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Abstract
We discuss population imbalances between different orbital states due to applied
thermal gradients. This purely thermoelectric effect appears quite generically
in nanostructures with a pseudospin (orbital) degree of freedom. We define an
orbital Seebeck coefficient that characterizes the induced orbital bias generated
across a quantum conductor in response to a temperature difference applied to the
attached reservoirs. We analyze a two-terminal strongly interacting quantum dot
with two orbital states and find that the orbital thermopower acts as an excellent
tool to describe the crossover between SU(4) and SU(2) Kondo states. Our
conclusions are reinforced with a detailed comparison to the charge thermopower
using exact numerical renormalization group calculations.
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1. Introduction

The discovery of the spin Seebeck effect [1] has ignited research in spin caloritronics, a
field where the focus is put on the generation of spin-polarized electric currents by applying
thermal gradients [2]. Nonequilibrium spin accumulations can thus be generated in response to
a temperature difference across a junction even when the charge current vanishes [3].

In addition to electronic spin, many nanostructures offer the possibility of an extra degree
of freedom—the orbital quantum number. This property naturally arises in carbon nanotubes as
a result of the two ways (clockwise and anticlockwise) that electrons possess to move around
the tube axis [4] or can be artificially realized in double quantum dot structures since each
individual dot state can be viewed as the possible outcome of two-level pseudospin (orbital)
measurements [5].

We here put forward the idea of generating different orbital populations using temperature
gradients (orbital caloritronics). We thus define the orbital or pseudospin Seebeck coefficient
which measures the orbital bias voltage generated across a mesoscopic conductor under the
conditions of vanishing charge and orbital currents. Remarkably, we find that the orbital
thermopower acts as an efficient probe to characterize pseudospin-driven quantum crossovers
in quantum dots and carbon nanotubes.

The orbital degree of freedom plays an essential role in the formation of highly symmetric
Kondo states. While the conventional SU(2) Kondo resonance arises, at low temperature T ,
from the many-body exchange interaction between a localized spin 1

2 (the quantum impurity)
and conduction band electrons (the Fermi sea), the SU(4) Kondo physics occurs because the
entangled spin and orbital degrees of freedom form a hyperspin with higher dimensionality that
undergoes simultaneous flip processes both in the spin and the orbital sectors [9]. Hence, the
crossover between SU(2) and SU(4) Kondo effects involves two strongly correlated states with
rather different temperature scales (the Kondo temperatures T SU (2)

K and T SU (4)
K that typically

fulfill T SU (4)
K � T SU (2)

K ). Such crossover has been investigated both experimentally [6–8] and
theoretically [9–16]. In particular, an applied magnetic field in nanotubes couples differently
to the spin and orbital quantum numbers [4], lifting the degeneracy and allowing for a tunable
conversion from SU(4) Kondo physics to a purely spin or orbital Kondo effect [6]. On the
other hand, pseudospin resolved transport has been achieved very recently in double quantum
dots [17].

Thermoelectric properties of SU(2) Kondo impurities show not only clear changes
depending on the ratio T/TK [18] but also deviations from the semiclassical Mott formula [19].
These are important features for strongly interacting quantum dots that might potentially work
as nanoscale thermoelectric coolers or heat-to-electricity converters. When the pseudospin
degree of freedom is created by charged states in negative charging energy quantum dots, the
Seebeck coefficient can be substantially enlarged [20]. Moreover, pure spin currents can be
thermally generated from an artificial Kondo impurity coupled to ferromagnetic leads [21] or in
the presence of magnetic fields [22]. Recently, the Seebeck coefficient has been proposed as a
sensitive probe of the crossover between SU(2) and SU(4) Kondo states [23]. It is thus natural
to ask whether the generalization to orbital thermopower can provide additional insight on that
crossover. Below, we demonstrate that the orbital Seebeck coefficient shows a characteristic
minimum that signals the crossover from one Kondo state to another. Therefore, investigation
of orbital thermoelectric effects is interesting from both viewpoints—the practical motivation
that leads to the generation of orbital polarizations and the fundamental study of orbital driven
crossovers.
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2. Orbital and charge Seebeck coefficients

