

The late Miocene/early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): an update

Journal:	Integrative Zoology
Manuscript ID:	INZ-2013-01-003.R1
Manuscript Type:	Original Article
Keywords:	Mallorca, late Miocene, early Pliocene, new fauna, paleobiogeography
Specialty:	Paleontology, Evolution

Integrative Zoology

1 ABSTRACT

The vertebrate fossil record from the Balearic Islands (western Mediterranean) has been widely improved in the last decade, especially in Mallorca and Menorca. In Menorca, the Pliocene terrestrial fauna was updated by the discovery and description of the large-sized leporid *Nuralagus* and several reptiles and an amphibian. In Mallorca, paleontological exploration yielded two deposits with a late Miocene/early Pliocene chronology, Caló den Rafelino (CdR) and Na Burguesa-1 (NB-1). Up to four new mammalian taxa and two new reptiles have been identified for the Caló den Rafelino deposit so far, whereas the faunal assemblage from the recently discovered deposit (April 2012) of Na Burguesa-1 is currently composed of, at least, six terrestrial mammals, eight reptiles and an amphibian. Its faunal composition and some primitive characteristics of the obtained taxa suggest that the chronology of this deposit is slightly earlier than the Caló den Rafelino. The terrestrial vertebrates recorded in these two Mallorcan deposits are changing the view of the paleofaunal assemblage previously known for the Plio-Pleistocene of the island. Morphological characteristics displayed by some of the taxa suggest that these faunas would be at the beginning of an isolated evolution. In this paper we present a preliminary report on the fossils recovered from Na Burguesa-1 deposit, as well as some unpublished material from Caló den Rafelino, and we analyze the whole fauna from both Mallorcan deposits, focusing in taxonomical and paleobiogeographical aspects. **Keywords :** Mallorca, late Miocene, early Pliocene, new fauna, paleobiogeography

24 INTRODUCTION

25	The Balearic Islands are an archipelago located at the Western Mediterranean
26	Sea. It is compound of two sub-archipelagos, the Gymnesic Islands (Mallorca,
27	Menorca and surrounding islets) and the Pityusic Islands (Eivissa, Formentera and
28	surrounding islets) (Fig. 1). Although these islands are geographically close to each
29	other, remarkable differences in their Pliocene and Pleistocene fossil record exist.
30	Two different insular episodes can be identified in the Miocene to Holocene
31	fossil record of the Balearic Islands (e.g., Alcover et al. 1981; Moyà-Solà et al. 1999;
32	Bover et al. 2008). A first episode has been related to the Langhian-Serravalian
33	regression (middle Miocene). It has been only recorded in Mallorca and Menorca. The
34	two main Mallorcan sites representatives of this episode (Santa Margalida and Sant
35	Llorenç) yielded remains of a lagomorph (Gymnesicolagus gelaberti Mein &
36	Adrover, 1982) and three glirids (Carbomys sacaresi Mein & Adrover, 1982,
37	Margaritamys llulli Mein & Adrover, 1982 and Peridyromys ordinasi Mein &
38	Adrover, 1982) (Mein & Adrover 1982; Adrover et al. 1985). Other taxa found in pre-
39	Messinian deposits (Cova des Coll and Cova de Cala Varques B; Gràcia et al. 1997,
40	2000) are a large terrestrial tortoise (Testudinidae), and a brackish soft-shell turtle
41	(Trionyx sp.) (Bover et al. 2008). A related fauna, also belonging to this episode, was
42	recovered from the Menorcan deposits of Punta Nati-2 and Es Cul de sa Ferrada, with
43	G. aff. gelaberti, Margaritamys adroveri Quintana & Agustí, 2007, an undetermined
44	viperid, an undetermined great-sized tortoise, one or more small-sized reptiles, and a
45	bird (Bailon et al. 2002; Quintana & Agustí 2007).
46	The second episode started at the Messinian Salinity Crisis (MSC) and spreads
47	over all the Plio-Pleistocene. Until the end of the 90's its record of terrestrial
48	vertebrates was mainly represented in Mallorca and Menorca by three mammalian

