Empirical modelling of seston quality based on environmental factors in a mussel culture area (NW Iberian upwelling system)

Eva Aguiar, Isabel Fuentes-Santos, Uxío Labarta*, X. Antón Álvarez-Salgado, Mª José Fernández-Reiriz

CSIC – Instituto Investigaciones Marinas, Eduardo Cabello 6, E36208 Vigo, Spain

*Corresponding author; Tel.: +34986231930, Fax: +34986292762, email: labarta@iim.csic.es

Abstract

We analyze the spatial and temporal variability of seston parameters at four locations in the Ría de Ares-Betanzos (NW Spain) and throughout five years. Seston content was higher in the inner part of the ría and during winter, while seston quality was better in the outer part of the ría with maximum values during summer, showing a marked relationship with water circulation. Inter-annual differences were detected only in the organic content of seston –which was not always well-correlated with chlorophyll a- and at some locations. Seston quality was the variable that showed the strongest relation with meteorological factors and the only that showed to be consistent at the four sites within the embayment. This fact let us to develop an empirical model that explains the spatial-temporal variability of seston quality in terms of wind stress and river discharge.

Keywords: Modelling; seston quality; coastal upwelling; river flows; seston; aquaculture; spatial-variability; seasonal-patterns.
1. INTRODUCTION

Coastal upwelling regions are unique niches for marine communities that feed on suspended particles (Isla et al. 2010). Among these regions, the Galician coast (NW Spain) is a top site for mussel culture of *Mytilus galloprovincialis* on hanging ropes. The high yield of mussel culture in the large coastal embayments that occupy the Galician coast, known as “rias”, has been attributed to their particular combination of fertilization by upwelling and intricate coastline that guarantees protection to mussel rafts against rough weather conditions (Figueiras et al. 2002a, Villegas-Ríos et al. 2011). In these highly productive embayments, suspension-feeders are exposed to dramatic changes in the numbers, size and nutritional value of suspended particles, which are often related with environmental forcings (Hawkins et al. 1996).

Seston accessible to marine filter feeders includes a range of organic particles with varying nutritional value, from living phytoplankton to detritus of different origins and silt (Navarro et al. 2009). In the Galician Rías, phytoplankton biomass estimated from chlorophyll concentration explains <40% of the particulate organic matter (Navarro et al. 1996, Figueiras et al. 2002a). These embayments are considered as low-seston environments where total particulate matter (TPM) is usually less than 3 mg l$^{-1}$, and chlorophyll-a (Chla) concentration is less than 5 μg l$^{-1}$. The feeding process in bivalves in low-seston environments is expected to be less complex (Duarte et al. 2010a); selective ingestion processes and, therefore, pseudofaeces are not produced due to the particular conditions of the seston (Figueiras et al. 2002a, Fernández–Reiriz et al. 2007, Filgueira et al. 2009, 2010).

Historically, seston quality has been assessed measuring its total organic matter, organic carbon, organic nitrogen and/or chlorophyll-a content. Other biochemical parameters such as the protein, lipid and carbohydrate content have been suggested to assess seston

In this work, we have considered the quantity of seston available to suspension feeders in terms of phytoplankton (Chlα), total particulate matter (TPM) which is the sum of the particulate organic matter (POM, including phytoplankton) and particulate inorganic matter (PIM) and seston quality in terms of f (POM/TPM). The relationship between environmental forcings and seston is a highly demanded task within the framework of the Ecosystem Approach to Marine Aquaculture (EAA) (Byron et al. 2011). This approach looks for the comprehensive integrated management of human activities based on the best available scientific knowledge about the ecosystem and its dynamics (Cranford et al. 2012). In this context, our study integrates an extensive database of both relevant seston parameters recorded weekly during 5 years in four sampling sites and simultaneous data of wind and river discharge in the Ría de Ares-Betanzos.

The main motivation of this study is to look for and to establish relationships between seston parameters and meteorological forcing agents within the Ría de Ares-Betanzos. Results were divided in two specifics goals: (1) to describe and characterize the content and quality of seston for a better understanding of the coastal embayment of the Ría de
Empirical modelling of seston quality

Ares-Betanzos and (2) to develop an empirical model that reveals and assesses the intimal connexion between seston and both winds and river discharge in the ría.

The main innovative value of this work is the use of such large amount of data to describe both the spatial and the temporal variability of seston in different cultivation areas of this embayment and the establishment for first time, to the best our knowledge, an empirical model able to explain seston behavior based on key meteorological variables. This approach is interesting for the development of seston quality predictive models, which are demanded for a correct ecosystem-management.

2. MATERIALS AND METHODS

2.1 Study site

The Galician coast is at the northern limit of the eastern boundary upwelling system of the North Atlantic. Coastal winds in this area describe a seasonal cycle characterized by upwelling favourable north-easterly winds from March-April to September-October and downwelling favourable south-westerly winds the rest of the year (Wooster et al. 1976, Torres et al. 2003). During the upwelling season, upwelling events occur with a 1–2 weeks periodicity (Alvarez-Salgado et al. 1993). The Ría de Ares-Betanzos is the largest of the six embayments located in the northern Galician coast, between Cape Fisterra and Cape Prior (NW Iberian Peninsula; Fig. 1), with a surface area of 72 km², a volume of 0.75 km³ and a maximum length of 19 km. It has two main branches: Ares, the estuary of river Eume, and Betanzos, the estuary of river Mandeo. In the outer part, the two branches converge into a confluence zone that is freely connected to the adjacent shelf through a mouth that is 40 m deep and 4 km wide. In fact, the confluence zone can be considered as an extension of the adjacent shelf that is affected by the intensity, persistence and direction of coastal winds (Bode & Varela 1998, Villegas-Ríos et al. 2011). This study is based on the data collected in four locations within this
Ría (Fig. 1): Miranda and Lorbé in the northern and southern outer part, respectively, and Redes and Arnela in the northern and southern inner part, respectively.

