Pogo-like Transposases Have Been Repeatedly Domesticated into CENP-B-Related Proteins

Lidia Mateo and Josefa González*

Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

*Corresponding author: E-mail: josefa.gonzalez@ibe.upf-csic.es.

Accepted: July 17, 2014

Abstract

The centromere is a chromatin region that is required for accurate inheritance of eukaryotic chromosomes during cell divisions. Among the different centromere-associated proteins (CENP) identified, CENP-B has been independently domesticated from a pogo-like transposase twice: Once in mammals and once in fission yeast. Recently, a third independent domestication restricted to holocentric lepidoptera has been described. In this work, we take advantage of the high-quality genome sequence and the wealth of functional information available for Drosophila melanogaster to further investigate the possibility of additional independent domestications of pogo-like transposases into host CENP-B related proteins. Our results showed that CENP-B related genes are not restricted to holocentric insects. Furthermore, we showed that at least three independent domestications of pogo-like transposases have occurred in metazoans. Our results highlight the importance of transposable elements as raw material for the recurrent evolution of important cellular functions.

Key words: pogo, Drosophila, exaptation, functional domain, holocentric chromosomes.

Centromere-Associated Protein B Homologs Are Present in Mammals, Fission Yeast, and Holocentric Lepidoptera

CENP-B is one of the earliest described cases of transposable element (TE) exaptations in the human genome (Tudor et al. 1992; Smit 1996). Human CENP-B has extensive sequence and domain similarity to transposases encoded by the pogo superfamily of TEs. It is widespread and highly conserved in mammals, whereas it is undetectable in other metazoans (Casola et al. 2008). Other than in mammals, three CENP-B homologs have been described in fission yeast: Abp1 (Autonomous replicating sequence-binding protein 1), Cbh1 (CENP-B homolog 1), and Cbh2 (CENP-B homolog 2). Fission yeast and human CENP-B proteins are functionally related. Fission yeast CENP-B homologs show partially redundant function in the formation of centromeric heterochromatin and in chromosome segregation (Irelan et al. 2001). They also play a role in the silencing of TEs and TE-associated genes (Cam et al. 2008; Lorenz et al. 2012) and in DNA replication (Zaratiegui et al. 2011). In humans, although the role of CENP-B has been controversial (Marshall and Choo 2012), it has been recently shown that CENP-B provides an alternative redundant pathway for kinetochore formation in vivo (Fachinetti et al. 2013). Sequence and functional relationship between mammal and fission yeast CENP-B homologs is the result of convergent domestication: Different pogo-like transposases have been exapted independently in the two lineages to give rise to host proteins with centromere-binding activity (Casola et al. 2008).

Recently, a CENP-B homolog has been described in the holocentric lepidoptera Spodoptera frugiperda (d’Alencçon et al. 2011). Although in most eukaryotes the kinetochore complex, connecting chromosomes to spindle microtubules during cell division, usually binds to a single locus called the centromere, in holocentric chromosomes kinetochore proteins bind along the entire length of the chromosomes. Spodoptera frugiperda CENP-B ability to bind in vivo to a retrotransposon derived sequence and its nuclear localization suggest that this protein is functionally related to other CENP-B homologs (d’Alencçon et al. 2011). Orthologs of S. frugiperda CENP-B have been identified in other holocentric lepidoptera, Bombyx mori and Helicoverpa armigera, but not in other invertebrates. These findings suggest that there has been a third convergent domestication of a transposase into a CENP-B-related (CR) protein that appears to be restricted to holocentric lepidopteran species (d’Alencçon et al. 2011).

© The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

These results prompted us to further investigate whether CR proteins can be identified in the *Drosophila melanogaster* genome. *Drosophila melanogaster* has one of the highest quality genomes in terms of sequence and functional annotation (St Pierre et al. 2013), and its DNA is organized in nonholocentric chromosomes: Two metacentric and two telocentric ones.

