arid stages that lasted until the
end of the Bithynian and continued into the beginning of the Pelsonian, when
sedimentation of the Röt facies (Marines Fm.) reflects the transition to the first Tethys
sea incursion (Muschelkalk facies) in Iberia (Escudero-Mozo et al., 2014). The
proximity in time of these two humid stages could mean their interpretation as a single
humid interval in some sections.

Based on the sedimentary record, as shown by the frequent reactivation surfaces
presence, on the appearance of hinterland vegetation of conifers (Voltzia, Albertia,
Willsiostrobus and Darneya) and on soil development as the presence of thicker Bk
horizons in non-extreme arid conditions, subhumid stages would consist here of
seasonal precipitation, whereby extreme temperatures and rainfall were probably not
persistent plant development, soil growth and permanent or semi-permanent flows in
river systems are described.

However, a short semi-arid stage is inferred at the end of the Bhitinian. This stage,
which is even represented by small aeolian dunes in the Iberian Basin (Torre de las
Arcas–Peñarroya section), was also marked by the presence of xerophytic vegetation, and presence of unconfined braided fluvial systems.

7.2. Palaeoclimatic and palaeogeographic implications

The simplistic hot-house scenario for the Early-Middle Triassic, evoking strong monsoon circulation and seasonal rain without zonal patterns (Kiehl and Shields, 2005; Preto et al., 2010), has been recently modified by the incorporation of detailed regional data to define a more complete evolution model for this period of time (Romano et al., 2013; Sun et al., 2012).

Although temperatures had risen rapidly during the end-Permian mass extinction, they reached exceptionally high values in the Early Triassic (Brayard et al., 2010). These high temperatures also experienced large abrupt changes such as that observed in the Smithian-Spathian transition of up to 40° at the equator (Sun et al., 2012), which was probably the consequence of a carbon cycle disturbance caused by a sequence of large-scale CO2 injections from the Siberian Large Igneous Province (Payne et al., 2004; Galfetti et al., 2007; Romano et al., 2013).

The latest Smithian was a time of warm and equable climate, expressed as an almost flat pole to equator sea surface temperature gradient, compared to the steep gradient at the beginning of the Spathian, indicating clear latitudinally differentiated climate conditions (Kidder and Worsley, 2004; Preto et al., 2010) inducing a synchronous major change in both terrestrial and marine ecosystems (Galfetti et al., 2007). This change was observed in the present study area, where aeolian-fluvial sedimentation at the end of the Smithian underwent a sudden change towards pure fluvial sedimentation of a semi-arid nature at the beginning of the Spathian (Fig. 12) (Bourquin et al., 2011; López-Gómez et al., 2012; Galán-Abellán et al., 2013a).
However, the new fluvial sedimentation trend that started at the beginning of the Spathian in these areas was not permanent as new arid conditions once again arose.

These high temperature values together with their changing character, thwarted ecosystem recovery during the Early Triassic (Retallack et al., 2011; Sun et al., 2012).

In the Iberian Plate, no fossil record is known until the late Spathian (López-Gómez et al., 2012; Galán-Abellán et al., 2013a; Borruel-Abadía et al., 2014) (Fig. 12), clearly coinciding with the first recognized humid and cooler stage in the Triassic rocks of this area, about 5 m.a. after the PTB. A taphonomic filter is initially discarded as this absence includes plants, tetrapods, insects, soils and bioturbation. Until this time, arid and semi-arid conditions were mainly the dominant environmental conditions represented in all the study basins, with a remarkable late Smithian arid stage followed by a cooler period in the earliest Spathian. This latter stage may coincide with the marine cooling event related to strong recovery of many clades described by Brayard et al. (2009), Romano et al. (2013), Sun et al. (2012, 2015) and Chen and Benton (2012).

A humid climate stage can enhance subaerial weathering with consequences on ocean nutrient fluxes (Payne et al., 2004; Twitchett, 2007; Algeo and Twitchett, 2010; Benton and Newell, 2014). Higher ocean nutrient levels may initially increase productivity, which indicates continent-ocean connections (Algeo et al., 2011). These latter authors propose a chemical weathering stage by the late Spathian accounting for the marine productivity increase. This stage fits in well with the one postulated for the Iberian plate and its possible extension in Western Europe. Its association with the recovery of continental life described here reinforces the idea of continental-marine connections described by Algeo et al. (2011).
Tectonic activity, as described above, can play a role in opening continental corridors, as could have happened in the Iberian Plate. These new routes appearing in the megacontinent would promote rifting connections and alluvial fluxes, incorporating more oxygenated waters to the sea and contributing to life recovery. Diedrich (2008) described millions of reptile tracks during the Early-Middle Triassic as a consequence of fauna migration across corridors and bridges in Central Europe. In the Iberian and Catalan Ranges, the first reptile tracks were localized in the uppermost Cañizar Fm., latest Spathian (Gand et al., 2010) (Fig. 12), just after the cited unconformity, and were lacertoid three digit prints of *Rhynchosauroides*. Above these levels, and already in the Anisian (mainly Bithynian), footprints of specimens of both Lacertoïd and Crocodiloïd groups are common (Gand et al., 2010; Fortuny, 2011) and coincide with the appearance of the first Mesozoic (triadotypomorphan) insect in Spain, *rubra* sp. nov. (Béthoux et al., 2009).

