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1 Instituto de Biologı́a Funcional y Genómica, Consejo Superior de Investigaciones Cientı́ficas and University of Salamanca, Salamanca, Spain, 2 Division of Gene

Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands, 3 Unidad de Investigación, Hospital Universitario de Canarias, Tenerife, Spain

Abstract

During meiosis, accurate chromosome segregation relies on the proper interaction between homologous chromosomes,
including synapsis and recombination. The meiotic recombination checkpoint is a quality control mechanism that monitors
those crucial events. In response to defects in synapsis and/or recombination, this checkpoint blocks or delays progression
of meiosis, preventing the formation of aberrant gametes. Meiotic recombination occurs in the context of chromatin and
histone modifications, which play crucial roles in the maintenance of genomic integrity. Here, we unveil the role of Dot1-
dependent histone H3 methylation at lysine 79 (H3K79me) in this meiotic surveillance mechanism. We demonstrate that the
meiotic checkpoint function of Dot1 relies on H3K79me because, like the dot1 deletion, H3-K79A or H3-K79R mutations
suppress the checkpoint-imposed meiotic delay of a synapsis-defective zip1 mutant. Moreover, by genetically manipulating
Dot1 catalytic activity, we find that the status of H3K79me modulates the meiotic checkpoint response. We also define the
phosphorylation events involving activation of the meiotic checkpoint effector Mek1 kinase. Dot1 is required for Mek1
autophosphorylation, but not for its Mec1/Tel1-dependent phosphorylation. Dot1-dependent H3K79me also promotes
Hop1 activation and its proper distribution along zip1 meiotic chromosomes, at least in part, by regulating Pch2 localization.
Furthermore, HOP1 overexpression bypasses the Dot1 requirement for checkpoint activation. We propose that chromatin
remodeling resulting from unrepaired meiotic DSBs and/or faulty interhomolog interactions allows Dot1-mediated H3K79-
me to exclude Pch2 from the chromosomes, thus driving localization of Hop1 along chromosome axes and enabling Mek1
full activation to trigger downstream responses, such as meiotic arrest.
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Introduction
During the specialized meiotic cell cycle, two rounds of

chromosome segregation follow a single phase of DNA replica-

tion dividing the number of chromosomes by half to generate

haploid gametes. One of the hallmarks of meiosis is the complex

interaction between homologous chromosomes (homologs)

involving synapsis and recombination. During meiotic prophase

I, homologs find each other, get aligned and finally closely

associate along their entire length (synapsis) in the context of the

synaptonemal complex (SC). The SC is a tripartite structure

composed of two lateral elements (LEs), connected by transverse

filaments, which constitute the central region. The chromatin of

both sister chromatids of each homolog is organized in loops

attached at their base to each of the LEs [1,2]. In budding yeast,

the Red1 and Hop1 proteins localize to the LEs [3], whereas the

Zip1 protein is a major component of the SC central region

[4,5]. Concomitant with SC development, meiotic recombina-

tion takes place. Meiotic recombination initiates with pro-

grammed double-strand breaks (DSBs) introduced by Spo11 and

accessory proteins [6]. Meiotic DSBs are preferentially repaired

using an intact non-sister chromatid resulting in physical

connections between homologs (chiasmata), which promote

proper chromosome segregation.

Accurate distribution of chromosomes to the progeny is essential

for generation of functional gametes; thus, meiotic cells are

endowed with a meiosis-specific surveillance mechanism, the so-

called pachytene checkpoint or meiotic recombination checkpoint,

which contributes to faithful chromosome segregation. In response

to defects in meiotic recombination and/or chromosome synapsis,

the pachytene checkpoint is triggered and blocks or delays exit

from prophase of meiosis I to prevent aberrant chromosome

segregation and the formation of aneuploid meiotic products [7,8].

This evolutionary-conserved quality-control mechanism oper-

ates from yeast to mammals. In S. cerevisiae, the meiotic

recombination checkpoint responding to unrepaired resected

DSBs shares the same sensors with the DNA damage checkpoint

operating in vegetative cells, including the Mec1/Ddc2 kinase,

Rad24 and the 9-1-1 complex [9–11]. However, the Rad9 adaptor

and the Rad53 checkpoint kinase are dispensable for this meiotic

checkpoint. On the contrary, given the special chromosomal
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context where meiotic recombination takes place, the meiosis-

specific axial chromosomal components Red1 and Hop1 act as

adaptors between the upstream sensors and the downstream Mek1

meiotic effector kinase, which, like Rad53, is hyperphosphorylated

upon checkpoint activation [12,13]. In turn, the meiotic cell cycle

delay is imposed by inhibition of crucial regulators of meiosis I

progression, including the cyclin-dependent kinase Cdc28, the

transcription factor Ndt80 and the polo-like kinase Cdc5 [14–19].

Budding yeast meiotic mutants, such as zip1 (defective in SC and

crossover formation) or dmc1 (defective in the strand invasion step

of interhomolog recombination), are invaluable genetic tools to

activate the meiotic recombination checkpoint.

Meiotic recombination as well as detection and signaling of

recombination intermediates by the checkpoint machinery occur

in the context of chromatin; therefore, histone posttranslational

modifications are expected to play important roles on these

processes [20]. For example, Set1-dependent H3K4 methylation

is linked to meiotic DSB formation [21,22]. On the other hand,

the Dot1 histone methyltranferase, which targets H3K79 [23–

25], is largely dispensable for unperturbed meiosis, but is

essential for meiotic checkpoint function. Mutation of DOT1

relieves the meiotic prophase arrest of zip1 and dmc1 mutants

resulting in defective meiotic products [26]. Dot1 is also involved

in several aspects of the DNA damage response in vegetative

yeast cells and the DOT1L mammalian homolog also plays

crucial cellular functions [27]. However, the molecular mecha-

nisms underlying the meiotic checkpoint function of Dot1 are

unknown.

Here, we investigated the role of Dot1-dependendent H3K79

methylation in zip1-induced checkpoint activation. By manip-

ulation of Dot1 catalytic activity and levels, we found that the

extent of H3K79 trimethylation correlates with the strength of

checkpoint-imposed meiotic delay. We demonstrate that while

the meiotic defects of a synapsis and recombination-deficient

zip1 mutant are correctly sensed by Mec1-Ddc2 in the absence

of H3K79me, activation of the downstream effector kinase

Mek1 is impaired. We dissected the Mek1 phosphorylation

events and found that Dot1 promotes its Hop1-dependent

dimerization and auto-phosphorylation. Finally, we show that

the effect of Dot1-dependent H3K79me on Hop1 localization is

exerted, at least in part, by excluding Pch2 from the

chromosomes. Our results indicate that constitutive methylation

of H3K79 by Dot1 is required for proper chromosomal

recruitment of Hop1 to relay the checkpoint signal to Mek1 in

response to meiotic defects.

Results

Histone H3K79 methylation regulates the meiotic
recombination checkpoint

Dot1 catalyzes the mono-, di- and tri-methylation of histone

H3K79 (Figure 1A) by a non-processive mechanism [27,28] and

plays a crucial role in the meiotic recombination checkpoint [26].

Notably, we found that overall levels of H3K79me do not

significantly change upon meiosis induction (Figure 1A, compare

vegetative and meiotic cells; Figure S1A) or upon meiotic

checkpoint activation (Figure 1A, compare wild type and zip1

meiotic cells; Figure S1A). Moreover, H3K79me meiotic levels

were not significantly altered in the spo11 mutant, lacking meiotic

recombination [6], or in other mutants defective in the meiotic

recombination checkpoint, such as rad24, pch2 and ddc2 [10,11,29]

(Figure S1B). Therefore, to determine whether regulation of the

meiotic recombination checkpoint by Dot1 relies on H3K79me,

we generated and analyzed H3-K79R and H3-K79A mutants, in

which the lysine 79 targeted by Dot1 cannot be methylated

(Figure 1A). Importantly, like dot1, both methylation-site mutants

suppressed the pronounced checkpoint-imposed meiotic delay of

the zip1 mutant (Figure 1B). In an otherwise wild-type back-

ground, DOT1 deletion has no or little meiotic effects and spore

viability is high [26,30]; likewise, the H3-K79R and H3-K79A

single mutants showed wild-type levels of spore viability

(Figure 1C), suggesting that H3K79me is dispensable in unper-

turbed meiosis. However, similar to zip1 dot1, spore viability was

strongly reduced in zip1 H3-K79R and zip1 H3-K79A (Figure 1C),

indicating that the defects conferred by zip1 persist in the double

mutants despite their wild-type kinetics of meiotic progression.