2.2 Seston

Seston concentration and quality were monitored weekly during 5 years (January 2007 to December 2011) at the four locations. The quality and quantity of seston was determined as follows. Total particulate matter (TPM; mg L⁻¹) and the constituent organic (POM; mg L⁻¹) and inorganic (PIM; mg L⁻¹) concentrations were gravimetrically determined. Seston samples were filtered onto pre-ashed (450 °C for 4 h) and pre-weighed Whatman GF/F filters and rinsed with isotonic ammonium formate (0.5 M) to remove salts and prevent lysing of living algal cells. TPM was determined as the weight increment after drying the filters to constant weigh at 110 °C. Filters were then ashed at 450 °C in a muffle furnace to determine the content of PIM. Particulate organic matter corresponded to the difference between the total dry mater weight and the ash weight. Filters were weighed with an accuracy of 0.001 mg using an electronic microbalance (Sartorius M3P, M3P-000V001). Seston quality was expressed as $f = \frac{\text{POM}}{\text{TPM}}$ to account for the relative organic content by weight.

Two one-liter seawater samples were weekly collected at each location and filtered through 25-mm Whatman using GFF filters (0.7 µm) for determination of Chl-a concentrations. All filters were frozen at −20 °C to facilitate cellular lysis and enhance chlorophyll extraction. Pigments were extracted using 5 ml of 90% acetone as a solvent, and left in the dark for 12 h. The solution was then centrifuged at 4500 rpm at 10 °C for 10 min to isolate the chlorophyll extract from the filter residues. Chl-a was quantified using a Perkin-Elmer Lambda 35 UV/VIS spectrophotometer and the concentration was calculated following Jeffrey and Humphrey (1975): Chl-a...
Empirical modelling of seston quality

\[(11.85 (E_{664} - E_{750}) - 1.54 (E_{647} - E_{750}) - 0.08 (E_{630} - E_{750}))v) / V,\]

where \(E_{750}, E_{664},\)

\(E_{647}\) and \(E_{630}\) are the absorbances at 750, 664, 647 and 630 nm respectively; \(v\) is the

volume of acetone used in the extraction (ml); and \(V\) is the volume of filtered

seawater (ml). Three replicas were obtained from each seawater sample. The final

weekly chla values at each location were obtained averaging the six replicas.

2.3 Environmental factors

Shelf winds

Shelf winds were obtained at 6 hours intervals from the Seawatch buoy of the Spanish

Agency Puertos del Estado off Cape Vilano (http://www.puertos.es). Gaps of less than

24 hours were interpolated linearly. For gaps of more than 24 hours, the time series

were reconstructed from FNMOC model data obtained in the nearest location available

(off Cape Fisterra) using General Additive Models (GAM). The goodness of fit of the

GAM was around 70% of deviance explained. Reconstructed data represented 17% of

the time series. Then, daily wind values were obtained by applying an 8th order

Chebyshev type I low-pass filter with cut-off frequency of \(8*(F_S/2)/R\), where \(F_S\) is the

tsampling interval and \(R\) is the rate at which we resampled our data.

River discharge

The flow of river Mandeo, \(Q_M\), was taken from gauge station nº 464 at Irixoa,

administered by the Galician Agency Augas de Galicia. The Horton’s Law (Strahler

1963) was applied to estimate flow at the river mouth (total drainage basin: 456.97 km\(^2\))

from the flow at the gauge station (gauged drainage basin: 248.21 km\(^2\)). The flow of the

river Eume, \(Q_E\), is a combination of regulated and natural flows. Daily volumes of the

Eume reservoir, which controls 80% of its drainage basin, were provided by the

managing company ENDESA S.A. Assuming that the retention constant for the

drainage basin of river Eume is the same than for the river Mandeo, the natural
Empirical modelling of seston quality

component of the flow of the river Eume was calculated again from the Horton’s Law considering the area not controlled by the reservoir (96.04 km²). Both time series have a daily sampling interval.

2.4 Statistical analysis

An assortment of statistical tools was used for a straightforward interpretation and comparison of the data. First, exploratory analysis was conducted to describe the environmental factors and their seasonal patterns. Then, spatial variability in the time series of seston concentration and quality (f) was evaluated comparing trends between locations by means of a non-parametric test for dependent data. Annual-seston time series were classified by means of a cluster algorithm for functional data. Finally, Generalized Mixed Additive Model (GAMM) were run to model f from meteorological factors (coastal wind and river discharge).

Exploratory analysis of meteorological factors

In order to explore the seasonal variability of the meteorological factors, we analysed their distribution by seasons. Seasons were defined as: spring (from 22 March to 21 June), summer (from 22 June to 21 September), autumn (from 22 September to 21 December) and winter (from 22 December to 21 March). The seasonal structures of river discharge and wind speed were fitted by kernel density estimation using Silverman’s rule of thumbs to select the optimal bandwidth (Silverman 1986). To analyse wind direction we applied the kernel circular density estimator using least squares cross-validation to select the optimal bandwidth (Oliveira et al. 2013b). Finally, the relationship between wind direction and speed was analysed by circular-linear kernel regression, using least squares cross-validation to select the optimal bandwidth.
Empirical modelling of seston quality

too (Oliveira et al. 2013b). These analysis were conducted with the NPCirc package of
R (Oliveira et al. 2013a, R Core Team 2013).

