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En primer lloc vull agrair al meu tutor, Llorenç Serra, tota l’ajuda que m’ha oferit i el que és
més important, per despertar en jo l’interès per la Mecànica Quàntica, i fer-me gaudir d’aquesta
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Abstract

The main aim of the present work is to study the properties of the Majorana states in the
context of condensed matter, and more specifically the optical properties of hybrid semi-super-
conductor nanowires. First we explain the most important concepts referent to the Majorana
states. We address the importance for particle physics, for quantum computation and stress the
results with more impact in the field. In second place, we introduce the necessary methods to
describe Majorana states in two-dimensional systems. We introduce the Bogoliubov-deGennes
hamiltonian, we study its properties and the most important results necessary to compute the
optical properties. The third and final chapter is the novel contribution of this work. We present
first the used theoretical formalism, after that we study the results of the optical spectrum
changing different parameters, the dependence on magnetic field, the light polarization effects
and the influence of temperature. This work gives guides for the experimental detection of
Majorana states in semiconductor nanowires with optical spectroscopy.
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Chapter 1

Introduction

Majorana states were suggested in 1937 by Ettore Majorana [1], who introduced in the context
of theoretical physics the idea of fermionic particles that are at the same time their own an-
tiparticles. These quantum states are particular solutions of the Dirac equation [2] that might
appear under specific conditions. The Dirac equation describes relativistic quantum mechanics
for spin-1/2 fermions and has complex solutions ψ for the fermionic wave function at both pos-
itive and negative energies. A fundamental idea is the Dirac interpretation of the vacuum as a
sea of infinite particles occupying all the negative-energy solutions which allowed him to predict
the existence of the positron. If we think in the negative energy levels filled with electrons and
we move an electron from negative energy to positive energy we will leave a hole in the sea with
opposite charge. The idea is that the state with a hole in the negative-energy sea is a positively
charged particle of ordinary positive energy [3]. Generalizing, each particle has an associated
antiparticle with the same mass, the same spin but with an opposite charge and when the two
are in the same quantum state they annihilate. An electron and a positron annihilate generating
a photon. The reverse process is also possible; i.e., a photon can generate an electron-positron
pair. Figure 1.1 shows a sketch of these processes.

The charge conjugation transformation ψ → ψ∗ changes a positive energy state ψ (repre-
senting a particle) into its associated negative-energy hole (representing the antiparticle). This
implies that a particle described with state ψ that is its own antiparticle must be represented by
a real wave function. Majorana found a way of rewriting Dirac equation such that it becomes

a) b)

Figure 1.1: Sketch of an electron-positron pair process represented as a) a transition in
the Dirac’s sea of infinite negative energy states, b) a Feynman diagram. [3]

9



10 CHAPTER 1. INTRODUCTION

purely real, whose solutions must therefore be real. These real solutions are the Majorana states
that are their own antiparticles. Even though in high-energy physics the measurement of a
Majorana particle would be an important discovery, they have not been detected so far. Some
particles like neutrinos [4] have been considered, but at the end neutrinos have not been good
candidates.

In recent years in condensed matter physics the concept of Majorana states has attracted
much attention, partly due to the connections with particle physics and partly due to the possible
applications in quantum computation [5–9]. Condensed matter physics provides an alternative
to the detection of Majorana fermions, although in this field Majorana modes present some
differences with respect to the previous case. The main difference is that the state does not refer
to a particle, but to a collective state that emerges due to many-body interactions, with the
Bogoliubov-de Gennes hamiltonian determining the behavior of quasiparticles. In this scenario
particles and antiparticles are associated to electrons and holes in the solid state system, both
having a finite effective mass, the same spin and an opposite charge. The system has particle-
hole symmetry, implying that for each state of energy E there exist another state with opposite
energy −E. These Majorana fermions, however, can not be realized in a raw material since
superconductivity is needed to form Majorana modes. Superconductivity creates Cooper pairs,
composed of two electrons that attract themselves due to effects of the lattice. The fact is that
to promote a quasiparticle to a positive energy level an additional energy is needed to separate
the electron pair, the manifestation of this is the presence of a gap in the energy spectrum. In
a hybrid semiconductor-supercoductor nanowire a Majorana mode is formed when the lowest
energy levels collapse to zero and the fermionic states fuse in a unique state characterized by a
wave function localized on the nanowires tips.

In physics, quantum states can be classified in fermionic states and bosonic states. Fermionic
states change sign of the wave function under interchange of particles, while bosonic states
preserve sign under interchange of particles. Another type of states, called anyons, change by
a global phase of the wave function (different to ±1) under interchange of particles. Finally,
there are non-abelian anyons that change completely the wave function in a non-trivial way
when two particles are interchanged. Majorana states are an example of non-abelian anyons
and, for this reason, they are so important in quantum computation. The main goal of quantum
computation is to encode and manipulate information using quantum states. For this reason
the knowledge of transformation of quantum states is a valuable asset in this field. Non-abelian
anyons become relevant in this sense, since exchanging them you can transform completely the
state and its encoded information. Moreover, due to their localized character Majorana modes
are topologically protected against decoherence, the energy gap protects them from sources of
noise. It is believed that because of these features Majorana states are good proposals to be
used in future to make quantum computers.

Experimental evidences of the existence of Majorana states already exist [10–14]. They
report electrical measurements of a zero-bias conductance peak in the differential conductance.
These measurements have been done in a indium antimonide (InSB) nanowires, connected with
a gold contact and an superconducting electrode of niobium titanium nitride (NbTiN). However,
the conductance peak is not enough to unambiguously confirm the existence of the Majorana
states and more evidences are presently looked for.

The legacy of E. Majorana is nowadays an important topic in science. Its theoretical impli-
cations and its posible applications to new technologies justify the strong efforts devoted by the
scientific community to understand this topic in more detail.



Chapter 2

A 2D model

The second chapter of this work is devoted to the description of Majorana states in a 2D model.
We address the main properties of the system and the numerical implementation to describe them
as well. In section 2.1 we introduce the Bogoliubov-deGennes hamiltonian and briefly describe
the main characteristics of the formation of Majorana states. Section 2.2 explains particle-hole
symmetry and the implications for the optical spectrum. The third part, section 2.3, presents
the methodology to solve numerically the Bogoliubov-deGennes hamiltonian. Finally, section
2.4 shows the corresponding results, necessary for the optical-spectroscopy analysis of the third
chapter.