CAG Is the Closest CR Protein in *D. melanogaster*

To identify CR proteins in *D. melanogaster*, we used the protein sequences of the previously identified CENP-B homologs and *D. melanogaster pogo transposase* as queries in BLASTp searches against the *D. melanogaster* protein database. As expected, we found that the *pogo* transposase was the best hit in all searches (20–30% identity, e values 4e\(^{-34}\)–3e\(^{-12}\)). We also found that CAG (CG12346) was the only host protein showing local significant sequence similarity with human CENP-B (34% identity, e value 4e\(^{-17}\)), fission yeast *Cbh1* (26% identity, e value 2e\(^{-05}\)), and Drosophila *pogo* transposase (26% identity, e value 9e\(^{-10}\)). Reciprocal BLAST searches using CAG as a query confirmed that the closest sequence in fission yeast is *Cbh1* (25% identity, e value 7e\(^{-06}\)). On the other hand, CAG shows significant sequence homology with 40 blast hits in human, being the host genes TIGD6 (34% identity, e value 3e\(^{-18}\)) and CENP-B (34% identity, e value 5e\(^{-18}\)) the highest scoring hits. Although four other proteins containing CENP-B domains have been described in *D. melanogaster*, we could not detect them in an exhaustive search using BLASTp, tBLASTN, and HMMER, suggesting that they are not closely related to CAG and previously described CR proteins (Benchabane et al. 2011).

To further determine that CAG is a transposon-derived gene and not a transposon remnant, we followed the conservative approach proposed by Feschotte and Pritham (2007). CAG fulfills the six criteria proposed by these authors. First, we did not find evidence of transposon hallmarks, that is, Terminal Inverted Repeats (TIRs), in CAG flanking regions, suggesting that CAG is not a transposon. Second, CAG shows significant sequence and domain architecture similarities (see below) with *pogo* transposase and other transposase-derived genes suggesting that it has a transposon origin. Third, the coding capacity of CAG is intact and it is evolving under functional constrain contrary to TE-coding regions of nonautonomous transposons that typically evolve neutrally (dN/dS = 0.08312 estimated using a cDNA alignment with *D. yakuba*). Fourth, synteny around CAG is conserved in most species of the *Drosophila* genus (see below) as opposed to TEs that are not expected to be maintained at orthologous positions. Fifth, CAG expresses two alternative transcripts and shows peaks of expression in different developmental stages (Marygold et al. 2013) in contrast to TE genes that are often not expressed (Delogier et al. 2009). And sixth, there are seven reported alleles for this gene, and some of them are lethal, suggesting that CAG has a critical biological function in vivo (St Pierre et al. 2013).

Thus, we can conclude that CAG has a transposon origin and it is the closest *D. melanogaster* host gene encoding a CR protein.

CAG Domain Architecture Is Similar to *pogo* Transposase and Other CR Proteins

We checked whether, besides sequence conservation, the domain architecture of CAG is also conserved when compared with previously identified CENP-B homologs and *D. melanogaster pogo transposase* (fig. 1A). Using hmmscan (Finn et al. 2011), we found that CAG shows the same composite DNA binding domain (DBD) structure found in human and *S. frugiperda* CR proteins (fig. 1A). The majority of the highly conserved amino acids shared by proteins having this

Fig. 1.— Domain structure of *pogo* transposase and CR proteins. (A) Human CENP-B (hCENP-B), *D. melanogaster* pogo transposase (*pogoR11*), *D. melanogaster* CAG (CAG), yeast CENP-B homologs (Abp1, Cbh1, Cbh2), and *Spodoptera frugiperda* CENP-B homolog (SfCENP-B). CENP-B N domain is shown in red, *d1ufa1* in yellow, HTH, Tnp, Tc5 in green, DDE_1 in light blue, DIM in pink, and PCNA in dark blue. Domains predicted by hmmscan are shown as black-lined boxes, the other domains were inferred from experimental evidence. The discontinuous line indicates the deleted region. (B) 3D structure prediction of *D. melanogaster* CAG DBD using human CENP-B as a template. Z-score = –6.66 and –6.7 for CENP-B and CAG, respectively.
composite DBD are also conserved in CAG suggesting that this
domain is functional (supplementary fig. S1, Supplementary
Material online). Furthermore, a 3D model of CAG DBD build
using human CENP-B as a template, shows that the fold of this
domain is similar in both proteins (fig. 1B). CAG is the only of the seven proteins being compared that
does not have a DDE_1 endonuclease domain (DDE) next to the
DBD domain (fig. 1A). Indeed, CAG is shorter than the other proteins probably due to an internal deletion, which is a
common feature in this class of transposons (Negoua et al.
2013). In fact, out of the 44 pogo copies in the D. melanoga-
ster genome, 35 showed internal deletions and one of them,
FBti0020096, has a similar deletion as CAG.