3

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 55	
55	
56	
57	
58	
59	
60	

49	evolutionary lineages: a bovid (Myotragus), a glirid (Hypnomys) and a soricid
50	(Nesiotites), together with a lacertid of the genus Podarcis (early Pleistocene to
51	Holocene), and the amphibians Alytes (early Pleistocene to Holocene) and
52	Discoglossus (early Pleistocene) (Alcover et al. 1981; Bover et al. 2008). The fossil
53	record of the three mammalian lineages was remarkably complete throughout the
54	Pliocene to Holocene on Mallorca and throughout the early Pleistocene to Holocene
55	on Menorca (see Alcover et al. 1981; Agustí & Moyà-Solà 1990; Moyà-Solà et al.
56	1999; Bover et al. 2008 for further detail on the fauna). Additionally, a peculiar
57	Pliocene fauna was known from Menorca, composed of the glirid Muscardinus
58	cyclopeus Agustí, Moyà-Solà, Pons-Moyà, 1982, the bat Rhinolophus cf. grivensis
59	Depéret, 1892 and the giant tortoise Cheirogaster gymnesica (Bate, 1914) (Bate 1914;
60	Pons-Moyà et al. 1981; Agustí et al. 1982).
61	In Eivissa, a distinctive faunal succession was observed. The earliest fauna
62	recorded comes from the deposit of Ses Fontanelles. It includes two bovids (a caprine
63	and an antilopine), two rodents (the gerbillid Debruijnimys sp. and the glirid Eliomys
64	sp.), a leporid (identified as Hypolagus sp. by Quintana et al. 2010), an insectivore, a
65	lizard, and a tortoise (Moyà-Solà et al. 1984, 1999; Agustí & Moyà-Solà 1990). It was
66	attributed to the late Miocene (Messinian)/early Pliocene (Moyà-Solà et al. 1999;
67	Bover et al. 2008). A single deposit from the late Pliocene/early Pleistocene of Eivissa
68	is known, Cova de Ca Na Reia, containing two glirids (Eivissia canarreiensis Alcover
69	& Agustí, 1985 and Hypnomys sp.), a tortoise (Cheirogaster sp.), a lizard (Podarcis
70	sp.), bats and birds (Kotsakis 1981; Alcover & Agustí 1985; Bour 1985; Alcover
71	1989). Remains of giant tortoises are also known from other early-middle Pleistocene
72	deposits from Eivissa and Formentera (Bover et al. 2008). Finally, the late

73 Pleistocene-Holocene deposits from the Pityusic Islands yielded birds, bats and a

http://mc03.manuscriptcentral.com/inz

74	lizard (Podarcis pityusensis Boscá, 1883), but no other fossil terrestrial vertebrates
75	have been ever recorded from them (Florit et al. 1989).
76	The discovery of Pliocene deposits in Mallorca and Menorca during the last
77	fifteen years improved substantially the knowledge on the paleofauna of the second
78	faunal episode, and it shed light to the stock that arrived to the islands during MSC, an
79	event that has been situated between 5.6 and 5.32 Ma ago (Clauzon et al. 1996;
80	Gautier et al. 1994; Krijgsman et al. 1999). In Menorca, several deposits in the
81	Northwest coast of the island, in Punta Nati (municipality of Ciutadella, Quintana
82	1998), yielded a Pliocene fauna coeval to Muscardinus cyclopeus, Rhinolophus cf.
83	grivensis and Cheirogaster gymnesica. It includes Nuralagus rex Quintana, Moyà-
84	Solà, Köhler, 2011, Vipera natiensis Bailon, Garcia-Porta, Quintana, 2002, Vipera sp.,
85	Coluber sp., Gekkonidae indet., Podarcis aff. lilfordi, Blanus sp., Latonia sp. (Bailon
86	2004; Bailon et al. 2002, 2005; Garcia-Porta et al. 2002; Quintana et al. 2005, 2011),
87	and several bird species (such as Pterodromoides minoricensis Seguí, Quintana,
88	Fornós, Alcover, 2001, Scolopax carmesinae Seguí, 1999, Camusia quintanai Seguí,
89	2002, Tyto balearica Mourer-Chauviré, Alcover, Moyà-Solà, Pons-Moyà, 1980,
90	Athene sp., Corvus sp. and an unidentified passeriform; Seguí 1998, 1999, 2002;
91	Seguí <i>et al.</i> 2001).
92	The early Pliocene fauna from Mallorca started to be known within the last

