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Abstract 

We have shown the possibility to obtain M-type barium hexaferrite thin films with thickness 

of  on the surface of dielectric α-Al2O3 substrates with low microwave dielectric loss (tan δ ~ 10
-4

 

GHz) by a sol-gel method. For the production of high-dense homogeneous thin films of M-type 

barium hexaferrite (BaFe12O19, BHF) with nanorod-like grains and a uniform distribution of iron 

and barium ions, we have studied the synthesis conditions for thermally stable film-forming 

solutions with high concentrations of barium ions. Films with a c-axis magnetic texture were 

obtained by spin coating the former solutions on α-Al2O3 substrates and annealing at temperatures 

between 473K and 1073K. The resulting textured M-type BHF films have demonstrated the 

following magnetic parameters: Нс = 334 kА/m, Нс = 167 kА/m; Ms = 0.005 emu, Ms = 0.003 

emu (for the films’ thickness of 200 nm), and Нс = 360 kА/m, Нс = 338 kА/m; Ms = 0.009 emu, 

Ms = 0.007 emu for the films’ thinkness of  450 nm. These M-type BHF thin films can serve as a 

promising basis for further development of multilayer microwave resonant elements.  

 

Keywords: barium hexaferrite, sol-gel synthesis, non-crystalline thin films, c-axis magnetic 

texture, magnetic characteristics, surface microstructure. 
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1. Introduction 

M-type barium hexaferrite (BaFe12O19) (hereinafter BHF) is characterized by high values of 

coercivity
 
(Hc) and saturation magnetization (Ms) due to a strong uniaxial magnetocrystalline 

anisotropy along hexagonal c-axis [1]. The prospective applications of M-type BHF are governed 

by a combination of unique magnetic properties and its chemical stability, corrosion resistance and 

cheapness of the initial components. The synthesis of nanocrystalline thin films is important for 

different technical applications [2-7]. The interest in nanocrystalline films of M-type BHF is due to 

their potential applications in high-density low noise recording media, storage systems [8], and 

microwave (MW) devices [9 - 14]. Moreover, in the latter case, a film can be used either alone [12-

14] or as a component of multilayer MW resonant elements with the properties controlled by an 

external magnetic field [4, 12, 15]. For the applications in high-density low-noise recording 

systems, thin films (thickness of ≤ 1 m) are generally produced. For them, monocrystalline silicon 

is often used as a substrate [16-19]. For the applications in microwave devices, both thin and thick 

films (thickness > 1 m) deposited on high-Q microwave dielectric substrates (a dielectric with low 

dielectric loss tan δ in the MW range) are required. For instance, thick films of the M-type BHF on 

the surface of high-Q dielectric α-Al2O3 substrates have been reported elsewhere [12]. However, the 

deposition of both M - type BHF thick and thin films high-Q dielectric substrates is required for the 

development of multilayer microwave resonant elements. 

Deposition methods, such as sputtering [20-21], pulsed laser deposition [22-23] and electron 

beam evaporation [24], are the most used for the preparation of such thin films. However, these 

methods often lead to the formation of not enough dense and homogeneous films [25], and, in 

addition, they require very expensive equipment. To date, one of the most promising methods for 

production of M-type BHF polycrystalline thin films is chemical solution deposition (CSD) [16, 25-

27]. This includes the synthesis of the precursor solution by sol-gel chemistry, which makes 

possible the preparation of high-dense and homogeneous nanocrystalline thin films without using 
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expensive equipment. At the same time, the annealing temperatures of the films is, in general, much 

less in comparison with other methods. This contributes to a reduction of the particle size of the 

material and, consequently, improves the films characteristics. A huge number of works have 

reported on sol-gel M-type BHF thin films deposited on silicon substrates [16-19]. However, the 

data on BHF thin films on the surface of α-Al2O3 is limited. We have studied here the possibility to 

produce homogeneous and high-dense BHF thin films with a controllable thickness, on the surface 

of high-Q dielectric α-Al2O3 by CSD. 