2.1 The Bogoliubov-deGennes Hamiltonian

We model a semiconductor nanowire with spin-orbit Rashba coupling, in the presence of a mag-
netic field, while a nearby superconductor induces the superconductivity effect due to proximity.
These kind of systems can be modeled using a 1D approach; however, in order to have a more
accurate description we use a 2D model that reproduces in a more realistic way the system,
still not hindered by time consuming calculations characteristic of a 3D model. Moreover, this
second dimension will allow us to understand in the following chapter more properties of the
system. Definitely the second dimension gives us more freedom in experiment than a purely 1D
approach. One of the important reasons why these systems are often modeled in one dimension
is because Majorana states are formed in narrow long systems, the unidimensional approach
satisfying very well this condition. Nevertheless a strong confinement in one of the dimensions
is needed to form Majorana modes in two dimensional systems.

The system is described by the Bogoliubov-deGennes Hamiltonian that can be expressed in
terms of the kinetic energy, Zeeman, superconductivity and Rashba spin-orbit coupling as

HBdG =

[
p2
x + p2

y

2m
+ V (x, y)− µ

]
τz + ∆B ~σ · n̂+ ∆0 τx +

α

h̄
(pxσy − pyσx)τz . (2.1)

From left to right the contributions to Eq. 2.1 are: kinetic energy with ~p and m the momentum
and the effective mass, respectively; V (x, y) is an electric potential representing the shape of
the nanowire; µ the chemical potential; ~σ and ~τ are vector operators for spin and isospin (in
electron-hole space) respectively; ∆B, ∆0 and α represent the Zeeman, superconductivity and
Rashba coupling energies, respectively; finally, n̂ is the direction of the magnetic field in the
xy plane, that can also be expressed in terms of the azimuthal angle φ as n̂ ≡ (cosφ, sinφ). A
sketch of the physical system is given in figure 2.1.

11



12 CHAPTER 2. A 2D MODEL

Figure 2.1: Sketch of the planar nanowire in a tilted magnetic field.

A natural unit system of the Bogoliubov-deGennes Hamiltonian can be determined by the
coupling constants α, the planck constant h̄, and the effective mass m of the electrons and holes
in the semiconductor. The hamiltonian becomes dimensionless in the following unit system,

Eso =
α2m

h̄2 , Lso =
h̄2

αm
, Tso =

h̄3

α2m
. (2.2)

In these units the constants α, h̄, and m are chosen equal to one. All the presented results in
this chapter and the following one are given in this units, unless otherwise specified.

The superconductivity effect induces particle-hole symmetry, this yielding symmetric energy
eigenvalues with respect to the chemical potential. Moreover, superconductivity is responsible
for an energy gap around the chemical potential. The Rashba spin-orbit coupling comes from
the interaction between the electron spin and its own motion. Finally the Zeeman term allows
us to drive the system into different regimes. The Majorana state appears when the Zeeman
term reaches a critical value. When the magnetic field is oriented in the long direction of the
nanowire (φ = 0) and magnetic field increases, the lowest positive eigenvalue with respect to
the fermi level goes down. When the eigenvalue reaches zero energy the Majorana is formed,
characterized by two maxima of the probability density localized in the edges of the nanowire.
This transition, leading to the creation of Majorana modes is called in the literature a topological
transition. The critical value for Zeeman energy is given by the following relation

∆
(c)
B =

√
∆2

0 + µ2 . (2.3)

For ∆B < ∆
(c)
B there is no Majorana mode, while for ∆B > ∆

(c)
B a Majorana can appear.

Equation (2.3) results from the analysis of a one dimensional semi-infinite system as explained
in [15–17]. This approximation is valid for our two dimensional limit when the nanowire is
thin enough. Although the fulfillment of Eq. (2.3) is a necessary condition to obtain a Majorana
mode, it is not sufficient. For greater values of the magnetic field higher levels of energy go to zero
as is shown in Ref. [16], this higher levels collapse with the existing Majorana mode producing
the interaction between them due to effective repulsion, this breaking the Majorana zero-energy
state. At the end, we only have a specific range of the Zeeman energy where Majorana modes
may be present.

The reader must notice that we have not said anything about magnetic fields in other direc-
tions different from x̂. The effects of tilting the magnetic field are discussed in Ref. [18] finding
the so-called projection rule for a unidimensional nanowire. When the magnetic field is in tilted
direction the range of Zeeman energies in which Majorana is possible is reduced. For magnetic
fields in the xy plane the Majorana mode delocalizes when the azimuthal angle φ exceeds a
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critical value. If φ is fixed and ∆B is increased, the projection rule yields a superior limit for
∆B beyond which Majorana modes are not present. Moreover, if magnetic field is out of the xy
plane, the polar angle decreases from 90◦ and the formation of Majorana states is destroyed due
to orbital effects. However, since we have not taken into account the orbital effects appearing
when the magnetic field has non-zero component in the ẑ axis, we will restrict to in-plane tilts
in this work.

2.2 Particle-Hole symmetry

The main aim of this section is to provide an important result for the third chapter. For this
reason we need to introduce particle-hole symmetry operator

ΘH = −HΘ, (2.4)

where Θ is the time-reversal-plus-charge-conjugation operator (or time-charge inversion for
short).

Θ = −σyτyK =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

K (2.5)

and K is the conjugation operator.

A system with particle-hole symmetry fulfills that if |ΨE〉 is an eigenstate with energy E
then Θ|ΨE〉 is an eigenstate with energy −E. Let

H|ΨE〉 = E|ΨE〉. (2.6)

Applying the time-charge inversion operator to both sides,

ΘH|ΨE〉 = EΘ|ΨE〉 ⇒ −HΘ|ΨE〉 = EΘ|ΨE〉 ⇒ H (Θ|ΨE〉) = −E (Θ|ΨE〉) (2.7)

Then |Ψ−E〉 = Θ|ΨE〉.
Now we want to prove an important property with Bogoliubov-deGennes eigenstates: the

matrix element of the momentum operator with opposite states in energy is zero.