decade (Bover *et al.* 2007). In this paper we present an overview of the Mallorcan
vertebrate fauna from the late Miocene/early Pliocene interval based on the findings
from two sites, Caló den Rafelino (Manacor) and Na Burguesa-1 (Palma). As the
work on the Na Burguesa-1 breccia is now in progress, we only can present here a few

97 preliminary data on this site, based on the first extracted and identified bones.

Integrative Zoology

of 77	Integrative Zoology
	5
99	MATERIAL AND METHODS
100	
101	DEPOSITS
102	Caló den Rafelino (from now on CdR)
103	This deposit (Fig. 1.b) is located at the eastern coast of Mallorca, at the North
104	of Caló den Rafelino (from where it takes its name) and at the South of Cala
105	Morlanda, in the municipality of Manacor. It was discovered by Josep Quintana and
106	Pere Bover in the spring of 2004 and it was excavated the same year.
107	The deposit, located at 5 meters above sea level, consists of consolidated red
108	silts of karstic origin which are the floor sediment of a collapsed cave in the Upper
109	Miocene limestone of the so-called Reef Complex (Pomar et al. 1990; Gómez-Pujol et
110	al. 2007) of late Tortonian-Messinian chronology (Bizon et al. 1973). Just a small
111	portion of the sediments (around 1 m^2 at the North-East extreme of the cave
112	sediments) has yielded fossil remains while the rest of the sediment seems to be
113	sterile. The thickness of these red silts is unknown but the structure of the fossil cave
114	and its proximity to the sea (around 6 m, and 5 m above sea level) suggest that it is
115	not very large.
116	The chronology of the deposit has been indirectly estimated. It postdates the
117	upper Miocene limestone and characters of some of the taxa, more primitive than
118	those of the fauna present in the later early Pliocene deposit of Cala Morlanda (Moyà-
119	Solà & Pons-Moyà 1982; Pons-Moyà 1990), suggest that it should be considered as
120	an early Pliocene deposit, but a Messinian chronology cannot be completely
121	discarded.
122	The bones obtained from this breccia were mainly broken, worn and eroded.
123	

3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
 /0
40
49
50
51
52
53
54
55
56
57
50
50
59
60

124 Na Burguesa-1 (from now on NB-1)

125	It was discovered on April 2012 by the Mallorcan speleologists Damià Vicens,
126	Damià Crespí and Antelm Ginard from the Speleo Club Mallorca (SCM). The deposit
127	(Fig 1.a) is located at 160 meters above sea level and close to the road from the
128	neighborhood of Génova to the Mirador de Na Burguesa, at the municipality of
129	Palma. The original location of the breccia has not been found, as the findings are
130	blocks extracted from the original site and used to facilitate the access to a small
131	house, but it is probably close or under a small construction of the Mallorcan Water
132	Company (EMAYA) built in the slope of the mountain.
133	The breccia is constituted by brown-red silts and, geologically, it was in a cave
134	or fissure excavated in the Lower Lias sediments present in the area. The obtained
135	fauna is related to that from CdR and both can be considered as chronologically close,
136	being CdR slightly more recent than NB-1. Further study of the fauna will shed more
137	light on the NB-1 deposit chronology. After obtaining the permits from the Mallorcan
138	Government, several large blocks have been recovered and the bones are being
139	extracted. The obtained bones are in better condition than those from CdR.
140	
141	BONE EXTRACTION
142	The obtained breccias from CdR and NB-1 were treated or are currently being
143	treated (NB-1) with acetic acid to extract the bones. Cycles of consolidation of the
144	bones with Paraloid-B67 (5%), treatment with acetic acid (10%, 48 h), and fresh
145	water immersion (7 days) have been used. The breccia from NB-1 is much richer than
146	the CdR one.
147	
148	GEOLOGICAL NOMENCLATURE