Sol-gel synthesis of high-dense homogeneous nanocrystalline films depends on many 

factors, such as wetting of the substrate by the film forming solutions (FFS) (wetting angle and gel 

viscosity), film deposition rate (for spin-coating process – substrate rotation speed), heat treatment 

conditions, etc.  

In the synthesis of uniform films, a key point is to maintain the homogeneity of the initial 

sol-gel system during removing of solvent from the deposited solution layer. The possibility of 

homogeneity violation of the system at heat treatment of the FFS (at T = 353 - 523K) can be 

significant during the sol-gel synthesis of BHF. This may be attributed to a lower stability of chelate 

complexes of Ba
2+ 

ions as compared to such complexes of Fe
3+ 

ion [28]. This results in the 

formation of undesirable secondary phases with the increase of the crystallization temperature of 

BHF. This problem can be solved by increasing the gels thermal stability by increasing the gel 

viscosity [29]. On the other side, the initial concentration of barium ions, as a rule, is limited in the 

range 0.05- 0.08 mol/L [30,31]. At such low metal ion concentration, the deposition of large 

number of layers is required to reach the desired film thickness. This significantly reduces the 

productivity and increases the energy and labor costs. Therefore, the investigation of the synthesis 

conditions of thermally stable film forming solutions (FFS) with higher barium ions concentrations 

is important. 

The aim of this work is the study of the synthesis conditions for getting thermally stable 

film-forming solutions (FFS) with high concentrations of barium ions. These solutions will be used 
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in the production of homogeneous and high-dense M-type BHF thin films on high-Q dielectric α-

Al2O3 substrates. The heat treatment conditions for the crystallization of the M-type BHF thin films, 

their structural features and magnetic properties have also been studied. 

2. Experimental methods 

2.1. Synthesis and characterization of sol-gel precursors for BHF thin films preparation. 

Analytically pure Ba(NO3)2, Fe(NO3)3·9H2O, citric acid (CA), ethylene glycol (EG), and 

25% aqueous ammonia were used for the preparation of the film forming solutions (FFS). The iron 

and barium nitrates were dissolved in distilled water (molar ratio Fe/Ba = 12). The concentration of 

barium ions was 0.08, 0.16, 0.24 and 0.30 mol/L. The molar ratio of citric acid and total metal 

cations (CA/M) was 1.5. After solution homogenization (at 360 – 370 K with stirring for 5 min), 

ethylene glycol was added. The citric acid/ethylene glycol (CA/EG) molar ratio was 1/3 (for 

solution with barium ion concentration of 0.08 mol/L) and 1/5 (for solution with barium ion 

concentration of 0.08, 0.16, 0.24 and 0.30 mol/L). The solution pH was adjusted to 8 with 25% 

aqueous ammonia under continuous stirring. The FFS was heated at 353K (for 15, 30, 45, 60 75 and 

90 min) under stirring to obtain the desired viscosity. 

The viscosity of the FFS was measured by glass capillary viscometer with a capillary diameter 

of 0.62 mm. The kinematic viscosity of FFS was calculated from the formula: 

0,01187
980,7

g
V   , where V – the kinematic viscosity, cSt ; g – acceleration due to gravity at 

the measurement site, cm/s
2
; τ – time to expiration of the liquid, s. 

The wetting angle θ was defined by the method of spreading droplets [32] from the condition of 

mechanical equilibrium of three-phase contact line (solid, liquid and phase – "precursor", which 

contacted with a solid surface before a liquid supply) on the main liquid droplet size applied to hard 

surfaces. Values of cosθ were calculated by the formula: 

 

2 2 2 2cos ( ) ( )
2 2

d d
h h   
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where h is the height and d the diameter of the droplet base. Parameters of drop, h and d, were 

measured using the apparatus which are the basic units of cathetometer measuring cell - cell and a 

lighting device, providing a contrast image of the drop and the surface under study. 

