Bulletin of the American Physical Society

APS March Meeting 2014
Volume 59, Number 1

Monday–Friday, March 3–7, 2014; Denver, Colorado

Session A34: Focus Session: AMO Quantum Information Processing and Superconducting Qubits: Exploring Interactions of Photons and Qubits
8:00 AM–11:00 AM, Monday, March 3, 2014
Room: 704

Sponsoring Units: GQI DAMOP
Chair: Kenneth Brown, Georgia Institute of Technology

Abstract ID: BAPS.2014.MAR.A34.6

Abstract: A34.00006 : Dynamics of superconducting qubits in open transmission lines
9:24 AM–9:36 AM

Preview Abstract

Authors:
Garcia-Ripoll Juan Jose
(Instituto de F\'isica Fundamental, IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain)

David Zueco
(Fundacion ARAID, Paseo Maria Agustin 36, Zaragoza E-50004, Spain)

Diego Porras
(Fac. CC. Fisicas, Univ. Complutense de Madrid, Madrid E-28040, Spain)

Borja Peropadre
(Instituto de F\'isica Fundamental, IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain)

The time and space resolved dynamics of a superconducting qubit with an Ohmic coupling to propagating 1D photons is studied, from weak coupling to the ultrastrong coupling regime (USC). A nonperturbative study based on Matrix Product States (MPS) shows the following results [1]: (i) The ground state of the combined systems contains excitations of both the qubit and the surrounding bosonic field. (ii) An initially excited qubit equilibrates through spontaneous emission to a state, which under certain conditions, is locally close to that ground state, both in the qubit and the field. (iii) The resonances of the combined qubit-photon system match those of the spontaneous emission process and also the predictions of the adiabatic renormalisation [2]. These results set the foundations for future studies and engineering of the interactions between superconducting qubits and propagating photons, as well as the design of photon-photon interactions based on artificial materials built from these qubits. \footnote{[1] B. Peropadre, D. Zueco, D. Porras, J. J. G. R., arXiv:1307.3870[0pt] [2] A. J. Leggett et al., Rev. Mod. Phys. 59, 1, (1987)}