Thus, Dot1-dependent H3K79me is essential for meiotic recom-

bination checkpoint function.

To further investigate the regulation of the meiotic checkpoint

by H3K79me, we monitored checkpoint function in zip1 diploid

strains exhibiting gradually decreased Dot1 activity. In order to

generate this set of strains, we used the combination of the dot1-

G401A allele, which confers partial catalytic activity [28], with the

expression of DOT1 (or dot1-G401A) from a plasmid, which results

in lower protein levels (Figure 1D; [31]). Analysis of H3K79-me1, -

me2 and -me3 levels in meiotic cells confirmed a gradually

reduced Dot1 activity following this order: DOT1.p[DOT1].

dot1-G401A.p[dot1-G401A].dot1D, as manifested by progressively

reduced H3K79-me3 and, conversely, progressively increased

H3K79-me1 (Figure 1D). Interestingly, meiotic checkpoint activ-

ity, monitored as the ability to impose the zip1 meiotic delay, also

showed a gradual decrease mirroring the drop in Dot1 catalytic

function (Figure 1E). Quantification of the relative levels of each

H3K79 methylation state revealed a marked correlation between

H3K79-me3 and checkpoint function (Figure 1F). Thus, the status

of H3K79 methylation modulates the meiotic recombination

checkpoint, with the H3K79-me3 form being the most relevant to

sustain the checkpoint response.

Author Summary

In sexually reproducing organisms, meiosis divides the
number of chromosomes by half to generate gametes.
Meiosis involves a series of interactions between maternal
and paternal chromosomes leading to the exchange of
genetic material by recombination. Completion of these
processes is required for accurate distribution of chromo-
somes to the gametes. Meiotic cells possess quality-control
mechanisms (checkpoints) to monitor those critical events.
When failures occur, the checkpoint blocks meiotic
progression to prevent the formation of aneuploid
gametes. Genetic information is packaged into chromatin;
histone modifications regulate multiple aspects of DNA
metabolism to maintain genomic integrity. Dot1 is a
conserved methyltransferase, responsible for histone H3
methylation at lysine 79, that is required for the meiotic
recombination checkpoint. Here we decipher the molec-
ular mechanism underlying Dot1 meiotic checkpoint
function. We show that Dot1 catalytic activity correlates
with the strength of the checkpoint response. By regulat-
ing Pch2 chromatin distribution, Dot1 controls localization
of the chromosome axial component Hop1, which, in turn,
contributes to activation of Mek1, the major effector kinase
of the checkpoint. Our findings suggest that, in response
to meiotic defects, the chromatin environment created by
a constitutive histone mark orchestrates distribution of
structural components of the chromosomes supporting
activation of the meiotic checkpoint.

Meiotic Checkpoint Role of H3K79me
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Figure 1. Methylation of H3K79 by Dot1 is essential for meiotic recombination checkpoint function. (A) Western blot analysis of H3K79
methylation in vegetative (VEG) and meiotic (MEI) cells to compare H3K79 methylation levels in different mutant backgrounds. Samples of meiotic
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Dot1 is required for activation of the Mek1 effector
kinase

Next, we sought to determine where in the meiotic recombi-

nation checkpoint pathway Dot1-dependent H3K79me is acting.

We first analyzed checkpoint sensor function by monitoring the

formation of zip1-induced Ddc2-GFP foci [11]. Formation of

Ddc2 foci was not disrupted in the absence of Dot1 (Figure 2A),

suggesting that H3K79me is not required for the ability of Mec1-

Ddc2 to detect meiotic recombination intermediates. Upon

checkpoint activation, the Mek1 effector kinase forms nuclear

foci that can be detected both on chromosome spreads ([9]; see

below) and in live meiotic cells (Figure 2A). Strikingly, we found

that the zip1 mutant accumulated multiple discrete Mek1-GFP foci

during meiotic prophase, whereas most zip1 dot1 cells displayed a

diffuse Mek1 nuclear signal and only occasional foci were observed

(Figure 2A) indicating that Dot1 promotes checkpoint-induced

association of Mek1 to meiotic chromosomes (see below).

Mek1 is activated by phosphorylation in mutants that trigger the

meiotic recombination checkpoint, including zip1 [12,14,32,33];

therefore, we followed Mek1 phosphorylation throughout meiosis

in wild-type, zip1 and zip1 dot1 cells using Phos-tag gels (Figure 2B).

In the wild type, Mek1 was weakly and transiently activated during

the peak of meiotic prophase in this strain background (around

12–15 h). In contrast, Mek1 was hyperactivated in zip1 cells as

evidenced by the presence of additional, more persistent, and

stronger phosphorylated forms. However, Mek1 hyperactivation

was not observed in the zip1 dot1 double mutant; like in wild type,

only a weak and transient phosphorylated form was detected. To

rule out the possibility that the difference between zip1 and zip1

dot1 were due to their different kinetics of meiotic progression (zip1

exhibits a marked delay that is bypassed in zip1 dot1; Figure 1B),

we monitored Mek1 phosphorylation in ndt80 pachytene-arrested

cells. As presented in Figure 2C, zip1-induced hyperphosphoryla-

tion of Mek1 was severely impaired in the absence of Dot1.

In summary, these results place Dot1 function upstream of

Mek1 in the meiotic recombination checkpoint pathway and

indicate that, whereas Mec1/Ddc2 act independently of H3K79

methylation to sense meiotic defects, Dot1 is required for

checkpoint-induced activation of Mek1.

Autophosphorylation of Mek1 depends on Dot1
In ndt80-arrested cells, using high-resolution Phos-tag gels, we

were able to resolve several zip1-induced shifted forms of Mek1

above the basal band (Figure 3A–3D). Phosphatase treatment

eliminated all band shifts indicating that they represent distinct

phosphorylated forms (Figure 3A). We used different mek1 versions

carrying specific mutations, as well as mutants in upstream

components of the checkpoint pathway, in order to determine the

contribution of different phosphorylation events to the observed

checkpoint-induced Mek1 forms in zip1 ndt80 cells (Figure 3E).

Mek1 phosphorylation was completely abolished in the hop1

mutant, lacking a LE-component meiotic checkpoint adaptor

[3,34,35] (Figure 3B) and in the spo11 mutant, which does not

initiate recombination [36] (Figure 3C). However, in the absence

of Dot1, only the upper phosphorylated bands were eliminated

(Figure 3B–3D, white arrowheads), but the form immediately

above the basal Mek1 band remained intact (Figure 3B–3D, black

arrowhead). Interestingly, this moderately-shifted form was

reduced in mec1 cells and virtually disappeared in mec1 tel1 and

rad24 tel1 mutants (Figure 3C and 3D, black arrowhead),

suggesting that it arises from Mec1/Tel1-dependent phosphory-

lation. On the other hand, the kinase-dead mek1-K199R allele, as

well as the autophosphorylation-defective mek1-T327A and mek1-

T331A mutants [33], specifically lacked the upper bands

displaying the stronger mobility shift, suggesting that they result

from Mek1 autophosphorylation (Figure 3D, white arrowheads).

In contrast, the Mek1 form immediately above the basal band (i.e.,

resulting from Mec1/Tel1 action) remained invariable in those

mek1 mutants (Figure 3D, black arrowhead). Thus, interestingly,

the zip1 dot1 mutant showed a similar pattern to that of zip1 mek1-

K199R, zip1 mek1-T327A or zip1 mek1-T331A (Figure 3D), strongly

suggesting that Dot1 is mainly required for Mek1 autophospho-

rylation, but not for its Mec1/Tel1-dependent phosphorylation

(Figure 3E).

It has been proposed that dimerization of Mek1 promotes its

function, likely by facilitating in trans autophosphorylation [33,37].