A dimerization domain (DIM) near the C-terminal region is
present in human CENP-B (Tawaramoto et al. 2003).
hmmScan does not detect any C-terminal DIM domain in the
other six proteins. However, it has been described that the
pogo transposase, CAG and the three yeast CENP-B ho-
omologs self-dimerize (Wang et al. 1999; Irelan et al. 2001;
Giot et al. 2003; Tawaramoto et al. 2003; Cam et al. 2008;
Lorenz et al. 2012). Given their common evolutionary origin,
we hypothesized that the DIM domain might be located in the
C-terminal region in these proteins as well. Finally, the pogo
transposase has a PCNA (proliferating cell nuclear antigen)
binding domain in the C-terminal end (Warbrick et al.
1998). Although this domain has not been identified in
CAG at the sequence level, there is experimental evidence
for CAG binding to PCNA suggesting that besides CAG
other pogo-related proteins might have also conserved this
function (fig. 1A).

Taken together, these results indicate that CAG is similar to
the pogo transposase both at sequence and domain architec-
ture levels, further confirming that CAG has a transposon
origin. The lack of the DDE domain is explained by an internal
deletion that is common in this family of transposons. Except
for the absence of the DDE domain, CAG sequence and
domain architecture are also similar to other described
CENP-B homologs.

Protein–Protein Interaction Network
Suggests CAG Is Functionally Related to
Other CR Proteins

Because CAG is a protein of unknown function, we searched
for proteins directly interacting with CAG to shed light on the
biological processes in which this protein might be involved.
Although data from protein-protein interaction (PPI) networks
is still noisy and partial, functional annotation based on inter-
action networks provides reliable insight into the biology of
proteins with unknown function (Titz et al. 2004; Sharan et al.
2007). There is experimental evidence for the interaction
between CAG and 15 other proteins, and six of them have
nucleic acid binding capacity (supplementary table S1,
Supplementary Material online). CAG directly interacts with
Mi-2, which is a component of the nucleosome remodeling
and histone deacetylation (NuRD) complex with chromatin
binding and remodeling activity (Bouazoune and Brehm
2005). As mentioned above, CAG has preserved the pogo
transposase capacity to interact with PCNA (Warbrick et al.
1998). Besides playing a crucial role in DNA replication and
repair (Warbrick et al. 1998), cell cycle control and sister chro-
matin cohesion (Maga and Hubscher 2003), PCNA is also a
component of the microtubule associated complex (Hughes
et al. 2008). CAG also interacts with Cdc5 and snarna, which
are involved in cell cycle control (supplementary table S1,
Supplementary Material online).

To further investigate the functional annotation of CAG,
we expanded the network of proteins that directly interact
with CAG by incorporating their respective interaction part-
tners (Chua et al. 2006). The resulting list of 842 proteins
in the neighborhood-2 of CAG showed a significant enrich-
ment for 72 biological process Gene Ontology (GO) terms
related to cell cycle and mitotic spindle organization and nu-
cleic acid metabolism among others (fig. 2). Fifty-eight out of
the 72 CAG enriched GO terms are also enriched in the
human CENP-B neighborhood-2, further suggesting that
CAG and CENP-B interacting partners are involved in similar
biological processes.