We consider a generic mesoscopic conductor with interacting electrons and coupled to left (L)
and right (R) leads. Let ν = ± be the orbital index that labels the two orbital states present
both in the sample and in the leads. For completeness, we also take into account the spin index
σ = ↑ / ↓, although in what follows we will assume spin degeneracy in order to focus on orbital
effects only. The exact formula for the current at channel ν reads [24, 25]

Iν =
e

h

∑
σ

∫
dε ( fLν(ε)− fRν(ε)) Tνσ (ε), (1)

where the generalized transmission function is

Tνσ (ε)=
4π0L0R

0L +0R
Aνσ (ε) (2)

in terms of level broadenings 0α = π
∑

k |tα|2δ(ε− εαk) with tα the tunnel amplitude from
lead α = L,R. The total linewidth is then 0 =

∑
α 0α. The dot spectral weight Aνσ (ε) in

an orbital ν with spin σ is obtained from the retarded dot Green’s function Gr
νσ,νσ (ε) by

Aνσ (ε)= −ImGr
νσ,νσ (ε)/π .

In equation (1), the leads are Fermi reservoirs with distribution function fαν(ε)=

1/[exp((ε−µαν)/kBTα)+ 1], where µαν = EF + eVαν (EF is the Fermi energy) and Tα = T + θα
(T is the background temperature). It is worthy to note that the electrochemical potential µαν
depends on the orbital index ν that labels the bias Vαν . This model is valid for, e.g. a long
carbon nanotube with a depleted region acting as a quasi-localized level (the quantum dot). It
has been experimentally confirmed that the orbital index is conserved during tunneling across
a highly symmetric carbon-nanotube quantum dot [6]. Thus, possible orbital polarizations are
determined from the imbalance µα+ 6= µα− [26]5. Finally, θα is the temperature shift applied to
lead α.

We define the orbital current as Io = I+ − I− while the electric (charge) current is
accordingly given by Ic = I+ + I−. The applied thermal difference is denoted with 1T =

θL − θR. With the electrochemical potential parametrization µα = (µα+ +µα−)/2, the electric
voltage bias 1V and the orbital bias 1Vo become

e1V = µL −µR, (3)

e1Vo = (µL+ −µL−)− (µR+ −µR−). (4)

Notice that Rejec et al [22] propose analogous expressions for the pure spin case.
We define the orbital thermopower

So = −
e1Vo

1T

∣∣∣∣
Ic=0,Io=0

(5)

5 In the same way one can define spin polarizations or even Kramers polarizations between time-reversal pair
states in the presence of spin–orbit coupling see [26].
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as the ratio between the induced orbital voltage 1Vo and the applied temperature difference
1T , in close analogy with the charge Seebeck coefficient,

Sc = −
e1V

1T

∣∣∣∣
Ic=0,Io=0

. (6)

We emphasize that the two coefficients are calculated under the condition that both orbital and
charge currents simultaneously vanish.

In linear response, the differences 1T , e1V , and e1Vo are small and we expand Io and Ic

to first order:

Io =
e

h

[
(I1+ − I1−)

1T

T
+ (I0+ − I0−)e1V +

1

2
(I0+ + I0−)e1Vo

]
, (7)

Ic =
e

h

[
(I1+ + I1−)

1T

T
+ (I0+ + I0−)e1V +

1

2
(I0+ − I0−)e1Vo

]
. (8)

Here, Inν is the transport integral defined by

Inν =

∑
σ

∫
dε εn (−∂ε f0(ε)) Tνσ (ε) (9)

with f0(ε)= 1/(eε/T + 1) the equilibrium distribution function (we set EF = 0 and kB = 1).
To have purely orbital currents, the charge current must vanish. This is accomplished by

the application of the electric bias

e1V = −
1

2

(
I1+

I0+
+
I1−

I0−

)
1T

T
. (10)

Therefore, the orbital Seebeck coefficient becomes

So =
1

T

(
I1+

I0+
−
I1−

I0−

)
. (11)

This is a general result. We expect the formation of an orbital bias 1Vo = −eS01T in the
leads when the transmission depends on the orbital index, similarly to the temperature driven
generation of spin biases in junctions showing spin-dependent scattering [3].