Comparison of trends in seston concentration and quality

For each location, we estimated the temporal trends of seston content and quality by
kernel regression for dependent data, using least squares cross-validation for bandwidth

Comparison between locations was conducted using the non-parametric test for curves

These authors used a Cramer-von-Mises type statistic to compare K non parametric
regression curves \((m_1, ..., m_K) \) from samples \{Y_k(t); k=1, ..., K\}, where:

\[
Y_k(t) = m_k(t) + e_k(t) \tag{1}
\]

In our case, the functions \(m_k \), refer to the estimated trends (K=4) and \(e_k \) are the random
errors which have a time-dependent structure (ARMA(p,q)). Both trend estimation and
their corresponding comparison were implemented with the PLRModels package of R
(Aneiros-Pérez & López-Cheda 2014).

Cluster analysis for functional data

In functional data analysis (FDA) (Ferraty & Vieu 2006) we assume that a high
dimensional vector represents a set of discrete observations of a continuous function.

This method replaces the sampled functions (discrete observations) by functional
representations (curves). In our case, each curve represents the evolution of a variable
through a year at each location. FDA allows working with irregular sampling intervals
and missing values, which are two of the commonest drawbacks of field data from
monitoring networks.
In this work, functional representations were constructed using B-splines basis functions, where both the optimal number of basis and the penalization parameter were estimated by generalized cross validation (GCV). Once we have obtained the functional representation, we applied a k-means algorithm for functional data to search for inter-annual and spatial variability in seston concentration and quality. This analysis was conducted with the fda.usc package of R (Febrero-Bande & Oviedo de la Fuente 2012).

Generalized mixed additive model (GAMM)

The relationship between seston quality \((f) \) and environmental factors (Eume and Mandeo freshwater discharges \((Q_E \) and \(Q_M, \) respectively), wind intensity \((w) \) and wind direction \((\theta) \)) at each location was modelled using generalized additive mixed models (Wood 2006a, Zuur et al. 2009) with quasi-binomial family and logit link function, given that the response \((f) \) is a proportion. GAMM models were chosen since the residuals of the fixed effects models (GAM) did not fulfil the normality assumption (see Appendix II). The use of GAMM instead of GAM models lets us to consider the spatial variability in the response without adding new parameters.

Model selection was performed in two stages: first, we considered a pure additive model and looked for interactions between environmental factors and location. Once these interactions were discarded, the interactions between environmental factors were incorporated. The variables and high order interactions involved in the model were selected using the shrinkage procedure proposed by Marra & Wood (2011). These procedures provided the following model:

\[
\log\it (E[f_{ik}]) = \alpha_k + g_1(w_i) + g_2(\theta_i) + g_3(\log(Q_{E,i} + 1), \log(Q_{M,i} + 1)) + g_4(\log(Q_{E,i} + 1), w_i, \theta_i) + g_5(\log(Q_{M,i} + 1), w_i, \theta_i) + s_{ik}
\]

(2)

where \(f_{ik} \) is the seston quality at time \(i \) and location \(k; \) \(\alpha_k \) is the intercept for each location; \(g_1…5 \) are the environmental-factors (covariates) smooth functions. \(g_1 \) and \(g_2, \) are
the functions for speed and wind direction represented using thin plate penalized
regression splines (TPRS) and cyclic cubic regression splines (CCRS), respectively. g_3, g_4 and g_5 represent the interactions between covariates. They were estimated using
scale-invariant tensor product smoothers (Wood 2006b): g_3 is a tensor product of TPRS,
while g_4 and g_5 are tensor products of TPRS (for river discharges and wind intensity)
and CCRS (for wind direction); s_{ik} are the location random effects assumed independent
and identically distributed $N(0, \sigma^2_s)$. River discharges were log-transformed to reduce
over-dispersion. Model fitting was conducted with the mgcv package of R (Wood
2006a).

3. RESULTS

3.1 Environmental factors

Shelf winds

The rose of shelf winds (Fig. 2a) shows that the predominant direction was along the
NE-SW axis. North-Easterlies (NE) were more common (40%) than South-Westerlies
(SW) (33%) during the study period. South-Easterlies (SE) and North-Westerlies (NW)
were much less frequent (8% and 18%, respectively). The most frequent wind speed
was 5–10 m s$^{-1}$ and the most intense, 15–20 m s$^{-1}$, were reached only with SW winds.
The density estimators of wind speed (Fig. 2b) show that all seasons followed a similar
distribution; although the most intense winds were recorded during winter. The density
estimators of wind direction (Fig. 2c) point out the prevalence of NE winds throughout
the year, except during the winter when SW and NE winds had the same prevalence.
The interaction between wind speed and direction (Fig. 2d) reveals that NE winds were
the most intense for all seasons, except during winter when SW winds acquired the
same intensity as NE winds.
River discharge

The long-term average flow of River Eume (15.4 m3 s$^{-1}$) was significantly higher than River Mandeo (13.4 m3 s$^{-1}$; Wilcoxon test, p-value < 2 x 10$^{-16}$). The long-term variability of river discharges was higher at River Mandeo (coefficient of variation, c.v. 149%) than at River Eume (c.v. 102%). Time series of both rivers showed a marked seasonal pattern with higher discharges during winter and spring (Fig. 3a). River flows did not exceed 23 m3 s$^{-1}$ during the summer months and, although they exceeded occasionally 150 m3 s$^{-1}$, 95% of the time during winter they were < 75 m3 s$^{-1}$.