Plant fossils have been used for climate reconstruction based on their ecology inferred from living relatives. Climate is commonly recorded in the sedimentary record by vegetation, and the effects this vegetation has on sediment erodibility, sediment yield and channel style, among others (Miall, 1996). The early Anisian floral associations of both the Iberian and Catalan Ranges are similar and mainly composed of conifers and sphenophytes. These floral associations resemble that of the “Grès à *Voltzia*” Fm. of north–eastern France (Grauvogel-Stamm, 1978). It is likely that the plants of the “*Grès à Voltzia*” that already appear in the *Pleuromeia* flora (Fuchs et al., 1991; Mader, 1990; Grauvogel-Stamm, 1999) escaped the end-Permian life crisis in extrabasin refugia. *Pleuromeia*-like fossils reveal that *Pleuromeia* may have survived into the Anisian in the Iberian Ranges. Moreover, as shown by Grauvogel-Stamm and Ash (2005),
Lycophytes played an important role in the recovery of land plants in the Early Triassic and could have adapted to unfavourable arid conditions. The replacement of the *Pleuromeia* flora by conifer-dominated or *Voltzia* flora may be the consequence of a change in climate and growth conditions, enabling the *Voltzia* flora to invade basin lowlands (Grauvogel-Stamm and Ash, 2005).

The plant associations of the Iberian and Catalan Ranges point to alternating seasonally dry and more humid conditions (Borruel-Abadía et al., 2014). Riparian vegetation, that is, plants living near the water body (permanent floodplain ponds or river), was exposed to periodical flooding. The vegetation around the water bodies was composed of semi-arborescent lycophytes, sphenophytes and more hygrophytic conifers. Further from the water bodies, lowland vegetation was characterized by drier conditions, where several species of arboreous and shrubby conifers, and ferns grew. Clearings were colonized by ferns mixed with some conifers, and the possible hinterland vegetation (permanent ground or seasonally dry) consisted of conifers with shrubs and trees. The first more humid short stage, recognized in the early Anisian (Bithynian) in both the Iberian and Catalan Ranges sections, appears in subunits Ems-3 and Ems-4 related to a riparian-dominated vegetation.

Such alternations of dry and more humid conditions shown by the vertical distribution of early Anisian plants in the sections examined, fits in well with changes in river channel style in the same units described by Arche and López-Gómez (2005). Further, Borruel-Abadía et al. (2014) linked fossil plants to different fluvial architectural elements depending on the hygrophytic to semi-arid xerophytic deposition of the Eslida Fm. A second more humid early Anisian (Bithynian) short stage was observed in the Ems-4 subunit of this formation in the Iberian Ranges related to
superimposed meandering fluvial systems and associated riparian vegetation. In similar
studies, Smith (1995) interpreted the facies transition in the Permian-Triassic Karoo
Basin as a change in fluvial style from meandering to low sinuosity channels with
general drying of floodplain habitats. Davis and Gibling (2010) described a sharp
increase in the abundance of meandering rivers in the middle Palaeozoic due to
colonization of terrestrial environments by vegetation. The soils of the sections here
examined formed in the floodplains during long sedimentation pauses.

Although they are poorly developed, pedotype characteristics also revealed clearly
alternating climate conditions. According to the information obtained from the Eslida
palaeosols, a general trend of seasonal, alternating drier and slightly humid or semi-arid
climate conditions was inferred. The unit is represented by poorly developed soils with
shallow calcareous horizons in the lower part of the Eslida Fm. indicative of arid
conditions (pedotypes Gat-A), which moved towards slightly higher mean annual
palaeoprecipitation (pedotype Gat-B) and possibly better conditions for tree growth
(Gat-C). The top of the unit is marked by pedotype Gat-D, with a dense and laterally
continuous pattern of fibrous root systems, indicating a well-developed vegetative cover
formed under a more seasonally semi-arid climate. Despite such different climate
conditions, however, it is difficult to identify clear monsoon characteristics in the
sedimentary record, as they can be easily confused with other seasonal effects (Miall,
1996).

Faster soil reaction rates in the Anisian cycle of sedimentation in response to
warmer temperatures probably intensified chemical weathering (e.g. Korte et al., 2005)
providing clay minerals as crucial data for inferring palaeoclimates. This type of
mineralogy has been frequently used to detect changes in the climate conditions
prevailing during their sedimentation (Righi and Meunier, 1995; Hong et al., 2007; Wang et al., 2013). However, diagenetic alteration and source rock composition should always be considered (Chamley, 1989; Hillier, 1995; Yakimenco et al., 2000). The mineral assemblages of the Cañizar and Eslida Fms. in the Iberian Ranges can hardly be used for this purpose, as the original clay mineralogy has been largely obliterated by deep diagenetic and even very low grade metamorphic processes, as evidenced by the presence of dickite and pyrophyllite, respectively, and by illite crystallinity data. In the Catalan Ranges, the generation of secondary porosity and subsequent carbonate cement precipitation during late diagenesis also make it difficult to recognize the original mineral assemblage. In addition, most clay minerals in these units are probably detrital (Alonso-Azcárate et al., 1997) even in the clay fraction, and it is hard to distinguish between authigenic and detrital particles. Consequently, the mineral cannot be linked to a specific climate. However, the presence of pyrophyllite or dickite in samples from both units can be regarded as indirect evidence of the presence of kaolinite in the original clay mineral assemblage, which would have been transformed during diagenesis or very low grade metamorphism. According to Martín-Martín et al. (2007) and Galán-Abellán et al. (2013b), kaolinite formed by weathering of detrital micas and to a lesser extent of K-feldspar, and this alteration implies relatively humid conditions and low pH values to allow for the hydrolysis of these phases. These low pH values, probably the outcome of higher levels of atmospheric CO₂ along with volcanic SO₂ release (Wignall, 2007; Self et al., 2008), are indicated by the presence of APS minerals in both the Cañizar and the Eslida Fms. (Galán-Abellán et al., 2013b). Indeed, a low pH could have been an additional environmental stressor for continental biota.
During the end of the Early Triassic, the Iberian plate was located in the northern hemisphere, facing the Tethys between 10ºN and 14ºN (Dinarés-Turell et al., 2005; Bourquin et al., 2011; Domeier et al., 2012). Interestingly, the latitudinal position of Iberia during the Early Triassic was one of generally wetter conditions than most of the rest of Europe (Fig. 13). During this time, river systems flowed to the sea, but punctually these systems were interrupted by aeolian dune fields (Galán-Abellán et al., 2013a). These interruptions, nevertheless, diminished in time and space during the beginning of the Anisian, when alternating wet-dry conditions prevailed.

