Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition

B. Tsyntsarski1*, I. Stoycheva1, T. Tsoncheva1, I. Genova1, M. Dimitrov1, B. Petrova1, D. Paneva2, Z. Cherkezova-Zheleva2, T. Budinova1, H. Kolev2, A. Gomis-Berenguer3, C.O. Ania3, I. Mitov2, N. Petrov1

1: Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., BL.9, 1113 Sofia, Bulgaria
2: Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev str., BL.11, 1113 Sofia, Bulgaria
3: Instituto Nacional del Carbon (INCAR, CSIC), Apdo. 73, 33080 Oviedo, Spain

Abstract
Activated carbons with different textural and chemical surface characteristics were synthesized from waste biomass and low rank coals, and furthermore used as a host matrix for cobalt species, varying the preparation and modification methods. The obtained activated carbons and modified samples were characterized by complex of various physicochemical methods, such as: low temperature physisorption of nitrogen, XRD, EPR, XPS, UV-Vis and TPR with hydrogen. Boehm method was applied for qualitative and quantitative determination of oxygen-containing groups on the carbon surface before and after cobalt deposition. The catalytic properties of cobalt modifications were tested in methanol decomposition. The dominant effect of activated carbon texture over the surface chemistry on the state and catalytic behaviour of cobalt species was discussed.

Keywords: activated carbon; waste biomass; coal tar pitch; cobalt modification; methanol decomposition; hydrogen.

* Corresponding author.
Tel: +359 29606-145. E-mail address: boyko.tsyntsarski@abv.bg (B. Tsyntsarski)
1. Introduction

As a catalyst support, activated carbon has many advantages, such as high surface area, tunable pore structure and surface chemistry, resistance to acidic or basic media, stability at high temperatures in inert or reduction atmosphere, as well as ability to recover the supported active metals [1, 2]. Activated carbons structure is developed by imperfect aromatic sheets of carbon atoms, as well as incompletely saturated valences and unpaired electrons on the surface. This determines high adsorption capacity of carbon materials, especially towards polar or polarizable molecules [3].

The surface functional groups, formed as a result of thermal or chemical treatments, influence the acid-base properties of carbon surface and could be considered as potential active sites for adsorption and catalysis [4, 5].

Carbon precursor selection and treatment conditions are feasible way for tuning the surface chemistry of carbon materials. On the other hand, porous structure of activated carbon is an important factor for preparation of efficient carbon-supported catalysts and it could be successfully regulated by the method of carbon synthesis and subsequent activation. It is well known, that the synthesis of porous carbon materials from lignocellulose precursors using conventional physical and chemical activation is the most economical and easy approach for large-scale production [5]. Thus synthesized activated carbons exhibit well-developed, however predominantly microporous structure [6, 7]. Previous studies report the benefits of addition of metal species (such as calcium) which increases the amount of volatile products during the pyrolysis process, and thus provides formation of carbon products with much broader pore size distribution (development of meso- and macroporosity) [8].

Supported cobalt materials have been investigated in a range of catalytic reactions including Fischer–Tropsch synthesis (FTS) [9, 10], methane [11, 12] and propane combustion [13], cyclohexane [14], ethyl acetate [15], cyclohexanol [16] and CO oxidation [17], etc. It was
demonstrated that the chemical nature of the support [18, 20], the texture and surface acidity [15, 19, 20], the composition of the metal precursor, the modification method and the intended metal loading influence the dispersion, reduction and catalytic properties, and the extent of metal–support interactions [15]. Various supports have been used for preparation of cobalt based catalysts, such as SiO₂, Al₂O₃, MgO, TiO₂, Nb₂O₅, CeO₂, and ZrO₂, but in some cases, formation of solid solutions between cobalt phase and support significantly changed the coordination and catalytic properties of cobalt [21, 22, 23]. The effect of carbon support on the formation of complex mixture of cobalt species in different oxidative state was discussed [24].

There are a lot of reports for the application of activated carbon supported cobalt catalysts for NOx reduction [22, 23, 25 - 31], oxidation of phenol with peroxymonosulphate [32], CO- PROX reaction [33], etc.

The aims of this paper are:

1) To obtain activated carbons with different surface and texture features from different precursors - waste agricultural products (peach stones, olive stones) and low rank coal treatment products, using various preparation technologies;

2) The synthesized activated carbons to be modified with cobalt and tested as catalysts in methanol decomposition. Recently methanol has been considered as a promising carrier of hydrogen due to methanol production by well developed technologies from waste biomass, and possibility for easy release of hydrogen if needed [34 - 37].

