

Cover		Program	
Monday		Info	
Tuesday		Social program	
Tuesuay		Social program	
		A 1 1 1 4	
Thursday		Acknowledgments	
Friday		Sponsors	
List of participants			
		-	
Posters 1	Posters 2		Posters 3

Dynamics of atom-diatom reactions at the low energy regime

Tomás González Lezana¹

¹IFF-CSIC, c/ Serrano 123 28006 Madrid, Spain

t.gonzalez.lezana@csic.es

The dynamics of some atom-diatom reactions has been investigated in the low collision energy regime (E_{coll} < 10^{-1} eV). The possibility of complex-forming mechanisms is analyzed by means of a statistical quantum method [1,2] in comparison with quantum mechanical results and experimental measurements. The case of the H⁺ + H₂ reaction, and isotopic variants, for which a significant dependence on the energy range has been reported before, is treated in detail [3], Recent studies on the D⁺ + H₂ reaction found theoretical rate coefficients in a good agreement with experiment down to 10^{-3} eV [4,5]. Similar investigations in other reactions such as Li+YbLi and He+NeH⁺ [6] are discussed.

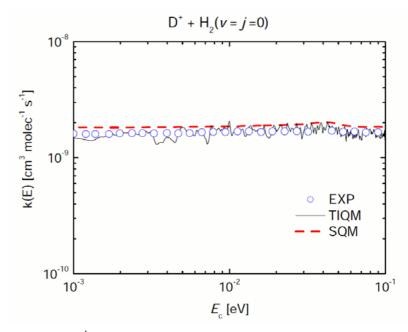


Figura 1. Rate coefficient for the $D^+ + H_2 \rightarrow HD+H$ reaction. A comparison of statistical, time independent quantum mechanical and experimental results.

References

- 1. E. J. Rackham et al., J. Chem. Phys. 2003, 119, 12895.
- 2. T. González-Lezana, Int. Rev. Phys. Chem. 2007, 26, 29.
- 3. T. González-Lezana and P. Honvault, Int. Rev. Phys. Chem. 2014, (in press).
- 4. T. González-Lezana et al., J. Phys. Chem. A 2014, (in press).
- 5. T. González-Lezana et al., J. Chem. Phys. 2013, 139, 054301.
- 6. D. Koner and A. N. Panda, J. Phys. Chem. A 2013, 117, 13070.