Thus, we hypothesized that Dot1 could be required for Mek1

dimerization. Importantly, we found that GST-driven forced

dimerization of Mek1 restored its full phosphorylation even in the

absence of Dot1, although Mek1 activation was not maintained at

late time points (Figure 2B). Consistently, expression of GST-

MEK1 in zip1 dot1 strains conferred a brief, but significant, meiotic

delay (Figure 2D). As previously reported, the zip1 GST-MEK1

mutant was completely halted (Figure 2D) [37], and we found that

this block was accompanied by the persistent hyperphosphoryla-

tion of GST-Mek1 (Figure 2B). The permanent or transient arrest

conferred by GST-Mek1 in zip1 or zip1 dot1, respectively, was

completely relieved when inactive kinase (GST-mek1-K199R) or

autophosphorylation-defective (GST-mek1-T327A) versions were

introduced (Figure 2D), confirming that in GST-MEK1 strains,

meiotic progression was slowed down by forced Mek1 activation

and not by another unrelated cause. To further support this

conclusion, we monitored another downstream molecular marker

of pachytene checkpoint activation, such as the inhibition of the

production of the Cdc5 polo-like kinase [14,18]. As expected,

whereas induction of Cdc5 was delayed in zip1 cells, the zip1 dot1

double mutant displayed wild-type kinetics of Cdc5 production

(Figure 2B). Strikingly, consistent with the kinetics of meiotic

progression (Figure 2D), expression of GST-MEK1 in zip1 dot1 cells

restored a significant delay in Cdc5 induction. Furthermore, Cdc5

production was severely impaired in the arrested zip1 GST-MEK1

strain (Figure 2B). In summary, these observations indicate that

cells were taken 15 h after meiosis induction. Total histone H3 is shown as a loading control. (B) Suppression of zip1 meiotic delay by dot1 or by H3-
K79A and H3-K79R mutations. Time course of meiotic nuclear divisions; the percentage of cells containing more than two nuclei is represented. (C)
Spore viability determined by tetrad dissection. At least 240 spores were scored for each strain. Means and standard deviations are shown. Strains for
(A), (B) and (C) are: DP806 (wild type), DP807 (H3-K79A), DP808 (H3-K79R), DP809 (zip1), DP812 (zip1 dot1), DP810 (zip1 H3-K79A) and DP811 (zip1 H3-
K79R). (D) Western blot analysis of H3K79 methylation in zip1 strains producing different versions of Dot1 either from the endogenous loci (DOT1 and
dot1-G401A) or from a centromeric plasmid (p[DOT1] and p[dot1-G401A]). Samples were taken 24 h after meiosis induction. Dot1 levels are also
shown. Total histone H3 serves as a loading control. (E) Time course of meiotic nuclear divisions; the percentage of cells containing more than two
nuclei is represented. (F) Quantification of the relative levels of H3K79 mono-, di-, and tri-methylation. The maximum value of each methylation state
was considered 100%. Checkpoint activity represents the ability to impose the zip1 meiotic delay according to data in (E). The meiotic nuclear division
values for the latest time point (60 h) were considered in the calculations. Maximum checkpoint activity (100%) was assigned to the zip1 strain
expressing endogenous wild-type DOT1. Strains for (D), (E) and (F) are: DP421 + pRS315 (wild type), DP555 + pRS315 (zip1 dot1D), DP555 + pRS315-
DOT1 (zip1 p[DOT1]), DP555 + pFvL54 (zip1 p[dot1-G401A]), DP556 + pRS315 (zip1 DOT1) and DP560 + pRS315 (zip1 dot1-G401A).
doi:10.1371/journal.pgen.1003262.g001
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Figure 2. Dot1 is required for checkpoint-promoted localization and activation of Mek1. (A) Formation of zip1-induced Mek1 foci is
defective in the absence of Dot1. Representative images of Ddc2-GFP and Mek1-GFP foci in zip1 and zip1 dot1 cells after 24 h in meiosis. Strains are
DP460 (zip1 DDC2-GFP), DP579 (zip1 dot1 DDC2-GFP), DP582 (zip1 MEK1-GFP) and DP583 (zip1 dot1 MEK1-GFP). All strains are ndt80-arrested at

Meiotic Checkpoint Role of H3K79me
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artificial dimerization of Mek1 partially overcomes Dot1 require-

ment for Mek1 activation and further supports the conclusion that

Dot1 function promotes Mek1 autophosphorylation.

Dot1 is required for localization and activation of the
Hop1 meiotic checkpoint adaptor

It has been reported that activated Hop1 promotes Mek1

dimerization via a C-terminal domain [33,38]; therefore, we

investigated whether the effect of Dot1 on Mek1 phosphorylation

was mediated by Hop1. First, we studied Hop1 localization on

chromosome spreads of ndt80-arrested zip1 and zip1 dot1 strains.

As previously described [3], Hop1 displayed a predominantly

linear staining along the lateral elements of zip1 chromosomes. In

contrast, only short stretches of Hop1 could be detected in the zip1

dot1 mutant, which showed a predominating Hop1 punctate

pattern (Figure 4A and 4B, left panel). Consistent with our

observations in live cells (Figure 2A), we also detected a marked

reduction of Mek1 chromosomal foci in zip1 dot1, compared to the

zip1 single mutant (Figure 4A and 4B, right panel). In addition, we

also analyzed Hop1 localization in zip1 and zip1 dot1 live meiotic

cells expressing HOP1-GFP. In line with the aberrant distribution

on spreads, we observed that Hop1-GFP signal was weaker and

less continuous in zip1 dot1 cells. (Figure 4C and 4D; Video S1).

This discontinuous localization of Hop1 does not result from a

pronounced alteration of overall chromosome structure, because

the SC lateral component Red1 [3] displayed a linear distribution

in both zip1 and zip1 dot1 strains (Figure S2). On the other hand,

the dot1 single mutant only showed a modest decrease of Hop1-

GFP signal compared with the wild type (see Figure 7C and 7D

below). Thus, upon zip1-induced checkpoint activation, Dot1

enables proper loading or maintenance of Hop1 onto chromo-

somes.

Since Mec1/Tel1-dependent phosphorylation of Hop1 at

defined S/T-Q motifs is required for Mek1 activation and

localization [34], we examined zip1-induced Hop1 phosphoryla-

tion in the absence of Dot1, by monitoring its gel mobility shift. As

shown in Figure 4E, the zip1 dot1 mutant displayed a severe defect

in Hop1 phosphorylation, similar to the zip1 mec1 and zip1 spo11

mutants also analyzed as controls (Figure 4E and Figure S3). Even

after long overexposure of the gels, only a barely visible

phosphorylated form of Hop1 could be detected in the absence

of Dot1 (Figure 4E).

These observations suggest that the defect in Mek1 autophos-

phorylation observed in the absence of Dot1 stems from impaired

Hop1 function. To confirm this notion, we overexpressed HOP1

from a high-copy plasmid in zip1 dot1 cells. As shown in Figure 5,

whereas the zip1 dot1 mutant transformed with empty vector

showed defective Mek1 localization and activation, HOP1

overexpression in zip1 dot1 restored Mek1 chromosomal foci

(Figure 5A), Mek1 phosphorylation (Figure 5B), and reestablished

a substantial meiotic delay (Figure 5C). We found that Hop1

overproduction also conferred a slight reduction in the efficiency

of meiotic progression in the wild type (Figure 5C) and further

enhanced the zip1 meiotic delay, as expected from the strong

hyperphosphorylation of Mek1 (Figure 5B and 5C). Notably, in all

cases (wild type, zip1 or zip1 dot1), the further delay in meiotic

progression imposed by high levels of Hop1 was suppressed by the

absence of Mek1 (Figure 5C), proving that it was caused from

amplified pachytene checkpoint signaling and not from an

unrelated cause.

H3K79me is required for Mek1 and Hop1
phosphorylation and localization

We have shown that, like dot1, mutation of H3K79 to non-

methylatable residues completely bypasses the checkpoint-induced

meiotic delay of zip1 (Figure 1B). On the other hand, we have

revealed that, in zip1 cells, Dot1 orchestrates Hop1 and Mek1

activation and chromosomal distribution (Figure 2, Figure 3,

Figure 4, and Figure 5). To confirm that Hop1 and Mek1

checkpoint functions are also directly regulated by H3K79me, and

not by another possible methyltransferase-independent function of

Dot1, we examined their phosphorylation and localization in the

zip1 H3-K79R and zip1 H3-K79A mutants. We found that, indeed,

these histone point mutants phenocopy the dot1 defects in Mek1

foci formation (Figure 6A and 6B) and Mek1 autophosphorylation

(Figure 6D; Figure S4). Likewise, the zip1 H3-K79R and zip1 H3-

K79A mutants resemble dot1 in the impaired Hop1 chromosomal

distribution (Figure 6A and 6C; Figure S5) and checkpoint-

induced phosphorylation (Figure 6E; Figure S4).