The Iberian plate had different climate domains of irregular extension arising from its pronounced orography. The Iberian plate, being part of the ancient boundary between Gondwana and Laurasia during the assembly of Pangea, experienced significant deformation identified in part of the highly curved Variscan belt of southwestern Europe (Weil et al., 2001; Martínez-Catalán, 2011). Such intense deformation led to the development of mountain belts continuing well into the Permian and even Early-Middle Triassic (López-Gómez et al., 2012). Mountain orography induces atmospheric circulation changes. Fluteau et al. (2001) compared different palaeogeographic scenarios in the Late Permian by testing palaeo-elevations through sensitivity experiments. These authors noted a substantial increase in aridity in the elevated Variscan belt that contributed to the development of aeolian facies and xeromorphic vegetation. These latter authors also estimated an altitude between 2000 - 3000 m in southern Europe for the Late Permian, elevations that persisted until the Olenekian controlling climate and palaeodrainages (Bourquin et al., 2011). The tectonic influence on climate has been evidenced either during Triassic times by Oyarzum et al. (1999) and Fluteau (2003).
Three important highs controlled climate change in Iberia during the Late Triassic: the Ateca-Montalbán High (AMH), Ebro High (EH) and Girona High (GH) (Fig. 13). These elevated areas and dominant E and NE winds led to the development of the alluvial systems and aeolian dune fields represented by the Cañizar Fm. in the Iberian Ranges (López-Gómez et al., 2012), Eramprunyà Unit in the Catalan Ranges (Galán-Abellán et al., 2013a) or the "Upper Buntsandstein" in the E Pyrenees Ranges. These palaeohighs, differing in their palaeogeographic morphology, size and orientation, allowed for the development of a vast dune field area enclosed between the Ebro and the Ateca-Montalbán Highs in the middle Spathian (Fig. 13). Fluvial systems were simultaneously surrounding these dune fields across narrow corridors, and most probably they never reached the Tethys developing an endorreheic system. South of the Ateca-Montalbán High, however, practically no aeolian sands were deposited except in punctuate levels of isolated areas (Galán-Abellán et al., 2013a).

This arid period of the middle Spathian alternated with semiarid periods (Fig. 12). During the latter intervals, fluvial drainage was more extensive and most of dune field areas disappeared or were reduced to smaller areas (Fig. 12). In the late Spathian and early Anisian, more humid periods appeared and plants and animals started to colonize.

The Ateca-Montalbán High was a geographical boundary with the more humid areas towards the equator, in the E Argana Basin (Morocco). Here, no aeolian sediments were recorded during the Early Triassic (Tourani et al., 2010; Klein et al., 2010). These climate boundaries are consistent with mean annual precipitation simulations by Bourquin et al. (2007), indicating more than double precipitation in Argana with respect to the Iberian Plate (from <0.1 mm/day to >1 mm/day) during the Olenekian.
contrast, more extensive arid areas than those of the Iberian plate developed during this
time in Central and Southern Europe (Bourquin et al., 2009, 2011). Interestingly, the
first tetrapod footprints in the Iberian Plate are recorded in the early Anisian (Fortuny,
2011) during a more humid period, probably as result of migrations from the still
prevailing more arid conditions of central Europe.

As previously exposed, the causes driving the inferred climate changes during
the Early Triassic have been broadly discussed by different authors, including those
related to different volcanism pulses in Siberia. In the Iberian Plate, and probably in
neighboring Western Europe areas, tectonics related to the Hardegsen event could have
also reactivated already elevated areas. This new palaeogeographic scenario could allow
the opening of corridors in land favoring the development and reactivation of drainage
networks and the beginning a more humid episode at the end of the Spathian, also
favored by the near equator latitudinal position of Iberia. These circumstances,
humidity, corridors and more oxygenated waters would have contributed to the fauna
and flora recovery in these basins at the end of the Early Triassic.

8. Conclusions

The continental rocks (Buntsandstein facies) and fossils of eastern Iberia's basins
provide insight into the climate of the western Tethys domain during the Early-Middle
Triassic. This study suggests climate variations for these near equator (10º–14ºN) areas.