Figures 3b and 3c highlight the seasonal pattern described above but also provide information about the inter-annual variability. It is remarkable the increase of both river volumes from March to May 2008 and during June 2010. The seasonal density estimators of river flows (Figs. 3d & e) show that during summer barely had dispersion and their discharges were concentrated around 5 and 2.5 m3 s$^{-1}$, for rivers Eume and Mandeo, respectively. During the spring and autumn both rivers discharged similar volumes with median values of 9 m3 s$^{-1}$ for River Eume (both spring and autumn) and 8.5 m3 s$^{-1}$ (spring) and 4 m3 s$^{-1}$ (autumn) for River Mandeo. During winter the median values increased for both rivers: 25 m3 s$^{-1}$ for River Eume and 17 m3 s$^{-1}$ for River Mandeo.

3.2 Spatial, seasonal and inter-annual variability of seston

The long-term mean (standard deviation) values for TPM, POM, PIM, Chla and f in the Ría de Ares-Betanzos were 1.72 (1.65), 0.61 (0.42), 1.13 (1.42) mg L$^{-1}$, 1.81 (1.55) µg L$^{-1}$ and 0.46 (0.22), respectively. Table 1 and the raw time series (Appendix I) show their spatial and seasonal variability.

Spatial variability
Seston content and quality differences within the ría were evaluated comparing the trends of the main seston variables throughout the five years between locations (Fig. 1). We found that the inner and the outer part of the ría followed different trends (p-values < 0.01): locations at the inner side (Redes and Arnela) presented higher seston content (TPM, POM and PIM; Figs. 4a, b & c) than the outer locations (Miranda and Lorbé). However, we only observed significant differences between the northern and southern shores for POM, which was higher in Redes than in Arnela (Fig. 4b). Seston quality (f; Fig. 4d) followed an opposite spatial pattern to seston content, with higher values in the outer side of the ría, although we only found significant differences between Lorbé, which recorded the highest values, and the inner side (p-values < 0.001).

Seasonal patterns and inter-annual variability

The cluster analysis for functional data found more spatial than inter-annual variability in the seasonal patterns of seston content and quality, confirming the differences between the inner and the outer side of the embayment. Inter-annual variability was detected only for POM. Results are summarized in Figure 5 and Table 2.

The classification of TPM and PIM into two groups (Figs. 5a & c; Table 2) shows that both variables followed the same seasonal pattern at the four locations with higher values in the inner (red line; Redes and Arnela) than in the outer (black line; Miranda and Lorbé) side of the ría. Both seasonal patterns indicate that TPM and PIM increase in winter and decrease in summer.

Classification on three groups was necessary to identify the main seasonal patterns of POM. Inter-annual variability was detected at Arnela, Lorbé and Miranda, which exhibited a different seasonal pattern during 2008. This pattern of POM was characterized by a large summer peak, which was also observed at Arnela in 2010 (Table 2, green; Fig. 5b). Redes had a common seasonal pattern along the five years...
Empirical modelling of seston quality

with slightly higher POM values in winter and summer than in spring and autumn (red line; Figure 5b). This pattern was similar to the one obtained at the other three locations (black line; Fig. 5b) but with higher content of POM.

f (Fig. 5d) followed a well-defined and common seasonal pattern at all locations, with high (low) quality during the summer (winter) months. Outer locations (Miranda and Lorbé; red line) had higher seston quality than inner locations (Redes and Arnela; black line) along the year.

Chl$_a$ followed a common seasonal pattern in Arnela, Lorbé and Miranda. Inter-annual variability was only observed at Miranda, which in 2011 followed the same pattern as Redes. This pattern is characterized by two peaks in spring and autumn. Chl$_a$ concentration is higher in Redes than in the other locations, except during summer.

The results of the correlations between f and Chl$_a$ and between POM and Chl$_a$ are shown in Table 3. For both cases the correlation coefficients were positive and significant at all locations. The correlation between variables was low ($R<0.4$) at all locations but at Lorbé (southern outer). The minimum correlation was found at Redes (northern inner).

3.3 Seston quality in terms of meteorological factors

The aim of this section is explaining the spatial and temporal variability of the seston variables (TPM, Chl$_a$, POM, PIM, and f) in terms of wind and river discharge. We obtained that f is the variable that shows the strongest relationship with the meteorological factors and the only that presents a consistent behavior at the four sites.

From these results, we decided to focus only on the model developed for this variable.

The model
The selected model involved the effect of location (Table 4; parametric coefficients), the effect of meteorological factors, and the interactions between them (Table 4; smooth terms). The fitted model reproduces the observed seasonal pattern, which is common to the four locations. From a quantitative point of view, the parametric coefficients confirm once again that Lorbé (outer southern shore) was the location with the highest seston quality followed by Miranda (outer northern), Arnela (inner southern) and Redes (inner northern). Moreover, our model states that seston quality was mainly driven by: (1) wind direction and speed (despite the effect of the later was barely significant); (2) the joint effect of rivers Eume and Mandeo discharge; and (3) the interaction of each river with wind direction and speed.

Model checking (Appendix II) confirms the normality of the errors and therefore that we have used an adequate model fit. The variability of seston quality is successfully explained with the selected model (adjusted $R^2=0.57$) and the observed and fitted time series of seston quality at each location (Appendix III) confirm this goodness of fit.

Interpretation of the model

An overall interpretation of the high order interactions detected by our model can be seen in Appendices IV and V. The former shows the joint effect of wind direction and speed on seston quality under some benchmark conditions for river discharges, and the latter shows the joint effect of Eume and Mandeo discharges under some benchmark conditions for wind direction and speed. For a clearer and easier interpretation of results, we choose particular cases —from the Appendixes— as the most representative scenarios in our study area: (1) upwelling/downwelling conditions with low/moderate/high river discharges to evaluate the effect of wind speed on seston quality (Fig. 6); and (2) upwelling/downwelling conditions with light/moderate/strong winds to evaluate the effect of river discharges on seston quality (Figs 7 and 8).
Empirical modelling of seston quality

Upwelling (downwelling) conditions were defined on basis of winds with 45º (225º) direction from North. Low, moderate and high river discharges were defined as the median values during summer, spring/autumn and winter, respectively (section 3.2). Light, moderate and strong winds were defined as speeds of 2, 6 and 10 m s\(^{-1}\).