〈ΨE |pi|Ψ−E〉 = 〈ΨE |piΘ|ΨE〉 = −ih̄
∫ +∞

−∞
(ψ∗↑⇑, ψ

∗
↑⇓, ψ

∗
↓⇑, ψ

∗
↓⇓)

∂

∂xi


ψ∗↓⇓
−ψ∗↓⇑
−ψ∗↑⇓
ψ∗↑⇑

 dxi

= −ih̄
∫ +∞

−∞

∂

∂xi

(
ψ∗↑⇑ψ

∗
↓⇓ − ψ∗↑⇓ψ∗↓⇑

)
dxi = 0 . (2.8)

Due to boundary conditions the integral is zero. This result is very important for the following
chapter because this matrix element is involved in the transition from the state with energy −E
to the state with energy E. We can say now that these transitions will not contribute to the
optical spectrum.
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2.3 Numerical methods

We shall solve the Schrödinger equation with the above Hamiltonian,

HBdGΨ(x, y, ησ, ητ ) = EΨ(x, y, ησ, ητ ) , (2.9)

expanding the wave function in z-basis spinors for spin and isospin, χsσ and χsτ ,

Ψ(x, y, ησ, ητ ) =
∑
sσ ,sτ

ψsσ ,sτ (x, y)χsσ(ησ)χsτ (ητ ) . (2.10)

The wave function variables are the space coordinates (x, y) ∈ <, the spin ησ ∈ {↑, ↓} and isospin
ητ ∈ {⇑,⇓}. The quantum numbers of spin and isospin are sσ = ± and sτ = ± and it is fulfilled
that

~σ · n̂χsσ(ησ) = sσχsσ(ησ) , (2.11)

τzχsτ (ητ ) = sτχsτ (ητ ). (2.12)

Projecting equation (2.1) on 〈sσsτ | we find the following system of equations for the compo-
nents ψsσ ,sτ (x, y) of the wave function.[(

p2
x + p2

y

2m
+ V (x, y)− µ

)
sτ − E

]
ψsσsτ (x, y) + ∆B(cosφ− isσ sinφ)ψs̄σsτ (x, y)

+∆0 ψsσ s̄τ (x, y) − α

h̄
sτ (isσpx + py)ψs̄σsτ (x, y) = 0 ,

(2.13)

where we use the notation s̄ = −s. In order to solve this equation system with partial derivatives
we use numerical techniques. We have discretized the space in a square lattice, where Nx and
Ny are the number of points of each dimension. The boundary conditions is simply vanishing
of the wave function at the edges of the grid. We use finite differences to describe the partial
derivatives, then we have a component of the wave function at each position of the lattice. This
discretization of the wave function in space allows us to construct a system of equations for all
this components that can be expressed in matrix form.

The size of the matrix is N × N , where N = 4NxNy, the factor four coming from the 4
components of the wave function. Once we have this matrix, to find the solution we have to
diagonalize it. One useful property of this matrix is that many of its elements are zero, i.e.,
it is highly sparse. The diagonalization problem is solved using a diagonalization subroutine
for sparse matrices [19] that yields the eigenvalues lying near a given reference value. It is
important to realize that for Nx = Ny = 100 it is N = 40000, and one diagonalization is highly
time consuming with non-sparse routines. For this reason it is important to avoid all unnecessary
computations with zero-valued matrix elements. The wave function will be confined in the region
of the nanowire imposed by the potential, many points of the lattice out of this region can be
avoided because the wave function will be extremely small. Finally, when we have the solution
we can compute the quantities that we need like the probability density of a given eigenstate,
or the variation of the eigenvalue spectrum with different parameters.

The last we mention in this section on numerical methods is how we model the shape of the
nanowire. We model a nanowire of size in the order of µm, that is, much higher than the atomic
scale. This allows us to use a smooth potential. We construct square shape potential such that
each side of the square is modeled using a two dimensional fermi function

f(x, y) =

[
1 + exp

(
(y − y0) cos θ − (x− x0) sin θ − L

s

)]−1

, (2.14)
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where the softness degree is controlled by parameter s and the limit line where the function
changes from 0 to 1 is

y = y0 + (x− x0) tan θ − L

cos θ
. (2.15)

The functional form Eq. (2.14) conveniently models different borders of the nanowire changing
the parameters x0, y0, L and θ. The parameters x0, y0 are the central position of the nanowire,
L is the distance of the line to the center and θ is the angle that form this line respect to the
x-axis.

2.4 Results

In this section we are going to present the numerical solutions of the above hamiltonian. This
numerical solution correspond to the following set of parameters: We use a spatial dimension
from xmin = −15Lso to xmax = 15Lso and the same for y, 101 points for the discretization in
space in both directions. The shape of the nanowire is a rectangle of Lx = 25Lso and Ly = 2Lso,
a rather thin nanowire. The maximum value of the potential, out of the nanowire, is V0 = 5Eso
and the softness of the fermi functions s = 0.1, these two values mimic a square well potential
but with a little softness that is necessary for the numerical resolution.

We have taken the superconductivity energy ∆0 = 0.25Eso that allows us to find Majorana
state for a given Zeeman energy and, for simplicity, the chemical potential has been put equal
to zero µ = 0. Finally the magnetic field is taken in x direction φB = 0. We vary the Zeeman
energy in order to see the emergence of the zero modes. We want to emphasize that this set of
parameters will be used in all the rest of the work. We have made this choice for one reason, we
want a representative set of parameters showing Majorana states for a good range of magnetic
fields. There are more sets of parameters that fulfill this condition and that could be used to do
the same analysis. For example, another Lx/Ly ratio for a thinner or wider potentials, or another
chemical potential µ. In this work our purpose is giving an example of a good configuration
presenting clear Majorana modes.

Next we present the evolution of the eigenvalues of the system as a function of the magnetic
field in Fig. 2.2. We only display the 8 eigenvalues lying closer to zero energy, to avoid excessive
computational times. We present also in the same graph the probability density of the lowest
positive eigenvalue for selected cases in order to see how the system evolves with increasing
Zeeman energies. For very low ∆B’s all the eigenvalues are nearly degenerate at two energies
and the probability density is similar to that of a square well potential. When the Zeeman energy
increases, the energy levels start to split, the gap becoming smaller and the first eigenfunction
shows a quenched probability in the middle of the nanowire. For ∆B ≈ 0.42Eso the gap closes
completely and the Majorana forms, this fact can be appreciated because the wave function
is characterized by two probability maxima well localized on the edges of the nanowire. If we
continue increasing the Zeeman energy the gap reopens, but one state remains ’trapped’ in the
middle of the gap, the Majorana state.