3) Finally, this investigation is focused on the possibility for fine tuning and improving catalyst behavior by tailoring the properties of carbon support, by varying the nature of the precursor and the preparation procedures. In this way, the scope of this study is related to the problem of hydrogen production and storage by utilization of waste biomass and coal treatment products.
2. Materials and methods

2.1 Synthesis of activated carbons

Olive stones based activated carbon, denoted as OSAC, was produced by one-step hydro-pyrolysis process, which is well studied and used for a long time in our laboratory [38 – 42]. Crushed olive stones are used as a precursor. Carbonization and subsequent activation procedures were performed in the presence of water vapor at 1023 K for 1 h. The flow of water vapor was started at 573 K.

Peach stones based activated carbon, denoted as PSAC, was produced by two-step process, including carbonization of crushed peach stones at 823 K for 1 h and subsequent activation of the carbonizate with water vapor at 1023 K for 1 h.

The synthetic activated carbon, denoted as SACS, was prepared by method, developed in our institute [42], using the following procedure: treatment of a mixture from coal tar pitch and furfural (1:1 by weight) with H$_2$SO$_4$ at 393 K until solidification. The solid product was subjected to further carbonization up to 873 K; the activation of the obtained carbonizate was performed at 1073 K in the presence of water vapor, followed by thermal treatment in Ar (99.996% purity, SIAD) atmosphere at 1473 K for 1 h.

The synthetic activated carbon, denoted SACN, was prepared from mixture from coal tar pitch and furfural (1:1 by weight) with HNO$_3$ at 393 K until solidification. The obtained solid product was subjected to further carbonization up to 873 K; the activation of the obtained carbonizate was performed at 1073 K in the presence of water vapor.

Ordered mesoporous silica of SBA-15 type (used as a reference support) was prepared according to the special synthesis procedure [43], using Pluronic 123 as a structure directing agent and decomposition of the template after heating at 823 K for 6 h in air.
2.2 Modification of activated carbons

The activated carbons and mesoporous silica were modified with Co by incipient wetness impregnation with aqueous solution of cobalt nitrate precursor. The nitrate decomposition was carried out by heating at 773 K for 6 h in a flow of nitrogen (99.96% purity, SIAD). The metal content in all samples is about 8 wt %, determined by atomic absorption spectroscopy. The cobalt modifications samples are denoted as Co/OSAC, Co/PSAC, Co/SACS and Co/SACN, respectively. The reference silica supported sample was denoted as Co/SBA-15.

2.3 Methods of characterization

The porous structure of all investigated activated carbons was studied by nitrogen adsorption at 77 K, carried out in an automatic Micromeritics ASAP 2010 volumetric apparatus. Before the experiments, the samples were outgassed under vacuum at 300 °C overnight. The obtained isotherms were used to calculate the specific surface area S_{BET}, pore volumes and pore size distribution by using the method of density functional theory (DFT) [44].

The amount of various acidic oxygen-containing functional groups was determined by Boehm method using aqueous solutions of NaHCO$_3$, Na$_2$CO$_3$, NaOH, and C$_2$H$_5$ONa, according to the procedure described by Boehm [45]. The amount of basic sites was determined with 0.05 N HCl, according to the procedure described by Papirer et al. [46]. The pH of activated carbons was determined after boiling for 5 min in 100 cm3 distilled water, followed by decantation and cooling down the solution to ambient temperature.

The electron paramagnetic resonance (EPR) measurements were performed by a X-band spectrometer Radiopan, working at 9.3 GHz and modulation 100 kHz. The measurements were taken with attenuation of 20 dB (about 0.7 mW) to avoid microwave saturation. The spectral data were processed by an on-line computer. In the EPR investigations ultramarine was used as a
reference for the determination of concentration of paramagnetic centers, and a ruby crystal, permanently placed in the spectrometer cavity, was the secondary reference.

Powder X-ray diffraction patterns were collected by a Bruker D8 Advance diffractometer with CuKα radiation and LynxEye detector; the average crystallite size was evaluated according to Scherrer equation. The ultraviolet-visible light (UV–Vis) spectra were recorded using a Jasco V-650 UV-Vis spectrophotometer equipped with a diffuse reflectance unit. X-ray photoelectron spectra (XPS) measurements have been carried out on ESCALAB MkII (VG Scientific) electron spectrometer with pressure of 5x10⁻¹⁰ mbar in the analysis chamber, using twin anode MgKα/AlKα X-ray source with excitation energies of 1253.6 and 1486.6 eV, respectively. The spectra are recorded at total instrumental resolution (as it was measured with the FWHM of Ag3d5/2 photoelectron line) of 1.06 eV and 1.18 eV, for MgKα and AlKα, respectively. Temperature-programmed reduction and thermo-gravimetric (TPR-TG) analysis was performed in a Setaram TG92 instrument in a flow of 50 vol% H2 in Ar (100 cm³ min⁻¹) and heating rate of 5 K min⁻¹.

