Structural Basis for Inhibition of the Histone Chaperone Activity of SET/TAF-Iβ by Cytochrome c

Katiuska González-Arzola1, Irene Díaz-Moreno1,∗, Ana Cano-González2, Antonio Díaz-Quintana1, Adrián Velázquez-Campoyo1, Blas Moreno-Beltrán3, Abelardo López-Rivas2, Miguel A. de la Rosa1,∗

1IBVF-cicCartuja, University of Seville - CSIC, Avda. Américo Vespucio 49, 41092 Sevilla (Spain). 2Centro Andaluz de Biología Molecular y Medicina Regenerativa-CSIC, CABIMER, Avda. Américo Vespucio s/n, Sevilla (Spain). 3Institute for Biocomputación and Physics of Complex Systems (BIFI), Joint Unit Institute of Physical Chemistry “Rocasolano” (IQFR)-BIFI-Spanish National Research Council (CSIC); Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza (Spain); ARAID Foundation, Zaragoza (Spain).

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin’s transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage with camptothecin, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone binding domains and inhibiting its nucleosome assembly activity. In addition, we have used Nuclear Magnetic Resonance spectroscopy, calorimetry, mutagenesis and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of its histone chaperone activity.

Cytochrome c | Histone chaperone | ITC | NMR | SET-TAF-Iβ

Introduction

The oncoprotein SET/template-activating factor (TAF)-Iβ (SET/TAF-Iβ) – also known as inhibitor-2 of protein phosphatase-2A (I2PP2A) and inhibitor of histone acetyltransferase (INHAT) – belongs to the nucleosome assembly protein (NAP) family of histone chaperones. SET/TAF-Iβ participates in numerous of cellular processes, including cell cycle control (1), apoptosis (2), transcription regulation (3) and chromatin remodelling (4). Many recent studies highlight the chromatin-related properties of SET/TAF-Iβ. As a histone chaperone, SET/TAF-Iβ associates to core histones to shield their positive charge, preventing improper contact with DNA and facilitating the correct deposition of free histones onto DNA for nucleosome formation (5).

Recent work points to the crucial role of chromatin dynamics in DNA damage response (6-8). In fact, histone chaperones have emerged as key players in the transient disorganization of chromatin required in the DNA repair process. Thus, the histone chaperones aprataxin-PNK-like factor (APLF) (6), anti-silencing function 1 (Asf1) (9), chromatin assembly factor 1 (CAF-1) (10), death domain-associated protein 6 (DAXX) (11), facilitating chromatin transcription (FACT) (12), histone regulator A (HIRA) (13), nucleolin (14), p400 (15), nucleosome assembly protein 1-like 1 (NAP1L1) and 1-like 4 (NAP1L4) (7) are recruited to damaged chromatin, thereby promoting histone dynamics in response to DNA damage. Recently, SET/TAF-Iβ was found to modulate the DNA damage response by regulating chromatin compaction (16).

Recently, we have identified SET/TAF-Iβ as a target protein for cytochrome c (Cc) following the release of the latter from mitochondria in human cells treated with apoptotic agents (17, 18). While it has been shown that the hemeprotein Cc serves as an electron carrier between complexes III and IV in the mitochondrial respiratory chain, its role in nuclei has yet to be convincingly elucidated. It has been proposed, however, that Cc accumulation in the nucleus under apoptotic stimuli relates to nuclear pyknosis, DNA fragmentation (19) and chromatin remodelling (20). Here, we show that the SET/TAF-Iβ oncoprotein interacts with Cc in the cell nucleus in response to treatment of the cell with camptothecin (CPT), a well-known inducer of DNA damage and apoptosis, but not to treatment with other apoptosis-inducing chemical agents. We also demonstrate that Cc impairs the histone chaperone activity of SET/TAF-Iβ through competitive binding, thereby preventing the formation of core histone-SET/TAF-Iβ complexes.