The gap with the Majorana state in the middle effectively protects the Majorana state from
decoherence due to noise and disorder. If we focus on the probability density, increasing the
magnetic field the localized maxima spread on the nanowire more and more until the second
transversal mode goes to zero to form a second Majorana. However mode-mode interactions
prevent the formation of these states and we can see a qualitative change of behaviour in the
probability density.

We can see in more detail the probability densities for three different Zeeman energies in
figure 2.3. The figure displays the probabilities for representative values of Zeeman parameter,
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Figure 2.2: Representation of the eight eigenvalues lying closer to zero energy as a function
of Zeeman energy ∆B . We present also six different cuts (vertical lines) corresponding to
different ∆B ’s, showing the probability density of the lowest positive eigenvalue at the
corresponding Zeeman energy. The color of each line and frame are matched to better

indicate the value of ∆B for each density.

before the Majorana, on the Majorana and much after the Majorana formation.
We have now all that we need to study the optical properties of the system in Chap. 3, the
energy eigenvalues and the eigenfunctions. We will not need to increase the Zeeman energy
much beyond ∆B = 0.5Eso, because we only intend to analyze the formation of the Majorana
state. One thing that we will have to increase is the number of eigenvalues in order to study the
convergence with the number of transitions.
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Figure 2.3: Probability densities for three selected Zeeman energies ∆B = 0.392, 0.588,
1.492 Eso respectively. The first plot is before the formation of the Majorana state. The
second corresponds to when the Majorana state is well formed and presents two maxima on
the edges of the nanowire. Finally, the third is passed the range of the Majorana state when

the edge modes delocalize.





Chapter 3

Spectroscopy

The third chapter of the Master Thesis is devoted to the calculation of the optical properties of
the system that we have discussed before. Our main interest is to find a clear manifestation of
the presence of the Majorana state in the nanowire. The chapter is divided into two sections.
Section 3.1 presents our formalism to compute the cross section and the numerical methodology.
In section 3.2 we present the main results of our work, focusing on the dependence of the cross
section on different physical quantities.

3.1 Theoretical Formalism

3.1.1 Time-Dependent Perturbation theory

First we are going to obtain the transition probability between two states for a given time-
dependent potential. We will not use the natural units in the first part of this chapter in order
to give more general expressions. However, at the end of the section on formalism we will come
back to the natural units. The following formalism is explained in more detail in chapter 19
of Merzbacher’s book [20]. The total hamiltonian of the system is decomposed into two terms,
the Bogoliubov-deGennes hamiltonian HBdG that corresponds to the unperturbed system and
whose solutions are known, and the second term V that corresponds to a small perturbation that
depends on time. We do not specify yet that this potential corresponds to the electromagnetic
field but for now it may represent a general potential,

H = HBdG + V . (3.1)

It will be useful to work in the interaction picture, starting from the Schrödinger equation,

ih̄
d|Ψ(t)〉
dt

= (HBdG + V )|Ψ(t)〉 , (3.2)

that can be transformed with the time-dependent unitary operator,

ih̄
d|Ψ̃(t)〉
dt

= Ṽ (t)|Ψ̃(t)〉, (3.3)

where the wave function and the potential in the interaction picture read

|Ψ̃(t)〉 = e
i
h̄
HBdGt|Ψ(t)〉, Ṽ (t) = e

i
h̄
HBdGtV e−

i
h̄
HBdGt. (3.4)

19



20 CHAPTER 3. SPECTROSCOPY

Next we can introduce the time evolution operator T̃ (t, t0), that gives the evolution of |Ψ̃(t)〉

|Ψ̃(t)〉 = T̃ (t, t0)|Ψ̃(t0)〉, (3.5)

where

T̃ (t, t0) = T exp

[
− i
h̄

∫ t

t0

Ṽ (t′)dt′
]

(3.6)

and T is the time ordering instruction.
The time dependent potential V is a small perturbation, a weak external forcing that will not

change the states in which the system can be asymptotically, only its occupation probabilities.
This potential induces changes in the system from an eigenstate |s〉 to an eigenstate |k〉 (or a
combination of them). Both the initial and final states are general solutions of the Bogoliubov-
deGennes hamiltonian. We are interested in the probability to be in state |k〉 at time t with |s〉
as initial state, specifically

〈k|Ψ̃(t)〉 = 〈k|T̃ (t, t0)|s〉 . (3.7)

At this step we must use perturbation methods to obtain a practical result. We use the
following expression for the time evolution operator at first-order

T̃ (t, t0) = 1− i

h̄

∫ t

t0

Ṽ (t′)dt′ + ... . (3.8)

Using eq. 3.4 and the difference in energy h̄ωks = Ek−Es we can obtain the transition amplitude

〈k|T̃ (t, t0)|s〉 = δks −
i

h̄

∫ t

t0

〈k|V (t′)|s〉eiωkst′dt′. (3.9)

The probability of the transition from |s〉 to |k〉 at time t when k 6= s is

Pk←s =

∣∣∣∣− ih̄
∫ t

t0

Vkse
iωkst

′
dt′
∣∣∣∣2 . (3.10)

This approximation is valid when the transition probabilities are small compared with one, for
short time intervals between t0 and t. However, with a transient perturbation that is weak
enough the approximation becomes valid for all times, when the initial time goes to −∞ and
the final time to +∞

Pk←s =

∣∣∣∣− ih̄
∫ +∞

−∞
Vkse

iωkst
′
dt′
∣∣∣∣2 . (3.11)

3.1.2 Electromagnetic field perturbation

Now we are going to consider the action of light on the system, particularizing the general
theoretical formalism of the previous part. We are going to obtain the induced perturbation
due to the presence of incident electromagnetic radiation. We start with the hamiltonian of an
atomic electron in the presence of an electromagnetic field

H =
1

2m

(
~p+

e

c
~A
)2
− eφ . (3.12)

Explicitly expanding the first term we have

H =
−h̄2

2m
∇2 − eφ(~r, t) +

e

mc
~A(~r, t) · h̄

i
∇− ieh̄

2mc

[
∇ · ~A(~r, t)

]
+

e2

2mc2

[
~A(~r, t)