CR Genes Are Present in Holocentric
and Nonholocentric Insecta

To determine whether CAG is present in species other than D.
melanogaster, we searched for CAG orthologs using a
BLASTp search against ensembl metazoa protein database
(see Materials and Methods). CAG has nine 1-to-1 orthologs
in the Drosophila genus that showed a sequence identity from
97.2% to 39.8% (table 1). The DBD architecture is conserved
in all of them and the length of the protein is highly similar
except in D. simulans, where only the first DBD domain is
present (table 1). Other than sequence identity and protein
length, synteny is also conserved in the six closest Drosophila
species except in D. simulans. Furthermore, CAG is evolving
under functional constrain in these ten Drosophila species
(average difference of synonymous and nonsynonymous
substitutions per site over all nine sequence pairs is 17.99,
P value \(\lt 0.001\)) suggesting that CAG orthologs are func-
tional genes.

Other than in the Drosophila genus, CAG has homologs in
four Lepidoptera species and in one Coleoptera with sequence
identities ranging from 51.5% to 22.2% (table 1). We could
only detect TIRs flanking Heliconius melpomene HMLE010729
suggesting that the other identified homologs are not trans-
posons but transposon-derived genes (see Materials and
Methods).

Overall, our results show that CR genes are present both
in holocentric, Lepidoptera, and in nonholocentric, Diptera
and Coleoptera, species.
CAG Belongs to the CR Clade

We constructed a phylogenetic tree to find out where insect CENP-B homologs are located in the previously published phylogeny containing a representative set of pogo transposases and pogo-derived genes (Casola et al. 2008). Phylogenetic trees of the full sequence set containing nonmetazoan transposases and transposase-derived genes can be found in supplementary figures S2 and S3, Supplementary Material online (see Materials and Methods). Our tree recovers the two monophyletic clades in metazoans: CR and Jerky related (JR) (fig. 3). CAG is located in the CR clade, and as expected, its closest transposase is the *D. melanogaster* pogo. The closest non-Drosophila CAG homolog is *Tribolium castaneum* TC005011. Most of the other insect CENP-B homolog genes, including the already described *S. frugiperda* and *H. armigera* CENP-B homologs, also fell in the CR clade. Insect and mammalian CR proteins form subclades inside the CR clade (fig. 3). Other than between *D. melanogaster* CAG and *D. ananassae* GF13390 transposase-derived genes, synteny is also conserved among Sfru_72F01, Harmi_94B11_25, and Bombyx_BGIIBMGA013624 suggesting that at least two additional independent exaptations, besides the mammal and fission yeast exaptations reported by Casola et al (2008), have occurred.

Note that *Helicon. melpomene* homologs form two clusters, one in the JR clade and one in the CR clade, showing extensive sequence identity indicating that they are
either recent duplications or miss-annotated transposons (fig. 3).

Pogo-like Transposases Have Been Recurrently Exapted into CR Proteins in Metazoans

In this work, we have identified CAG as the closest CR protein in the *D. melanogaster* genome. Similar to other CR proteins, CAG has originated from the domestication of a pogo transposase and might be functionally related to other CENP-B homologs as suggested by the conservation of three out of the four functional domains (fig. 1) and the GO enrichment analyses of CAG PPI network (fig. 2). Knowledge about the contribution of each particular domain to the overall functions of CR proteins is scarce (Okada et al. 2007; Lorenz et al. 2012). However, conservation of DBD domain appears to be particularly important because it has been demonstrated that binding of this domain is sufficient to promote chromatin assembly in humans (Okada et al. 2007). Both sequence identity and 3D structure prediction show that CAG has a highly conserved DBD domain (fig. 1).

Other than in *D. melanogaster*, we were also able to identify CR proteins in *T. castaneum*, which is also a nonholocentric insect, indicating that CR proteins are not restricted to holocentric insecta (table 1) (d’Alenc¸on et al 2011). Insect CENP-B homologs do not form a single monophyletic clade: Most sequences are part of the CR clade and a few belong to the JR clade. Furthermore, insect and mammalian CR proteins form moderately supported subclades inside the CR clade (fig. 3). These results suggest that at least three independent domestications of pogo-like transposases into CR proteins have occurred in metazoans (fig. 3).