Results

Cc interacts with SET/TAF-Iβ in the nucleus in response to DNA damage

DNA damage can be induced by ionizing radiation or topo-isomerase inhibitors (e.g. CPT). Subcellular localization of Cc in HeLa cells – a HeLa cell line constitutively expressing green fluorescent protein (GFP) – was studied. Cc-GFP predominantly in mitochondria of untreated cells (Fig. 1A: left). Confocal analysis of cells treated with 20 μM CPT for 4 h revealed a translo-
cation of Cc-GFP from mitochondria to the cytoplasm and the nucleus. The nuclear localization of Cc-GFP has been confirmed by colocalization with the Hoechst staining (Fig. 1A: right). In addition, subcellular fractionation of Heltog cells treated with 20 μM CPT showed Cc accumulation in the cell nucleus after 4 h (Fig. 1B). In fact, Cc appeared in the nucleus after 1 h treatment, as previously observed in HeLa cells treated with either UV irradiation or CPT (20). Co-detection in the nuclear cell fraction with nuclear-specific poly (ADP-ribose) polymerase (PARP) confirmed the Cc translocation into the nucleus (Fig. 1B).

To further demonstrate the relationship between endogenous SET/TAF-Iβ and Cc in response to DNA damage, in cell interaction between them was examined using immunoprecipitation (IP). An antibody against Cc was used to extract associated proteins in nuclear lysates of Heltog cells treated with 20 μM CPT for 4 h. As shown in Fig. 1C, SET/TAF-Iβ co-immunoprecipitated with Cc after CPT treatment (lane 5), while untreated cells (control) did not show any band corresponding to SET/TAF-Iβ (lane 2). To confirm the IP specificity, nuclear lysates from untreated and CPT-treated cells were probed with the SET/TAF-Iβ antibody (Fig. 1C: lanes 1 and 4, respectively), while the negative controls (Fig. 1C: lanes 3 and 6) did not show any band when mouse immunoglobulin G was used. Cc IP was confirmed by immunoblotting the same membrane with the anti-Cc antibody (Fig. 1C).

To examine whether the observed Cc-SET/TAF-Iβ interaction is restricted to cells experiencing DNA damage, the effect of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and staurosporine (STP) – two well-known apoptosis-inducing agents for which DNA damage is not an initiating event – was studied. TRAIL is a member of the TNF superfamily, a death agonist (Bid)-mediated mitochondrial pathway (21). STP is a broad-spectrum protein kinase inhibitor that promotes intracellular stress-induced apoptosis (22). Apoptosis induction with TRAIL or STP may result in DNA damage in later stages of treatment. Therefore, cell cultures were first tested to determine whether they exhibited DNA damage following TRAIL- or STP-induced apoptosis. To this end, Heltog cell lysates were treated with 100 ng/ml TRAIL or 1 μM STP or 20 μM CPT for 0, 1, 2, 4 and 8 h. Specific antibody against phosphorylated γ-H2AX was used in Western blotting. α-Tub antibody was used as loading control. (E) Subcellular fractioning showing Cc location upon treatment with 100 ng/ml TRAIL for 2 h or 1 μM STP for 4 h.

Fig. 1. CPT-induced nuclear translocation of Cc and formation of the Cc/SET/TAF-Iβ complex. (A) Subcellular localization of Cc-GFP stably expressed (green; upper panel) in Heltog cells upon treatment with 20 μM CPT for 4 h detected by confocal microscopy (x60 oil objective). Nuclei were stained in blue with Hoechst. Co-localization of green Cc-GFP fluorescence and blue nuclear staining is shown in the merge images (lower panel). Scale bars are 25 μm. (B) Subcellular fractioning showing Cc location upon treatment with 20 μM CPT for 1 or 4 h. Non-treated and CPT-treated Heltog cells were fractionated to yield cytosolic, membrane/organelle (Memb./Org.) and nuclear fractions. Purity of subcellular fractions was verified by Western blot using anti-α-Tub (50 kDa), anti-Cox IV (17 kDa) and anti-PARP (116 kDa) antibodies. (C) IP of SET/TAF-Iβ with Cc after treating Heltog cells with 20 μM CPT for 4 h. Western blot showed the detection of SET/TAF-Iβα γ-H2AX occurs after 4 h or 8 h of treatment with TRAIL (Fig. 1C).
In order to examine the biological significance of the Cc:SET/TAF-Iβ interaction in the cell nucleus in response to a DNA-damage stimulus, we tested the ability of Cc to prevent histone binding to SET/TAF-Iβ. Hence, an electrophoretic mobility shift assay (EMSA) was performed to detect complex formation between SET/TAF-Iβ and calf thymus histones and to further study the effect of the addition of Cc. The mobility of the histone mixture, as well as Cc and SET/TAF-Iβ, are shown in Fig. 2A (lanes 1 to 3). Due to their opposite charges, Cc and SET/TAF-Iβ migrated in reverse directions. The lower mobility of SET/TAF-Iβ following histone addition (Fig. 2A: lane 4) indicates the formation of chaperone-histone complexes. The addition of Cc at increasing concentrations to the SET/TAF-Iβ and histone mixture (Fig. 2A: lanes 5 to 14), made the chaperone mobility match that observed for the Cc:SET/TAF-Iβ complex (lane 15), revealing that Cc competes with histones for the SET/TAF-Iβ binding site.