Thermogravimetric and differential thermal analysis (TGA/DTA) were carried out on BHF 

powders obtained from the film-forming solutions after drying overnight at 373K. The experiments 

were carried out in dynamic air or oxygen atmospheres, 100 mL/min, from room temperature to 

1173K, using a Seiko TGA/DTA equipment. 

IR spectra of the air-dried and calcined (T = 573, 723, 573, 873 and 1073 K for 1 hour) sol -

gel powders were recorded on Specord-M3l spectrometer in the range 200 - 4000 cm
- 1

. The tablets-

like test samples were prepared with KBr. 

2.2. Preparation and characterization of nanocrystalline sol-gel films of M-type BHF. 

The film forming solutions were spin-coated at 3600 rpm for 20s on -Al2O3 substrates, 

with low microwave dielectric loss (tan δ ~ 10
-4

 GHz). Each layer was dried at T = 473K and T = 

683 – 673 K.  

For the annealing of the thin films, high and slow heating rates were used. The slow heating 

annealing was carried out in a conventional furnace at a heating rate of 278K/min. Temperatures 

and soaking times were of 473K/20 min, 723K/30 min and 973-1073K/60 min. 

The rapid annealing (rapid thermal processing, RTP) was carried out in a furnace with 

infrared heating, using a heating rate of 180 °C/min. Temperatures and soaking times here were of 

623K/10 min and 973/20 min. 

Thin films were characterized by X-ray diffraction analysis (XRD) on a D8-Bruker X-ray 

powder diffractometer with CuKa radiation and Bragg-Brentano geometry. For the phase 

characterization, the JCPDS database was used. 

The surface micrographs of the films were obtained using a field emission gun scanning 

electron microscope (FEG-SEM, Nova Nanosem 230 FEI Company equipment, Hillsboro, OR). 
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Magnetic characterization of the films was carried out in a vibrating sample magnetometer 

(VSM; MLVSM9 MagLab 9 T, Oxford Instrument). Samples were placed parallel and 

perpendicular to the magnetic field and the magnetization curves were recorded at 295K by 

subjecting the sample to a field of ± 5 T at 0.5 T/min. 

3. Results and discussion 

Table.1 shows the effects of the solution processing conditions and barium ion concentration 

(mol/L) on the viscosity of the sol-gel systems (η, cSt). Viscosity increases with increasing time of 

heating of the solution and with the ethylene glycol and barium concentrations. Stability of the 

solutions is increased with viscosity. 

During the deposition on α-Al2O3 substrates of the film formation solutions (FFS) with 

concentration of barium ions equal to 0.08 mol/L and different times of heating of the solution 

(samples FFS-1 and FFS-2, Table 1), it has been determined that the best adhesion is observed for 

solutions with CA/EG = 1/5 and a viscosity in the range of 3.30 - 3.85 cSt. Using these solutions, 

nanocrystalline M-type BHF films with different number of layers (from 4 to 10) were prepared. 

However, BHF crystalline phase were not detected by XRD even on 10 layers films after heat 

treatment at T= 1073 - 1273K. This is explained by the low concentration of initial metal ions and 

BHF yield. 

Therefore, FFS with barium ions concentration equal to 0.16, 0.24 and 0.30 mol/L (CA/ EG 

= 1/5) were used for the preparation of BHF films. As follows from Table 1, the viscosity of the 

FFS depends on the time of heating of the solution (45 - 75 min.); it is in the range from 3.67 to 

5.32 cSt. During deposition of these solutions on the substrate, it has been shown that the precursors 

with 0.3 mol/L barium ions concentration (sample FFS-5) are characterized by a good adhesion to 

the substrate. The wetting angles for the FFS-5 sample after times of solution heating of 45, 60 and 

75 min ( = 4.02, 4.53 and 5.32 cSt respectively) were determined (Fig. 1). The smallest angle, and 

accordingly, the best adhesion to the substrate surface is observed for FFS-5, with   = 4.02 cSt 
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obtained with a time of heating of 45 min. Therefore, this FFS-5 solution ( = 4.02 cSt, barium ions 

concentration equal to 0.3 mol/L) was used for the deposition of BHF thin films. 

