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SUMMARY

IF IT IS NOT THERE, IS IT ZERO?
\[0)4
IF IT IS NOT THERE, THERE IS THE VACUUM
but. .. ...

This leaves no way for strict localization
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Madrid 1967 Juan: What is an electron?
EM LabTeaching Assistant: Something like this ................

Charged particle as a point creating a Coulomb field
Classical Charged Particles (Lorentz, Abraham, Rohrlich, Dirac,..)

Particles follow Iworldlines

The transplant of this idea to QM is best represented by Bohmian Mechanics

q¢—q p—piapt— ¢ P

Beyond that Hamilton-Jacobi = Schrédinger
Yi=a (') = 0(2" — ), Yp=p(p') = 6(p" — p)

But Hegerfeldt: If at t=0 w localizedinV ando(H) > 0

then ’w is{

forever inV  (vanishes out of V)

finite everywhere after infinitesimal 5 t



Hegerfeldt Theorem

_ ,—tH 3
Y =e "My H >c {EitherPA(t)#O‘v’teR

Pa(t) = (ve|Ajs) A>0 or PA(t)=0Vte R

y ]
II

Take | A = fv |z) (] V Borel set in R3, |x > position eigenstate

Either v is in V forever (Py(t) # 0Vt € R)

or v isnever in V (Py(t) =0Vt € R)



Instantaneous spreading —> causality problems in RQM and QFT
Prigogine: KG particle 1) = j‘Ux’ dwp ) (w, :E)QT(kH[))’
initially localizedin V|, ¢(w,z) =0ifz gV
box splits and expand at the speed of light

! 9l - wo | — 0 ’7-"‘("“ ,fvc\u % - 7o |
e Wt z) = Wb, ) + iSP(L, z)

_ destructive interferenceat t = 0
SY W\//

Sy (t-,. x) strictly non local

a

NS\

Antilocality of @y, = (t,x) =0, and wp(t,x) = 0Ve € I = p(t,z) =0

A simplified version of Ree-Schlieder th.
Even if initially (0,2) = 0 Vz &€ V, Necessarily 1)(0,z) # 0 for = ¢ V



We localized a Fock state
just to discover that
it instantaneously
spreads everywhere



We localized a Fock state
just to discover that
[t instantaneously
spreads everywhere

Wave function and its time derivative
vanishing outside a finite region
requires of both, positive and negative ,frequencies



What happens when a photon,
produced by an atom inside a cavity,
escapes through a pinhole?

Eventually the photon will impact on a screen att = d / C

But only at the pinhole ¢ # 0
and the photon energy is positive

According to Hegerfeld + antilocality
the photon will spread everywhere almost
instantaneously

As this is not the case,

we have to abandon Fock space for describing the photon through the pinhole



Quantum springboards
H=Y,5pf+¢)+Aigir1 — H=>, 5(P?+Q3)
nu‘u\_o_rmn_o—/mm—OJmn_O_ruw\_O_rom FETTA W= T I
0 i+ 1
(gi; pi)local d.o.f. (Q;, P;)global d.o.f.

AN = QN -+ if)ﬁr, ATV = @N - ‘ipN, — H = ZN ﬁﬂ-NALAN

Particles < elementary excitations of global oscillators
Vacuum < ground state

All oscilators are present in the vacuum
Local excitations are not particles, Global are  (standard Fock Space)

Vacuum entanglement: what you spota@; depends 0oq ;



We need to describe the photon emerging through the pinhole as a well posed

Cauchy problem i.e. by initial values fo® andt}"') vanishing outside the hole.

Consider a 1+1 Dirichlet problem where the global space i{x € [0, ]}

and the initial data vanish outside L = [0,7], 7 < R

We will consider 1y () = »/jrlTﬁ sin ”‘:‘_"'“, k() = —iwy TLR sin “ff”' k=1,2..
Cauchy data can be writtenas  ¢(x) = >, cpuk(x), b = > Crtg ()

e €O

\\




We follow a similar procedure for the case finite Cauchy data out of the hole:

relL=|rRl, T=R—7r

ﬁk(m)——zka51nM k=1,2

1 - wkx
’_I‘T‘ b

ﬁk(&?) = -

g

Finally, using upper case for the global modes:

i 1 7N i)
Un ( ) U‘M( ) —Hlvt = JRON S111 RJ e 1INt (N.B. stationary modes)

How sums of Uy (SE) and U4 ({L‘) buildup Uy (:1?)



Field expansions

O, t) = 5, (e, )i + i (z,0)af), v €L

e

¢(x,t) =), (ﬂg(:ﬂ, t)a; + u}“(z:,t)ﬁ;) , t€ R—L

o(z,t) = N1 (Ulw(.i?_‘:,f)[i_w + U{(if)}il) ,r € R
-I-
a

Local modes are superpositions of positive and negative frequencies

ug(z,t) = Z ((w;,, + Qn)e N (wy — QN)EmNt)HN(I)VkN
N

ak(z,t) = Y ((@k + Dn)e ™™ — (@ — Qn)e™™) Uy (z) Vien -




Field expansions

e

bz, t) =% (UN (x, ) Ay + U (g;,t)gi;) zE€R

d(z,t) =3, (uz (2, t)ay + u} (g:,t)a;) L zel

e

d(x,t) =Y, (ﬁg(:ﬂ, tay + u (g:,t)aj) L ze€R-L
Bogoliubov transformations

am =Y _(um|Un)An + (um|UN)AY  al, =) (Un|um) AN + (U |um) Ax
N N

m =Y _(@m|Un)AN + (@m|UN)AY @l = (Unlam) AN + (Ux am) A
N N

Canonical conmutation relations
[{I.m, ﬂ'iz] — 51?171 [am& a:!z] =0 [am: EL] = ‘Emn



Exciting the vacuum with local quanta 0c) — al,|0c)

al,|0¢)
\/1 + (0g|nm|0c)

Normalized one-local quantum state [¥) =

If | Q)D)were strictly local,
operators actingon [, — R{

could not tell the difference between |Q,D> and ‘0G>

For instance
<¢|ﬁ’m|¢> I <0G|ﬁ’m|0G>

should be zero



This is not the case

(Oglarfimal|0G)
1+ (0¢|m|0c)
(Oc|mifim|0c) — (Oc|m|0c)(0c|m:|0c) corr(ni, fim)

(|Am|¥) — (0c|Am|0c) = — (0¢|nm|0c)

1+ {UGln.ll{]G) 1 + (Dglﬂﬁlﬂg}
due to vacuum correlations

corr(nym, ) = (Og|nmiu|0c) — (Oc|nm|0c){(0c|7|0c)

a C(Nm, M) b C(Nm, n)

20
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The lesson:
In spite of having introduced neatly localized quanta

Their elementary excitations are not strictly local

We traced this back to the COTT(?’E,{:. ﬁm) 7é 0
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We traced this back to the COTT(ﬂz ) ﬁm) 75 0

N.B. We could introduce a local vacuum a,l |0L> =0
then the states ‘(,bL) — a,T|OL>

Become strictly local <¢L‘ﬁm‘¢L> - <0L|ﬁm|0L> =0



THANK YOU!