2.4 Catalytic tests

Methanol decomposition was carried out in a fixed–bed reactor at atmospheric pressure. The catalyst (0.055 mg) with a particle size of 0.2-0.8 mm was diluted with three-fold higher amount (by volume) of glass spheres. The catalysts were tested under conditions of a temperature-programmed regime within the range of 350–770 K with a heating rate of 1 K min⁻¹.

Typically, the catalytic experiments includes: (i) catalyst pretreatment at 373 K in Ar for 1 h; (ii) GC analysis of the non-converted reaction mixture of methanol (1.57 kPa) in argon (50 ml/min); (iii) inserting the reaction mixture into the reactor at 350 K. After GC analysis of the output composition, the temperature in the reactor was increased with 20 K (1K/min). The last procedure was repeated every 20 K in the whole investigated temperature interval (350–770 K).
The changes in the catalysts during catalytic test were elucidated by in-situ measurements of the catalytic activity of the used catalysts at selected temperatures. During the experiments the reactant (methanol) as well as all carbon-containing products (CO, CO₂, methane, methyl formate and dimethyl ether) were in a gas phase and their amounts were determined by on-line GC analyses, using HP apparatus equipped with flame ionization and thermo-conductivity detectors, and a 30 m PLOT Q column. The methanol conversion \(X(T) \) at specific temperature \(T \) was calculated by the equation \(X(T) = 100\% \frac{(C_{input} - C_{output})}{C_{output}} \), where \(C_{input} \) and \(C_{output} \) are the methanol concentrations in the gas mixture at the input and output of the reactor, respectively. The selectivity to CO, which formation was directly related to the production of hydrogen from methanol, was calculated by the equation \(S_{CO} = 100\% \frac{Y_{CO}}{X(T)} \), where \(Y_{CO} \) was the yield of CO and \(X(T) \) was the conversion at selected temperature \(T \).

3. Results and discussion

3.1 Activated carbons

3.1.1 Structure and texture characterization

Nitrogen adsorption isotherms of the obtained carbons are presented in Fig. 1a and the textural parameters are listed in Table 1. All isotherms are of hybrid I/IV type, according to the IUPAC classification [4], with a clear opening of the knee at low relative pressures. This indicates that all carbon materials have a complex microporous/mesoporous structure with domination of micropores. The highest BET surface area and pore volume with presence of extremely high amount of micropores are registered for OSAC (Table 1).

From all samples, SACN has the highest extent of developed mesoporosity, while the carbon treated at 1473 K (SACS) is characterized by the lowest BET surface area and pore volume.
Figure 1. Nitrogen physisorption isotherms of the obtained activated carbons (a) and their cobalt modifications (b).

Table 1. Textural parameters of activated carbons and their cobalt modifications.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET}</th>
<th>ΔS_{BET}</th>
<th>V_{mic}^a</th>
<th>V_{mes}^a</th>
<th>$V_{mic}+V_{mes}$</th>
<th>$\Delta (V_{mic}+V_{mes})$</th>
<th>V_{mic}/V_{mes}</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAC</td>
<td>950</td>
<td></td>
<td>0.415</td>
<td>0.031</td>
<td>0.446</td>
<td>13.39</td>
<td></td>
</tr>
<tr>
<td>PSAC</td>
<td>830</td>
<td></td>
<td>0.345</td>
<td>0.054</td>
<td>0.399</td>
<td>6.39</td>
<td></td>
</tr>
<tr>
<td>SACS</td>
<td>680</td>
<td></td>
<td>0.215</td>
<td>0.030</td>
<td>0.245</td>
<td>7.17</td>
<td></td>
</tr>
<tr>
<td>SACN</td>
<td>820</td>
<td></td>
<td>0.301</td>
<td>0.104</td>
<td>0.405</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>Co/OSAC</td>
<td>604</td>
<td>36</td>
<td>0.235</td>
<td>0.039</td>
<td>0.274</td>
<td>38</td>
<td>6.03</td>
</tr>
<tr>
<td>Co/PSAC</td>
<td>617</td>
<td>26</td>
<td>0.241</td>
<td>0.042</td>
<td>0.283</td>
<td>29</td>
<td>5.74</td>
</tr>
<tr>
<td>Co/SACS</td>
<td>462</td>
<td>32</td>
<td>0.158</td>
<td>0.016</td>
<td>0.174</td>
<td>29</td>
<td>9.88</td>
</tr>
<tr>
<td>Co/SACN</td>
<td>556</td>
<td>32</td>
<td>0.196</td>
<td>0.022</td>
<td>0.218</td>
<td>46</td>
<td>8.91</td>
</tr>
<tr>
<td>SBA-15</td>
<td>807</td>
<td></td>
<td>0.120</td>
<td>0.860</td>
<td>0.980</td>
<td>10</td>
<td>0.14</td>
</tr>
<tr>
<td>Co/SBA-15</td>
<td>781</td>
<td>3</td>
<td>0.230</td>
<td>0.650</td>
<td>0.880</td>
<td>10</td>
<td>0.35</td>
</tr>
</tbody>
</table>