Thermal decomposition analysis and IR spectra of the sol-gel powders were studied for 

defining the temperature range of elimination of the organic compounds and, therefore, the 

prebaking temperatures of the films that have to be used. Figure 2 shows the (TG – DTA) curves of 

the sol-gel powders calcined at T = 473K, and Figure 3 shows the IR spectra of the powders 

calcined at T = 473K, 723K, 773K, 873K and 1073K. As follows from Figure 2, the DTA curve is 

characterized by a major exothermic process with a máximum at a temperature of T = 640K. The 

mass loss of the sample at low temperatures (T ≤ 573K) primarily is due to removal of adsorbed 

(H2O molecules) and structural (OH - groups) water. The thermal decomposition of barium and iron 

nitrates also occurs in this temperature range. According to [33], the decomposition of ferric nitrate 

in the presence of citric acid can lead to the formation of γ-Fe2O3. The diffraction patterns of these 

samples confirm this fact (Figure 4). As follows from Figure 4, the α-Fe2O3 phase is observed on 

the XRD patterns of samples after a heat treatment at 623K. The mass loss of the sample in the 

temperature range of T = 573-773K is produced by the citric acid decomposition. Further increasing 

of temperature causes the formation of barium hexaferrite phase (Figure 4) which is accompanied 

by a decomposition of the residual organic components. 

The analysis of the IR spectra (Figure 3) shows that the initial sample (T = 523K) is 

characterized by low intensity stretching M-O vibrations (in the range 310 - 582 cm
-1

), CO3
2-

 and 

HCO3
3-

 - ions vibration (in the range 1380-1610 cm
-1

). The enhancement of the intensity of the 

CO3
2-

- groups vibrations in the IR - spectra of powders calcined at T = 723K points to the 

degradation of organic components at these conditions. The low intensity of these vibration on the 

spectra of the samples calcined at T = 873 K and 1073 K, indicates the decomposition of barium 

carbonate at T  723K. These results are consistent with TG - curve of the samples of Fig. 2. Based 

on them, the temperature range for the pre-heat treatment of the films was established at T = 673 – 

723K. 
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The investigation of the microstructure of the thin films (4 layers) shows that it is 

characterized by a thickness of ~200 nm (Fig. 5,a) and nanorod-like grains (dav., lav. = 60 nm, 320 

nm) (Fig. 5,b). According to the EDX-analysis, the films have a uniform distribution of barium and 

iron ions on its their surface (Fig.6). These results indirectly confirm the preservation of the 

homogeneity, not only at removing the solvent, but also at all stages of the films preparation.  

Figure 7 shows the XRD patterns of the BHF films (4 layers) obtained under different 

treatments: with a low heating rate at T = 1073 K and 1173K (patterns 1 and 2) and with a rapid 

heating rate at T = 973K and 1173K (patterns 3 and 4). All samples are hexaferrite single-phase. 

The XRD patterns 3 and 4 (rapid heating rate) differ from the the patterns 1 and 2 (low heating 

rate). A significant increase of the 006 and 008 reflexions is observed. This indicates the 

preferential orientation of grains along the [00l] direction. An axis of easy magnetization of BHF is 

directed along the hexagonal c-axis, therefore such grains orientation may indicates the appearence 

of an axial magnetic texture in these these films. A similar structure has been reported by other 

authors [31]. A texture degree of 40 and 50% is calculated for the films obtained after the thermal 

treatments at T = 973K and 1173K. The degree of texture was determined by the formula [34]: 

0

0

100%
1

p p
f

p


 


,  

where p0 and p - the ratio of the sum of 00l reflections intensities to the sum of intensities of all (00l 

+ hkl) reflections on diffractograms of non-textured and textured BHF films respectively. The films 

texture can be affected by many factors, such as processing conditions or substrate nature [35-41]. 