The Early Triassic was mainly dominated by alternating periods, normally
shorter than 0.4 m.a., of arid to semi-arid climates. Two main arid periods marked by
aeolian field dune development occurred at the end of the Smithian and middle of the
Spathian.
The late Spathian features a first short subhumid to semi-arid period in Iberia just after an unconformity related to the western European tectonically induced Hardegsen event that could be related with the beginning of fauna and flora recovery in the study basins. After another short arid period at the end of the Olenekian, the beginning of the Anisian (Aegean) was marked by short periods of alternating arid and semi-arid to subhumid intervals. The Bithynian and Pelsonian clearly represent a wetter time, showing alternating semi-arid to subhumid intervals interrupted by two short humid episodes in the late Bithynian but also a short isolated arid interval near the Bithynian/Pelsonian boundary.

Climates in Iberia during this period of time were clearly conditioned by relict Variscan. As a result, isolated internal climate zones separated by elevated areas appeared. South of the Ateca-Montalbán High, the generalized wetter climate during the late Olenekian - early Anisian extended towards the equator to the present-day Moroccan Meseta and Argana Basin.

Acknowledgements

We thank David J. Bottjer (Editor), Spencer G. Lucas (Albuquerque, New Mexico) and an anonymous reviewer for providing helpful recommendations to improve this manuscript. This work was supported by a FPI predoctoral contract held by V.B-A. and by project grant CGL2008-24408 awarded by the Spanish Ministry of Economy and Competitiveness. This paper is also a contribution to the following research projects: "Sistemas Sedimentarios y Variabilidad Climática" (642853) of the CSIC, and Basin Analysis (910429), and Palaeoclimatology and Global Change (910198) of the Universidad Complutense de Madrid. Part of the macroflora information was obtained with the collaboration of Evelyn Kustatcher and Carmen.
Díéguez and previously published in Borruel-Abadía et al. (2014). We thank A. Burton for revising the English version of the manuscript.

References

Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N.,
Galfetti, T., Guex, J., 2009. Good genes and good luck: ammonoid diversity and the end

Bristow, C.S., 1993. Sedimentary structures exposed in bar tops in the Brahmaputra
Spec Publ. 75, 277–289.

palynologiques dans les faciès Buntsandstein des Pyrénées catalanes espagnoles.

Calvet, F., Marzo, M., 1994. El Triásico de las Cordilleras Catalanas: Estratigrafía,
sedimentología y análisis secuencial. In: A. Arche (Ed.), Conferencia de Estratigrafía y

Triásico sudpirenaico y del Pirineo Vasco-Cantábrico. Acta Geologica Hispanica 28,
33–48.

Dinarès-Terell, J., Díez, J.B., Rey, D., Arnal, I., 2005. "Buntsandstein" magnetostratigraphy and biostratigraphic reappraisal from eastern Iberia: Early-Middle
Triassic stage boundary definitions through correlation to tethyan sections.

Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35 (4), 291–294

Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 1–34.

Gretter, N., 2014. The Permian-Triassic stratigraphic evolution in selected Peri-

in alluvial basins. Geology 38 (6), 535–538.

trace fossil evidence for an early recovery signal in the aftermath of the end-Permian

Hofmann, R., Hautmann, M., Bucher, H., 2013. A new palaeoecological look at the
dinwoody Formation (Lower Triassic, Western USA): Intrinsic versus extrinsic controls
on ecosystem recovery after the end-Permian mass extinction. Journal of Paleontology
87, 854–880.

Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes
and mantle dynamics. Tectonophysics 351, 3–39.

Albertiana 41, 3–30.

induced icehouse-hothouse climate oscillations during the transition from the Variscan
to the Alpine cycle (Carboniferous to Triassic). Bulletin de la Société Géologique de
France 170, 3–11.

Large perturbations of the carbon cycle during recovery from the end-Permian

Payne, J. L., Kump, L. R., 2007. Evidence for recurrent Early Triassic massive
volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and

Pecorini G., 1962. Nuove osservazioni sul Permico della Nurra (Sardegna nord-

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
</tr>
</tbody>
</table>

Roscher, M., Stordal, F., Svensen, H., 2011. The effect of global warming and
global cooling on the distribution of the latest Permian climate zones. Palaeogeography,

Schmidt, M., 1937. Probleme der westmediterranen Kontinentaltrias und Versuche ihrer
Lösung. Association pour l’étude géologique de la Méditerranée occidental 4, (11), 3–
57.

Self, S., Blake, S., Sharma, K., Widdowson, M., Sephton, S., 2008. Sulfur and chlorine

A.M., Gregory, F.J., Schmidt, D.N. (Eds.), Deep-Time Perspectives on Climate Change:
Marrying the signal from Computer Models and Biological Proxies. The
Micropalaeontological Society, Special Publication. The Geological Society, London,
201–224.

boundary in the Karoo Basin, South Africa and possible causes of tetrapods extinctions.

pp.

Fig. 1. Early Triassic global map showing the configuration of the continents (modified from Golonka and Ford, 2000; Yin and Song, 2013). The amplified area corresponds to the Iberian peninsula and the present-day basin and ranges: 1- Pyrenean Ranges, 2- Catalan Ranges, 3- Ebro Basin, 4- Duero Basin, 5- Iberian Ranges, 6- Tagus Basin, 7- Guadalquivir Basin, 8- Betic Ranges, 9- Iberian Massif, 10- Balearic Islands.