To confirm the EMSA results, Nuclear Magnetic Resonance (NMR) measurements of reduced Cc were recorded in the presence of SET/TAF-Iβ and Xenopus laevis core histones H2B, H3 and H4. The use of isolated core histones allowed for a comparison of their respective binding affinities for the chaperone in competition with Cc. However, binding to core histone H2A could not be tested, as the recombinant expression of H2A was not possible. Specifically, the Met80-eClCh NMR signal of the methionine axial ligand of Cc (Met80) was monitored. As shown, this signal broadens beyond the detection limit upon the addition of SET/TAF-Iβ (Fig. 2B). This is due to the long diffusional correlation time of Cc bound to SET/TAF-Iβ, which results in a fast signal relaxation. As expected for a binding competition, titration of the Cc:SET/TAF-Iβ solution with increasing concentrations of H2B, H3 or H4 core histones led to dissociation of Cc from SET/TAF-Iβ and the recovery of the Met80-eClCh signal. Circular dichroism (CD) spectra of SET/TAF-Iβ and core histones H2B, H3 and H4 corroborated the proper secondary structure organization of the proteins (Fig. S1).

To compare the binding thermodynamics of the complexes formed by SET/TAF-Iβ with Cc and core histones, Isothermal Titration Calorimetry (ITC) experiments were performed. Measurements revealed the interaction between Cc and SET/TAF-Iβ being slightly exothermic and entropically driven (binding enthalpy, ΔH = -0.9 kcal mol⁻¹) with a dissociation constant (K_D) of 3.1 μM and a Cc:SET/TAF-Iβ stoichiometry of 2:1 at 25 ℃ (Table 1). Notably, the binding of Cc to SET/TAF-Iβ exhibited weak positive cooperativity (Fig. S2), yielding a cooperativity constant (β) of 3.8 and leading to a smaller Kp value and a very positive enthalpy of interaction for the second site (Table 1). In other words, the binding of the first Cc molecule increases 3.8 times the affinity for the binding of a second Cc molecule to SET/TAF-Iβ. Cooperativity can be ascribed to direct ligand-ligand interactions or to protein conformational changes. Therefore, it might be plausible that, following the binding of the first Cc molecule, SET/TAF-Iβ undergoes a conformational change that facilitates the interaction with the second Cc molecule.

As before, ITC experiments were used to quantitatively assess the binding of SET/TAF-Iβ to the core histones H2B, H3 and H4 from Xenopus laevis. As shown (Fig. S3, Table 1) H3 binds SET/TAF-Iβ with a lower affinity (K_D = 25 μM) than H2B (K_D = 2 μM) or H4 (K_D = 6 μM). These values agree with those previously reported for the interaction of SET/TAF-Iβ with H2B (K_D = 2.87 μM), but differ slightly for H3 (K_D = 0.15 μM) (25). In all cases, the stoichiometry of histone:SET/TAF-Iβ interactions was 2:1 (Table 1).

The SET/TAF-Iβ histone binding domain is engaged during binding to Cc.