Pogo-like transposases might have a predisposition to be recruited as centromeric proteins because 1) their DBD might provide them with the intrinsic ability to interact with centromeric DNA, and/or 2) interaction with the centromere might be indirect through their interaction with other host proteins with this ability (Feschotte and Pritham 2007; Casola et al. 2008). Our results further support both hypotheses. All CR proteins described so far conserved their DBD suggesting that they all probably have the ability to directly bind to DNA (fig. 1A, table 1). In the case of CAG, indirect capacity to interact with DNA is also provided through its interaction with PCNA (Warbrick et al. 1998; Maga and Hubscher 2003).

Table 1

<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Species</th>
<th>Protein Identifiera</th>
<th>Protein Sequence Identity (%)</th>
<th>Protein Length</th>
<th>Conserved Protein Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Drosophila melanogaster</td>
<td>CAG (CG12346)</td>
<td>100</td>
<td>225</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. simulans</td>
<td>GD15259</td>
<td>97.22</td>
<td>111</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. sechelia</td>
<td>GM20484</td>
<td>94.67</td>
<td>225</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. yakuba</td>
<td>GE13064</td>
<td>92.44</td>
<td>225</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. erecta</td>
<td>GG22708</td>
<td>93.24</td>
<td>207</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. ananassae</td>
<td>GF13390</td>
<td>59.11</td>
<td>222</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. pseudoobscura</td>
<td>GA11571</td>
<td>57.46</td>
<td>228</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. persimilis</td>
<td>GL17090</td>
<td>58.77</td>
<td>228</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. willistoni</td>
<td>GK19073</td>
<td>40.29</td>
<td>222</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. virilis</td>
<td>GJ16124</td>
<td>39.81</td>
<td>227</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bombyx mori</td>
<td>BGIBMGA013031</td>
<td>32.09</td>
<td>278</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGIBMGA008012</td>
<td>26.35</td>
<td>501</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGIBMGA007903</td>
<td>25</td>
<td>468</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGIBMGA013624</td>
<td>29.63</td>
<td>722</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heliconius melpomene</td>
<td>HML009793</td>
<td>35.38</td>
<td>255</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HML010729</td>
<td>33.8</td>
<td>295</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HML014790</td>
<td>31.55</td>
<td>533</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HML007960</td>
<td>50</td>
<td>533</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HML011593</td>
<td>35.38</td>
<td>192</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Helicoverpa armigera</td>
<td>94811.25a</td>
<td>22.22a</td>
<td>488</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72F01a</td>
<td>23.61a</td>
<td>488</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spodoptera frugiperda</td>
<td>TC003750</td>
<td>26.39</td>
<td>1175</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC001653</td>
<td>30</td>
<td>486</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Coleoptera</td>
<td>Tribolium castaneum</td>
<td>TC005011</td>
<td>51.49</td>
<td>212</td>
<td>—</td>
</tr>
</tbody>
</table>

aAll sequences can be downloaded from Ensembl Metazoa except those with an “” that can be downloaded from LepidoDB.
*Protein sequence identity estimated using BLASTp except for those with an “**” estimated using ClustalW (see Materials and Methods).
Fig. 3.—Phylogenetic distribution of pogo-related transposases and transposase-derived genes in metazoans. JR and CR indicate that the sequences belong to the JR clade and the CR clades, respectively. Filled-boxes depict pogo-related transposases and empty boxes depict transposase-derived genes. Numbers in the nodes show posterior probabilities (black) and bootstrap values (red). Shaded branches correspond to new CR proteins identified in this work and in d’Alencón et al 2011 (table 1) that have been incorporated to the previously published phylogeny (Casola et al 2008). Dotted lines represent branches not drawn to scale. Trees including nonmetazoans pogo-related transposases and transposase-derived genes are depicted in supplementary figures S2 and S3, Supplementary Material online.
and other DNA binding proteins (supplementary table S1, Supplementary Material online).