Thus, taken together, our results indicate that, upon meiotic

recombination checkpoint triggering, Dot1-dependent H3K79

methylation promotes proper chromosomal localization and

activation of Hop1, which in turn, is required to sustain Mek1

autophosphorylation and the ensuing checkpoint response.

H3K79me partially controls Hop1 chromosomal
localization via Pch2

Previous studies have shown that whereas in the zip1 mutant the

Pch2 meiotic checkpoint protein is detected only in the nucleolar

(rDNA) region, in the zip1 dot1 double mutant Pch2 is distributed

throughout all chromatin [26]. To confirm that the regulation of

Pch2 localization by Dot1 depends on the histone H3 methyl-

transferase activity, we analyzed Pch2 distribution on spread

meiotic chromosomes of the zip1 H3-K79R and zip1 H3-K79A

mutants. Although global Pch2 protein levels remained fairly

invariable in the different mutants (Figure S4), we found that, like

in zip1 dot1, Pch2 mislocalized to chromatin outside the rDNA in

zip1 H3-K79R and zip1 H3-K79A strains (Figure 7A), suggesting

that H3K79me excludes Pch2 from chromosomes.

Several lines of evidence support a role for Pch2 in promoting

the turnover of Hop1 from meiotic chromosomes, at least in

unperturbed meiosis [29,39,40]; therefore, it was possible that the

reduced localization of Hop1 in the absence of Dot1 could stem

from the action of the Pch2 protein aberrantly present at

chromosomal locations removing Hop1 from zip1 chromosomes.

To investigate this possibility, we monitored Hop1 localization in

zip1 dot1 pch2 strains. Interestingly, we found that deletion of PCH2

pachytene. The graphs show the quantification of Ddc2 and Mek1 foci formation from the same samples determined as the intensity of the total focal
GFP signal relative to total nuclear signal (a.u., arbitrary units). Error bars represent the median with interquartile range. Each spot in the plot
represents the foci intensity of every nucleus measured. 175 and 150 nuclei were analyzed for Ddc2-GFP and Mek1-GFP, respectively. (B) Western blot
analysis of Mek1 activation by phosphorylation and Cdc5 production throughout meiosis in wild type (DP421), zip1 (DP422), zip1 dot1 (DP555), zip1
dot1 GST-MEK1 (DP785) and zip1 GST-MEK1 (DP792) using Phos-tag gels. PGK was used as a loading control. (C) Analysis of Mek1 activation in ndt80-
arrested cells. Strains are DP424 (wild type), DP428 (zip1) and DP655 (zip1 dot1). (D) Time course of meiotic nuclear divisions; the percentage of cells
containing more than two nuclei is represented. Strains are: DP421 (wild type), DP422 (zip1), DP555 (zip1 dot1), DP785 (zip1 dot1 GST-MEK1), DP783
(zip1 dot1 GST-mek1-K199R), DP784 (zip1 dot1 GST-mek1-T327A), DP792 (zip1 GST-MEK1), DP790 (zip1 GST-mek1-K199R) and DP791 (zip1 GST-mek1-
T327A).
doi:10.1371/journal.pgen.1003262.g002
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Figure 3. Dot1 contributes to Mek1 activation by autophosphorylation. (A) Whole cell extracts (WCE) from a zip1 ndt80 culture at 24 h in
meiosis were incubated in the presence (+) or absence (2) of lambda phosphatase (lPPase). (B), (C) and (D) Detection of different phosphorylated
forms of Mek1 in ndt80-arrested cells after 24 h in meiosis using high-resolution Phos-tag gels. Basal Mek1 (line) and several phosphorylated forms
(black and white arrowheads) are indicated; see text for explanation. PGK or Ponceau S staining were used as loading controls. Asterisk in (D) marks a
weak non-specific band. (E) Schematic representation of a model for the sequential phosphorylation events leading to Mek1 activation and the
relevant mutations analyzed above. (1) Priming phosphorylation by Mec1/Tel1 (black arrowhead in B, C, D) is followed by (2) autophosphorylation of
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alleviated to some extent the defective Hop1 localization pattern of

zip1 dot1, although it did not fully restore the high and continuous

Hop1 levels present in zip1 (Figure 7B–7D). To determine whether

the increased abundance of Hop1 along chromosomes in zip1 dot1

pch2 restores the checkpoint-induced delay we analyzed meiotic

divisions and Mek1 phosphorylation (Figure 7E–7F). We found

that the checkpoint was still impaired in the zip1 dot1 pch2 triple

mutant because, like the zip1 dot1 and the zip1 pch2 double

mutants, it displayed wild-type kinetics of meiotic progression

(Figure 7E) and defective Mek1 activation (Figure 7F), implying a

more complex contribution of Pch2’s function to the pachytene

checkpoint response (see Discussion).

In summary, these observations indicate that in the zip1 mutant,

methylation of H3K79 by Dot1 controls proper chromosomal

distribution of Hop1 by maintaining Pch2 confined in the

nucleolar region. The fact that Hop1 localization is still partially

impaired in the zip1 dot1 pch2 triple mutant suggests that Dot1 may

also regulate Hop1 chromosomal recruitment by a Pch2-indepen-

dent mechanism (Figure 8).

Discussion

Previous studies have shown that Dot1 is important for the

pachytene checkpoint, but the molecular mechanism underlying

such function remained unclear. Here, we provide evidence that

methylation of H3K79 by Dot1 contributes to the meiotic

recombination checkpoint response by enabling proper Hop1

chromosomal recruitment, which, in turn is a requisite for Mek1

activation by autophosphorylation.

We demonstrate that the function of Dot1 in the meiotic

recombination checkpoint specifically relies on the methylation of

H3K79, since the non-methylatable H3-K79A and H3-K79R

mutations confer essentially the same meiotic phenotypes as the

lack of Dot1. Moreover, by modulating Dot1 catalytic activity, we

found that high levels of the H3K79-me3 are required for full

checkpoint activation raising the possibility that this methylation

state is particularly critical for promoting the proper localization of

the Hop1 meiotic checkpoint adaptor (see below).

In mitotic cells, methylated histones are well-known chromatin

marks for recognition of DSBs by checkpoint adaptors. In S.

cerevisiae, the Rad9 adaptor is recruited to DSB sites by H3K79me

[41,42], whereas in S. pombe, which lacks H3K79me, the

recruitment of the Crb2 adaptor relies on H4K20me [43]. In

mammalian cells, the Rad9 and Crb2 homolog 53BP1 appears to

recognize both H3K79me and H4K20me [44–46]. All these DNA

damage checkpoint adaptors (Rad9, Crb2 and 53BP1) contain

tandem tudor domains that mediate the interaction with the

methylated histones. Rad9, Crb2 and 53BP1 also possess BRCT

motifs; in fact, the recognition of DSBs by Rad9 and Crb2 in S.

cerevisiae and S. pombe, respectively, is also mediated by their

binding to phosphorylated histone H2A (hereafter cH2AX) via the

BRCT domains [47,48]. However, the Hop1 meiotic checkpoint

adaptor lacks either tudor or BRCT motifs and contains a

HORMA domain likely involved in protein-protein interactions

[49], raising the possibility that its chromosomal recruitment can

be mediated by different mechanisms.

As mentioned before, in DNA damaged vegetative cells, Rad9

function depends both on H3K79me and cH2AX [47,50–52];

however, the relevance of both histone modifications appears to be

different in meiotic cells. Dot1-dependent H3K79me is crucial for

checkpoint function, at least in Zip1-deficient cells, because

deletion of DOT1 (or mutation of H3K79) results in complete

bypass of the zip1 meiotic block. In contrast, an H2A-S129*

mutant, lacking the four C-terminal amino acids of histone H2A

including the SQ phosphorylation site [53], has no defect in the

zip1-induced checkpoint (Figure S6A). Moreover, like in both

single mutants, meiotic progression and spore viability are

essentially normal in the dot1 H2A-S129* double mutant (Figure

S6A, S6B).

We show here that Dot1 is required for Mek1 and Hop1

activation in meiotically-challenged cells, but in addition to the

checkpoint function, Mek1 and Hop1 promote the repair of

meiotic DSBs by Dmc1-dependent interhomolog recombination

[34,37,38,54]. Consistent with this function, in the absence of

Dmc1, Dot1 prevents the repair of DSBs by Rad54-dependent

sister-chromatid recombination, which is controlled, at least in

part, by inhibitory phosphorylation of Rad54 by Mek1 [26,54].