At low temperatures, it is useful to consider the Sommerfeld expansion [27]. Then,

So −→
T →0

π 2 T

3

(∑
σ ∂εA+σ (EF)∑
σ A+σ (EF)

−

∑
σ ∂εA−σ (EF)∑
σ A−σ (EF)

)
(12)

to leading order in T . This expression is a generalization of the Mott formula [28] valid for
orbital bias driven quantum systems.

For comparison, we also give the expression of the charge Seebeck coefficient

Sc =
1

2T

(
I1+

I0+
+
I1−

I0−

)
, (13)
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which in the limit of T → 0 becomes

Sc −→
T →0

π2 T

6

(∑
σ ∂εA+σ (EF)∑
σ A+σ (EF)

+

∑
σ ∂εA−σ (EF)∑
σ A−σ (EF)

)
. (14)

Equations (11) and (13) are valid for generic nanostructures with two orbital states. As an
illustration, we now consider a quantum dot with energy levels

εν = εd + ν
δ

2
, (15)

where δ is the orbital splitting induced by any symmetry breaking mechanism such as a magnetic
field along a nanotube axis [12] and εd is the mean energy level measured with respect to EF.
Formally, the problem is equivalent to a spin-split quantum dot with a single energy level.
However, the difference is that spin and orbital states couple differently to an external magnetic
field since their associated magnetic moments generally differ; e.g. for a carbon-nanotube
quantum dot, orbital splittings of the order of δ are 10–20 times larger than spin splittings at
a fixed magnetic field [4]. We shall first consider noninteracting electrons and then discuss in
detail the strongly correlated case where the orbital degree of freedom plays a crucial role.

3. Noninteracting limit

For noninteracting electrons, the exact expression for the dot spectral weight is

Aνσ (ε)=
1

π

0

(ε− εν)2 +02
. (16)

Using this equation in equations (12) and (14) we find the low temperature behavior of the
Seebeck coefficients

So −→
T →0

2π2 T

3

(
εd + δ/2

(εd + δ/2)2 +02
−

εd − δ/2

(εd − δ/2)2 +02

)
, (17a)

Sc −→
T →0

π2 T

3

(
εd + δ/2

(εd + δ/2)2 +02
+

εd − δ/2

(εd − δ/2)2 +02

)
, (17b)

which are plotted in figure 1. We observe in figure 1(b) that when δ = 0 the charge thermopower
Sc changes sign when the dot level εd lies above or below EF. This is an expected behavior due
to the ability of Sc to indicate electron- or hole-like transport [29]. As δ increases, Sc remains
roughly constant until the split level crosses EF and Sc then changes sign. Importantly, the charge
thermopower vanishes at the particle symmetry point (εd = 0) regardless of the δ value.

More interestingly, the orbital thermopower So shows distinct features, see figure 1(a). It
vanishes in both limits, δ → 0 and δ � 0. This is expected since no orbital bias can be induced
if the two orbitals are degenerate or they lie far apart. Furthermore, the orbital thermopower
is quite generally nonzero when particle–hole symmetry takes place at εd = 0, unlike Sc. The
two Seebeck coefficients also differ when transport is electron- or hole-like. While Sc changes
its sign when εd is reversed with respect to EF, the orbital Seebeck coefficient is insensitive to
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Figure 1. (a) Orbital (So) and (b) charge (Sc) Seebeck coefficients as a function of the
level splitting δ in the noninteracting limit and temperature T → 0 for various values of
the level position εd.

whether transport is dominated by electron or hole excitations since both curves for εd = 40
and εd = −40 in figure 1(a) are identical (So(εd)= So(−εd) in equation (17a)). In addition, for
εd = 0 S0 reaches an optimal value when the splitting δ is of the order of 0 because charge
fluctuations are maximal precisely at that level position. The optimal value shifts with εd 6= 0
and new peaks arise due to the passage of the split level εν across ∼ ±0 above and below the
Fermi energy. This demonstrates a full tunability of the generated orbital population with the
aid of an external gate voltage.