]2
. (3.13)
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We will work in such conditions that the last term can be neglected. Moreover, choosing a
suitable gauge the vector potential is sufficient to describe the pure radiation field. The so-
called Coulomb gauge fulfills

∇2 ~A− 1

c2

∂2 ~A

∂t2
= 0, φ = 0, ∇ · ~A = 0. (3.14)

With the above assumptions only the kinetic term and the third term of 3.13 remain for
the perturbation due to pure radiation that we were looking for. Now we have the needed
perturbation in terms of the vector potential and the momentum operator

V =
e

mc
~A · ~p; . (3.15)

For our purposes it is necessary to assume a superposition of plane waves as incident radiation,
the corresponding vector potential being a wave packet. That is nothing more than a super-
position of harmonic plane waves that propagate at the speed of light c in direction n̂ with
polarization ê

~A(~r, t) =

∫ +∞

−∞
A(ω)e−iω(t− n̂·~r

c
) ê dω . (3.16)

The frequency amplitude A(ω) is a real function satisfying A(ω)∗ = A(−ω). Furthermore
∇ · A(~r, t) = 0 that implies n̂ · ~A(ω) = A(ω)n̂ · ê = 0, i.e., polarization is orthogonal to the
propagation direction. Inserting 3.16 in 3.15 we obtain the potential V in the desired final form

V =
e

mc

∫ +∞

−∞
A(ω) e−iω(t− n̂·~r

c
) ê · ~p dω . (3.17)

3.1.3 Cross Section

Having the potential V we can compute now the transition probability. The transition amplitude
reads

〈k|T̃ (+∞,−∞)|s〉 = − ie

h̄mc

∫ +∞

−∞

∫ +∞

−∞
〈k|ei

ω
c
n̂·~r~p · ê|s〉A(ω) ei(ωks−ω)t′ dωdt′

= −2πie

h̄mc

∫ +∞

−∞
〈k|ei

ω
c
n̂·~r~p · ê|s〉A(ω) δ(ωks − ω) dω

= −2πie

h̄mc
〈k|ei

ωks
c
n̂·~r~p · ê|s〉A(ωks) , (3.18)

and the corresponding transition probability, given by the modulus square of the transition
amplitude,

Pk←s =
4π2e2

h̄2m2c2
|A(ωks)|2

∣∣∣〈k|eiωks n̂·~rc ~p · ê|s〉∣∣∣2 . (3.19)

The quantity |A(ω)|2 can be related to the energy flux using the Poynting vector

~N =
c

4π
~E × ~B. (3.20)

The following relation, proved in [20], allows us to derive the relation 3.22,∫ +∞

−∞
~N · n̂dt =

∫ +∞

0
N (ω)dω =

1

c

∫ +∞

0
ω2|A(ω)|2dω, (3.21)
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N (ω) =
ω2

c
|A(ω)|2. (3.22)

The average energy transfer at frequency ωks is

h̄ωksPk←s =
4π2α

m2ωks

∣∣∣〈k|eiωks n̂·~rc ~p · ê|s〉∣∣∣2N (ωks) , (3.23)

where α = e2

h̄c is the fine structure constant.

The cross section is a fictitious area that placed perpendicularly to the electromagnetic
radiation would be crossed by the same energy that the system absorbs. The absorbed energy
in the interval (ω, ω + dω) is

σ(ω)N (ω)dω . (3.24)

Then, the energy transfer at ωks is equal to the integral of this quantity in the neighborhood
∆ω of the frequency ωks∫

∆ω
σ(ω)N (ω)dω =

4π2α

m2ωks

∣∣∣〈k|eiωks n̂·~rc ~p · ê|s〉∣∣∣2 N (ωks). (3.25)

For now we are assuming only one transition, meaning that the cross section will have a
narrow peak at ω = ωks, and we can do the following approximation,∫

∆ω
σ(ω)N (ω)dω ≈ N (ωks)

∫
∆ω

σ(ω)dω . (3.26)

The integrated cross section is thus written in terms of the matrix element that involves the
transition s → k, ∫

∆ω
σ(ω)dω =

4π2α

m2ωks

∣∣∣〈k|eiωks n̂·~rc ~p · ê|s〉∣∣∣2 . (3.27)

In an equivalent way, the peak of the cross section is nothing more than a Dirac delta with the
appropriate amplitude,

σ(ω) =
4π2α

m2ωks

∣∣∣〈k|eiωks n̂·~rc ~p · ê|s〉∣∣∣2 δ(ω − ωks). (3.28)

Summarizing, we have obtained after some approximations the cross section for a transition
from s to k. However, in reality as we have seen in the previous chapter, there are more
energy states than two. We will consider the complete spectrum as a superposition of the cross
sections of all possible transitions at different energies. We must also take into account that
with fermions not all transitions are physically allowed, as only occupied-unoccupied transitions
are permitted. Considering the level occupations of the system we must introduce the Fermi
occupation distributions. The probability of the state |s〉 being occupied is fs, the probability
of the state |k〉 being empty is 1− fk and the product is associated with the probability of the
transition s → k. We see how the occupation of the levels plays a role in figure 3.1 for a given
temperature. Finally, the total cross section in natural units is

σ(ω) = 4π2α
∑
k,s

1

ωks

∣∣∣〈k|eiωkscso
n̂·~r~p · ê|s〉

∣∣∣2 δ(ω − ωks) fs (1− fk) . (3.29)

where cso is the speed of light in natural units.
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As we can see from equation (3.29), the cross section explicitly depends on frequency ω, light
propagation direction n̂ and polarization ê. It also has a temperature dependence that is hidden
in the fermi functions. We will study the dependence of the cross section with all these variables
in the following section. However, we argue now that the propagation direction n̂ does not really
influence the cross section, as a consequence of our system being in the dipolar approximation
regime. The energy differences in our system are in the range h̄ωks ≈ 1Eso ≈ 0.4 meV for
an InAs semiconductor. Then the associated wave length is λ = 2πc/ωks ≈ 3 mm while the
maximum dimension of the nanostructure is of the order of the µm. The wave length of the light
is thus typically much larger than the nanowire and, therefore, the electromagnetic radiation
affects homogeneously all the nanostructure. It can be understood performing the expansion of
the harmonic term,

ei
ωks
cso

n̂·~r = 1 + i
ωks
cso

n̂ · ~r + ... . (3.30)

The second term of the expansion is three orders of magnitude smaller than one, allowing the

replacement ei
ωks
cso

n̂·~r ≈ 1. This is the limit of the dipole approximation and it is for this reason
that the propagation direction does not have any effect on the spectrum.