Considering that Cc binds to SET/TAF-Iβ and affects its interaction with core histones, we aimed at determining whether Cc recognizes the SET/TAF-Iβ histone-binding domain. SET/TAF-Iβ forms a headphone-shaped homodimer, each monomer consisting of an N-terminus, a backbone helix, an "earmuff" domain and an acidic disordered stretch (5) (Fig. S4). The region of SET/TAF-Iβ responsible for histone binding and chaperone activity comprises the lower area of the so-called "earmuff" domain (5). In order to examine the SET/TAF-Iβ region involved in binding to Cc, two different SET/TAF-Iβ deletion mutants were designed. The first included the N-terminus along with the backbone helix (hereafter referred to as SET/TAF-Iβ[1-80]) [amino acids 1 to 80], whereas the second (hereafter referred to as SET/TAF-Iβ[81-277]) [amino acids 81 to 277] encoded the "earmuff" domain and the acidic stretch of the C-terminus. Worth particular mention is that CD spectra of both mutants indicated a secondary structure similar to that of the wild-type protein (Fig. S1). ITC of Cc interactions with SET/TAF-Iβ[1-80] and SET/TAF-Iβ[81-277] showed the binding reaction in both cases (Fig. S5: upper). However, weak calorimet-

Footline Author

PNAS | Issue Date | Volume | Issue Number | 3
<table>
<thead>
<tr>
<th>Protein complex</th>
<th>ΔG (kcal mol$^{-1}$)</th>
<th>ΔH (kcal mol$^{-1}$)</th>
<th>$-T\cdot \Delta S$ (kcal mol$^{-1}$)</th>
<th>K_D (μM)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cc:SET/TAF-Iβ</td>
<td>-7.5 (-0.8)*</td>
<td>-0.9 (-6.1)*</td>
<td>-6.6 (-T$\cdot S$ -6.9)*</td>
<td>3.1 (k 3.8)*</td>
<td>2.0</td>
</tr>
<tr>
<td>H2B:SET/TAF-Iβ</td>
<td>-7.8</td>
<td>-2.5</td>
<td>-5.2</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>H3:SET/TAF-Iβ</td>
<td>-6.3</td>
<td>-3.9</td>
<td>-2.4</td>
<td>25</td>
<td>2.0</td>
</tr>
<tr>
<td>H4:SET/TAF-Iβ</td>
<td>-7.1</td>
<td>1.4</td>
<td>-5.7</td>
<td>6.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Cc:SET/TAF-Iβ(1-80)</td>
<td>-5.9</td>
<td>1.9</td>
<td>-7.8</td>
<td>44</td>
<td>0.98</td>
</tr>
<tr>
<td>Cc:SET/TAF-Iβ(1-277)</td>
<td>-6.8</td>
<td>6.7</td>
<td>-13.5</td>
<td>9.6</td>
<td>0.98</td>
</tr>
<tr>
<td>Cc:S162A/K164A/D165A</td>
<td>-7.1</td>
<td>-2.4</td>
<td>-4.7</td>
<td>6.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Cc:T191A/T194A/D195A</td>
<td>-6.4</td>
<td>-4.4</td>
<td>-2.0</td>
<td>22</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table 1. Thermodynamic values inferred from ITC measurements. Thermodynamic equilibrium parameters for the interaction of wild-type and mutant SET/TAF-Iβ with Cc, H2B, H3 or H4 core histones. Equilibrium dissociation constant (K_D), enthalpy (ΔH), entropy ($-T\cdot \Delta S$), Gibbs free energy (ΔG) and reaction stoichiometry (n) are shown. Protein-protein interaction affinity is defined by Gibbs energy ($\Delta G = -RT \ln K_D$). ΔG has two different contributions, ΔH and $-T\cdot \Delta S$, according to equation $\Delta G = \Delta H - T\cdot \Delta S$.

*Cooperativity parameters (Gibbs energy [Δg], enthalpy [Δh] entropy [$-T\cdot s$] and cooperativity constant [k]) are indicated for cooperative binding.

To further confirm the C-terminus of SET/TAF-Iβ as the region interacting with Cc, two SET/TAF-Iβ mutants were obtained by replacing three adjacent amino acid residues from the “earmuff” domain by alanine residues (Fig. S4). Mutants S162A/K164A/D165A and T191A/T194A/D195A (Fig. S4: green and red, respectively) failed to bind to histones and demonstrated significantly reduced histone chaperone activity (35% of wild-type activity) (5). According to the calorimetric data resulting from the titrations of the two SET/TAF-Iβ triple mutants with Cc (Fig. S5: lower panels), the S162A/K164A/D165A mutant shows a higher affinity towards Cc ($K_D = 6.3 \mu M$) than T191A/T194A/D195A ($K_D = 22 \mu M$). These findings suggest that threonine residues at positions 191 and 194 and aspartate at 195, located in the lower region of the “earmuff” domain, are involved in the interaction with Cc, as they are in the histone remodelling activity of SET/TAF-Iβ.