Fig. 2. Lithostratigraphic scheme of the Middle Permian – Middle Triassic units of the studied areas and their comparison with coeval units of NE Sardinia and Minorca. Numbers 1 to 12 represent sections cited in the text: 1- Río Mayor, 2- Gátova, 3- Cedrillas-Corbalán, 4- Torre de Las Arcas - Peñarroyas, 5- Benicassim, 6- Novés, 7- Castellar d’Hug, 8- San Gregori, 9: Cervelló, 10- El Brull-Figaró, 11- Cala Pilar, 12- Cala Viola. Their geographical location are indicated down to the right in the figure.

Fig. 3. a) The Cañizar Fm. in S. Iberian Ranges. Lines represent major boundaries surfaces (MBS) and separate subunits (A to F). The lower contact is an unconformity that separates the Triassic to the Permian (Alcotas Fm.) (Photograph modified from López-Gómez et al., 2012). b) The Eslida Fm. in the E Iberian Ranges.

Fig. 4. Main characteristics and references of the lithological units of the studied areas.

Fig. 5. Studied Lower-Middle Triassic sections and their main sedimentary and paleontological characteristics of the S. Iberian Ranges, E. Pyrenees and Catalan Ranges. Their geographical locations are indicated in figure 2. Description of the
architectural elements is shown in figure 7. C1 to C6 and Ems-3 to Ems-6 represents subunits of the Cañizar Fm. and Eslida Fm. respectively.

Fig. 6. Description, interpretation and codes of the main and secondary fluvial and aeolian facies.

Fig. 7. Fluvial and aeolian architectural elements showing their codes, facies associations, hierarchy and vertical stacking patterns, and selected references.

Fig. 8. Pictures of the different described architectural elements: a) element GB in the Garraf Upper Conglomerates Unit (GUC), Catalan Ranges; b) element GM in the Prades Upper Conglomerates Unit (PUC), Catalan Ranges; c) SB and CH elements in the Cañizar Fm. (CS), Iberian Ranges; d) E1 element in Prades Lower Sandstone Unit (PLS), Catalan Ranges; e) E2 and E3 elements in Prades Lower Sandstone (PLS), Catalan Ranges; f) FF element in Figaró Sandstones and Mudstones (FSM), Catalan Ranges; f) GB element in the lowermost part of the "Buntsandstein" deposits of the Noves section, Pyrenean Ranges; h) E1 element in the lower Buntsandstein of the Noves section, Pyrenean Ranges. See figure 5 for the location of these units and sections.

Fig. 9. Sketches of 3D evolution of three selected stages of the Buntsandstein of the Iberian Ranges showing alluvial evolution and macroflora distribution (modified from Borruel-Abadía et al., 2014).
Fig. 10. Specimens of macroflora from the Eslida Fm. in the Iberian Ranges. a: *Pleuromeia* sternbergii (Münster) Corda ex Giebe, 1953; b: Sphenophytes, most likely *Equisetites mougeotii* Brongniart 1828; c: *Pelourdea* vogensiaca (Schimper et Mogeot) Seaward 1917; d: *Albertia* latifolia Schimper et Mougeot 1944. Scale bar: 1 cm.

Fig. 11. A) Dispersed carbonate nodules are circled in the subsurface horizon of the Gat-A pedotype. Black arrows are pointing to small green root traces. B) Calcareous, rooted, and endurated yellow B horizons are irregularly truncated in the Pedotype Gat-B. C) Adventitious prop roots (marked in white) emanating from a main root in the Gat-C pedotype. White arrow is pointing to the top of another unmarcked prop root pattern. D) Deep penetrating tap root with root apex (r) related to Gat-C paleosols. E) Drab-haloes of light green silt around root traces in the pedotype Gat-D.

Fig. 12. Synthesis of the main climate stages and their vertical alternating disposition during the Smithian to Pelsonian time – interval in the continental units (Buntsandstein) of the S. Iberian Ranges, E. Pyrenees and Catalan Ranges, and their relationship with fossil content. Sections (numbers 1 to 10) are located and named in figures 2 and 5.

Fig. 13. Early Triassic palaeogeographical reconstruction of Iberia and neighbour areas. Basins in Iberia were separated by elevated areas linked to the development of rift systems. Palaeolatitudes and sedimentary environments are partially based on Ziegler (1988), Dercourt et al. (1993), Mckie and Williams (2009), Bourquin et al. (2011) and Tyrrell et al. (2012).
Figure 2
Click here to download high resolution image