In principle, it could be possible that impaired Hop1/Mek1

function in the absence of Dot1 could induce an alternative

intersister recombination pathway resulting in meiotic progres-

sion because of the disappearance of the meiotic defects initially

triggering the checkpoint. However, deletion of DOT1 alleviates

the meiotic arrest of zip1 rad54 and dmc1 rad54 mutants, where

intersister repair is impaired, strongly suggesting that Dot1

performs a bona-fide meiotic checkpoint function [26]. The fact

that, unlike Mek1 and Hop1, the Dot1 protein is dispensable in

otherwise unperturbed meiosis implies the H3K79me is mostly

relevant to signal defects when meiotic chromosome metabolism

is disturbed (i.e., zip1 or dmc1 mutants). Consistent with this

notion, Hop1 localization on zip1 chromosomes is dramatically

altered in the absence of Dot1, but it is only slightly reduced in

the dot1 single mutant as compared with the wild type (Figure 7C

and 7D).

In other studies, activation of the Mek1 effector meiotic kinase

has been monitored either by a slight electrophoretic mobility shift

[32,34] or by using an anti-phospho-Ser/Thr Akt substrate

antibody, which specifically recognizes phosphorylation of Mek1

at T327 [33,37,55]. However, those assays do not permit one to

delineate the different events contributing to Mek1 activation.

Here, by using high-resolution Phos-tag gels, we identify several

phosphorylated Mek1 forms and dissect the genetic requirements

for sequential Mek1 activation. Our findings support a model

(Figure 3E; Figure 8) in which the presence of unrepaired DSBs

and/or unsynapsed chromosomes results in the initial phosphor-

ylation of Mek1 by the redundant action of Mec1/Tel1. This

priming phosphorylation is followed by autophosphorylation of

Mek1 at T327 and T331 leading to full Mek1 activation

supporting the checkpoint response. We found that Dot1 is chiefly

required for this last step, which is mediated by Mek1 dimerization

promoted by the Hop1 C-terminal domain [38]. Thus, the altered

localization of Hop1 on zip1 dot1 chromosomes likely explains the

defect in Mek1 autophosphorylation. Interestingly, GST-mediated

forced dimerization of Mek1 bypasses Dot1 requirement for its

activation; however, this activation is only transient in the absence

of Dot1, suggesting that proper chromosome axis architecture is

required for maintenance of Mek1 activity.

Mek1 (white arrowheads in B, C, D) leading to its full activation and (3) the checkpoint response. H3K79 methylation by Dot1 contributes to Mek1
autophosphorylation. Strains were: (A); DP428 (zip1). (B); DP428 (zip1), DP701 (zip1 hop1) and DP655 (zip1 dot1). (C); DP428 (zip1), DP655 (zip1 dot1),
DP680 (zip1 mec1), DP861 (zip1 mec1 tel1), DP877 (zip1 rad24 tel1), DP728 (zip1 spo11) and DP674 (zip1 mek1D). (D); DP885 (zip1), DP890 (zip1 dot1),
DP886 (zip1 mek1-T327A), DP887 (zip1 mek1-T331A), DP888 (zip1 mek1-K199R), DP674 (zip1 mek1D), DP680 (zip1 mec1) and DP861 (zip1 mec1 tel1).
doi:10.1371/journal.pgen.1003262.g003
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Figure 4. Dot1 is required for zip1-induced localization and activation of the Hop1 meiotic checkpoint adaptor. (A)
Immunofluorescence of meiotic chromosome spreads stained with DAPI (blue), anti-Hop1 (green) and anti-myc (red) antibodies. Representative
nuclei are shown. The same exposure time was used to capture the signal from the different strains. Spreads were prepared 24 h after meiotic
induction of ndt80 cells. Strains are: DP848 (zip1) and DP849 (zip1 dot1). (B) Quantification of the Hop1 staining pattern (left) and the number of Mek1
foci (right) on spread chromosomes analyzed as in (A). 14 and 21 nuclei were scored for zip1 and zip1 dot1, respectively. (C) Representative images of
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ndt80-arrested cells expressing HOP1-GFP in zip1 (DP964) and zip1 dot1 (DP965) captured after 24 h in meiosis. (D) Quantification of the Hop1-GFP
signal intensity on fluorescence images (a.u., arbitrary units). 300 individual nuclei were analyzed for each strain. (E) Dot1 is required for Hop1
phosphorylation. Western blot analysis of Hop1 in cell extracts obtained 24 h after meiotic induction in ndt80 cells. The middle panel corresponds to
an overexposure (OEx) of the blot shown in the upper panel. PGK was used as a loading control. Strains are: DP428 (zip1), DP655 (zip1 dot1), DP680
(zip1 mec1) and DP674 (zip1 mek1). Means, standard deviations and P-values are shown in (B) and (D).
doi:10.1371/journal.pgen.1003262.g004

Figure 5. Hop1 overproduction restores Mek1 function in the absence of Dot1. (A) Immunofluorescence of meiotic chromosome spreads
stained with DAPI (blue), anti-Hop1 (red) and anti-myc (green) antibodies. Spreads were prepared 24 h after meiotic induction of ndt80 cells. Strains
are: DP848 (zip1) and DP884 (zip1 dot1) transformed either with empty vector or with a HOP1 high-copy plasmid (2mHOP1). (B) Western blot analysis
of Mek1 phosphorylation and Hop1 production in ndt80 cells after 24 h in meiosis. PGK was a loading control. Strains are DP428 (zip1) and DP655
(zip1 dot1) transformed either with empty vector or with 2mHOP1. (C) Time course of meiotic nuclear divisions; the percentage of cells containing
more than two nuclei is represented. Strains are DP421 (wild type), DP713 (mek1), DP422 (zip1), DP714 (zip1 mek1), DP555 (zip1 dot1) and DP716 (zip1
dot1 mek1), transformed either with empty vector or with 2mHOP1.
doi:10.1371/journal.pgen.1003262.g005
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We found that global levels of H3K79me do not significantly

change in response to the meiotic defects of the zip1 mutant, but

this methylation is critical for the checkpoint response. The nature

of the signal that triggers the meiotic checkpoint in zip1 is still

unclear. Like in mammals [56], the existence of a synapsis

checkpoint in yeast has also been proposed [7,55,58]. Neverthe-

less, Dot1 is also required for the meiotic cell cycle arrest of the

dmc1 mutant that accumulates unrepaired DSBs [26], indicating

that H3K79me is also involved in the response to meiotic DSBs. It

has been reported that, under certain conditions, DSBs are

efficiently repaired in zip1 mutants [37] implying that the signal

triggering the checkpoint could be different. However, Ddc2 foci

marking the presence of recombination intermediates are detected

in zip1 [11] (Figure 2A), consistent with at least some DSBs

remaining unrepaired in zip1 mutants [57,59,60] sufficient to

induce the checkpoint. Alternatively, or in addition, Mec1-Ddc2

may also sense defects in structural aspects of interhomolog

interactions resulting from the lack of the central region of the SC

[39]. In any case, independently of the nature of the signal

triggering the meiotic checkpoint response(s), the question of how

a constitutive histone mark, such as H3K79me, contributes to

Hop1-mediated Mek1 activation specifically in challenged meiosis

remains to be elucidated. In the DNA damage response in

vegetative yeast cells or somatic mammalian cells it has been

proposed, though never proven, that chromatin remodeling in the

vicinity of DNA lesions may locally expose constitutive marks (i.e.,

H3K79me, H4K20me) supporting the recruitment of DNA

damage checkpoint adaptors to activate the checkpoint [44,45].

In meiotic cells, the DSB metabolism is linked to the special

architecture of the chromosome axis [61]. Therefore, we envision

that unrepaired DSBs and/or defects in interhomolog connections

may provoke chromatin conformational changes unmasking

H3K79me capable to drive proper Hop1 distribution along the

axes, enabling its activation by Mec1 to elicit the downstream

checkpoint events including Mek1 full activation by autophospho-

rylation (Figure 8).