SET/TAF-Iβ histone chaperone activity is impaired by Cc

As binding to core histones is essential for the histone chaperone activity of SET/TAF-Iβ, the ability (or inability) of Cc to affect such activity was tested using a supercoiling assay (Fig. S6). As shown, SET/TAF-Iβ assembled nucleosomes through the introduction of negative supercoils in the DNA plasmid in the presence of Topoisomerase I (Topo I) and core histones (Fig. 2C: lane 3). Strikingly, the chaperone activity of SET/TAF-Iβ was found to have been impaired following the addition of Cc.
in increasing concentrations (Fig. 2C: lane 4 to 6). Controls corresponding to the supercoiling assay in the presence of isolated SET/TAF-I, HeLa core histones, Cc or a combination are also shown (Fig. S7). Altogether, these findings unequivocally demonstrate that Cc binds to SET/TAF-I and strongly hinders its ability to function as a histone chaperone.

The Cc heme crevice faces SET/TAF-I upon binding

To dig into the structural features of the interaction between Cc and SET/TAF-I, the Cc:SET/TAF-I interaction was monitored by recording [1H, 15N] Heteronuclear Single-Quantum Correlation (HSQC) spectra of fully reduced 15N-labelled Cc, which was either free or bound to unlabeled SET/TAF-I. Titration of SET/TAF-I onto 15N Cc resulted in a significant broadening of the Cc resonances, thereby supporting the formation of the Cc:SET/TAF-I complex (Fig. 3A). Additionally, specific resonances from residues at the complex interface may show enhanced broadening. Consequently, the line-widths (\(\Delta \delta_{\text{HSQC}}\)) of 15N-labelled Cc resonances were analyzed in a pure Cc sample and a 1:0.25 Cc:SET/TAF-I mixture. Signals showing this effect corresponded to Thr19, Lys39, Gln41, Gln42, Tyr48, Lys79, Ile81, Ala92 and Leu94 in the 15N dimension (Fig. S8). Hence, these residues can be expected to be at or near the region of Cc interacting with SET/TAF-I.

In addition to specific line broadening, several amide resonances in the [1H, 15N] HSQC spectra of Cc exhibit chemical shift perturbations (CSPs) in the presence of SET/TAF-I (Fig. 3A). For instance, the details of the superimposed spectra (Fig. S9A) shows that Ala50 and Glu89 resonances shift gradually at increasing Cc:SET/TAF-I ratios (1:0.06, 1:0.12 and 1:0.25). These CSPs indicate that these residues experience a change in their chemical environment in the presence of SET/TAF-I. Then, they may belong to the complex interface.

In order to identify the residues involved in the complex interface, an average CSP analysis (\(\Delta \delta_{\text{Avg}}\)) of the amide signals was obtained. As shown, 15N Cc resonances from Gln16, Gly77, Val81, Lys88, Glu89 and Arg93 experience significant chemical shifts (\(\Delta \delta_{\text{Avg}}\geq 0.075\)) following binding to SET/TAF-I (Fig. S9B). Strikingly, residues of 15N Cc demonstrating CSPs are located on the N- and C- terminus regions on the side of the exposed heme periphery (Fig. 3B).

Notably, a similar surface patch of Cc is involved in the interactions with cytochrome c oxidase (26) and cytochrome bc1 (27) in the mitochondrial respiratory chain. Interestingly, the interaction between Cc and the SET/TAF-I chaperone implicated ten lysine residues – namely 5, 7, 8, 22, 25, 53, 72, 73, 86 and 88 (Fig. 3B) – thereby evidencing the key role of electrostatic forces in the formation of Cc:SET/TAF-I complexes. Similarly, lysine residues are also involved in the interaction with cytochrome bc1 (27, 28). Given the well-known 'lysine masking activity' of SET/TAF-I that prevents the acetylation of histone lysines inside the INHAT complex (3), it is plausible that SET/TAF-I also recognizes the lysine residues from Cc.