Figure 3.1: Energy spectrum for our system with Zeeman energy ∆B = 0.5Eso. The
energy levels are represented by the horizontal (green) lines while the shading (colour) plot
corresponds to the occupations as given by the Fermi distribution. It can be easily seen
that for a temperature T = 0.5 K the Fermi sea smooth variations affect many levels close

to zero energy.

The numerical computation of equation 3.29 requires considering all possible combinations
of different transitions and computing the corresponding cross section matrix element for each
one of them. For this we need to know all the energy levels and their respective wave functions,
obtained in the previous chapter. Once we have the wave functions and the energy levels the
most complicated thing is computing the matrix elements. The matrix elements involve a sum
of the spatial integrals of the four components of the wave function. Moreover, the momentum
operator involves also derivatives obtained with finite differences. The polarization direction ê
determines which component of the momentum operator is contributing. We characterize the
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Figure 3.2: Transformation of a delta peak into a smoothed cross section using Lorentzians
of width Γ. The left part corresponds to a single peak and the right one to multiple peaks

of different heights. The central position of each peak is indicated by the vertical lines.

polarization with the azimuthal angle ϕ, varying from x̂ for ϕ = 0◦ to ŷ for ϕ = 90◦. The final
result is a set of the possible frequencies and the respective values of the cross section.

Although we know how to compute the cross section as a collection of delta peaks, the results
presented below are not the plain data. In order to give more physically intuitive plots we have
used a normalized Lorentzian function for each peak

L(ω) =
1

2π

Γ

(ω − ωi)2 + Γ2

4

, (3.31)

where Γ is the width of the Lorentzian and ωi its central position. The final cross section is a
superposition of the Lorentzians for all the transitions,

σ(ω) =
∑
i

σi
2π

Γ

(ω − ωi)2 + Γ2

4

, (3.32)

where σi and ωi are the value of the cross section and the frequency of each transition, re-
spectively. This is nothing more than a visualization technique to show the results in a more
realistic way. We have taken the constant Γ = 0.05Eso, a value that is useful to distinguish the
contributions of the different transitions while, at the same time, it is in reasonable agreement
with the experimental capabilities of measurement. With an InAs semiconductor Eso = 0.4 meV
would correspond to an experimental resolution of 20 µeV, or what is the same 0.2 cm−1. The
equivalent resolution presented in our theoretical results is below the experimental resolution
found in the bibliography [21–26], however it does not differ in a high magnitude. There are
experiments with better resolutions but they are not focused on nanostructures [27].

The numerical implementation has been done in fortran to compute the results and with
Mathematica for the graphical presentations. Specifically, the part of the code corresponding to
the cross section calculations does not present a high computational cost. As mentioned in the
previous chapter the resolution of the hamiltonian eigenvalue problem is the most demanding
part.

3.2 Results

This section contains the main results of this master thesis. Here we discuss the electromagnetic
cross section of 2D Majorana nanowires focussing, specifically, on the elucidation of the signa-
tures of the presence of zero modes. Thus, our main goal is to provide guides for the detection
of zero modes with optical spectroscopy.
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Figure 3.3: Evolution with ∆B of the set of 32 energy eigenvalues lying closer to zero
energy. Notice how the zero-energy mode appears for ∆B > 0.42Eso.

3.2.1 Magnetic field dependence

The first results that we want to present are the dependence of the spectrum of eigenvalues on
the Zeeman energy. This dependence explicitly shows the appearance of a Majorana state when
∆B increases and, for this reason, it is important to understand how magnetic field affects the
spectrum. In a finite nanowire the topological transition from absence to presence of a zero
mode occurs in a smooth way. This transition becomes sharp only in the semi infinite system,
where a zero mode requires

∆B >
√

∆2
0 + (µ− εn)2 , (3.33)

with εn = h̄2π2n2/(2mL2
y) (n = 1, 2, . . . .) the transverse mode energies depending on the trans-

verse length Ly.

As we are mainly interested in the formation of a Majorana state, we only consider magnetic
fields increasing from zero up to the emergence of the Majorana state, while much greater values
of Zeeman energies will not be of interest in this chapter. Technically, we truncate the spectrum
to the set of 32 eigenvalues lying closer to zero energy. This truncation of the spectrum is
imposing a superior limit for the energy such that the cross section is correctly computed. For
higher energies our calculated cross section will always miss the transitions from states not
included in our space. We shall discuss physical properties that do not depend on states lying
much higher or much lower than zero. We are actually interested in the properties depending
on the Majorana state lying very near zero energy.

Figure 3.3 shows the magnetic field dependence of the energy eigenvalues up to ∆B = 0.5Eso.
The cross section is characterized by transitions among the system energy levels. For very
small temperatures states at negative energies are occupied while states at positive energies
are empty. For low values of ∆B the energy spectrum is characterized by the presence of a
wide gap centered on zero energy. This gap prevents any transition for energies lower than the
corresponding energy jump (≈ 0.5Eso in figure 3.3). When the Zeeman energy increases, the
gap diminishes and eventually closes for ∆B ≈ 0.42Eso when the lowest energy levels collapse
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Figure 3.4: Three different representations of the cross section for different values of
magnetic field. Thin vertical lines indicate the positions of all possible transitions from
negative to positive energy levels, transitions from −E to E levels are neglected according
with section 2.2. The calculations have been done with polarization along x̂ and temperature

T = 0.045 K.

into the Majorana state. In this configuration we may distinguish two types of transitions. The
first group of transitions (type I) are those not involving the Majorana state and the second
one (type II) are precisely the transitions from the Majorana state to the rest. The energy
spectrum for ∆B = 0.5Eso shows again a gap smaller than the gap for vanishing Zeeman, with
the Majorana state right in the middle.

Considering the optical transitions, the above scenario suggests the following criterion to
infer the existence of a zero mode from experiments: if there is a transition in the cross section
at energy lower than the gap then it must correspond to a transition from the mid-gap Majorana
state. That is, in presence of a Majorana mode the lowest type II transition is at an energy
which exactly equals half the energy of the lowest type I transition. Notice that the lowest
transition of type I coincides with the gap in the spectrum (not counting the Majorana state).
In the following we explicitly calculate the transition matrix elements to ascertain this scenario
for different polarizations of the external field.