Although it is formally possible that H3K79me may directly

facilitate Hop1 recruitment to some extent, we provide evidence

indicating that the control of Hop1 chromosomal distribution by

H3K79me is substantially driven by regulation of the Pch2

protein. Pch2 was initially discovered as a meiotic checkpoint

protein required for the zip1-induced meiotic arrest [29], but more

recent studies have shown that Pch2 impacts multiple aspects of

meiotic chromosome dynamics [55,62–64]. In particular, Pch2

acts as a negative regulator of Hop1 chromosomal abundance

[39,40]. In wild-type pachytene chromosomes, Pch2 localizes to

the unsynapsed rDNA region (nucleolus) and also along synapsed

chromosomes [29,40]. In contrast, Pch2 is solely detectable at the

nucleolar region in the zip1 mutant [29]; remarkably, in the

absence of H3K79me, Pch2 is redistributed throughout all

chromatin of zip1 nuclei (Figure 7A). We hypothesize that, as a

consequence of the synapsis defects of zip1, the H3K79me mark

becomes exposed functioning as an anti-binding signal for Pch2,

thus permitting the extensive Hop1 distribution found on zip1

chromosomes (Figure 8). In the absence of Dot1 (or H3K79me),

the presence of chromosomal Pch2 triggers the removal of Hop1

and the consequent defect in Mek1 activation. The reduced global

levels of Hop1 detected in zip1 dot1 (Figure S3 and Figure 6E) are

also consistent with a higher protein turnover.

Interestingly, like in zip1 dot1, the synapsis checkpoint is still

completely defective in the zip1 dot1 pch2 triple mutant, despite the

partial restoration of Hop1 localization. Since the excess of Hop1

induced by other means, such as HOP1 overexpression, but in the

presence of Pch2, does confer a meiotic delay in zip1 dot1 and

restores Mek1 phosphorylation (Figure 5), it is conceivable that

nucleolar Pch2 performs an additional downstream function in

Mek1 activation (Figure 8) and/or that the excess of Hop1 in the

absence of Pch2 is not correctly assembled on chromosome axes to

support checkpoint activation. In fact, the zip1 pch2 mutant itself is

also checkpoint deficient. Future studies will address these

intriguing possibilities.

Dot1/DOT1L is structurally conserved throughout evolution

from budding yeast to worms, flies, mice and humans; therefore, it

is possible that members of the Dot1 family play similar roles in

Metazoa. DOT1L is essential in mammals [65] functioning in

embryogenesis, hematopoiesis and cardiac development [27];

however, much less is known about the impact of mammalian

DOT1L in the DNA damage response. It would be interesting to

determine whether, like the yeast counterpart, Dot1 orthologs are

involved in meiotic checkpoint control in higher eukaryotes.

Materials and Methods

Yeast strains and plasmids
Yeast strains genotypes are listed in Table 1. All the strains are

in the BR1919 background [66]. Gene deletions were made using

a PCR-based approach [67,68] except for dot1::URA3, zip1::LYS2

and ndt80::LEU2, which were previously described [19,26,29].

MEK1-13myc, MEK1-GFP and HOP1-GFP were made by a PCR

approach [68]. The C-terminally tagged Mek1-13myc and Mek1-

GFP proteins are functional because spore viability of homozygous

tagged wild-type diploids was similar to that of untagged strains

and, in addition, they supported the checkpoint-induced delay of a

hop2 mutant. In zip1 HOP1-GFP strains the meiotic block was less

tight, but Hop1-GFP displayed a localization pattern indistin-

guishable from that of the untagged protein (Figure S5); therefore,

we used the native GFP fluorescence for quantitation of Hop1

localization. N-terminal tagging of Pch2 with three copies of the

HA epitope has been previously described [29]. Strains carrying

DOT1 or dot1-G401A at its genomic locus or in the pRS315 vector

(plasmids pRS315-DOT1 and pFvL54, respectively) were de-

scribed [28,31]. The H3-K79A and H3-K79R strains are deleted

Figure 6. The H3-K79R and H3-K79A mutations recapitulate dot1 defects in checkpoint-induced Mek1 and Hop1 phosphorylation
and localization. (A) Immunofluorescence of meiotic chromosome spreads stained with DAPI (blue), anti-Hop1 (green) and anti-GFP (red)
antibodies. Representative nuclei are shown. The same exposure time was used to capture the signal from the different strains. (B) and (C)
Representative images of meiotic cells expressing MEK1-GFP and HOP1-GFP, respectively. The scattered plots represent the quantification of the
Mek1-GFP focal signal (B) and total Hop1-GFP signal intensity (C) on fluorescence images (a.u., arbitrary units). Error bars represent the median with
interquartile range. 300 individual nuclei were analyzed for each strain. (D) Western blot analysis of zip1-induced Mek1-GFP phosphorylation in a
Phos-tag gel using anti-Mek1 antibodies. The basal Mek1-GFP form (line), and the forms resulting from Mec1/Tel1-dependent phosphorylation (black
arrowhead) and autophosphorylation (white arrowheads) are indicated. Ponceau S staining of the membrane is shown as a loading control. (E)
Western blot analysis of zip1-induced Hop1-GFP phosphorylation using anti-GFP antibodies. Tubulin is shown as a loading control. Strains in (A), (B)
and (D) are: DP1046 (zip1), DP1049 (zip1 dot1), DP1048 (zip1 H3-K79R) and DP1047 (zip1 H3-K79A). Strains in (C) and (E) are: DP1042 (zip1), DP1045
(zip1 dot1), DP1044 (zip1 H3-K79R) and DP1043 (zip1 H3-K79A). In all cases (A–E), spreads were made, GFP images were captured and cell extracts were
prepared after 24 h of meiotic induction in ndt80 strains.
doi:10.1371/journal.pgen.1003262.g006
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for all genomic copies of the histone H3-H4 encoding genes

(HHT1-HHF1 and HHT2-HHF2) and express different versions of

H3 from centromeric plasmids carrying either the hht2(K79A)-

HHF2 or hht2(K79R)-HHF2 mutant genes (pFvL87 and pFvL88,

respectively). The mek1-T327A, mek1-T331A, mek1-K199R muta-

tions, as well as the GST-MEK1 construct were introduced as

described [33], using plasmids kindly provided by N. Hollings-

worth (Stony Brook University, NY). The high-copy HOP1

plasmid was also described [69]. Strains harboring the hta1-

S129* and hta2-S129* mutations lacking the last four amino acids

of the C-terminal tail of histone H2A including the serine 129

phosphorylated by Mec1/Tel1 [53] were made using plasmids

pJHA16 and pJHA17 (provided by J. Downs, University of Sussex)

following a pop-in/pop-out strategy. For meiotic time courses,

strains were grown in 26SC (3.5 ml) for 20–24 hours, then

transferred to YPDA (2.5 ml) and incubated to saturation for

additional 8 hours. Cells were harvested, washed with 2%

potassium acetate (KAc), resuspended into 2% KAc (10 ml) and

incubated at 30uC with vigorous shaking to induce meiosis and

sporulation. Both YPDA and 2% KAc were supplemented with

20 mM adenine and 10 mM uracil. The culture volumes were

scaled-up when needed.

Western blotting and analysis of Mek1 phosphorylation
TCA cell extracts from 5–10 ml of sporulating cultures were

processed as described [14]. To resolve the phosphorylated forms

of Mek1 or Mek1-GFP, 10% or 7% gels (acrylamide:bisacrylamide

29:1), respectively, containing 37.5 mM Phos-tag (Wako Chemi-

cals) and 75 mM MnCl2 were used. Gels were run on ice at 100

volts in a MiniProtean3 (Bio-Rad) for 3 h. After running, gels were

washed with 1 mM EDTA before transfer to PVDF membranes.

For dephosphorylation assays, total TCA cell extracts solubi-

lized in Laemmli buffer were diluted 10 times with phosphatase

buffer supplemented with 1 mM MnCl2. Diluted extracts were

treated with 2000 units of lambda phosphatase (New England

Biolabs) for 30 min at 30uC. As control, a similar aliquot of the

diluted extract was incubated under the same conditions but

without adding phosphatase. Samples were re-precipitated with

20% TCA, washed with acetone, boiled in Laemmli buffer and

loaded in Phostag gels.

The following antibodies were used: rabbit polyclonal anti-

Mek1 (1:1000 dilution) [11] and anti-Dot1 (1:2000 dilution) [31].