As follows from Fig. 7, the formation of BHF textured films occurs only here with a rapid heating. 

This can be explained by the fact that, with a low heating film crystallization starts during the 

heating process, and, as the temperature increases, more energy is available to surmount the barriers 

for nucleation events in addition to the energetically most favorable nucleation event [35]. Such 

conditions are favorable for the spontaneous growth of nucleus (a homogeneous nucleation 

mechanism). In this case, texture is not observed in these films. With a rapid heating, a directional 
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heat flow is produced and leads to the formation of a temperature gradient on the film–substrate 

interface. In this case, we observe a heterogeneous nucleation mechanism which promots epitaxial 

orientation of the BHF grains at the film–substrate interface [35, 37, 40-41]. The α-Al2O3 substrate 

has a rhombohedral structure (R3C space group), which accurs the hexagonal syngony [42]. 

Relative mismatches of crystalline lattice parameters (ε) of both the substrate and hexagonal BHF 

(sp. gr. R63/mmc) film at the interface were determined by the formula [43]:  

f s

f

a a

a



 , 

where af and as – crystalline lattice parameters of  an epitaxial solid solution (M type BHF) and 

substrate (α-Al2O3), respectively. The relative mismatches of crystalline lattice parameters (ε) for a 

and c parameters are: 0.24 and 0.78, respectively. Obviously, the grains of films grow perpendicular 

to the c - axis with a such difference in these mismatch parameters. Therefore, for films deposited 

on the α-Al2O3 substrate, the grains orientates along the [00l] direction. This leads to high 

reflections from the  (008) crystal plane and those planes closed to (008) (Fig. 7, diffractogramms 3 

and 4). 

According to Ref. [44-46], the change in the film thickness can lead to changes in structure, 

which causes changes in the film properties. In this regard, we have synthesized 4-layers deposited 

films with an average thickness of ~200 nm, and 10-layers deposited films with an average 

thickness of ~450 nm, both with nanorod-like grains (dav., lav. = 40 nm, 205 nm) (Figure 8). Fig. 9 

shows the diffraction patterns of the 4 and 10-layers films after their heat treatment at 973K. As 

follows from Figure 9, the film texture degree decreases with increasing the films thickness. This 

indicates that the film is more textured at the film - substrate interface, and part of film texturing 

decreases with increasing the film thickness [35]. These results are consistent with the magnetic 

measurements results of the films (Fig. 10). As can be seen, the anisotropy of the film magnetic 

properties decreases with increasing the film thickness (Fig. 10,a,b). For 4-layers films, the 
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difference between coercivity measured perpendicularly and parallel (Нс- Нс) to the film plane is 

167 kA/m, and for 10-layers film – 23kA/m.  

Comparing the films prepared in this work and and those of ref. [12, 16-18, 20-25], we can 

note that the films obtained by tape-casting in ref. [12] are characterized by more larger grains sizes. 

Usually, a density of coarse‐grained films is lower than a density of fine-grained films. In particular, 

auhors [12] indicates that films are weakly textured and contain pores. Films obtained in [20 - 25] 

by physical deposition methods are also characterized by a large grain size and pores. Furthermore, 

these films have lower magnetic properties (Ms, Hc) in comparison with the films of this study. 

Films synthesized on the silicon substrates [16-18] are multiphase, weakly textured and pores are 

observed at the surface. 

High-density textured thin films with fine grains and high magnetic characteristics have 

been produced in this study. Therefore, these M-type BHF films of are promising for the further 

development of multilayer microwave resonant elements “high-Q dielectric – M-type BHF thin 

film”.  