Integrative Zoology

43 of 77	Integrative Zoology
	7
149	In this paper we use the nomenclature for the Pliocene and Pleistocene
150	presented by Gibbard et al. (2010), following the IUGS updated chronology of the
151	base of the Quaternary.
152	
153	B MEASUREMENTS/NOMENCLATURE
154	Teeth nomenclature: lowercase letters ('m' for molar, 'p' for premolar) for
155	lower teeth and uppercase letters for upper teeth.
156	Measurements of reptile bones were taken with an electronic digital calliper
157	(accuracy 0.01 mm) on bone projections using a camera lucida.
158	3
159	SYSTEMATIC PALEONTOLOGY
160	In this section, a complete list of the fauna so far obtained from Caló den
161	Rafelino (CdR) is presented. For Na Burguesa (NB-1), just some preliminary remarks
162	on the fauna of the deposit will be furnished because it is currently being processed,
163	and additional taxa could be obtained. Furthermore, only a small sample of
164	amphibians/reptiles from NB-1 has been currently analysed.
165	
166	5 FISHES
167	Several fish teeth have been recovered from the CdR deposit. The taxonomical
168	composition of this fish fauna is being currently studied (Vicens & Bover in prep.).
169	The presence of fish teeth in a mainly terrestrial faunal deposit is intriguing. Their
170	incorporation at the site deposition may be related to some bioaccumulator agent
171	(such as some seabird).
172	2
173	B BIRDS
	http://mc03 manuscriptcentral.com/inz

174	A single bird bone (proximal fragment of a humerus) has been obtained from
175	the CdR (unidentified bird), whereas bird bones are also present in NB-1.
176	
177	AMPHIBIANS
178	Order Anura Fischer von Waldheim, 1813
179	Family Bufonidae (?) Gray, 1825
180	Material: 1 sacral vertebra (NB-1).
181	The vertebra is procoelous and it bears an anterior cotyle and two clearly
182	separated posterior condyles. The sacral processes are only moderately widened
183	antero-porteriorly. The centrum is relatively short and, in dorsal view, a small pit
184	occurs at the base of each sacral process. This combination of characters suggests
185	referral to the Bufonidae (see, e.g., Sanchiz 1977; Bailon & Hossini 1990; Bailon
186	1999), but such an attribution cannot be made without reservation. If recovery of
187	further material shows that assignment to the Bufonidae is accurate, then this anuran
188	would be the first fossil record of the family in the Balearic Islands, as the presence of
189	the extant species Bufo balearicus (Boettger, 1880) in these islands is the consequence
190	of a recent human introduction (Hemmer et al. 1981; Pinya & Carretero 2011).
191	
192	REPTILES
193	Order Chelonii Linnaeus, 1758
194	Material: 2 terminal phalanges (IMEDEA 90102, 90103) (CdR), 1 phalange and shell
195	plates (NB-1).
196	Two terminal phalanges probably belonging to a large-sized terrestrial tortoise
197	(Testudinidae) have been recovered from CdR. A phalange and shell fragments of a
198	tortoise have been obtained from NB-1.

199	
200	
201	Order Squamata Opell, 1811
202	Family Gekkonidae Gray, 1825
203	
204	Material: 1 fragment of right dentary (NB-1).
205	The presence of a Meckel's groove entirely surrounded by the dentary and of
206	numerous pleurodont, cylindrical and monocuspid teeth allows the attribution of this
207	dentary to the Gekkonidae. However, a more precise identification is not possible.
208	Bailon et al. (2005) described remains of gekkonids from the Pliocene of Menorca.
209	
210	Family Lacertidae Batsch, 1788
211	Lacertidae, new genus and species
212	
213	Material: 1 left fragmented dentary (IMEDEA 90107), 1 right dentary fragment
214	(IMEDEA 90109), 2 left maxilla fragments (IMEDEA 90105, 90106), 1
215	caudal vertebra (IMEDEA 90260) (CdR).
216	Remains of a large-sized lacertid were recovered from the CdR deposit. This
217	lizard displays short and robust dentaries having a thick lateral wall, a reduced
218	number of tooth positions (13) and amblyodont teeth. It has been proposed as a new
219	genus and species (Bailon et al. submitted).
220	
221	Lacertidae, unidentified genus and species
	Material: 1 left fragmentary maxillary (NB-1)