<table>
<thead>
<tr>
<th>Time scale (ICC, 2014)</th>
<th>Age</th>
<th>W. S. Iberian Ranges</th>
<th>E. E. Pyrenees</th>
<th>E. Catalan Ranges</th>
<th>N. Minorca</th>
<th>NE Sardinia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>De La Horra et al., 2012; López-Gómez et al., 2012</td>
<td>Ronchi et al., 2014; Grettet et al., 2015</td>
<td>Calvet and Marzo, 1994; Galán-Abellán et al., 2013</td>
<td>Linel et al., 2009; Escudero-Mozo et al., 2014</td>
<td>Cassinis et al., 2003; Barea et al., 2014</td>
</tr>
<tr>
<td>Triassic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lias</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bath.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeg.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diene.</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griesb.</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIP</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guadalupian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capitan.</td>
<td>269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units:
- BC- Boniches Conglomerates
- AMS- Alcotas Mudstones and Sandstones
- VC- Valdemeca Conglomerates
- M- Marines (R84)
- EMS- Eslida Mudstones and Sandstones
- CS- Cañizares Sandstones
- GLC- Garraf Lower Conglomerates (1 and 2)
- GUC- Garraf Upper Conglomerates
- PLCS- Prades Lower Conglomerates
- PLS- Prades Lower Sandstones
- FSG- Figaró Sandstones and Mudstones
- UE- Upper Evaporites
- P3- Permian 3
- PC- Porticcolo Conglomerates
- CVS- Cala Viola Sandstones
- ASM- Aragall Mudstones and Sandstones
- Eramprunyà Sandstones
- RSJ- Riera de San Jaume Sequence
<table>
<thead>
<tr>
<th>Area</th>
<th>Units</th>
<th>Lithology</th>
<th>Palaeontological content and soils</th>
<th>Age</th>
<th>Interpretation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iberian Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eslida Fm.</td>
<td>Sandstones</td>
<td>Pollen assemblages</td>
<td>Plants, footprints</td>
<td>Smithian</td>
<td>Fluvial (braided and aeolian)</td>
<td>Arche and López-Gómez (2005), López-Gómez et al. (2013)</td>
</tr>
<tr>
<td>Valdemeca Unit</td>
<td>Conglomerates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>De la Horra et al. (2005)</td>
</tr>
<tr>
<td>Catalan Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figaró Unit</td>
<td>Sandstones</td>
<td>Pollen assemblages</td>
<td>Footprints, bones,</td>
<td>Smithian</td>
<td>Fluvial (braided and meander)</td>
<td>Calvet and Marzo (1994), Dinarès-Turell et al. (2005)</td>
</tr>
<tr>
<td>Lower Sands. Unit</td>
<td>Sandstones</td>
<td>Pollen assemblages</td>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Upper Bunt” Unit</td>
<td>Conglomerates</td>
<td>Pollen assemblages</td>
<td>Spathian-Anisian</td>
<td></td>
<td></td>
<td>Calvet and Marzo (1994), Dinarès-Turell et al. (2005)</td>
</tr>
<tr>
<td>Pyrenees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5
Click here to download high resolution image
<table>
<thead>
<tr>
<th>Architectural Elements</th>
<th>Code</th>
<th>Facies: Main (above) Associated (below)</th>
<th>Hierarchy and vertical stacking patterns</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUVIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaripples of sandstones with erosive or planar base and basal lag.</td>
<td>SB</td>
<td>St, Sp</td>
<td>0.8m</td>
<td></td>
</tr>
<tr>
<td>Channel-fill complex of sandstones with defined margings and internal erosive surfaces.</td>
<td>CH</td>
<td>Sp, St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral-accretion deposits showing 3rd-order internal surfaces and up to 1.5 m thick.</td>
<td>LA</td>
<td>St, Sp, Sr</td>
<td>1m</td>
<td></td>
</tr>
<tr>
<td>Gravel bars normally amalgamated into macroforms.</td>
<td>GB</td>
<td>Gp, Gmp, Gmt, Gl, Sp</td>
<td>0.8m</td>
<td></td>
</tr>
<tr>
<td>Unconfined or semiconfined clast bodies. Beds show crude–massive stratification. Sets up to 1 m thick.</td>
<td>GM</td>
<td>Gms</td>
<td>1.3m</td>
<td></td>
</tr>
<tr>
<td>Floodplain fines with isolated sandstone bodies and paleosols.</td>
<td>FF</td>
<td>Fr, Fb, Fl, Sbp</td>
<td>3-6 m</td>
<td></td>
</tr>
<tr>
<td>Crevasse splay deposits prograding into floodplain.</td>
<td>CS</td>
<td>Fr, Sr</td>
<td>1.3m</td>
<td></td>
</tr>
<tr>
<td>AEOLIAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dune. They may interact with sediments of fluvial origin, and constitute sets up to 10 m thick.</td>
<td>E1</td>
<td>ae1, ae2, ae3, ae4, ad, vs, ds, rs, df, wl, pl</td>
<td>3.1m</td>
<td></td>
</tr>
<tr>
<td>Sand sheet. They may show translatent-strata, and constitute sets up to 1 m thick and few tens of meters of lateral extension</td>
<td>E2</td>
<td>ae4, ae5, ss, df, wl</td>
<td>0.4m</td>
<td></td>
</tr>
<tr>
<td>Interdune. They show irregular lenses of fine-grained massive sandstones of pale-brown color and occasional motting.</td>
<td>E3</td>
<td>ae4, ae6, Sbp, Fb, Fl, dc, wl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
- Blodgett and Stanley (1980)
- Fielding et al. (2009)
- Best et al. (2003)
- Marzo and Anadón (1987)
- Hajek et al. (2010)
- Willis (1989)
- Bristow (1993)
- Nemec and Postma (1993)
- Jones et al. (2001)
- Allen and Fielding (2007)
- Hajek and Edmonds (2014)
- Willis and Behrensmeier (1994)
- Hampton and Horton (2007)
- Chrintz and Clemmensen (1993)
- Mountney (2012)
- Rodriguez-López et al. (2011)
- Brookfield (1992)
- Loope (1988)
- Hasiotis (2002)
- Mountney (2006)
<table>
<thead>
<tr>
<th>Facies Code</th>
<th>Description</th>
<th>Interpretation</th>
<th>Facies Code</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>St</td>
<td>Fine to coarse red-pink sandstones. Trough cross-stratification with occasional clay chips and small quartz clasts</td>
<td>Dune of sandstones with sinuous crest (3D) of linguoid type.</td>
<td>Fr</td>
<td>Fine grain sandstone or mudstone, massive with rootlets</td>
<td>Abandoned channel or near channel deposits.</td>
</tr>
<tr>
<td>Sp</td>
<td>Fine to medium pink sandstones Planar cross-stratification with fining-upwards tendency.</td>
<td>Dunes of sandstones with straight crest (2D) of linguoid type.</td>
<td>Fb</td>
<td>Red-dark mudstones or fine-grain pink sandstones with mudcracks and/or paleosols.</td>
<td>Abandoned channel or near channel deposits.</td>
</tr>
<tr>
<td>Sh</td>
<td>Fine to medium red-pink sandstones with parallel lamination and parting lineation.</td>
<td>Low-stage phase beds movements</td>
<td>Fl</td>
<td>Centimetre beds of fine red sandstones with current ripples into red dark mudstones.</td>
<td>Near channel overflowing.</td>
</tr>
<tr>
<td>Sr</td>
<td>Fine red-orange sandstones with vertical bioturbation and plant remains</td>
<td>Near channel overflowing</td>
<td>ae1</td>
<td>Pale yellow, medium grained, well rounded and subangular quartz grains constituting sets with cross-beded sandstones up to 2.5 m thickness.</td>
<td>Migration of aeolian dunes by avalanching in the lee slope.</td>
</tr>
<tr>
<td>Sbp</td>
<td>Clast-supported pink to white quartz conglomerates with planar cross-stratification</td>
<td>Two-dimensional gravel dunes</td>
<td>ae2</td>
<td>Laterally continuous orange units of fine-grained sandstone laminations less than 3mm thick</td>
<td>Aeolian grain flow strata related to saltation of sand-size particles over the brink of a dune.</td>
</tr>
<tr>
<td>Gp</td>
<td>Clast-supported pink to white quartz conglomerates with trough cross-stratification</td>
<td>Three-dimensional gravel dunes</td>
<td>ae3</td>
<td>Yellow, fine to medium, well-rounded quartz grains. Sets with planar or trough cross-strata and inversely graded sand tongues less than 20 mm thick</td>
<td>Aeolian grain flow strata related to avalanching in the dune lee slope during dune migration.</td>
</tr>
<tr>
<td>Gt</td>
<td>Matrix-supported pink to white quartz conglomerates with planar cross-stratification</td>
<td>Three-dimensional dunes of sandstones and gravels</td>
<td>ae4</td>
<td>Yellow to salmon-pink, fine-grain and well-sorted sandstone with subhorizontal laminations up to 2 mm thick.</td>
<td>Wind ripple-laminated/transparent strata sandstone due to migration of aeolian wind ripples.</td>
</tr>
<tr>
<td>Gmp</td>
<td>Matrix-supported pink to white quartz conglomerates with trough cross-stratification</td>
<td>Three-dimensional dunes of sandstones and gravels</td>
<td>ae5</td>
<td>Salmon-pink, fine grain and well-sorted horizontally laminated (10-20 mm thick) sandstone with scarce bioturbation.</td>
<td>Horizontally laminated sandstone originated during stages with high wind velocity and restricted sediment availability.</td>
</tr>
<tr>
<td>Gms</td>
<td>Massive flat-bedding white angular/subrounded clasts. Low sandy matrix proportion or even clast supported.</td>
<td>Low-strength flow deposited from viscous, laminar or turbulent flows</td>
<td>ae6</td>
<td>Orange fine-grained sandstone without internal structure. Motting and rootlets may appear</td>
<td>Remnant of aeolian sediments related to alluvial overflowing area</td>
</tr>
</tbody>
</table>

