# Agronomic effects of the addition of biochar from different feedstocks to a typical Mediterranean agricultural soil in relation to the application rate



Marina Paneque Carmona José María De la Rosa Heike Knicker





# Mediterranean Temperate Climate in Spain

- Low OC (< 1.5%)
- Appropriate to apply biochar



(J. Romanyà & P. Rovira, 2011)

## SOIL UNDER STUDY

South of Spain.

Guadalquivir river valley (Seville)

| Soil type (FAO, 1988)            | Cambisol |
|----------------------------------|----------|
| рН                               | 8.6      |
| TC content (g kg <sup>-1</sup> ) | 20       |
| TOC (g kg <sup>-1</sup> )        | 6        |
| TIC (g kg <sup>-1</sup> )        | 14       |



# Objectives

- Effect of biochar addition on a typical calcareous agricultural Mediterranean soil?
- Which is the most efficient application rate?

Which is the most efficient biochar?

### **BIOCHAR SAMPLES**

|                      | BC 1       | BC 2                      | BC 3             | BC 4                               |
|----------------------|------------|---------------------------|------------------|------------------------------------|
| FEEDSTOCK            | Mixed wood | Paper sludge & wheat husk | Sewage<br>sludge | Vineyard<br>wood (> 1<br>year old) |
| PYROLISIS CONDITIONS | 20 – 620°C | 20 – 500 °C               | 20 – 600°C       | unknown                            |



#### INCUBATION STUDY

#### **EXPERIMENTAL DESIGN**

- 150 g soil + 40 seeds (*Lolium perenne*)
- Soil with biochar (n=4):

10, 20, 40 t ha<sup>-1</sup>

- Control (without biochar) n = 6

#### **EXPERIMENTAL CONDITION**

- Incubation time: 79 days

-Temperature: 25°C

- Irrigation: 760 mm yr<sup>-1</sup>

- Light: 14 h day-1



#### INCUBATION STUDY

#### **MEASURED PARAMETERS**

- GERMINATION AND SURVIVAL

Number of living plants (every week)

- AGRONOMIC PRODUCTIVITY

Shoots were cut, dried (48 h, 40°C) and weight (every other week)



#### RESULTS: Germination and survival rates



#### **RESULTS:** Germination and survival rates



#### RESULTS: Germination and survival rates



- Control = amended pots
- Highest doses:Slight decrease



- Control ≠amended pots
- Highest doses:Lower survival(except for BC 3)
- BC 4 shows the lowest survival rate

## Results: Biomass production (cumulative)



- Biochar amendment increases yield
- BC 4 shows the lowest production
- -BC 1, 2 and 4 → highest yields at 10 and 20 t ha<sup>-1</sup>
- BC 3 → The higher the dose the higher the productivity

| INCREASE OF BIOMASS PRODUCTION |          |  |  |  |
|--------------------------------|----------|--|--|--|
| TREATMENTS                     | EFFECT   |  |  |  |
| Biochar 1, 2 and 3 vs. Control | 230-370% |  |  |  |
| Biochar 4 vs. Control          | 66-200%  |  |  |  |

| Location                | Plant          | Treatment              | Biomass<br>yield | Reference                      |
|-------------------------|----------------|------------------------|------------------|--------------------------------|
| Australia<br>/Alfisol   | Radish         | 10 t ha <sup>-1</sup>  | - 30%            | Chan et al., 2007              |
| Australia/<br>Ferralsol | Spring wheat   | 10 t ha <sup>-1</sup>  | ns               | Van Zwieten et al.,<br>2010    |
| Australia/<br>Alfisol   | Radish         | 100 t ha <sup>-1</sup> | 130%             | Chan et al., 2007              |
| Japan /-                | Sugi tree      | 0.5 t ha <sup>-1</sup> | +224%            | Kishimoto and<br>Sugiura, 1985 |
| Colombia/<br>Oxisol     | Savanna veget. | 26 t ha <sup>-1</sup>  | +378%            | Major et al., 2007             |

(Modified fromVaccari et al., 2011)

# What caused this great increase in biomass production?

- The soil contains very low amount of nutrients:
  - Biochar addition may supply nutrients
  - Biochar addition may improve the structure of the soil
- Biochar avoided leaching of nutrients during irrigation in the amended pots

# Macronutrient content of the pots (end)

| Total content               | N<br>Kjeldahl | P      | K     | S     | Ca    | Mg    |
|-----------------------------|---------------|--------|-------|-------|-------|-------|
|                             | (%)           | mg/kg  | mg/kg | mg/Kg | mg/kg | mg/kg |
| Bulk soil                   | 0.066         | 496.2  | 1616  | 127.5 | 31763 | 1966  |
| Soil post incub             | 0.063         | 435.7  | 1771  | 126.0 | 32193 | 1987  |
| BC 3, 10 t ha <sup>-1</sup> | 0.070         | 757.3  | 1591  | 159.1 | 31649 | 1978  |
| BC 3, 20 t ha <sup>-1</sup> | 0.090         | 1273.1 | 1695  | 214.1 | 30795 | 2001  |
| BC 3, 40 t ha <sup>-1</sup> | 0.110         | 2038.2 | 1472  | 277.3 | 29656 | 2009  |

- No leaching in control pots
- No differences in BC 1, 2 and 4 amended pots
- Higher N and P content in BC 3 amended soils

# Other amendment but same soil

#### **ORGANIC AMENDMENT:**

- **G**: <u>18% vinasse</u> and 82% grape-marc

- O: <u>17% vinasse</u>, 76% olive pressed cake, 6% leonardite

- C: 49% vinasse ,47% cotton gin trash, 3% leonardite

- IF: inorganic fertilizer

#### YIELD INCREASE

Up to a 250%



Madejón et. al 2001 Agric. Ecosyst.

Environ.: 84, 55-65

#### CONCLUSIONS

- Biochar addition did not affect germination rates but increased significantly survival rates.
- Biomass production:
  - → The most appropriate biochars from an agronomic point of view:
    Biochar 1 and 2
    - Biochar 3: high content of heavy metals
  - Biochar 4: high content of PAHs
  - → The most suitable application rate tested:

10 or 20 t ha<sup>-1</sup>

→ Doubling the amount of added biochar didn't increase significantly biomass production.

# Thanks for your attention

#### Also thanks to:

- MINECO (Spanish Goverment)
- EBRN
- Torres winery