223	The presence of cylindrical, pleurodont and bicuspid teeth, with a well
224	developed central cusp and a small anterior cusp, permits attribution of this maxilla to
225	the Lacertidae (Barahona & Barbadillo 1997). This family is known in the Balearic
226	Islands since the middle Miocene of Menorca (Bailon 2004).
227	
228	Family Scincidae Gray, 1825
229	cf. Chalcides Laurenti, 1768.
230	Material: 1 right dentary (NB-1) (Fig. 2.g).
231	The dentary, comprised of two fragments, has an approximate length of 4.7
232	mm, thus belonging to a small-sized individual. In medial view, Meckel's canal is
233	open throughout the dentary, but in its anterior half it narrows and it is located medio-
234	ventrally. The mandibular symphysis is reduced. The subdental table, the ventral
235	margin of the bone and the dental crest are slightly curved and they give an elongated
236	appearance to the dentary. In laterat view, six dental foramina can be observed and,
237	postero-dorsally, there is no coronoid impression on the lateral wall of the dentary.
238	Teeth are pleurodont, monocuspid, cylindrical and they have blunt apexes. Medially,
239	each apex displays a series of small vertical ridges. The dentary has 19 teeth. The
240	morphology of this dentary fits into the general morphological pattern observed in the
241	small-sized individuals of Chalcides (Barbadillo 1989; Bailon 2000; Blain et al. 2007,
242	2008; Blain 2009).
243	In the fossil record of the Balearic Islands, Boulenger (in Bate 1918)
244	mentioned Chalcides sp. from a currently unknown deposit from Menorca. Thus, the
245	identification of Chalcides in NB-1 deposit could confirm the presence of skinks on
246	these islands during the late Miocene/early Pliocene interval.
247	

Integrative Zoology

24	8 Family Anguidae Gray, 1825
24	9 Dopasia Gray, 1853
25	0 Material: 1 trunk vertebra, IMEDEA 90115 (CdR, Fig. 2.a-c); 1 fragment of dentary,
25	1 1 trunk vertebra, 3 caudal vertebrae and 2 osteoderms (NB-1, Fig. 2.d).
25	2 A medium-sized vertebra (centrum length = 4.3 mm) from CdR displays a
25	3 characteristic anguid morphology and it is tentatively attributed to <i>Dopasia</i> . It is
25	4 procoelous, depressed, moderately elongated and its cotyle and condyle are dorso-
25	5 ventrally flattened. The ventral surface of the centrum is sub-triangular and slightly
25	6 convex in transverse section; the lateral margins of the centrum diverge anteriorly and
25	7 are slightly concave laterally. The neural spine, partially broken, is moderately robust
25	8 in its posterior half. No zygosphene-zygantrum, precondylar constriction and haemal
25	9 keel can be observed on the vertebra.
26	0 When compared with the different anguids known from the Neogene of
26	1 mainland Europe, the CdR vertebra displays size and morphological characteristics
26	2 observed in <i>Dopasia (sensu</i> Augé 2005, i.e., European species formerly included in
26	3 <i>Ophisaurus</i> s.l. and <i>Pseudopus</i> excluded), but a more precise attribution cannot be
26	done. In <i>Anguis</i> , the lateral margins of the centrum are mainly parallel and vertebrae
26	5 are slightly smaller, whereas in <i>Pseudopus</i> the size of the vertebrae is greater and the
26	6 lateral margins of the centrum are markedly more divergent than in the CdR vertebra
26	7 (Estes 1983; Roček 1984; Bailon 1989, 1991; Augé 2005; Blain 2009; Delfino <i>et al.</i>
26	8 2011).
26	9 To our knowledge, this is the first record of a member of the Anguidae in the
27	0 Balearic Islands. In islands, <i>Dopasia</i> was only known from the late Pliocene (MN16)
27	1 of Sardinia (Delfino <i>et al.</i> 2011), whereas in the European continent the genus has
27	2 been recorded from the Oligocene to the early Pleistocene (Augé 2005; Blain 2009;

Blain & Bailon 2010). Today, the genus is restricted to Asia. No extant anguidscurrently live in the Balearic Islands.