Secondary or associated facies: rs- Reactivation surface, ss- Small erosive grooves, ad- Small avalanching deposits, df- Deflation surfaces with angular clasts, ds- Small-scale Insect action structures, dc- Desiccation cracks, vs- Ventifacts, pl- Pinstripe laminae, wi- Wavy laminae
Figure captions

Fig. 1. Early Triassic global map showing the configuration of the continents (modified from Golonka and Ford, 2000; Yin and Song, 2013). The amplified area corresponds to the Iberian peninsula and the present-day basin and ranges: 1- Pyrenean Ranges, 2- Catalan Ranges, 3- Ebro Basin, 4- Duero Basin, 5 Iberian Ranges, 6- Tagus Basin, 7- Guadalquivir Basin, 8- Betic Ranges, 9- Iberian Massif, 10- Balearic Islands.

Fig. 2. Lithostratigraphic scheme of the Middle Permian – Middle Triassic units of the studied areas and their comparison with coeval units of NE Sardinia and Minorca. Numbers 1 to 12 represent sections cited in the text: 1- Río Mayor, 2- Gátova, 3- Cedrillas-Corbalán, 4- Torre de Las Arcas - Peñarroyas, 5- Benicassim, 6- Novés, 7- Castellar d’Hug, 8- San Gregori, 9: Cervelló, 10- El Brull-Figaró, 11- Cala Pilar, 12- Cala Viola. Their geographical location are indicated down to the right in the figure.

Fig. 3. a) The Cañizar Fm. in S. Iberian Ranges. Lines represent major boundaries surfaces (MBS) and separate subunits (A to F). The lower contact is an unconformity that separates the Triassic to the Permian (Alcotas Fm.) (Photograph modified from López-Gómez et al., 2012). b) The Eslida Fm. in the E Iberian Ranges.

Fig. 4. Main characteristics and references of the lithological units of the studied areas.