Rabbit polyclonal anti-H3K79-me1 (ab2886; 1:1000 dilution),

anti-H3K79-me2 (ab3594; 1:2000 dilution), anti-H3K79-me3

Figure 7. H3K79me controls Hop1 localization by excluding Pch2 from chromosomes. (A) H3K79me is required to prevent Pch2
localization outside of the rDNA. Immunofluorescence of meiotic chromosome spreads stained with DAPI (blue), anti-HA (red) and anti-Red1 (green)
antibodies. Strains are: DP1050 (zip1), DP1053 (zip1 dot1), DP1052 (zip1 H3-K79R) and DP1051 (zip1 H3-K79A). (B–D) The absence of Pch2 partially
restores Hop1 chromosomal abundance in zip1 dot1. (B) Immunofluorescence of meiotic chromosome spreads stained with DAPI (blue) and anti-
Hop1 antibody (red). Strains are: DP428 (zip1), DP655 (zip1 dot1) and DP1054 (zip1 dot1 pch2). (C) Representative images of cells expressing HOP1-GFP
in wild type (DP963), dot1 (DP966), zip1 (DP964), zip1 dot1 (DP965) and zip1 dot1 pch2 (DP1027). (D) Quantification of the Hop1-GFP signal intensity
on fluorescence images (a.u., arbitrary units). 300 individual nuclei were analyzed for each strain. Each spot in the plot represents the fluorescence
intensity of every nucleus measured. Error bars represent the median with interquartile range. P,0.01 in pairwise comparisons. In all cases (A–C),
spreads were prepared and GFP images were taken 24 h after meiotic induction in ndt80 strains. (E, F) The absence of Pch2 does not restore the
pachytene checkpoint response in zip1 dot1. (E) Time course of meiotic nuclear divisions; the percentage of cells containing more than two nuclei is
represented. Strains are: DP421 (wild type), DP422 (zip1), DP555 (zip1 dot1), DP1029 (zip1 pch2) and DP1041 (zip1 dot1 pch2). (F) Western blot analysis
of zip1-induced Mek1 phosphorylation in ndt80 strains. PGK was used as a loading control. The asterisk marks a presumed non-specific band (see
Figure 3D). Strains are: DP428 (zip1), DP655 (zip1 dot1), DP881 (zip1 pch2) and DP1054 (zip1 dot1 pch2).
doi:10.1371/journal.pgen.1003262.g007

Figure 8. Model for Dot1 function in the meiotic recombination checkpoint. See text for details.
doi:10.1371/journal.pgen.1003262.g008
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Table 1. Saccharomyces cerevisiae strains.

Strain Genotype*

BR1919-2N MATa/MATa leu2-3,112 his4-260 ura3-1 ade2-1 thr1-4 trp1-289

DP409 BR1919-2N zip1::LEU2

DP419 BR1919-2N hta1-S129* hta2-S129*

DP420 BR1919-2N hta1-S129* hta2-S129* zip1::LEU2

DP421 BR1919-2N lys2DNheI

DP422 DP421 zip1::LYS2

DP424 DP421 ndt80::LEU2

DP428 DP421 zip1::LYS2 ndt80::LEU2

DP460 DP421 zip1::LYS2 ndt80::LEU2 DDC2-GFP::TRP1

DP555 DP421 zip1::LYS2 dot1::kanMX6

DP556 DP421 zip1::LYS2 dot1::kanMX6::DOT1::URA3

DP560 DP421 zip1::LYS2 dot1::kanMX6::dot1-G401A::URA3

DP579 DP421 zip1::LYS2 ndt80::LEU2 dot1::URA3 DDC2-GFP::TRP1

DP582 DP421 zip1::LYS2 ndt80::LEU2 MEK1-GFP::kanMX6

DP583 DP421 zip1::LYS2 ndt80::LEU2 MEK1-GFP::kanMX6 dot1::URA3

DP622 BR1919-2N hta1-S129* hta2-S129* dot1::kanMX6

DP623 BR1919-2N hta1-S129* hta2-S129* dot1::kanMX6 zip1::LEU2

DP624 DP421 dot1::URA3

DP625 DP421 dot1::kanMX6

DP655 DP421 zip1::LYS2 ndt80::LEU2 dot1::kanMX6

DP674 DP421 zip1::LYS2 ndt80::LEU2 mek1::kanMX6

DP680 DP421 zip1::LYS2 ndt80::LEU2 sml1::kanMX6 mec1::KlURA3

DP701 DP421 zip1::LYS2 ndt80::LEU2 hop1::hphMX4

DP713 DP421 mek1::kanMX6

DP714 DP421 zip1::LYS2 mek1::kanMX6

DP716 DP421 zip1::LYS2 mek1::kanMX6 dot1::hphMX4

DP728 BR1919-2N zip1::kanMX6 ndt80::LEU2 spo11::hphMX4

DP783 DP421 zip1::LYS2 mek1::kanMX6 dot1::hphMX4 GST-mek1-K199R::URA3

DP784 DP421 zip1::LYS2 mek1::kanMX6 dot1::hphMX4 GST-mek1-T327A::URA3

DP785 DP421 zip1::LYS2 mek1::kanMX6 dot1::hphMX4 GST-MEK1::URA3

DP790 DP421 zip1::LYS2 mek1::kanMX6 GST-mek1-K199R::URA3

DP791 DP421 zip1::LYS2 mek1::kanMX6 GST-mek1-T327A::URA3

DP792 DP421 zip1::LYS2 mek1::kanMX6 GST-MEK1::URA3

DP806 DP421 (hht1-hhf1)::kanMX6 (hht2-hhf2)::natMX4 p[HHT2-HHF2]::TRP1

DP807 DP421 (hht1-hhf1)::kanMX6 (hht2-hhf2)::natMX4 p[hht2-K79A-HHF2]::TRP1

DP808 DP421 (hht1-hhf1)::kanMX6 (hht2-hhf2)::natMX4 p[hht2-K79R-HHF2]::TRP1

DP809 DP421 (hht1-hhf1)::kanMX6 (hht2-hhf2)::natMX4 p[HHT2-HHF2]::TRP1 zip1::LYS2

DP810 DP421 (hht1-hhf1)::kanMX6 (hht2-hhf2)::natMX4 p[hht2-K79A-HHF2]::TRP1 zip1::LYS2

DP811 DP421 (hht1-hhf1)::kanMX6 (hht2-hhf2)::natMX4 p[hht2-K79R-HHF2]::TRP1 zip1::LYS2

DP812 DP421 (hht1-hhf1)::kanMX6 (hht2-hhf2)::natMX4 p[HHT2-HHF2]::TRP1 zip1::LYS2 dot1:hphMX4

DP848 DP421 zip1::LYS2 ndt80::LEU2 MEK1-13myc::kanMX6

DP849 DP421 zip1::LYS2 ndt80::LEU2 MEK1-13myc::kanMX6 dot1::URA3

DP861 DP421 zip1::LYS2 ndt80::LEU2 sml1::kanMX6 mec1::KlURA3 tel1::hphMX4

DP877 DP421 zip1::LYS2 ndt80::LEU2 rad24::TRP1 tel1::hphMX4

DP881 DP421 zip1::LYS2 ndt80::LEU2 pch2::TRP1

DP883 DP421 zip1::LYS2 ndt80::LEU2 rad24::TRP1

DP884 DP421 zip1::LYS2 ndt80::LEU2 dot1::hphMX4 MEK1-13myc::kanMX6

DP885 DP421 zip1::LYS2 ndt80::LEU2 mek1::kanMX6 MEK1::URA3

DP886 DP421 zip1::LYS2 ndt80::LEU2 mek1::kanMX6 mek1-T327A::URA3
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(ab2621; 1:2000 dilution), and anti-histone H3 (ab1791: 1:5000)

were from Abcam. Rabbit polyclonal anti-Hop1 (1:2000 dilution)

[3], was from S. Roeder (Yale University). Anti-Cdc5 (sc-6733;

1:1000 dilution) was from Santa Cruz Biotechnology. Mouse

monoclonal anti-HA (12CA5; 1:2000 dilution) was from Roche.

Anti-phosphoglycerate kinase (PGK) (A-6457, 1:10000 dilution)

was from Molecular Probes. The ECL or ECL+ reagents were

used for detection. The signal was captured on film and/or with a

ChemiDoc XRS (Bio-Rad) system and quantified with the

Quantity One software (Bio-Rad).

Cytology
Immunofluorescence of chromosome spreads was performed

essentially as described [29]. To detect Mek1-myc and Mek1-GFP,

mouse monoclonal anti-myc (clone 4A6, Millipore) and mouse

monoclonal anti-GFP (JL-8, Clontech) antibodies, respectively,

were used at 1:200 dilution. Rabbit polyclonal anti-Red1 and anti-

Hop1 antibodies (gifts from S. Roeder) have been previously

described [3,5]. Anti-mouse and/or anti-rabbit AF-488 and AF-

594 conjugated secondary antibodies (Molecular Probes) were

used at 1:200 dilution. Images were captured with a Nikon Eclipse

90i fluorescence microscope controlled with the MetaMorph

software and equipped with an Orca-AG (Hammamatsu) CCD

camera and a PlanApo VC 10061.4 NA objective.