Scenario 1 corresponds with upwelling/downwelling episodes during summer, autumn-spring and winter, respectively. Conversely, scenario 2 is not associated with any season (since distribution of wind speeds does not follow a seasonal pattern) but with particular events.

Upwelling events had a positive effect on seston quality during spring, summer and autumn, i.e. with low and moderate river discharges (Figs. 6a & b) but not especially during winter (Fig. 6c). During summer, seston quality increased with wind speed. However, spring and autumn upwelling episodes with speeds > 6 m s\(^{-1}\) do not have positive effects on seston quality.

Contrarily, during downwelling events, seston quality rapidly decreased with wind speed during summer, spring and autumn (Figs. 6d & e). The more intense the winds, the lower the seston quality. During winter, seston quality remained low and barely affected by wind speed, whatever under upwelling or downwelling conditions (Figs. 6c & f)

The effects of river discharge on seston quality under upwelling conditions are presented in Figure 7. During light and moderate upwelling events, the increase of River Eume discharge (Figs. 7a & b) had a positive effect on seston quality but only until a certain threshold, which was higher with light winds (~15 m\(^3\) s\(^{-1}\)) than with moderate winds (~10 m\(^3\) s\(^{-1}\)). From these thresholds, seston quality started to decrease. During strong upwelling events (Fig. 7c), seston quality increased with river flows up to ~20 m\(^3\) s\(^{-1}\) but it kept constant thereafter.
Maximum values for seston quality were obtained with practically absence of River Mandeo discharge (< 2 m3 s$^{-1}$) but contrarily to River Eume, a slight increase of River Mandeo flow (up to 10 m3 s$^{-1}$) had a prompt and negative effect on seston quality, which was more pronounced with more intense winds (Figs. 7d, e & f). The effects of river discharges on seston quality under downwelling conditions are represented in Figure 8. Effects of rivers on seston quality with light winds (Figs. 8a & d) was analogous that under upwelling conditions, although in this case, a lower River Eume discharge (Fig. 8a) is needed to decrease the seston quality (upwelling: 15 m3 s$^{-1}$ vs. downwelling: 10 m3 s$^{-1}$). Seston quality variability under moderate (Figs. 8b & e) and strong (Figs. 8c & f) downwelling events were not significant.

4. DISCUSSION

Variability of seston

Seston can be incorporated into any pelagic coastal ecosystem from both allochthonous and autochthonous sources. Allochthonous sources include particles transported by the sea and freshwater flows that enter the study ecosystem as well as by resuspension from the sediments (Navarro & Iglesias 1993, Zúñiga et al. 2014). Simultaneously, these water flows transport dissolved organic and inorganic nutrients, which are the substrate for the growth and accumulation of autochthonous plankton communities. Seston content can vary on a scale of hours, days and/or year-to-year. These changes occur not only in the concentration of suspended particles, but also in their size and nutritional status (Anderson & Meyer 1986, Berg & Newell 1986, Velasco & Navarro 2002a), which is particularly important in the absorption of energy consumed by filter feeders (Figueiras et al. 2002a, Froján et al. 2014).

Our results reveal that seston seasonal patterns and magnitude depend on the location within the Ría de Ares-Betanzos. Seston concentrations (as TPM and PIM) were higher
Empirical modelling of seston quality

in the inner part of the ría and during winter than in summer, which emphasize the influence of river discharges. Regarding POM and Chla, the innermost location in the northern coast (Redes) recorded significantly higher concentrations than the others. Our results also revealed that only some anomalous year (2008 and 2010) have a different seasonal pattern at some locations and specifically for POM. The anomalously high summer maximum of POM coincided with rainy springs during these years (section 3.1) and with an elevate number of closures of the exploitation of mussel rafts due to the presence of dinoflagellates in the study area (unpublished data). These results reinforce the conclusions of Álvarez-Salgado et al. (2011), which assured that in this ría a rainy spring will produce extensive closures in summer.

Chla has been often used as a proxy for seston quality in mussel growth models (e.g. Filgueira et al., 2011; Larsen et al., 2014) since monitoring of this variable is straightforward and inexpensive. However in areas with low phytoplankton concentrations non-phytoplankton organic matter may also be an important part of the diet (Handå et al. 2011, Maar et al. 2008). The low Chla concentrations recorded in the Ría de Ares-Betanzos and the relatively weak correlations observed between POM and Chla, support the use of f instead of Chla as a seston quality measure. The limitations of Chla as proxy food for blue mussels were also demonstrated by using dynamic energy budget (DEB) models (Rosland et al. 2009).

correlations between the absorption efficiencies of mussels and \(f \). Moreover, Cubillo et al. (2012) and Irisarri et al. (2015) found greater growth rates during seasons with high seston quality in our study area. All these works validate the reliability of the ratio between organic and total particular matter (\(f \)) as an indicator of favourable conditions for mussel growth, as established in the seminal papers of Bayne et al. (1988), Navarro et al. (1994) and Hawkins et al. (1998).

In our study area the variability of seston quality was more affected by the variability of its inorganic rather than its organic content. It has a marked seasonal behaviour with their maximum values during summer upwelling conditions and minimum levels during winter periods. Seston quality varies opposite to seston abundance and best-quality seston is present in the outer part of the ría. This pattern is in agreement with the fertilization of the ría by nutrient-rich upwelled Eastern North Atlantic Central (ENACW) waters in their outer part, and the variability of river discharges throughout the year.