Intriguingly, the Cc residues thought to play an important role in the interaction between the hemeprotein and apoptosis protease-activating factor-1 (Apaf-1) – namely, Lys7, Lys25, Lys39 and Lys72 (29) – perfectly match those identified in this study as interacting with SET/TAF-I. Furthermore, whereas studies of the complex formed between Cc and pro-survival protein Bcl-xL identified both His26 and Gly41 as the most important Cc residues affected upon binding (30), the present study shows a change only in Gly41 following the addition of SET/TAF-I to the Cc sample.

A structural look into the Cc:SET/TAF-I complex and NMR-based docking models

With the aim of defining Cc:SET/TAF-I complex interface regions, NMR restraint-driven docking was performed. CSPs obtained from NMR analysis of the Cc:SET/TAF-I complex at a 1:3.25 ratio were used as input data. From the 500 solutions obtained from the NMR-based docking for Cc:SET/TAF-I (Fig. S10A), Cc geometric centres are represented around Robertson (ribbon) diagrams of SET/TAF-I. In agreement with the two binding sites observed by ITC titrations, the models predicted by the NMR restraint-driven docking yielded two differentiated clusters. One of these clusters included the vast majority of highest scoring models (Fig. S10A: cluster 1), whereas the second cluster encompassed less than 50 solutions (Fig. S10A: cluster 2). Interestingly, nearly all the probe solutions are located in the same region of SET/TAF-I – namely, between its "cryptic" domains. This finding supports the data reported in earlier sections of this study suggesting a Cc binding preference for the SET/TAF-I histone-binding domain. Indeed, the highest scoring solution from the first cluster revealed how Cc leans its heme group to approach the lower region of a SET/TAF-I "cuff" domain (Fig. S10B). The surface representation of both proteins shows them to be in close contact. A secondary set of Cc structures with higher energies (cluster 2) was found near the backbone helices (Fig. S10C).

Discussion

Inefficient repair of DNA lesions results in genome instability, which can, in turn, lead to premature aging and cancer (31). Chromatin dynamics regulate transcriptional activity in response to DNA damage by promoting accessibility to DNA and serving as a docking site for repair and signalling proteins, thereby increasing repair efficiency (8, 32). Recent works reveal how histone chaperones transiently evict histones from a damaged site in order to facilitate access of repair factors to DNA lesions (9). However, once a DNA break is repaired, histone chaperones return histone proteins to the repaired site (33) and promote the recovery of transcriptional activity (7, 13).

The data presented in this study shows the histone chaperone and oncoprotein SET/TAF-I to specifically interact with Cc in cell nuclei in response to CPT-induced DNA damage. While translocation of Cc to the nucleus had previously been observed (19, 20), the specific role of Cc in the nucleus has yet to be fully elucidated. However, this work shows Cc translocates into the cell nucleus in response to CPT-induced DNA damage, but not following the TRAIL-activated extrinsic pathway or STP-triggered stress-induced apoptosis. The present study demonstrates that nuclear translocation of Cc occurs early in the DNA damage response – just one hour after CPT treatment. These findings suggest that Cc is recruited to DNA damage sites via diffusion through the nuclear pore complex, although the precise molecular mechanism is as yet unknown. As neither TRAIL nor STP trigger Cc entry into the cell nucleus, the interaction between Cc and SET/TAF-I seems to be specifically linked to CPT-induced DNA damage.

CPT selectively targets the essential mammalian enzyme Topo I in nuclei (34). CPT binds covalently to Topo I and supercoiled DNA, thereby forming a ternary complex that inhibits DNA religation and generates a greater number of DSBs (35). Recently, it has been proposed that histone chaperones play a central role as histone carriers in chromatin disassembly connected with DNA repair and transcription recovery following DNA damage (7, 9, 13, 33). Thus, histone chaperones such as HIRA (13), FACT (12), nucleolin (14), APLF (6) Asf1 (9), CAF-1 (10), DAXX (11), p400 (15), NAP1L1 and NAP1L4 (7) actively promote transient chromatin disorganization and histone reshaping in response to DNA damage (8). Since SET/TAF-I belongs to the NAP1 family, it is tempting to hypothesize a role – similar to that described for the above mentioned histone chaperones – for SET/TAF-I in histone reshaping in response to DNA damage.
The results of ITC and NMR titrations performed in the present study reveal the oncprotein SET/TAF-Iβ as binding specifically to Cc. Interestingly, Cc uses the surface residues surrounding its heme group to interact with the histone chaperone, as does with its respiratory partners cytochrome c oxidase (26) and cytochrome b(5) (27), and its apoptotic partner Apaf-1 (29).