4. Strong coupling regime

Consider now electron–electron interactions described by
∑

νσ 6=ν′σ ′ Unνσnν′σ ′ , where nνσ is the
occupation of the dot spin–orbital state (ν, σ ) and U is the onsite charging energy. Using the
Friedel–Langreth sum rule [30, 31], the spectral weight Aνσ (ε) at ε = EF can be expressed in
terms of nνσ

Aνσ (EF)=
sin2(nνσπ)

π0
. (18)

It follows that its energy derivative takes the form [23]

∂εAνσ (EF)=
1

π00̃νσ
sin(2nνσπ) sin2(nνσπ). (19)

Here, the tunnel broadening 0̃νσ = zνσ0 becomes renormalized by the quasi-particle weight
factor zνσ = 1/[1 − ∂εRe6r

νσ (EF)], where 6r
νσ is the retarded self-energy contribution due to

interaction effects [31].
Combining equations (18) and (19), we find the thermopowers

So =
π2 T

3
(S+ −S−), (20a)

Sc =
π 2 T

6
(S+ +S−), (20b)
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where

Sν ≡
I1ν

I0ν
=

∑
σ

[
sin(2nνσπ) sin2(nνσπ)/0̃νσ

]∑
σ sin2(nνσπ)

. (21)

Since our system is spin rotationally invariant, we have nνσ = nν/2 and 0̃νσ = 0̃ν . Thus,
equation (21) can be further simplified

Sν =
1

0̃ν
sin(nνπ), (22)

where nν =
∑

σ nνσ .
Equations (20) and (22) are formally exact in the strong coupling regime, i.e. when

temperature is much lower than the characteristic Kondo temperature of the system. In the
crossover from SU(4) to SU(2) Kondo physics, the SU(4) Kondo temperature T SU (4)

K is larger
than the SU(2) Kondo temperature T SU (2)

K . Thus, in what follows we perform calculations in
the limit T → 0 and our results will be qualitatively valid even for T < T SU (2)

K . Our goal is
to find the orbital occupation nν , which fully determines both the orbital and charge Seebeck
coefficients. One possibility is to employ a slave-boson mean-field theory [23]. However, this
approach neglects the orbital index in the renormalized hybridization function, 0̃ν ' 0̃. This
is qualitatively correct in the limit δ → 0 but it breaks down as δ increases because 0̃ν will
be renormalized differently for ν = ±, similarly to the spin Kondo effect in the presence of
ferromagnetism [33–35]. Since our main goal in the remainder of the paper is to discuss a
qualitative picture of the orbital themoelectric effect in a strongly correlated system, we prefer
not to delve into complicated details and consider instead the scaled thermopowers

S̃o =
π2

3
(S+0̃+ −S−0̃−)=

π2

3
(sin(n+π)− sin(n−π)), (23a)

S̃c =
π 2

6
(S+0̃+ +S−0̃−)=

π 2

6
(sin(n+π)+ sin(n−π)). (23b)

Next, we follow two different routes for assessing nν . First, we consider a variational
approach that yields analytical results for the Kondo temperature and the dot orbital occupation.
Then, we perform a numerical renormalization group (NRG) analysis which fully takes into
account Kondo fluctuations in the orbital states.

5. Variational approach

We consider the limit U → ∞. Since the Kondo ground state is a many-body singlet, we take
the trial wave function [32]

|ψ0〉 =

(
α +

kF∑
k

∑
ν,σ

βkνd
†
νσckνσ

)
|F〉, (24)

where c†
kνσ (ckνσ ) (d†

νσ (dνσ )) annihilates (creates) a conduction (dot) electron with momentum
k and spin σ in a channel ν and |F〉 represents the filled Fermi sea ground state when the dot
states are empty.

