Synchrotron Radiation as a Probe for Copper Oxidation States in Glass

Manuel Abuín, Aída Serrano, Jesús Chaboy, Miguel-Ángel García and Noemí Carmona*
*Corresponding author

Keywords
historical glass; decay; non-destructive; synchrotron radiation

Abstract
In this study, synchrotron radiation was used to explore the relationship between degradation of some historical glasses of different provenance and dating and the oxidation state of their colouring agents. The oxidation states of copper in red and green glasses were monitored by recording spectra at the Cu K-edge by X-ray absorption near edge structure. Promising results with this new analytical tool may extend our knowledge about glass decay.

Introduction
All glasses, including archaeological glasses and stained glass, develop decay phenomena with time that are strongly related to their chemical composition and the surrounding environment (Roemich 1999; García-Heras and others 2003). Understanding these phenomena helps to optimise restoration and conservation procedures and to improve preservation strategies such as creating optimal storage or exhibition conditions.
Analytical techniques commonly used to study glass decay include scanning electron microscopy, optical microscopy, or X-ray fluorescence (Carmona, Villegas, and Navarro 2006; Kanngiesser and others 2008; Melcher, Wiesinger, and Schreiner 2010). The role of glass-colouring agents during degradation processes is difficult to examine because their concentration is below the detection limit of these techniques. They may be leached out like other components from the glass or remain in the degraded surface unchanged or in a different state of oxidation. Characterisation of these chromophores using synchrotron X-ray techniques may offer new insights into the decay process of these glasses.

In this research, we have focused on copper ions, as an example for colourants in glass. The oxidation state (OS) of selected samples was studied using X-ray absorption near edge structure (XANES) at the Cu K-absorption edge. The goal was to explore the OS of copper related to the colour and state of preservation of the samples.

Experimental Section
Samples
The samples analysed consisted of historical glasses dating from the first century B.C. to the eighteenth century A.D. from different locations in Spain (see table 1). All samples were coloured using copper ions with different OS (Cu 0 and I for red glasses and Cu II for green ones) and showed different degrees of surface decay (from almost non-degraded to heavily corroded).
Analytical Techniques
X-ray absorption spectroscopy (XAS) measurements were performed at the beamline BM25 (Spanish-SpLine) at the European Synchrotron Radiation Facility (ESRF). XANES spectra at the Cu (8.9 keV) K-edge in fluorescence mode at room temperature were recorded without prior preparation of the glass. Samples were placed at 45° to incident X-rays, and the fluorescence signal was collected using a multi-element solid state detector. Four to seven scans of all samples were collected for signal averaging. Additionally, Cu powder oxides and a metallic foil were measured as reference compounds.

Results and Discussion
The red samples exhibit different degrees of deterioration: sample Mi-3 is heavily corroded with an iridescent surface and abundant interconnected craters; sample To-5 is lightly degraded with some pits homogeneously distributed on the surface; sample Vi-2 shows an almost unaltered surface. XANES spectra of the three fragments (Mi_3, To_5, and Vi_2, figure 1(b)) show important differences when they are compared to those of the reference compounds (figure 1(a)). Sample Vi_2 shows a XANES spectrum similar to the Cu foil reference, indicating the presence of metal (Cu⁰) nanoparticles, while the Mi_3 and To_5 spectra exhibit the characteristic edge resonance of Cu³⁺ in Cu₂O.

Fig. 1. Normalised Cu K-edge XANES spectra of: (a) reference compounds: metallic Cu, Cu₂O and CuO; (b) historical red glasses: Mi_3, To_5 and Vi_2 (spectra combined with light microscopy images); (c) comparison of two areas of sample Me_14 (u = unweathered and w = weathered; spectra combined with overview image of the sample); and (d) relationship between the Cu K-edge absorption edge energy and Cu oxidation state of all samples (black points) and reference compounds (red squares).
Sample Me_14 shows an intense green colour characteristic of Cu\(^{2+}\) ions (figure 1c). Partial flaking on one side allowed the measurement of a non-degraded surface (point named u – unweathered) compared to a degraded part (gel layer with an iridescent surface, point named w – weathered). In order to evaluate differences in Cu oxidation state because of weathering, XANES spectra were recorded. Both show an intense peak at the edge, characteristic of Cu\(^{+}\) in Cu\(_2\)O as well as a single oscillation spectral shape, indicative of highly disordered systems. The observed modification of the edge position indicates that the local order around Cu is higher in the non-corroded area, while it shifts towards higher energies in the other area, indicating the increasing presence of Cu ions in a higher OS in the degraded areas of the glass surface (point w).

Finally, the relation between the absorption edge position and the Cu OS may indicate the degree of degradation on the glass surfaces. Figure 1(d) shows that sample Vi_2 is located near the Cu\(^{0}\) point, indicating an abundance of Cu\(^{0}\) colloids and almost no degradation; corroded red glasses To_5 and Mi_3 points are located near the Cu\(^{+}\) point, indicating the presence of this ion as +1 OS and an intermediate superficial degradation; and the green glass Me_14 points are near Cu\(^{+}\) and Cu\(^{2+}\) ions points, indicating the presence of both Cu ions in OS +1 and +2 and higher degradation.

Conclusions

Through study of the Cu K-edge absorption energy of three red glasses (Vi_2, To_5 and Mi_3), it was possible to establish a correlation between the OS and the surface decay, from non-weathered to middle and heavily corroded glasses. On different areas of the same green sample (Me_14), it was possible to distinguish the non-corroded from the corroded areas.

Taking into account the heterogeneous surface of historical glasses and the presence of different degrees of alteration on the same glass (e.g. pits or corrosion crusts), these results show clearly that it is possible to characterise the weathering phenomena of historical glasses from macroscopic to atomic scale in a totally non-destructive and non-invasive way. Synchrotron radiation techniques and, in this case, XAS have shown to be a promising tool to extend our understanding of glass decay. Nevertheless, a broader investigation is necessary by increasing the number of glass samples and chromophore K-edges to improve diagnostic accuracy and establish an easy-to-use methodology.

Acknowledgements

The authors acknowledge helpful comments from Professor J. Llopis and Professor M.A. Villegas. The Spanish Ministry of Economy and Competitiveness (SMEC) and CSIC is acknowledged for the financial support and for the provision of synchrotron radiation facilities, and the BM23-Spline staff is acknowledged for the technical support. This work has been supported by the SMEC through the projects PIS-2008-062/49, S2009-MAT-1629 (Geo-materials Program), and MAT2011-27773-C04-04; further support has been given by the Comunidad de Madrid NANOBIOMAGNET project and by the Aragón DGA NETOSHIMA grant. NC acknowledges the financial support of the FSE-MEC Ramón y Cajal program. MA and AS acknowledge the UCM Campus of International Excellence (PICATA Program) and the CSIC (JAE Program), respectively, for pre-doctoral fellowships.

References

Carmona, Villegas, and Navarro 2006
García-Heras and others 2003

Kanngiesser and others 2008

Melcher, Wiesinger, and Schreiner 2010

Roemich 1999

Authors
Noemí Carmona
Materials Physics Department, Complutense University of Madrid, 28040 Madrid, Spain
n.carmona@fis.ucm.es

Manuel Abuín
Materials Physics Department, Complutense University of Madrid, 28040 Madrid, Spain

Aída Serrano and Miguel-Ángel García
Ceramic and Glass Institute (ICV-CSIC) and IMDEA Nanoscience, Cantoblanco 28049 Madrid, Spain

Jesús Chaboy
Materials Science Institute of Aragon (ICMA-CSIC) and University of Zaragoza, 50009 Zaragoza, Spain