Seston quality and environment

Model outputs confirm that seston quality is better in the outer than in the inner part of the ría. Moreover, it resulted to be better modelled by the interaction of rivers and winds rather than by these factors individually. Coupling of both factors was previously claimed by Álvarez-Salgado et al. (2011) to explain the closures of mussels farm due to harmful algal bloom episodes. More recently, Duarte et al. (2014) developed a 3-D numerical circulation model that showed that both under upwelling and downwelling conditions over the adjacent shelf, the residual circulation of the Ría de Ares-Betanzos remained positive with a strong influence from river discharge and a positive feedback from wind. However, they concluded that it is hard to generalize on the relative weight of these two potentially important mechanisms that change as a function of their
Empirical modelling of seston quality

respective magnitudes. The empirical model developed in this paper, explains the relative weight of these two factors affect seston quality within the ría. Our empirical model suggests that high river flows tend to decrease seston quality and that coastal upwelling conditions always tend to benefit it. In this sense, the balance between nutrient fluxes and flushing time, both controlled by continental and shelf water flows, seem to be the key to modulate the seston quality within the ría. Our model let us to establish some scenarios in which: (1) wind speed can have negative effects on seston quality; and (2) certain river discharges can produce positive effects on seston quality.

Our results suggest that seston quality improves monotonically with wind intensity but only during summer. During spring and autumn, seston quality improves up to a wind intensity of 6 m s\(^{-1}\) and, then it declines, and during winter, seston quality does not depend on the intensity of upwelling events. During summer, river flows are low and the dominant source of nutrients is the upwelled ENACW transported into the ría by the enhanced bottom ingoing flow (Villegas-Ríos et al. 2011). At the same time, haline stratification created by the river discharges does not allow upwelled waters to crop up at the surface, in such a way that nutrients are gently injected in the surface layer across the pycnocline and efficiently utilized by the phytoplankton communities of the surface ría. On the contrary, during spring and autumn, river flows are much higher; under this situation the pycnocline is so intense that the exchange of nutrients with the bottom layer is severely reduced and surface waters are flushed out faster than the time required for an efficient utilization of the nutrients introduced in the ría. This is likely the reason behind the decline of seston quality at costal wind speeds larger than 6 m s\(^{-1}\).

During downweling events, seston quality rapidly declines with wind speed in summer, spring and autumn (Figs. 6d & e). In these situations nutrient-poor shelf surface waters
push to enter into the ría and slow down the positive circulation pattern (Duarte et al. 2014). Although the flushing time of the ría decreases in these hydrographic conditions, which favour an efficient utilization of nutrients, nutrient flows are so low under this situations that phytoplankton growth becomes substrate limited and, therefore, seston quality declines.

Model outputs also demonstrate that both rivers have different effects on seston quality. Under upwelling conditions, the discharge of River Eume (placed at the northern shore) has a positive impact on seston quality up to a certain threshold. On the contrary, the discharge of River Mandeo (placed at the southern shore) has a negative effect on seston quality whatever the intensity of winds is. Nutrients transported by upwelled waters and river flows should contribute to increase seston quality if phytoplankton has enough time to growth within the ría. However, when the discharge of River Eume exceeds 15 m3 s$^{-1}$ (for light winds) or 10 m3 s$^{-1}$ (for moderate winds) the flushing time of the surface layer decreases to the point that nutrients cannot be efficiently utilized and, therefore, the seston quality decreases. Under very intense upwelling conditions, although the river discharge increases, the seston quality remains constant due to the high amount of nutrients transported by upwelling that are able to erode the pycnocline, transporting nutrients from the bottom to the surface layer and decreasing its flushing time. Finally, it is remarkable the high seston quality estimated under downwelling conditions with light winds and low river discharges (Fig. 8d). When downwelling events occur during summer, the ría is plenty of nutrients transported by previous upwelling events. Moreover, downwelling conditions tend to reverse the positive circulation, increasing therefore the flushing time. In that situation, phytoplankton has enough time to growth within the ría and seston quality increases.
The reasons why River Mandeo affects negatively the seston quality are unclear. Despite its lower flow, River Mandeo could have a larger effect on the flushing time of the ría than River Eume because of its influence on the cyclonic gyre developed in the inner and central parts of the ría, which contribute to decrease the flushing time of the surface layer, but could be disrupted by the presence of River Mandeo. It should also be taken into account that the flow of River Eume is regulated by a dam whereas River Mandeo flows naturally into the ría.

Conclusions

The spatial and temporal characterization of seston parameters (POM, PIM, TPM, Chl\(\alpha\)) in the Ría de Ares-Betanzos allowed us to establish the continental or marine origin of seston and its dynamics. Seston quality varied opposite to seston abundance. Seston content was higher in the inner part of the ría and during winter, while the best-quality seston was present in the outer part of the ría with maximum values during summer, showing a marked relationship with water circulation. The variability of seston quality was more affected by the variability of its inorganic rather it organic content and was the variable that showed the strongest relation with meteorological factors and the only that showed to be consistent at the four sites. This robust dependence enabled the development of a model to explain the dynamics of our environment and the relative weight of each forcing. Our model settles the basis for future development of predictive models, which are highly demanded to achieve a sustainable management of the ecosystem.

Acknowledgments
We wish to thank PROINSA Mussel Farm and their employees, especially H. Regueiro and M. García for technical support. This study was supported by PROINSA-CSIC contract-project (CSIC0704101100001), and MICINN ESSMA project (ACI2008-0780).