Fig. 5. Studied Lower-Middle Triassic sections and their main sedimentary and paleontological characteristics of the S. Iberian Ranges, E. Pyrenees and Catalan Ranges. Their geographical locations are indicated in figure 2. Description of the
architectural elements is shown in figure 7. C1 to C6 and Ems-3 to Ems-6 represents subunits of the Cañizar Fm. and Eslida Fm. respectively.

Fig. 6. Description, interpretation and codes of the main and secondary fluvial and aeolian facies.

Fig. 7. Fluvial and aeolian architectural elements showing their codes, facies associations, hierarchy and vertical stacking patterns, and selected references.

Fig. 8. Pictures of the different described architectural elements: a) element GB in the Garraf Upper Conglomerates Unit (GUC), Catalan Ranges; b) element GM in the Prades Upper Conglomerates Unit (PUC), Catalan Ranges; c) SB and CH elements in the Cañizar Fm. (CS), Iberian Ranges; d) E1 element in Prades Lower Sandstone Unit (PLS), Catalan Ranges; e) E2 and E3 elements in Prades Lower Sandstone (PLS), Catalan Ranges; f) FF element in Figaró Sandstones and Mudstones (FSM), Catalan Ranges; f) GB element in the lowermost part of the "Buntsandstein" deposits of the Noves section, Pyrenean Ranges; h) E1 element in the lower Buntsandstein of the Noves section, Pyrenean Ranges. See figure 5 for the location of these units and sections.

Fig. 9. Sketches of 3D evolution of three selected stages of the Buntsandstein of the Iberian Ranges showing alluvial evolution and macroflora distribution (modified from Borruel-Abadía et al., 2014).
Fig. 10. Specimens of macroflora from the Eslida Fm. in the Iberian Ranges. a: *Pleuromeia sternbergii* (Münster) Corda ex Giebe, 1953; b: Sphenophytes, most likely *Equisetites mougeotii* Brongniart 1828; c: *Pelourdea vogensica* (Schimper et Mougeot) Seaward 1917; d: *Albertia latifolia* Schimper et Mougeot 1944. Scale bar: 1 cm.

Fig. 11. A) Dispersed carbonate nodules are circled in the subsurface horizon of the Gat-A pedotype. Black arrows are pointing to small green root traces. B) Calcareous, rooted, and endurated yellow B horizons are irregularly truncated in the Pedotype Gat-B. C) Adventitious prop roots (marked in white) emanating from a main root in the Gat-C pedotype. White arrow is pointing to the top of another unmarcked prop root pattern. D) Deep penetrating tap root with root apex (r) related to Gat-C paleosols. E) Drab-haloes of light green silt around root traces in the pedotype Gat-D.

Fig. 12. Synthesis of the main climate stages and their vertical alternating disposition during the Smithian to Pelsonian time – interval in the continental units (Buntsandstein) of the S. Iberian Ranges, E. Pyrenees and Catalan Ranges, and their relationship with fossil content. Sections (numbers 1 to 10) are located and named in figures 2 and 5.

Fig. 13. Early Triassic palaeogeographical reconstruction of Iberia and neighbour areas. Basins in Iberia were separated by elevated areas linked to the development of rift systems. Palaeolatitudes and sedimentary environments are partially based on Ziegler (1988), Dercourt et al. (1993), Mckie and Williams (2009), Bourquin et al. (2011) and Tyrrell et al. (2012).
Dear Editor,

In attached files (Revision Notes, Revision changes marked and Clean version) you will find the revised version of manuscript PALAEO8729 "Climate changes during the Early-Middle Triassic transition in the E. Iberian Plate and its palaeogeographic significance in the western Tethys continental domain", by Borruel-Abadía et al.

First of all, we’d like to thank the detailed and interesting comments and recommendations sent by the reviewers and the Editor, as we consider all of them will improve the final version of this manuscript. All of them have been followed and carefully included in the final (clean) version and shown, one by one, in the "Revision, changed marked" item.

Reviewer 1 sends a short list of interesting comments and recommendations, most of them (his points 5, 6, 7, 8 and 9) basically concentrated in two main topics that have needed a more detailed discussion. They are: a) the taphonomic biases of the paleobotanical record, and b) about what was driving the inferred climate changes (the case of the tectonics). This latter topic is also commented by reviewer 2. For answering these points, new paragraphs (as indicated in the Revision Notes) have been added.

Other aspects written by reviewer 1 (a total of 7 more, as the information published in some H. Bucher´s papers, the influence of the Muschelkalk transgression, miss-spelled words....) are also of interest and answered here by the authors.

Reviewer 2 concentrates his comments and recommendations in 4 main points. Points 1, 2 and 4 basically recommends a reorganization in some paragraphs of the "Results - Discussion and Conclusion" chapters, as well as to reduce the length of the text eliminating some repetitions and by means of the own reorganization above suggested. These changes have needed more detailed (reorganization) modifications in the text, as is also shown in the "Revision, changed marked" item and therefore in the Clean version. The final result is clearly better than the original version. However the final length is not reduced as new paragraphs and references have been included, as suggested by both referees, for explaining other points.

In the "Revision, changed marked item", the added words/paragraphs suggested by the reviewer 1 are indicated in **blue**, and those suggested by reviewer 2 are indicated in **green**, while those eliminated are shown in **red**. All of these changes are also explained in the Revision Notes item.

Thank you again.

Kind regards,

José López-Gómez