a - evaluated by DFT method.
Figure 2 shows X-ray diffraction (XRD) patterns of the activated carbons. The reflections around 23° (002 plane) and 43° (100 plane) are generally assigned to the formation of crystalline carbonaceous structure [47].

From the position of the (002) reflection, interplanar spacing d_{002} was calculated by application of Bragg’s Law, while the average values of the crystallite height (L_c) and width (L_a) are obtained using Debye–Scherrer equation (Table 2).

![X-ray diffraction patterns](image)

Figure 2. X-ray diffraction of the investigated activated carbons.

SACN sample have the lowest d_{002} and d_{100} distances and the highest value of L_c. This indicates higher degree of graphitization and more ordered and compact structure for SACN sample in comparison with the other carbons. Just the opposite, the highest d_{002} distance and the lowest value of L_c are established for SACS. This result seems to be quite surprising, taking into account the extremely high temperature treatment, which was applied during the preparation of this sample. It is
not excluded the observed effect to be provoked by the catalytic activity of H$_2$SO$_4$ in polycondensation reactions, which occur during thermo-oxidation treatment of the precursor. As a result, the formation of significant amount of crystallization centers, which hinders the arrangement of the aromatic layers, should be expected.

Table 2. XRD parameters for parent activated carbons.

<table>
<thead>
<tr>
<th>X-ray parameters</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OSAC</td>
</tr>
<tr>
<td>2θ , degrees - Position 002</td>
<td>22.47</td>
</tr>
<tr>
<td>2θ , degrees - Position 100</td>
<td>43.10</td>
</tr>
<tr>
<td>d_{002}, nm (distance between C atoms of adjacent planes)</td>
<td>0.3957</td>
</tr>
<tr>
<td>d_{100}, nm (distance between C atoms in the plane)</td>
<td>0.2098</td>
</tr>
<tr>
<td>L_c, nm (002) average crystallite height FWHM</td>
<td>0.6559</td>
</tr>
<tr>
<td>L_a, nm (100) average crystallite width FWHM</td>
<td>3.8242</td>
</tr>
</tbody>
</table>

3.1.2 Chemical characterization

In Table 3 some chemical characteristics of the carbons are presented. All samples are characterized by low ash content (0.1-0.2 wt.% for the AC from coal tar pitch and 1.1-1.5 wt.% for the AC from biomass). Acidic (mainly carbonyl and hydroxyl) and basic groups are detected for OSAC, SACN, PSAC. The amount of surface acidic groups is below detection limit for SACS, obviously due to the high temperature treatment (which removes heteroatoms) during the preparation procedure. Surprisingly, the titration with HCl reveals that the SACS sample is characterized with relatively high basicity. This fact can be hardly explained with the presence of basic groups on the carbon
surface, and in accordance with Petrova et al. [42], formation of surface OH groups, due to the interaction of π- sites from the carbon surface with adsorbed water molecules, could be proposed.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Acidic groups, meq/g</th>
<th>Basic groups, meq/g</th>
<th>pH</th>
<th>Ash content wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSAC</td>
<td>0.02</td>
<td>0.09</td>
<td>1.03</td>
<td>9.2</td>
</tr>
<tr>
<td>PSAC</td>
<td>BDLa</td>
<td>BDLa</td>
<td>0.49</td>
<td>0.98</td>
</tr>
<tr>
<td>SACS</td>
<td>BDLa</td>
<td>BDLa</td>
<td>BDLa</td>
<td>0.44</td>
</tr>
<tr>
<td>SACN</td>
<td>0.01</td>
<td>0.06</td>
<td>0.41</td>
<td>0.88</td>
</tr>
<tr>
<td>Co/OSAC</td>
<td>0.18</td>
<td>0.21</td>
<td>0.72</td>
<td>1.21</td>
</tr>
<tr>
<td>Co/PSAC</td>
<td>0.08</td>
<td>0.12</td>
<td>0.60</td>
<td>1.05</td>
</tr>
<tr>
<td>Co/SACS</td>
<td>0.02</td>
<td>0.05</td>
<td>0.24</td>
<td>0.79</td>
</tr>
<tr>
<td>Co/SACN</td>
<td>0.20</td>
<td>0.36</td>
<td>0.88</td>
<td>1.43</td>
</tr>
</tbody>
</table>