7
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To calculate the variational energy of the trial wave function, we use the energy functional

E0[|ψ0〉] =
〈ψ0|H|ψ0〉

〈ψ0|ψ0〉
, (25)

where the system Hamiltonian reads

H=

∑
α,k,ν,σ

εαkc†
αkνσcαkνσ +

∑
ν,σ

ενd
†
νσdνσ +

∑
α,k,ν,σ

(
tαc†

αkνσdνσ + h.c.
)

(26)

with the constraint that the dot occupation is always 1 due to the infinite charging energy limit.
On minimizing equation (25) with respect to α and βkν we find

E0 =

∑
k,σ

t2

εk − TK
+
∑
k,σ

t2

εk − TK − δ
, (27)

where t =
√

t2
L + t2

R. The Kondo temperature is defined as TK = ε− − E0, i.e. the energy
difference between the lowest orbital level (we take δ > 0) and the ground state energy. We
transform in equation (27) the sums over k into integrals. Hence [23, 36],

TK(δ)=

{
D(D + δ) exp

[πε−
20

]
+
δ2

4

}1/2

−
δ

2
, (28)

where D is the lead bandwidth. For δ = 0, we have a strongly correlated four-fold degenerate
state and the resulting Kondo state possesses SU(4) symmetry with a Kondo temperature
T SU (4)

K = TK(0)= D exp[πε−/40]. As δ increases orbital flip transitions become energetically
costly and in the limit δ → ∞ we recover purely spin Kondo physics characterized with a Kondo
temperature T SU (2)

K = TK(∞)= D exp[πε−/20]. Due to a different numerical factor inside the
exponential, one has T SU (4)

K � T SU (2)
K , as expected [9].

The average dot occupation is given by

nν =

〈
ψ0|

∑
σ d†

νσdνσ |ψ0

〉
〈ψ0|ψ0〉

=

∑
k,σ β

2
kν

α2 +
∑

k,ν,σ β
2
kν

. (29)

The minimization procedure and the integration over the k-space yield

nν(δ)=
20TK (TK + δ) / (TK +3)

πTK (TK + δ)+ 20 (2TK + δ)
, (30)

where 3= δ(0) if ν = +(−). We recall that TK is a function of δ, cf equation (28). When δ = 0,
the occupation is the same for both orbital levels

nν −→
δ=0

20

πT SU (4)
K + 40

. (31)
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Figure 2. (a) Dot occupation nν for the orbital quantum number ν = ±

as a function of the level splitting δ obtained from a variational approach.
(b) Scaled thermopowers (charge S̄c and orbital S̄o) as a function of δ. Parameters:
εd/0 = −4, D/0 = 20, U → ∞ and T → 0.

As δ increases, the orbital ν = + becomes less populated due to the level splitting, as depicted
in figure 2(a) with solid lines. In the SU(2) Kondo limit (δ → ∞), equation (30) gives

nν −→
δ→∞

πT SU (2)
K for ν = +,

20/
(
πT SU (2)

K + 20
)

for ν = −.
(32)

In general, the SU(2) Kondo temperature is much smaller than the hybridization width, T SU (2)
K �

0. Therefore, n− = 1 and n+ = 0 to a good extent (see figure 2(a)) and we recover the 1/2 value
of the population per spin obtained at very low temperatures [31].

Clearly, the orbital level occupations differ depending on the Kondo state symmetry. As a
consequence, the thermopowers (orbital and charge) will be significantly altered as a function
of the level splitting δ. Furthermore, for a system with SU(2) symmetry the Kondo resonance
develops at the Fermi level EF, see figure 3(a). We below discuss the numerical method that
generates figure 3. Therefore, the charge thermopower Sc will attain an exceedingly small
value at low temperatures since the derivative of the spectral weights ∂εAνε(ε) vanishes at EF.
The dashed line in figure 2(b) at δ � 0 precisely reflects this property. On the other hand,
for a system with SU(4) symmetry the Kondo resonance develops at ε ≈ T SU (4)

K , as shown in
figure 3(b). This is a crucial difference with the SU(2) case since ∂εAνε(EF) 6= 0 and S̃c then
reaches a finite value at δ = 0.