Overall, our results suggest that the numerous TE expecta-
tions already described might just be the tip of the iceberg,
and highlight the role of TEs as raw material for the recurrent
evolution of important cellular functions (Bowen and Jordan
2007; Sinzelle et al. 2009).

Materials and Methods

CAG Identification

Human CENP-B (P07199), fission yeast Abp1 (NP_596460),
Cbh1 (CA816408), Cbh2 (CAA19330.1), S. frugiperda
CENP-B (72F01) (d’Alençon et al. 2011), and pogo transpo-
sase (S20478) were used as BLASTp queries against D. me-
nanogaster nr protein database with BLOSUM45 scoring matrix,
low-complexity region filter, and an e value cutoff of 1e-04.
Significant hits were used in a reciprocal BLASTp search using
these same parameters.

Domain Architecture Analysis

Hmmscan software implemented at HMMP 3.1b1 (Finn et al.
2011) was used to search for occurrences of the domains
deposited in Pfam-A database in the protein sequences
under study. This information was complemented with the
structural data available for human CENP-B (PDBIDs: 1HLV,
1BW6, 1UIF) and fission yeast Abp-1 (PDBID: 1UIF). The
experimentally determined molecular interactions reported
by Warbrick et al. (1998), Giot et al. (2003), Guruharsha
et al. (2011), and Irelan et al. (2001) that were accessed
through the PSICQUIC web server (Aranda et al. 2011) and
FlyBase (Marygold et al. 2013) were also taken into account.

CAG 3D Modeling

The crystal structure of human CENP-B DBD (PDB ID: 1HLV)
was used as a template for the modeling of D. melanogaster
CAG DBD. The first 145 aminoacids (aa) of CAG were aligned
to the 131 aa contained in the crystalized human CENP-B DBD
using a combination of a global alignment built with ClustalW
and two local alignments of the HTH regions built with hma-
align software (Finn et al. 2011) and the pfam profiles CENP-
B_N and HTH_Tnp_Tc5. The resulting alignment was manually
refined taking into account the predicted secondary structure
of CAG and the description of the secondary structure of the
crystal. Several alignments were used as an input to build CAG
DBD models using the automodel class in Modeller 9.7 (Eswar
et al. 2007). The resulting models were evaluated taking into
account their stereochemical properties calculated by
PROCHECK (Laskowski et al. 1993) and their pseudoenergetic
profiles and z-scores calculated by PROSA II (Wiederstein and
Sippl 2007). STAMP was used to visualize the superimposition
of the models with human CENP-B (Russell and Barton 1992).

CAG PPI Network

A list of proteins with experimental evidence of direct interac-
tion with CAG (Q7JR24) and human CENP-B (P07199)
were retrieved from Drosophila Protein Interaction Map and
the PSICQUIC web server (Aranda et al. 2011). Only those
binary interactions obtained using experimental detection
methods and interaction types “association”, “physical asso-
ciation,” or “direct interaction” were kept.

The PPI interaction network at neighborhood-1 of CAG
and CENP-B was expanded to neighborhood-2 using both
experimentally determined and predicted interactions depos-
ited at Interolog Finder web server (Wiles et al. 2010). We
retrieved a list of 1,413 interactions involving 842 proteins
for CAG and a list of 1,665 interactions involving 1,174 pro-
teins for CENP-B. Cytoscape was used to visualize the interac-
tions and BinGO to assess the overrepresentation of GO terms
(Maere et al. 2005). Those GO terms showing a Benjamin and
Hochberg False Discovery Rate corrected P value < 1e-10 in
a hypogeometric statistical test were represented, together
with their parent terms, in a hierarchical layout. The intersec-
tion of the GO terms that were enriched in both CAG
and CENP-B neighborhood was performed by comparing
the generated output files.