Whole cell images were captured with an Olympus IX71

fluorescence microscope equipped with a personal DeltaVision

system (Applied Precision), a CoolSnap HQ2 (Photometrics)

camera and a 1006UPLSAPO 1.4 NA objective. Exposure times

were 800 ms, 400 ms and 300 ms for Ddc2-GFP, Mek1-GFP, and

Hop1-GFP, respectively. Stacks of 20 planes at 0.2 mm intervals

were captured. Maximum intensity projections of deconvolved

images were generated with the SoftWoRx 5.0 software (Applied

Precision). Quantification of GFP signals in the projections of

individual nuclei was performed with the Image J software (http://

rsb.info.nih.gov/ij/). Background signal was subtracted using the

Otsu’s or the Renyi’s entropy threshold methods in Image J. To

outline the contour of the cells in the representative whole-cell

images presented, an overlay of the DIC image with 15–20%

transparency over the GFP signal is shown.

Other techniques
To analyze meiotic nuclear divisions, cells were fixed in 70%

ethanol, washed in PBS and stained with 1 mg/ml DAPI for

15 minutes at room temperature. At least 300 cells of every strain

were scored at each time point. Analyses of meiotic kinetics were

repeated several times; representative time courses are shown.

Spore viability was determined by tetrad dissection. To calculate

the statistical significance of differences a two-tailed Student t-test

was used. P-values were calculated using the GraphPad Prism 4.0

software. P,0.01 was considered significant.

Supporting Information

Figure S1 H3K79 is constitutively methylated during meiosis.

(A) Western blot analysis of H3K79 methylation dynamics

Table 1. Cont.

Strain Genotype*

DP887 DP421 zip1::LYS2 ndt80::LEU2 mek1::kanMX6 mek1-T331A::URA3

DP888 DP421 zip1::LYS2 ndt80::LEU2 mek1::kanMX6 mek1-K199R::URA3

DP890 DP421 zip1::LYS2 ndt80::LEU2 mek1::kanMX6 MEK1::URA3 dot1::hphMX4

DP963 DP421 ndt80::LEU2 HOP1-GFP::kanMX6

DP964 DP421 zip1::LYS2 ndt80::LEU2 HOP1-GFP::kanMX6

DP965 DP421 zip1::LYS2 ndt80::LEU2 HOP1-GFP::kanMX6 dot1::URA3

DP966 DP421 ndt80::LEU2 HOP1-GFP::kanMX6 dot1::URA3

DP1024 DP421 zip1::LYS2 ndt80::LEU2 ddc2::TRP1 sml1::kanMX6

DP1027 DP421 zip1::LYS2 ndt80::LEU2 pch2::TRP1 dot1::URA3 HOP1-GFP::kanMX6

DP1029 DP421 zip1::LYS2 pch2::TRP1

DP1041 DP421 zip1::LYS2 pch2::TRP1 dot1::URA3

DP1042 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 HOP1-GFP::kanMX6 p[HHT2-HHF2]::TRP1

DP1043 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 HOP1-GFP::kanMX6 p[hht2-K79A-HHF2]::TRP1

DP1044 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 HOP1-GFP::kanMX6 p[hht2-K79R-HHF2]::TRP1

DP1045 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 dot1::URA3 HOP1-GFP::kanMX6 p[HHT2-HHF2]::TRP1

DP1046 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 MEK1-GFP::kanMX6 p[HHT2-HHF2]::TRP1

DP1047 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 MEK1-GFP::kanMX6 p[hht2-K79A-HHF2]::TRP1

DP1048 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 MEK1-GFP::kanMX6 p[hht2-K79R-HHF2]::TRP1

DP1049 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LYS2 ndt80::LEU2 dot1::URA3 MEK1-GFP::kanMX6 p[HHT2-HHF2]::TRP1

DP1050 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LEU2 PCH2-3HA p[HHT2-HHF2]::TRP1

DP1051 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LEU2 PCH2-3HA p[hht2-K79A-HHF2]::TRP1

DP1052 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LEU2 PCH2-3HA p[hht2-K79R-HHF2]::TRP1

DP1053 DP421 (hht1-hhf1)::natMX4 (hht2-hhf2)::hphMX4 zip1::LEU2 PCH2-3HA dot1::kanMX6 p[HHT2-HHF2]::TRP1

DP1054 DP421 zip1::LYS2 ndt80::LEU2 pch2::TRP1 dot1::URA3

*All strains are isogenic diploids homozygous for the indicated markers.
doi:10.1371/journal.pgen.1003262.t001
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throughout meiosis. Total histone H3 is shown as a loading

control. Strains are: DP421 (wild type), DP625 (dot1), DP422 (zip1)

and DP555 (zip1 dot1). (B) H3K79 methylation does not change in

other mutants defective in the meiotic recombination checkpoint.

Western blot analysis of H3K79me in ndt80-arrested cells at 24 h

after meiosis induction. Total histone H3 is shown as a loading

control. Strains are: DP428 (zip1), DP728 (zip1 spo11), DP881 (zip1

pch2), DP883 (zip1 rad24) and DP1024 (zip1 ddc2).

(TIF)

Figure S2 Red1 linear localization in zip1 chromosomes is not

significantly altered in the absence of Dot1. Immunofluorescence

of meiotic chromosome spreads stained with DAPI (blue) and anti-

Red1 (green) antibody. Representative nuclei are shown. Spreads

were prepared 24 h after meiotic induction of ndt80 cells. Strains

are: DP848 (zip1) and DP849 (zip1 dot1).

(TIF)

Figure S3 Dot1 is required for zip1-induced Hop1 phosphoryla-

tion. Western blot analysis of Hop1 in cell extracts obtained 24 h after

meiotic induction in ndt80 cells. Ponceau S staining of the membrane

was used a loading control. Strains are: DP428 (zip1), DP674 (zip1

mek1), DP655 (zip1 dot1), DP728 (zip1 spo11) and DP680 (zip1 mec1).

(TIF)

Figure S4 Pch2 protein levels do not change in the absence of

H3K79me. Western blot analysis of Pch2-HA in cell extracts

obtained 15 h after meiotic induction. PGK is shown as a loading

control. Hop1 and Mek1 phosphorylation were also analyzed in

the same samples to demonstrate their defective activation in the

H3-K79R and H3-K79A mutants. See Figure 3 for explanation of

the black and white arrowheads pointing to phosphorylated Mek1

forms. Strains are: DP1050 (zip1), DP1053 (zip1 dot1), DP1052

(zip1 H3-K79R) and DP1051 (zip1 H3-K79A).

(TIF)

Figure S5 Hop1-GFP localization is impaired in the absence of

H3K79me. Immunofluorescence of meiotic chromosome spreads

stained with DAPI (blue), anti-Red1 (green) and anti-GFP (red)

antibodies. Representative nuclei are shown. Spreads were

prepared 24 h after meiotic induction of ndt80 cells. Strains are:

DP1042 (zip1), DP1045 (zip1 dot1), DP1044 (zip1 H3-K79R) and

DP1043 (zip1 H3-K79A).

(TIF)

Figure S6 Analysis of cH2AX meiotic function. (A) Unlike

H3K79me, cH2AX is not required for the checkpoint-induced by

zip1 because the H2A-S129* mutation does not suppress zip1

meiotic block. Time course of meiotic nuclear divisions; the

percentage of cells containing more than two nuclei is represented.

Strains are: BR1919-2N (wild type), DP409 (zip1), DP419 (H2A-

S129*), DP420 (zip1 H2A-S129*), DP622 (dot1 H2A-S129*) and

DP623 (zip1 dot1 H2A-S129*). (B) Spore viability is high in the

absence of cH2AX and H3K79me, suggesting that both histone

modifications are not required in unperturbed meiosis. At least

288 spores were scored for each strain. Means and standard

deviations are shown. Strains are: BR1919-2N (wild type), DP419

(H2A-S129*), DP622 (dot1 H2A-S129*) and DP624 (dot1).

(TIF)

Video S1 Hop1 chromosomal distribution is impaired in the

absence of Dot1. 3D reconstruction of deconvolved Z-stack images

showing Hop1-GFP signal in zip1 and zip1 dot1 cells. Two different

nuclei of each strain are shown during the movie.

(MOV)
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