5. References

Empirical modelling of seston quality

<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>588</td>
<td>Irisarri J, Cubillo AM, Fernández-Reiriz MJ, Labarta U (2013) Growth variations within a farm of mussel (Mytilus galloprovincialis) held near fish cages: importance for the implementation of integrated aquaculture. Aquac Res</td>
</tr>
<tr>
<td>589</td>
<td>Irisarri J, Cubillo AM, Fernández-Reiriz MJ, Labarta U (2013) Growth variations within a farm of mussel (Mytilus galloprovincialis) held near fish cages: importance for the implementation of integrated aquaculture. Aquac Res:n/a–n/a</td>
</tr>
</tbody>
</table>
Empirical modelling of seston quality

618 variations in phytoplankton on the bioenergetic responses of mussels (Mytilus
619 galloprovincialis) held on a raft in the proximity of red sea bream (Pagellus

622 Absorption efficiency of mussels Mytilus edulis and Mytilus galloprovincialis
623 cultured under Integrated Multi-Trophic Aquaculture conditions in the Bay of
624 Fundy (Canada) and Ría Ares-Betanzos (Spain). Aquaculture 388–391:182–192

626 composition of seston in two upwelling sites within the Humboldt Current

629 Comput Stat Data Anal 55:2372–2387

631 Composition and Nutritive Value of Suspended Particulate Matter Over a Tidal
632 Flat of Southern Chile. Estuar Coast Shelf Sci 37:59–73

633 Navarro E, Iglesias JIP (1993) Infaunal Filter-Feeding Bivalves and the Physiological
634 Response to Short-Term Fluctuations in Food Availability and Composition. In:
635 Dame RF (ed) Bivalve Filter Feeders. Springer Berlin Heidelberg, p 25–56

637 phytoplankton and suspended bottom material on feeding and absorption of raft

640 Response to Variable Food Quantity and Quality in Cockles Cerastoderma edule
641 (Bivalvia, Cardiidae). Physiol Zool 67:468–496

643 physiological energetics of mussels (Mytilus galloprovincialis Lmk) from
644 different cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquaculture
645 94:197–212

646 Navarro E, Mendez S, Ibarrola I, Urrutia MB (2009) Comparative utilization of
647 phytoplankton and vascular plant detritus by the cockle Cerastoderma edule:

650 composition and nutritive value of the seston available to a suspension-feeding

653 Methods. R package version 2.0.0.

655 for exploring environmental data. Environ Ecol Stat 20:1–17

25
Empirical modelling of seston quality

Velasco LA, Navarro JM (2002a) Feeding physiology of infaunal (Mulinia edulis) and epifaunal (Mytilus chilensis) bivalves under a wide range of concentrations and qualities of seston. Mar Ecol Prog Ser 240:143–155

Velasco LA, Navarro JM (2002b) Feeding physiology of infaunal (Mulinia edulis) and epifaunal (Mytilus chilensis) bivalves under a wide range of concentrations and qualities of seston. Mar Ecol Prog Ser 240:143–155

Empirical modelling of seston quality

27
List of figures

Figure 1 Ría de Ares-Betanzos. Data were collected at four locations: Miranda (M) and Lorbé (L) in the outer part (north and south, respectively) and Redes (R) and Arnela (A) at the inner part (north and south, respectively).

Figure 2 Rose of shelf winds that covers the period from 2007 to 2011 (a). Probability density of shelf wind speeds (b) and directions (c) by seasons. Seasonal relationship between wind speed and direction (d). Winds are defined as where they come from.

Figure 3 Discharge of rivers Eume and Mandeo from 2007 to 2011 (a). Seasonal comparison of annual-river discharges for Eume (b) and Mandeo (c) rivers from 2007 to 2011. Probability density of Eume (d) and Mandeo (e) discharges by seasons.

Figure 4 Seston trends: TPM (total particulate matter) (a), POM (particulate organic matter) (b), PIM (particular inorganic matter) (c), f (seston quality) (d) and Chlα (chlorophyll content) (e) from 2007 to 2011 at each location. Outer/inner locations are denoted by broken/continuous lines and northern/southern by grey/black lines.

Figure 5 Cluster analyses of seston variables. Seasonal patterns of TPM (a), POM (b), PIM (c), f (d) and Chlα (e) time series. The significantly different seasonal patterns were marked with bold line. See Table 2 to identify which locations are identified with each line.

Figure 6 Effect of wind speed on seston quality (f) under upwelling and downwelling conditions with summer (a & d), spring/autumn (b & e) and winter (c & f) typical river discharges. Dashed lined indicate 95% confidence intervals.

Figure 7 Effect of Eume and Mandeo rivers discharge on seston quality (f) under low (a & d), moderate (b & e) and strong (c & f) upwelling conditions.

Figure 8 Effect of Eume and Mandeo rivers discharge on seston quality (f) under low (a & d), moderate (b & e) and strong (c & f) downwelling conditions.
Empirical modelling of seston quality

Figure 1
Empirical modelling of seston quality

Figure 2
Empirical modelling of seston quality

Figure 3
Figure 4
Empirical modelling of seston quality

Figure 5
Empirical modeling of seston quality

Figure 6

UPWELLING

Summer

a

DOWNWELLING

Spring-Autumn

b
d

c

Winter

Wind speed (m s⁻¹)

Wind speed (m s⁻¹)
Empirical modeling of seston quality

Figure 7

UPWELLING CONDITIONS

EUME Light winds MANDEO

Moderate winds

Strong winds

Eume river discharge (m³ s⁻¹)

Mandeo river discharge (m³ s⁻¹)
Figure 8

DOWNWELLING CONDITIONS

EUME Light winds MANDEO

Moderate winds

Strong winds

Eume river discharge (m³ s⁻¹) Mandeo river discharge (m³ s⁻¹)
Table 1 Long-term means and standard deviations of seston content and quality depending on the location (Arnela, Lorbé, Miranda and Redes). TPM (‘total particulate matter’; mg l⁻¹), POM (‘particulate organic matter’; mg l⁻¹), PIM (‘particulate inorganic matter’; mg l⁻¹), seston quality ratio (f) and Chlα, (chlorophyll content; µg l⁻¹).