Codon-Based Test of Purifying Selection

Coding sequences for nine CAG orthologs in Drosophila
species were aligned by ClustalW (Thompson et al. 1994).
Codon-based tests of selection analyses were conducted
in MEGAS (Hall 2013) using the Nei–Gojobori method
(Nei and Gojobori 1986). All ambiguous positions were
removed for each sequence pair. The average difference of
synonymous and nonsynonymous substitutions per site was
calculated. The variance of the difference was computed
using the bootstrap method (500 replicates).

Identification of CAG Orthologs and CR Genes

BLASTp searches using CAG sequence as a query were per-
formed against ensembl metazoa protein databases. Protein
sequences of those hits showing an E value smaller than 10−4
and a protein sequence identity greater than 25% along at
least 100 aa, were retrieved and used for further analyses. We
then checked whether the identified proteins were reported
as orthologs in ensembl metazoa compara, Genomicus, and
OrthoDB Arthropods, and kept only the ones that were
reported as orthologs in at least one of the three databases.
The two previously described CR genes in S. frugiperda and
H. armigera were also included in the analyses (d’Alençon et al
2011). For these two sequences percentage of protein
sequence identity was estimated using ClustalW. We then
confirmed that the sequences had not been annotated as TEs
during their respective genome annotation projects (Tribolium
Genome Sequencing Consortium 2008; Duan et al. 2010; Heliconius
Genome Consortium 2012). To further
confirm that these sequences correspond to host proteins and not to transposases, we searched for Terminal Inverted Repeats in the 5’ and 3’ 600 base-pair regions flanking the CDS. To this end, we performed local sequence alignments using the Smith–Waterman algorithm for all possible sliding windows of 24 bp in the 5′-flanking region and the reverse sequence of the 3′-flanking region. *Drosophila melanogaster* PogoR11 was used as a positive control.

Phylogenetic Analysis of pogo-Related Sequences

Global multiple sequence alignments were performed using *MAFFT* (L-INS-i algorithm) (Katoh and Standley 2013). Local alignment of the DBD was performed using mmalign and the hidden markov models *HTH_CENP-B_N* and *HTH_Tnp_Tc5*. Both alignments were combined and manually curated to obtain a final multiple sequence alignment of 449 residues with a proportion of gaps of 15.90%. This alignment was used to reconstruct the phylogeny of the pogo-related transposases and transposase-derived genes. We estimated the maximum-likelihood (ML) tree using RAxML (Stamatakis 2014). We used the best-fit amino acid substitution matrix (LG) estimated by ProtTest 3 (Darriba et al. 2011) with a GAMMA model of rate heterogeneity and the ML estimate of alpha-parameter. The best tree out of 100 inferences was optimized and 100 bootstrap replicates were performed (supplementary fig. S2, Supplementary Material online). Because bootstrap support in most of the branches in the metazoan sequences were smaller than 70, we decided to perform an independent inference using a Bayesian approach. We constructed the phylogenetic tree with PhyloBayes using the LG empirical mixture model with a discrete gamma distribution with four categories where constant sites were removed. Two Markov chains were run in parallel with a subsampling frequency of 100 until convergence was reached (population effective size of 242, maximum difference of 0.105175, mean difference of 0.00381158) (supplementary fig. S2, Supplementary Material online). ETE Toolkit (Huerta-Dooley et al. 2011) was used to annotate and visualize phylogenetic trees.

Genomicus (Louis et al. 2013) was used to check for synteny conservation in the different subclades identified.

Supplementary Material

Supplementary table S1 and figures S1–S3 are available at *Genome Biology and Evolution* online (http://www.gbe.oxfordjournals.org).

Acknowledgments

The authors thank Barbara Negre and members of the González lab for critically reading the manuscript, Alex de Mendoza and Itaki Ruiz-Trillo for advice on phylogenetic analyses, and Claudio Casola for sharing his data set of pogo transposases and pogo-derived protein sequences. J.G. is a Ramón y Cajal fellow (RVC-2010-07306). This work was supported by grants from the European Commission (Marie Curie CIG PCIG-GA-2011-293860) and from the Spanish Government (Fundamental Research Projects Grant BFU-2011-24397) awarded to J.G.

Literature Cited