More interestingly, the orbital Seebeck coefficient S̃o reaches a maximum (in absolute
value) at intermediate values of the level splitting, see figure 2(b). At δ = 0, S̃o vanishes
because n+ = n−. For δ � 0, S̃o tends to zero for the same reason that the charge thermopower
decreases—the Kondo resonance remains pinned at EF. Then, an extremum must arise for a
nonzero value of δ. We find that a maximal orbital bias is generated when the splitting is of the
order of T SU (4)

K . Since this energy scale is precisely of the order of the level broadening, our
results can be understood in terms of a resonance which behaves effectively as a noninteracting
system with renormalized parameters. This picture is valid in the low temperature regime where
Kondo correlations simultaneously quench spin and charge fluctuations [31].
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Figure 3. NRG calculation of the dot spectral weight Aν as a function of energy ε for the
two orbital states ν = ±. (a) SU(4) Kondo resonance clearly develops for level splitting
δ = 0 (the spectral weights for both orbitals coincide). (b) SU(2) Kondo resonance forms
when δ is tuned beyond the crossover point between the two Kondo states in which
case the contribution from the ν = + channel to the Kondo resonance is negligible.
Parameters: εd/0 = −4, D/0 = 20, U/0 = 200 and T → 0. The vertical dotted line
is a guide to the eye.

6. Numerical results

Our previous results were restricted to U → ∞ case. We now consider large (but finite) charging
energies using a NRG formalism.

In the Lehmann representation, the dot spectral weight takes the form

Aνσ (ε)=
1

Z f0(ε)

∑
p,q

e−E p/T
|〈p|d†

νσ |q〉|
2δ
(
ε− (E p − Eq)

)
, (33)

where Z =
∑

p e−E p/T is the partition function and E p, Eq are many-body eigenenergies
calculated within NRG [37]. We use equation (33) to calculate the dot local densities of states
shown in figure 3.

The orbital occupation is readily obtained from equation (33) as

nν =

∑
σ

∫
dε Aνσ (ε) f0(ε). (34)

In figure 4(a), we depict nν for U = 2000 as a function of δ. For vanishingly small level
splittings, the occupations are equal, n+ = n−, as expected. Importantly, their exact values
are smaller than 1/2. This can be understood with the aid of equation (31). Unlike the
exponentially small SU(2) Kondo temperature TK(∞), the higher SU(4) Kondo temperature
is T SU (4)

K ' 0.8640 for the parameters used in figure 4. Therefore, its contribution cannot be
neglected in the denominator of equation (31). This is a crucial difference with the SU(2) case.
In addition, when δ increases n+ tends to vanish since the level ε+ is pushed up and its occupation
is energetically hindered. At the same time, n− shows the opposite behavior.
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Figure 4. (a) NRG dot occupation nν for the orbital quantum number ν = ± as a
function of the level splitting δ. (b) NRG scaled thermopowers (charge S̃c and orbital
S̃o) as a function of δ. Parameters: εd/0 = −4, D/0 = 20, U/0 = 200 and T → 0.

Figure 4(b) shows the scaled thermopowers obtained from our NRG calculations. Our
results strongly resemble those obtained with the variational approach, cf figure 2(b). This
confirms our previously discussed picture of the orbital thermopower minimum signaling the
crossover from SU(4) to SU(2) Kondo physics as the level splitting is increased. Notice that
here we have analyzed scaled Seebeck coefficients since they are easier to understand (they
depend on the occupation only, see equations (23)). We do not expect qualitative changes if the
exact S were calculated using, e.g. the methods discussed in [22, 38, 39].

7. Conclusions

We have investigated the formation of orbital accumulations in systems with spin and
pseudospin degrees of freedom under the influence of externally applied temperature
differences. We have defined the orbital Seebeck coefficient from an open-circuit pure orbital
bias. We have found that orbital thermopower is really sensitive to changes in level splitting
fields possibly present in the system. Thus, we propose to use the occurrence of orbital
thermopower peaks as the ‘smoking gun’ of the crossover between Kondo states with distinct
symmetry types.

The presence of orbital polarizations could be experimentally detected using the
different coupling of circularly polarized light to the unequal population of electronic orbital
states [40]. An alternative scheme might measure the magnetization response using ultrasmall
magnetometers [41]. Further work is thus needed to test the effects discussed in this paper.
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