Polarization along x̂

We analyze first the cross section for polarization along x̂, the long axis of the nanowire, for
a low temperature (T = 0.045 K). In Fig. 3.4 we plot the computed cross sections for three
selected Zeeman fields. Each panel also shows with thin vertical lines the positions of all possible
transitions from negative to positive energy levels, moreover we have neglected all the lines
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associated to transitions from energy levels −E to the correspondent positive level E. We saw
in section 2.2 that since the matrix element of the momentum operator is zero these no contribute
to the cross section.
The first panel is for a low value of the Zeeman energy, when there is a clear gap, and we can see
that the cross section although it is rather small concentrates as expected in an energy region
with many transitions. In the second panel we can appreciate that the gap is very much reduced,
as compared to the preceding panel, since transitions for lower energies are increasingly allowed.
The reader should notice a peak, the first one in energy, without a corresponding vertical line.
This is a temperature effect as can be deduced from the analysis of the data. Although the
temperature is rather low, when the gap closes the first and the second negative energy levels
become thermally activated and a transition between them can appear. For the third panel, as
seen in Fig. 3.3, there is Majorana state. The manifestation in the cross section is not clear,
since the lowest transition at ω ≈ 0.12Eso involving the Majorana state (type II) only creates a
small bump on the cross section.

The dependence on magnetic field of the cross section can not be appreciated very well in
figure 3.4. In figure 3.5 we have superposed in the same plot different cross sections to better see
how this quantity changes. The cross section for low Zeeman energies is very small, almost flat
compared with the results of high Zeeman energies. For low magnetic fields the cross section
is near the cut off and this fact also induces a decrease of the cross section because we don’t
have the same contributions from the right hand side, when the Zeeman energy increases the
main transitions go to the left and this effect is lower. Nevertheless, the effects of the cut off
are not strong, we have enough eigenvalues to do the analysis. For ∆B = 0.449Eso we can see
clearly that there are transitions for energies lower than the energy gap (the energy gap for type
I transitions usually coincides with the highest peak of the cross section). In figure 3.6 we show
the complete evolution of the cross section with Zeeman field as a three dimensional plot and
as a contour plot. Although we can not extract very interesting conclusions from these figures
they will be useful to compare with the results for polarization in ŷ direction of the following
section.
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Figure 3.5: Different cuts at constant magnetic field of the cross section with polarization
along x̂ and temperature T = 0.045 K.
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Figure 3.6: Magnetic field dependence of the cross section for x̂ polarization and temper-
ature T = 0.045 K. These representations show the complete evolution of the cross section,

with the second panel focussing on the lower peaks of σ.

In figure 3.6 we see a general behavior that qualitatively resembles the eigenvalue distribu-
tions. As the magnetic field is increased there is a tendency to decrease the energy of the peaks,
due to the gap closing. There is also a clear tendency to increase the height of the absorption
peaks as the gap closes. The right panel shows the appearance of some subgap peaks of low
intensity for ∆B > 0.4Eso but, as already mentioned, they are rapidly hidden by much higher
peaks originating from transitions across the gap (type I).

Polarization along ŷ

Contrary to the case of polarization along x̂ of the preceding section, the manifestations of the
presence of a Majorana state can be clearly seen with ŷ polarization. Figure 3.7 shows these
effects. In the first panel the presence of the gap forbids low energy transitions. Moreover, the
cut off also introduces a decrease of the cross section. In the second panel the gap is almost
closed and there are transitions at low energies. The lowest transition for this magnetic field
achieve the maximum of the cross section, this can be also seen in figure 3.9 that show very
clearly the evolution of the maximums. These four first maximums that appear in the second
panel seems to follow some logarithmic or exponential decay, if we realize various fits the best is
a quadratic one, however the results are not very good to affirm that follow some rule. The third
panel corresponds to the configuration having the Majorana state, with a smaller gap, and it
can be distinguished with the argument given above. The first transition is around ω ≈ 0.12Eso
while the gap for type I transitions is at ω ≈ 0.25Eso. This lower transition must involve the
Majorana state. The remarkable thing is that with ŷ polarization these low energy type II tran-
sitions are now strong enough to confirm the presence of a Majorana state. Furthermore, the
cross section is such that the two groups of transitions can be clearly identified. The first group
is, as we have said, the first group of transitions and the second one starts at the minimum that
the cross section has in the middle, around ω ≈ 0.25Eso. We can see also in this third panel that
around ω ≈ 0.45Eso there is a dense group of transitions associated with the maximum, this is
different from the case of x̂ polarization, where this dense group is not the most contributing.

In figure 3.8 we superpose the cross sections for varying Zeeman energies in order to em-
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Figure 3.7: Three different representations of the cross section for different values of
magnetic field with the possible transitions explained in section 3.2.1. Simulations with ŷ

polarization and temperature T = 0.045 K.

phasize the variation with the closing of the gap. Moreover we can see from this figure that
there is no peak for energies higher than ω ≈ 0.5Eso, even though the set of eigenvalues contains
transitions at such energies as shown by the vertical lines in 3.7. The interesting thing is this
high-energy behaviour remains constant with magnetic field, contrary to the x̂ polarization case.
In figure 3.9 the phenomenon can be seen with more detail. We understand this as the com-
bination of two effects: the first one is the finite number of eigenvalues in the analysis that, as
explained above, gives a cut off in the cross section; the second one is the formation of subband
grouping of the states in the finite system.

If we think in the energy solutions for the infinite square well εn = h̄2π2n2

2mL2 , for low values of
L the separation between levels is high, indicating that with strong confinement there is more
separation between levels. A two dimensional system with strong confinement in the y direction
and lower confinement in the x direction will have the levels organized in groups such that
changing nx we change energy level within a group, while changing ny we change to another
group of energy levels. Therefore when ny is changed the transition energy is higher than the
corresponding change in nx. The x̂ polarization matrix elements involve px and this operator
changes the longitudinal mode of the wave function while, on the other hand, the ŷ polarization
involves matrix elements of py and requires transitions that change the transversal modes. In
conclusion, the x̂ polarization cross section involves transitions within the same group while
the ŷ polarization induces transitions to a different group. From this point of view it is not a
surprise that the truncation of the set of eigenvalues affects differently the x̂ and ŷ polarized
cross sections.
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Figure 3.8: Different cuts at constant magnetic field of the cross section with polarization
along ŷ axis and temperature T = 0.045K.