a BDL – below detection limit

3.1.3 EPR investigations

EPR analysis was performed for determination of the amount of unpaired electrons and the presence of heteroatoms [48 - 49] in the investigated carbons. These unpaired electrons are stabilized during carbonization process, due to bond cleavage at the edges of aromatic graphene sheets, thus forming edge carbon atoms, which can bind heteroatoms – O, N, etc. These carbon atoms are highly reactive centers, which determine the surface reactivity, surface reactions, and catalytic reactions of carbons. In principle the EPR spectrum of carbon materials represents characteristic singlet with different width and intensity. The EPR spectra and calculated data are shown in Figure 3 and Table 4. The studied carbons are characterized by different number of paramagnetic centers (PMC) and g-factor values. PMCs and heteroatoms are not detected for SACS. This confirms the assumption (see above section 3.1.2.) that the heat treatment up to 1473 K totally removes heteroatoms from the carbon, leading to formation of carbon atoms with completely hybridized bonding orbitals. The highest
amounts of PMCs and heteroatoms are detected in OSAC sample (Table 4). The high value of g-factor for this sample is in agreement with the data from the chemical analysis, which indicated the highest amount of surface functional groups (Table 3). In the same time, the SACN carbon has higher number of PMCs as compared to PSAC. These results accounts for considerable increase of the amount of surface oxygen groups for SACN in comparison with PSAC (Table 3), which could be due to the oxidation treatment with HNO₃ during the preparation procedure.

Table 4. EPR data for the investigated activated carbons.

<table>
<thead>
<tr>
<th>Sample</th>
<th>g-factor</th>
<th>Area/Mn</th>
<th>Number of paramagnetic centers, x 10¹⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>SACS</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSAC</td>
<td>2.00234</td>
<td>2601.58</td>
<td>7.10</td>
</tr>
<tr>
<td>SACN</td>
<td>2.00225</td>
<td>6387.84</td>
<td>17.71</td>
</tr>
<tr>
<td>OSAC</td>
<td>2.00292</td>
<td>12910.04</td>
<td>35.80</td>
</tr>
</tbody>
</table>
3.2 Cobalt modifications of activated carbons

3.2.1 Structural and chemical characterization

The nitrogen adsorption isotherms of cobalt modified carbons are presented in Fig. 1b and the corresponding textural parameters are listed in Table 1. The decrease in the BET surface area and pore volume for all carbon samples after modification clearly indicates deposition of cobalt phase into the carbon porous structure. The observed significant decrease in the microporous volume with the preservation of mesopores for Co/OSAC indicates that there are cobalt particles located into the micropores of this carbon support.
Just the opposite, despite the observed decrease in the V_{mic} and V_{mes} for Co/SACN, the $V_{\text{mic}}/V_{\text{mes}}$ ratio increases about 3 times which evidences predominant location of cobalt species into the mesopores of SACN. The decrease in the BET surface area and pore volume for Co/PSAC and Co/SACS is combined with slight changes in the $V_{\text{mic}}/V_{\text{mes}}$ ratio, which could be related to almost random deposition of cobalt species into the micro- and mesopores for these carbon supports.

For comparison, the nitrogen adsorption analysis for the reference SBA-15 support show that it has BET surface area close to activated carbons, but with higher pore volume, developed mainly from ordered mesopores (Table 1). The modification of SBA-15 with cobalt leads to a significant decrease in the mesopore volume, probably due to deposition of cobalt species in the mesopores. XRD patterns of activated carbon modifications are presented in Fig. 4. The modified carbon samples are characterized by formation of carbonaceous crystalline structure with reflexes at 24° and 44°. The low intensity reflections at 36.6° and 42.4° indicate presence of finely dispersed CoO (PDF 43-1004) particles with average crystalline size 18-20 nm. The appearance of small reflection at 44.4° in the XRD patterns of Co/SACN and Co/OSAC is evidence of formation of small portion of metallic Cofcc nanoparticles (PDF 15-0806) with average crystalline size 20-35 nm. XRD pattern of Co/SBA-15 (Fig. 4) represents broad and low intensive reflections at 36.6°, 59.4° and 65°, typical for Co3O4 spinel oxide (PDF 3-1003) with average particles size about 15 nm.