The material obtained from NB-1 deposit confirms the presence of *Dopasia* (sensu Augé 2005), in the Mallorcan Pliocene. The studied dentary fragment displays a tooth that is subpleurodont, slightly hook-shaped and unicuspid; the apex lacks ridges and it is directed postero-medially. The trunk vertebra is procoelous, with dorsoventrally depressed cotyle and condyle. Its centrum is subtriangular, with a smooth ventral surface that is slightly convex in transverse section, and with slightly concave and anteriorly divergent lateral margins. The caudal vertebrae display two pairs of transverse processes, each being partly subdivided longitudinally by an autotomic septum and, in the posterior third of the vertebra, haemapophyses fused to the centrum. The osteoderms are simple, with a smooth basal area and with an external area displaying vermicular ornamentation. One of the osteoderms has lateral margins that are slightly bevelled and a longitudinal keel typical of the medio-dorsal osteoderms. All these characteristics allow the attribution of this fossil material to Dopasia and also to differentiate it from the other anguids known for the European fossil record (Estes 1983; Roček 1984; Bailon 1989, 1991; Augé 2005; Blain 2009). Infraorder Scolecophidia Dumeril & Bibron, 1844 Material: 1 vertebral trunk (NB-1) (Fig. 2.e-f)

The vertebra is very small with a centrum length slightly longer than 1mm. It is dorso-ventrally compressed and with a simple morphology typical of this group of snakes (flattened neural arch, without neural spine and posterior medial notch; narrow centrum without haemal keel; dorso-ventrally flattened cotyle and condyle; well

Integrative Zoology

297	developed subcentral foramina, but paracotylar foramina absent; prezygapophyseal
298	processes present and synapophyses not divided) (Rage 1984; McDowell 1987).
299	Within this group of snakes, the morphology of the vertebrae is highly
300	homogeneous and the taxonomical identification, even at family level, is particularly
301	difficult. Scolecophidia have been recorded in the early Paleocene from Hainin
302	(Belgium; Vidal et al. 2009), and in the early Pleistocene of the Illes Medes (Spain;
303	Bailon 1991). The vertebra from NB-1 deposit is the first and sole record of this group
304	in the Balearic Islands. Typhlops vermicularis Merrem, 1820 is the only known extant
305	Scolecophidia in Europe (Montenegro, Greece, Albania, Macedonia and Bulgaria;
306	Gasc <i>et al</i> . 1997).
307	
308	Family Colubridae Opell, 1811
309	"Colubrinae" type
310	Material: 2 vertebral trunks (IMEDEA 90114 and 90261), 3 fragments of centra
311	(IMEDEA 90267, 90269 and 90270) (CdR); 1 vertebral trunk (NB-1).
312	The vertebrae from CdR belong to small-sized individuals, with a centrum
313	length less than 4 mm. The vertebrae are slightly longer than wide; their neural spine
314	and posterior notch are well developed. They display rounded cotyle and condyle;
315	paracotylar foramina are present and the centrum is subtriangular and bears a well
316	marked off haemal keel. These characteristics allow the attribution of these vertebrae
317	to a Colubridae of "colubrinae" type (sensu Szyndlar 1991). The preservation of the
318	vertebrae (partly fragmented and eroded) does not allow further identification.
319	The sole vertebra from NB-1 studied here is from a medium-sized individual
320	(centrum length = 4.5 mm). It is slightly longer than wide (ratio centrun length /
321	interzygapophyseal width = 1.3) and it does not display a hypapophysis. These two