Mutagenesis and NMR-based docking analysis carried out here demonstrated that Cc docks between the two histone binding domains of SET/TAF-Iβ, thereby preventing the binding of the latter to core histones. Therefore, and as inferred from nucleosome assembly activity assays, it may be concluded that Cc not only binds to SET/TAF-Iβ, but also hampers the latter’s histone chaperone activity. It may therefore be proposed that, following DNA damage induced by CPT, the translocation of Cc into the cell nucleus and resulting core histone displacement may hinder SET/TAF-Iβ nucleosome assembly activity (Fig. 4). Thus, the specific inhibition of SET/TAF-Iβ by Cc could contribute not only to the suppression of the former’s normal chaperone activity when apoptosis is inevitable and such activity is no longer necessary, but also to obstruct nucleosome remodelling that follows DNA damage repair.

Our finding that Cc interacts with the oncprotein SET/TAF-Iβ upon its release from mitochondria suggests that the role of Cc in the execution of apoptosis is wider than previously held, insofar as it goes beyond caspase cascade activation, by also inhibiting pro-survival Cc partners. To our knowledge, the SET/TAF-Iβ oncprotein is indeed the first Cc target in the nucleus to be identified either in homeostasis or during apoptosis. The results presented not only reveal the molecular basis for the blocking of SET/TAF-Iβ activity by Cc, but also suggest that the inhibition of this oncprotein could be a promising objective in the development of anti-cancer drugs. More specifically, an understanding of the molecular interfaces in the complex formed by SET/TAF-Iβ and its inhibitor, Cc, could facilitate the development of new drugs aimed at silencing the oncogenic effect of SET/TAF-Iβ histone chaperone activity.

Material and Methods

Expression and purification protocols of Cc, wild-type SET/TAF-Iβ, SET/TAF-Iβ(1-380), SET/TAF-Iβ(1-801), mutants S162A/K164A/D165A and T191A/T194A/D195A, and Xenopus laevis core histones H2A, H2B, H3 and H4 are described in SI Materials and Methods. Experimental details of apoptosis induction, subcellular fractionation, Western blot analysis, IP, ITC, EMSA, CD, NMR, nucleosome assembly assays and molecular docking calculations are likewise described in SI Materials and Methods.

Acknowledgements.

We would like to thank Dr Cristina Muñoz-Pinedo (Bellvitge Biomedical Research Institute, Spain) for providing the HeLa Cc-GFP (Heitog) cell line, as well as Dr Masami Horikoshi (University of Tokyo, Japan) for their kind gift of plasmids encoding SET/TAF-Iβ S162A/K164A/D165A and T191A/T194A/D195A mutants. Plasmids encoding four core histones H2A, H2B, H3 and H4 of Xenopus laevis were provided by Dr Tim Richmond (Institute of Molecular Biology and Biophysics, Switzerland). We would also like to thank to Dr Enmacar Valaíz-í and Dr Manuel Angulo for their assistance with NMR data collection (Research Centre in Information Technologies CITIUS, University of Seville) and to the Biointeractomics Platform (CIBERER, Seville). The authors are grateful to the Spanish Ministry of Economy and Competitiveness (BFU2012-31670, BFU2010-19451, BFU2013-47064-P, SAF2012-32824, RD1/0006/0028) and the European Community through the Regional Development Funding Program (FEDER), the Regional Government of Andalusia (BI018) and the Ramon Areces Foundation for their financial support. We thank Dr Sergio G. Burtal for critical reading of the manuscript. Additional thanks must be given for financial support in the form of access to the Bio-NMR Research Infrastructure co-funded under the 7th Framework Programme of the EC (FPT/2007-2013) grant agreement 261863 and project contract RII-026145.
Please review all the figures in this paginated PDF and check if the figure size is appropriate to allow reading of the text in the figure.

If readability needs to be improved then resize the figure again in 'Figure sizing' interface of Article Sizing Tool.