The data from chemical analysis of carbon after cobalt modification are shown in Table 3. A well expressed effect of the formation of new portion of surface acidic groups as compared to the corresponding parent carbon supports is demonstrated. This observation is not surprising, taking into account the possibility for oxidation of carbon surface by the products (O2 and NO2) of cobalt nitrate decomposition during the thermal treatment. Despite the lower number of PMCs in SACN in comparison with OSAC (Table 4), the increase in the amount of oxygen groups in the former is more significant (Table 3). This could be due to the higher number of micropores in OSAC, which are inaccessible for NO2 and O2 molecules.
Figure 4. XRD patterns of cobalt modifications of activated carbons and reference SBA-15 sample. For selected samples XRD patterns after the catalytic test are presented (cat).

Obviously, both capillary and surface effects control the formation of cobalt phase on activated carbons. Contrary to the case of Co/SBA-15, the decomposition of cobalt nitrate precursor in inert atmosphere on carbon leads to the formation of reduced cobalt species (Co\(^0\) and/or CoO), which evidences the specific effect of carbon surface on the formation of cobalt active phase.

Besides, metallic cobalt particles were observed only for Co/OSAC and Co/SACN. Taking into account XRD data (Fig. 2), chemical analysis (Table 3) and texture analysis (Table 1), we could assume that the higher reduction effect is due to the presence of considerably higher amount of PMCs, better packed structure, dominant presence of micro- and mesopores, and higher amount of oxygen functional groups on the surface of these carbons (OSAC and SACN), in comparison with other carbons.
3.2.2 XPS and UV-vis investigations of cobalt species

In order to obtain more information for the oxidation state of cobalt species, UV-Vis and XPS investigations were performed. The UV-Vis spectrum of reference Co/SBA-15 (Fig. 5) contains a broad absorption band around 470 nm, which can be attributed to octahedrally coordinated Co$^{3+}$ [15]. The band at around 720 nm is ascribed to the electronic ligand-field $4A_2(F)\rightarrow 4T_1(p)$ transition of Co$^{2+}$ in tetrahedral coordination. Thus the UV-Vis study confirms the data from XRD analysis, indicating presence of Co$_3$O$_4$ phase in Co/SBA-15. The absorption peaks for all cobalt modifications are very complex and the typical bands for the Co$_3$O$_4$ phase cannot be distinguished. However the slight absorption features with a maximum at about 460-500 nm could be assigned to the presence of Co$^{2+}$ ions in octahedral coordination [50]. This is in accordance with the XRD data, which demonstrates that CoO was detected for all carbon modifications (Fig. 4).

![UV-Vis spectra of cobalt modifications of various AC](image)

Figure 5. UV-Vis spectra of cobalt modifications of various AC. For comparison UV-Vis spectra of selected parent AC and Co/SBA-15 are also presented (dashed line).
XPS is a useful technique for investigation the surface element composition and oxidation state. The XPS spectra of selected samples are presented in Fig. 6. For all carbon based materials the Co2p3/2 and Co2p1/2 binding energies are 781.1-781.5 eV and 796.3-797.3 eV, respectively. The intensive satelite peaks at about 787 eV and 803 eV, and the spin-orbit splitting between 2p level peaks of about 15.8-16.0 eV, are consistent with the presence of Co oxide phase [14], which was also proved by XRD and UV-Vis analysis. For comparison, the Co2p3/2 and Co2p1/2 binding energies for Co/SBA-15 are 780.7 eV and 795.7 eV, respectively.

![Figure 6. High resolution XP Co 2p1/2 spectra of Co/SACS (a), Co/PSAC (b) and Co/OSAC(c) compared with standard spectra of Co2+ (curve 1) and Co3+ (curve 2).](image)

Very low satelite peaks are detected, which reveals predominantly presence of Co3O4 (also in accordance with XRD and UV-Vis measurements). In order to examine the cobalt oxidation state in details, curve fitting of 2p1/2 level was performed. Simulating the standard spectra of Co2p1/2 for Co3+ and Co2+, the curve fitting of high resolution XPS spectra to Co2+ and Co3+ constituents was performed (Fig.6) and their atomic concentrations are presented in Table 5. The binding energies of
the main peak, satellite position and the ratio between main peak area and satellite peak area are used for deconvolution of Co peaks. Thus, the line shape is included in the curve fitting. Although FWHM was not fixed during deconvolution, it is taken into account for the curve fitting shown in Fig.6. The curve fitting is based on the standard spectra for Co$^{2+}$ and Co$^{3+}$ (Fig.6, curves 1 and 2, respectively). The line shape of the curves indicate presence of Co$^{3+}$ and Co$^{2+}$ in different ratio with domination of Co$^{2+}$ for Co/SACN and Co/OSAC (Table 5). This result is in agreement with the data from the XRD analysis, indicating that cobalt with higher degree of oxidation was detected. The surface atomic concentrations for the studied materials are presented in Table 5.