4. Conclusion 

The possibility of preparing M-type barium hexaferrite (BHF) thin films on the surface of 

dielectric α-Al2O3 substrates by a sol-gel method has been shown. The conditions for the synthesis 

of thermally stable film-forming solutions with an increased concentration of barium ions (0.3 

mol/L), and the viscosity of η = 4,02 cSt –used further for the productions of M-type BHF thin 

films- have been studied. The temperature range for the pre-heating of the films has been defined  in 

the T = 673 – 723K range. Thin nanocrystalline films of M-type BHF with thickness of 200 and 450 

nm, and nanorod-like grains (dav., lav = 60 nm, 320 nm and dav, lav = 40 nm, 205 nm, respectively) 

have been prepared. A uniform distribution of iron and barium ions over the substrate’s surface is 

proved. The BHF thin films have been shown to exhibit the c- axis magnetic texture after a rapid 

heating for their crystallization. The texture degree of these BHF thin films decreases with 

increasing film thickness (Нс- Нс = 167 kA/m and 23 kA/m for the film thickness 200 and 450 
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nm, respectively). These textured films of M-type BHF are promising for the future development of 

multilayer microwave resonant elements.  
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Figure captions  

Fig.1. Wetting angle of forming film solutions (FFS) on the α-Al2O3 substrate at different viscosity. 

a, b, c - samples with a viscosity: of 4.02, 4.53 and 5.32 cSt, respectively. 

Fig.2. TG -DTA analyse of dried (T = 473K) BHF sol-gel powder samples.  

 Fig.3. IR spectra of BHF sol-gel powder samples (CA/EG = 1/5) obtained at different 

temperatures: 1, 2, 3 and 4 – Т = 473, 723, 873 and 1073 К, respectively. 

Fig.4. X-ray diffraction (XRD) patterns of powder samples obtained at different temperatures: 1 – 

473К, 2 – 623К, 3 – 973К, 4 – 1073К, 5 – 1173К. 

Fig.5. Cross-section (a) and surface (b) microstructures of the BHF film (4 layers) prepared at T = 

1173K (SEM).  

Fig.6. Distribution of iron and barium ions on the BHF film (4 layers) surface after heat treatment at  

T = 1173K (EDX).  

Fig.7. X-ray diffraction (XRD) patterns of the BHF thin films (4 layers): 1 and 2 – slow heating rate 

(T = 1073 and 1173K respectively); 3 and 4 – rapid heating rate (T = 973 and 1073K respectively). 

 Fig.8. Cross-section (a) and surface (b) microstructures of the BHF film (10 layers) at T = 973K 

(SEM).  

 Fig.9. X-ray diffraction (XRD) patterns of the thin BHF films obtained by a rapid heating at Т = 

973К:  1 and 2 – 10 and 4 layers respectively. 

Fig.10. Hysteresis loops of BHF 4-layers (a) and 10-layers (b) thin films obtained at 973K. 

https://getinfo.de/app/subject-search?action=search&author=%22Kim%2c+D.+H.%22&form=advanced
https://getinfo.de/app/subject-search?action=search&author=%22Nam%2c+I.+T.%22&form=advanced
https://getinfo.de/app/subject-search?action=search&author=%22Hong%2c+Y.+K.%22&form=advanced
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Table 1 

The viscosity of the sol-gel systems at the different conditions of preparation 

 

  

Film 

forming 

solution 

(FFS) 

Citric acid/ 

ethylene glycol 

(СА/ЕG) 

Barium ions 

concentration,

mol/L 

The viscosity of the sol-gel system 

η, cSt 

T
h
e 

st
ab

il
it

y
 o

f 
g
el

 

(n
u
m

b
er

 o
f 

d
ay

s)
 

The time of heat treatment of  

the sol-gel system at Т = 353K 

t, min. 

15 30 45 60 75 90 

1 1/3 0.08 2.67 2.97 3.12 3.29 3.45 3.63 10 

2 1/5 0.08 2.87 3.07 3.30 3.56 3.72 3.85 12 

3 1/5 0.16   3.67 3.96 4.32  20 

4 1/5 0.24   3.72 4.26 4.82  20 

5 1/5 0.30   4.02 4.53 5.32  25 
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