<table>
<thead>
<tr>
<th></th>
<th>TPM</th>
<th>POM</th>
<th>PIM</th>
<th>f</th>
<th>Chlα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnela</td>
<td>2.0 (1.8)</td>
<td>0.6 (0.5)</td>
<td>1.4 (1.6)</td>
<td>0.4 (0.2)</td>
<td>1.7 (1.3)</td>
</tr>
<tr>
<td>Lorbé</td>
<td>0.8 (0.6)</td>
<td>0.5 (0.4)</td>
<td>0.4 (0.5)</td>
<td>0.6 (0.2)</td>
<td>1.4 (1.2)</td>
</tr>
<tr>
<td>Miranda</td>
<td>1.3 (1.0)</td>
<td>0.5 (0.3)</td>
<td>0.7 (0.9)</td>
<td>0.5 (0.2)</td>
<td>1.6 (1.3)</td>
</tr>
<tr>
<td>Redes</td>
<td>2.7 (2.0)</td>
<td>0.8 (0.3)</td>
<td>1.9 (1.8)</td>
<td>0.4 (0.2)</td>
<td>2.6 (2.0)</td>
</tr>
</tbody>
</table>
Empirical modeling of seston quality

Table 3: Correlation coefficients between seston quality (f) and chlorophyll content (Chl) and between POM and Chl at each location. p-value < 0.001 (**), p-value < 0.01 (**), p-value < 0.05 (*), p.value < 0.1 (.).

<table>
<thead>
<tr>
<th></th>
<th>f-Chl</th>
<th>POM-Chl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnela</td>
<td>0.298</td>
<td>0.369</td>
</tr>
<tr>
<td>Lorbé</td>
<td>0.478</td>
<td>0.753</td>
</tr>
<tr>
<td>Miranda</td>
<td>0.288</td>
<td>0.222</td>
</tr>
<tr>
<td>Redes</td>
<td>0.105</td>
<td>0.165</td>
</tr>
</tbody>
</table>

Table 4: GMM model parameters (Adjusted R² = 0.57). Effect of the location (parametric coefficients): intercept, standard deviation (std), error, the test statistical value (t-value) and significance level (p-value) for each location. Environmental forcings (w: wind intensity; Θ: wind direction; Q_E: Eume river discharge and Q_M: Mandeo river discharge) and its interactions (smooth terms): estimated degrees of freedom (edf), reference degrees of freedom (ref df), Snedecor’s F statistical value (F) and significance level. (p-value). p-value < 0.001 (**), p-value < 0.01 (**), p-value < 0.05 (*).

<table>
<thead>
<tr>
<th>Parametric coefficients</th>
<th>intercept</th>
<th>Std error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnela</td>
<td>-0.378</td>
<td>0.039</td>
<td>-9.659</td>
<td><2e-16 ***</td>
</tr>
<tr>
<td>Lorbé</td>
<td>0.262</td>
<td>0.055</td>
<td>11.614</td>
<td><2e-16 ***</td>
</tr>
<tr>
<td>Miranda</td>
<td>0.011</td>
<td>0.055</td>
<td>7.091</td>
<td>2.63e-12 ***</td>
</tr>
<tr>
<td>Redes</td>
<td>-0.504</td>
<td>0.056</td>
<td>-2.256</td>
<td>0.024 *</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smooth terms</th>
<th>edf</th>
<th>ref df</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>0.556</td>
<td>9.000</td>
<td>0.125</td>
<td>0.003 **</td>
</tr>
<tr>
<td>Θ</td>
<td>6.756</td>
<td>8.000</td>
<td>5.291</td>
<td>1.23e-10 ***</td>
</tr>
<tr>
<td>log(Q_E+1)*log(Q_M+1)</td>
<td>6.013</td>
<td>24.000</td>
<td>1.831</td>
<td>7.92e-14 ***</td>
</tr>
<tr>
<td>log(Q_E+1)wΘ</td>
<td>40.855</td>
<td>91.000</td>
<td>1.544</td>
<td><2e-16 ***</td>
</tr>
<tr>
<td>log(Q_M+1)wΘ</td>
<td>24.811</td>
<td>76.000</td>
<td>0.899</td>
<td>5.03e-11 ***</td>
</tr>
</tbody>
</table>
APPENDIXES

Appendix I Seston time series: total particulate matter, TPM (a); total organic matter, POM (b); total inorganic matter, PIM (c); seston quality, \(f \) (d) and chlorophyll content, Chla (e) from 2007 to 2011 at each location. Outer/inner locations are denoted by broken/continuous lines and northern/southern by grey/black lines.
Appendix II Q-Q plots (a, b) that compare the probability distribution of the deviance residuals of the model and the theoretical values (by plotting their quantiles against each other). Histograms of deviance residuals (c, d) obtained for GAM model (c) and for GAMM model (d) fits of seston quality. Note that the residuals of the GAM (c) are not normal and this assumption is fulfilled in the GAMM model (d).
Appendix III Observed and model-fitted temporal series of seston quality at Arnela (a), Lorbé (b), Miranda (c) and Redes (d).
Appendix IV Joint effect of wind speed and direction on seston quality (f) under spring (a), summer (b), autumn (c) and winter (d) conditions.
Appendix V Joint effect of river discharge on seston quality (f) under light (a, b) moderate (c, d) and strong (e, f) upwelling (UP) and downwelling (DW) conditions.