For almost all activated carbon modifications, the surface concentration of Co (2-3 at.%) is close to the bulk concentration, which indicates almost uniform distribution of cobalt phase in the sample. Only for Co/OSAC the surface concentration of Co is about twice higher than this expected for the bulk material. Taking into account the nitrogen adsorption data, it could be concluded that this is due to the higher dispersion of cobalt phase after cobalt deposition in carbon micropores. Note the extremely low surface Co concentration for Co/SBA-15 (below 0.5 at.%), which may be attributed to the location of cobalt species deeply into the long mesopores of the silica matrix.

Table 5. Surface atomic concentrations (at. %) of presented elements. Co$^{2+}$ and Co$^{3+}$ atomic percentage are obtained by the curve fitting procedure of Co 2p$_{1/2}$ peak.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C 1s</th>
<th>O 1s</th>
<th>Co 2p$_{1/2}$</th>
<th>Si 2p</th>
<th>Na 1s</th>
<th>Cl 2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/SACS</td>
<td>89</td>
<td>9</td>
<td>1.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co/PSAC</td>
<td>90</td>
<td>8</td>
<td>1.1</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Co/SBA-15</td>
<td>20</td>
<td>51</td>
<td>~0.3</td>
<td>~0.1</td>
<td>29</td>
<td>-</td>
</tr>
<tr>
<td>Co/SACN</td>
<td>87</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Co/OSAC</td>
<td>77</td>
<td>13</td>
<td>3</td>
<td>~0.2</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>
3.2.3 Temperature-programmed reduction

TPR is a powerful method to study the reduction behavior of oxidized phases, and in some cases - their dispersion and interaction with the support. Temperature-programmed reduction with thermogravimetric and differential thermogravimetric (TPR-TG and TPR-DTG) profiles of all carbon modifications are presented in Fig.7. The reduction profile of Co/SBA-15 (reference material) contains two main effects with a maximum around 564 K and 730 K, with about 1:3 weight-to-loss ratio. According to the XRD, UV-Vis and XPS data, this could be due to stepwise reduction of Co$_3$O$_4$ to metallic cobalt.

Note that the reduction degree in the whole temperature interval is about 50 %. In accordance with the XPS data, this could be due to the presence of less accessible cobalt oxide species, located deeply into the mesopores of silica support. The existence of strong interaction between the finely dispersed cobalt species and surface silanol groups which suppresses their reduction is not excluded [51]. The TPR profiles of all carbon supported materials differ significantly from the TPR profile of Co/SBA-15.

For the carbon supported samples: (i) the reduction process starts at about 50-100 K lower temperature; (ii) depending on the carbon used one or several reduction effects in the low temperature region (400-600 K) are detected; (iii) the observed weight loss in the low temperature region is about 3-4 times higher than this for the Co/SBA-15 analogue, but it is lower than the calculated one for the reduction of CoO to metallic cobalt; (iv) extremely high TPR effect above 650 K is detected.
Figure 7. TPR-TG (a) and TPR-DTG (b) profiles for cobalt modifications of various activated carbons (the curves are shifted along the y axis). For comparison, TPR-TG and TPR-DTG profiles of SBA-15 is also illustrated (dashed lines).

These observations evidence formation of more complex and easily reducible cobalt phase on the activated carbon support as compared to the SBA-15 silica.

Coexistence of metallic cobalt and CoOx species in different state and proportion [52] depending on the nature of the activated carbon support is assumed. The presence of cobalt species on AC provokes the release of volatile products under reduction conditions above 650 K. This effect is less pronounced for SACS and OSAC, and the highest for PSAC. This assumption is consistent with the conception of Rodrigues-Reinoso [1] and should be taken into consideration during the estimation of catalyst stability under the reduction reaction medium.