Figure 3.9: Magnetic field dependence of the cross section for ŷ polarization and temper-
ature T = 0.045K.

With the above interpretation in terms of subband groups we can understand somewhat
better the results. We can interpret in figure 3.9 that the ŷ polarization depends on transitions
that change group and forbids lower transitions within the same group that make the spectrum
less clear and hide the effect of the cut off.

3.2.2 Polarization effects

We present now the explicit dependence on polarization direction at constant magnetic field
when the Majorana is well formed. In figure 3.10 we display the cross section for different values
of the polarization angle ϕ changing continuously from x̂ to ŷ direction. We have superposed
the possible transitions in order to see which polarization activates which transition. The lowest
curve, corresponding to x̂ polarization is the same curve presented in the third panel of figure
3.4. The induced transitions by ŷ start to grow when the polarization angle increases and
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the y component of the polarization vector becomes larger. Finally the induced transitions by
x̂ polarization fade away when the polarization angle ϕ = 90◦. We can see clearly that the
polarization along the ŷ axis enhances the Majorana transitions (type II) that start at lower
energies than the others.
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Figure 3.10: Cross section representations for different values of the polarization angle ϕ
(in degrees). The polarization angle changes from x̂ polarization to ŷ polarization. This
simulations have been done at constant magnetic field ∆B = 0.5Eso and temperature T =

0.045K.

One of the problems we should face in the experimental analysis of the absorption cross
section is that we cannot distinguish if the spectrum starts at lower energies than the gap if we
do not know the value of the gap. We suggest two ways to know the value of the gap: the first is
using the theoretical prediction, the second is using the polarization effect. Since for polarization
along x̂ the spectrum starts at the energy of the gap we can extract the corresponding value
from this experimental information. After that, we can change to polarization along ŷ and, if
lower transitions appear, we can infer the presence of a Majorana state.

3.2.3 Temperature effects

In the preceding subsections we have seen signatures in the spectrum of the presence of a Ma-
jorana state. However, we were considering a low temperature regime. For higher temperatures
the thermal occupations start to play an important role in the transitions, with the possible
transitions being not only restricted from negative energy to positive energy. We shall discuss
the temperature dependence starting from low temperature T = 0.045 K and increasing until
T = 4.523 K for the two extreme polarizations.

Thermal x̂ polarization

In figure 3.11 we can see the temperature dependence for x̂ polarization. In the upper panel
we can see all the spectra while the lower one zooms in the lowest curves. For this polarization
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the temperature effects are very strong with all the signatures of the low temperature cross
section being washed out already for T ≈ 4K. It is not a big surprise that quantum effects and
temperature are not good friends. In the present case the situation becomes dramatic due to
the large weight of the low energy transitions induced by the px operator.
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Figure 3.11: Evolution of the cross section as a function of temperature for polarization
along x̂ and constant magnetic field ∆B = 0.5Eso. Different curves of the cross section
are presented, the temperature of each one being determined by the color according to
the legend. The first panel shows all the curves while the second one zooms in the low

temperature part.

Thermal ŷ polarization

A qualitatively different behavior is seen for the ŷ polarization. When the temperature increases
in the same interval as before some low energy transitions appear, but the good thing is that
these transitions do not cover the low temperature features of the cross section. The intensity of
the transitions diminishes with temperature but the Majorana transitions remain clearly visible.
This protection is again due to the ŷ polarization not allowing low energy transitions within the
same group of states. We believe this is an important result, suggesting the manifestation
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of a Majorana state at relatively high temperatures. For a nanostructure four kelvins is a
considerable temperature, and the Majorana transitions remain there. This fact could be an
important argument to use spectroscopy with the aim of detecting Majorana states.
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Figure 3.12: Evolution of the cross section as a function of temperature for polarization
along ŷ and constant magnetic field ∆B = 0.5Eso. Different curves of the cross section are
presented, the temperature of each one is determined by the color according with the legend.
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Conclusions

The main aim of this work is the study of Majorana states in order to understand better
the interesting properties that they manifest. More specifically, the understanding of those
properties that could help to detect these peculiar states in experiment. In the first pages of this
work we argued the connections with Particle Physics and the possible applications in Quantum
Computation. The detection and manipulation of Majorana states is an important aim for
science, and of course a good topic to devote our efforts.

We have studied in this work more specifically the optical properties but we have also re-
viewed in a more general way the properties of the Majorana states described by the Bogoliubov-
deGennes hamiltonian. One of the things that we have seen are the conditions that must fulfill
a system to host Majorana states. We have also seen the implications of the symmetries of the
Bogoliubov-deGennes hamiltonian on the optical spectrum, forbidding transitions from energy
levels −E to the correspondent positive ones E. Furthermore, we have classified the transitions
in two types, whether or not involving the Majorana state.

Referring to the optical properties of the system, we have analyzed the dependence on
different parameters. One of the important things in this part is the energy gap and how it
changes with the Zeeman energy. The gap is vital to detect Majorana states. The polarization
effect points out the differences in the inference of Majoranas, while polarization along the x̂
axis does not show very well the presence of a Majorana state, polarization along ŷ axis very
clearly manifests the presence of this. Moreover, polarization along ŷ axis also evidences larger
energy transitions for the transversal mode of the wave function. Polarization effects give us
a useful method to determine experimentally the energy gap. The gap can be measured using
x̂ polarization and this may help to infer the presence of the Majorana state for polarization
along ŷ axis. Finally, the dependence with temperature also shows a strong difference between
the two polarizations. In the case of x̂ polarization the temperature effects rapidly destroy all
the signatures of the initial spectrum, while the ŷ polarization shows a strong resistance. This
resistance is due to the higher energy transitions in ŷ polarization, better avoiding the thermal
smearing of the gap.

To sum up, the analysis presented in this work can help to understand in a better way
the properties of the Majorana states. Our results can motivate the use of novel techniques
like optical spectroscopy that could be useful to detect the Majorana states and confirm their
existence in nanowires.
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