3.2.4 Catalytic tests

Fig. 8a shows temperature dependence of methanol decomposition on various cobalt modifications. CO is detected as main carbon-containing product and selectivity towards CO is shown in Fig. 8b.
Figure 8. Methanol conversion (a) and CO selectivity (b) vs temperature for various cobalt modifications.

CH₄ and CO₂ are also registered as by-products. The conversion curve for Co/SACN is about 100 K shifted to lower temperature as compared to the other catalysts, clearly indicating the highest activity in methanol decomposition, combined with about 90% selectivity to CO.

Co/OSAC also demonstrates catalytic activity in the same low temperature region, but it is relatively lower than Co/SACN. Both carbons are distinguished with considerably higher amount of PMCs and oxygen functionalities. This fact indicates the important role of these characteristics for the catalytic activity of the samples. The presence of surface oxygen-containing groups on activated carbon (Table 3 and Table 4) seems to facilitate the formation of highly dispersed and partially reduced (to metallic Co) active phase (Fig. 4), which decompose methanol at relatively low temperatures. However, the location of cobalt phase into mesopores reveals formation of more uniform and accessible to reactants cobalt species (Table 1, Fig.4), which provides higher catalytic activity for Co/SACN. Just the opposite, the predominant location of cobalt species into micropores of OSAC hinders their participation in the catalytic process. This is well illustrated not only with
the smoother profile of the conversion curve for this sample but also with the appearance of maximum in it. The conversion curves for Co/PSAC and Co/SACS are similar. They are much steeper and shifted to higher temperatures as compared to other two modifications. Obviously, the predominant presence of cobalt oxide phase, randomly distributed into micro- and mesopores of these carbon supports, facilitate the catalytic activity and stability, but at relatively higher temperatures. Taking into account the physicochemical characteristics of these samples, it can be assumed, that surface functionalities of activated carbons do not have dominant effect on the formation of cobalt phase and its catalytic activity, however the crucial role of texture characteristics of carbon supports is demonstrated.

For comparison, Co/SBA-15 has lower catalytic activity, but higher stability and selectivity to CO, in comparison with Co/SACN. According to physicochemical analysis, this catalytic behaviour is assigned to the formation of Co$_3$O$_4$ spinel species (Figs. 4-6), which are located deeply into the mesopores and are in strong interaction with surface silanol groups.

Additional catalytic tests with used activated carbon based materials after catalytic process clearly demonstrate a decrease in the catalytic activity. This decrease is about 3 and 6 times, for Co/SACN and Co/OSAC, respectively, and it is much lower for Co/SACS and Co/PSAC. Just the opposite, no significant changes with the catalytic activity are registered for the used Co/SBA-15. The XRD patterns of the used catalysts confirm reduction changes with the formation of metallic Co for the AC supported materials and disappearance of crystal Co$_3$O$_4$ phase (Fig.4) with the formation of finely dispersed CoO species for the SBA-15 analogue (Fig.4).

4. Conclusions

The synthetic activated carbon (SACN), prepared by thermo-chemical treatment of a mixture of coal tar pitch and furfural with HNO$_3$, is characterized by relatively high amount of mesopores, which facilitate the deposition of uniform, accessible and highly active in methanol decomposition
cobalt species. Similar preparation procedure, but in the presence of H$_2$SO$_4$, leads to formation of highly disordered carbon structure. The treatment of this material above 1447 K (SACS) fully releases the surface functional groups and favors formation of highly dispersed and relatively highly active cobalt particles. The activated carbon, prepared by two-step carbonization-activation procedure from peach stones (PSAC), after further modification with cobalt, exhibits low thermal stability in reduction atmosphere above 700 K. The activated carbon, obtained by one-step carbonization-activation procedure from olive stones (OSAC), demonstrates extremely high amount of surface functional groups and predominantly microporous structure, which promotes the formation of highly dispersed cobalt species, located mainly into the micropores.

This makes them less accessible for the reactant molecules and as a result decreases their catalytic activity. Despite the important role of carbon paramagnetic centers and oxygen functionalities on the catalytic activity of cobalt modifications, especially at low temperature, the dominant effect of carbon texture over the surface functionalities is considered.

Acknowledgements

Financial support from Bulgarian Academy of Sciences and Bulgarian Ministry of Education (Projects DFNI-E01/7/2012 and DFNI-E02/2/2014) is gratefully acknowledged.

References

[34] M. Zhao, X. Li, L. Zhang, C. Zhang, M. Gong, Y. Chen, Catalytic decomposition of methanol to carbon monoxide and hydrogen over palladium supported on Ce_{0.65}Zr_{0.30}La_{0.05}O_2 and La–Al_2O_3, Catal. Today 175 (2011) 430-434.