integrative 20010gy
14
characters allow to refer this vertebra to a colubrid of "Colubrinae" type (sensu
Szyndlar 1991). The centrum is narrow, with well-defined subcentral ridges and a
well developed haemal keel. The zygapophyses are rectangular and arranged on the
horizontal plane. The prezygapophyseal processes are cylindrical, blunt and shorter
than the prezygapophyses. The cotyle and condyle are small and rounded. The
diapophyses are located more posteriorly than the parapophyses. In posterior view, the
neural arch is vaulted, its dorsal edges being slightly convex. Together with the
vertebrae from CdR, the colubrid from NB-1 deposit displays a vertebral morphology
similar to that of the material described from the Menorcan Pliocene, and attributed to
"Coluber" sp. [Coluber dolnicensis Szyndlar, 1987-C. pouchetii (Rochebrune, 1880)
group] (Bailon <i>et al.</i> 2005), therefore they probably represents the same taxon.
Family Viperidae Laurenti, 1768
Vipera Laurenti, 1768 (Oriental Vipers Complex)
Material: 1 middle trunk vertebra (IMEDEA 90113), 1 cervical vertebra (IMEDEA
90116) (CdR). Tentatively, 2 vertebrae from NB-1.
Bailon et al. (2010) studied two vertebrae of a large snake obtained from the
CdR deposit. The combination of characters such as straight hypapophysis,

posteriorly depressed neural arches, zygapophyseal articular facets inclined dorsally,

parapophyseal processes directed antero-ventrally, large condyles and cotyles,

- relatively short centrum and condyle ventrally attached to the hypapophysis basis
- allowed these authors to assign these vertebrae to a member of the Viperidae, more
- specifically to the 'Oriental Vipers Complex' (according to the classification
- suggested by Szyndlar & Rage 1999). Based on the size of the centrum, a body length
- close or even greater than 200 cm was estimated for this viper; it may be considered

Integrative Zoology

347	the largest European viper belonging to this complex. Two viperid vertebrae obtained
348	in NB-1 could belong to the same or to a related taxon.
349	
350	cf. Vipera natiensis Bailon, Garcia Porta & Quintana, 2002
351	Material: 1 anterior trunkal vertebra or cervical vertebra (IMEDEA 90264) (CdR).
352	The vertebra belongs to a small-sized individual, with a centrum slightly
353	longer than 2 mm. In posterior view, the neural arch is dorsoventrally flattened. The
354	articular surfaces of the zygapophyses are inclined latero-dorsally, and the
355	prezygapophyseal processes are short and blunt. The vertebral centrum is markedly
356	convex ventrally in transverse section; it bears a hypapophysis and its subcentral
357	ridges are somewhat indistinct. These characters suggest that this vertebra could
358	belong to a viper close to Vipera natiensis that was described by Bailon et al. (2002)
359	from the Pliocene of Menorca.
360	
361	MAMMALS
362	Order Eulipotyphla Waddell, Okada & Hasegawa, 1999
363	Family Soricidae Fischer von Waldheim, 1817
364	Subfamily Soricinae Fischer von Waldheim, 1817
365	Nesiotites rafelinensis Rofes, Bover, Cuenca-Bescós & Alcover, 2012
366	Material: 1 incomplete left mandible with p4, m1, m2, and m3 (IMEDEA 91950)
367	(CdR).
368	The material obtained from CdR was used by Rofes et al. (2012) to describe a
369	new species of Nesiotites, N. rafelinensis. Although the species is based on a single
370	mandible, it displays enough diagnostic features to be distinguished from the other
371	remaining Nesiotites species. A combination of characters as teeth size, mandible size,

372	absence of accessory cusps on the oblique crest of the first and second lower molars,
373	inconspicuous cuspule and lingual crest on the lingual basin of the p4, broad and
374	pronounced buccal and lingual cingula of the lower teeth, slightly undulated buccal
375	cingulum and slightly forward placement of the mental foramen allowed the
376	description of N. rafelinensis as a new species. Thus, this species combines primitive
377	dental traits with a relatively large size.
378	
379	Soricinae unidentified
380	Material: 2 fragmented skulls, 2 mandibles, and some postcranial bones (NB-1).
381	The insectivore remains are here provisionally attributed to
382	Nesiotites/Asoriculus (Fig. 3.a). The absence of accessory cusps in m1-m2, the almost
383	straight buccal cingulum, and the forward position of the mental foramen are typical
384	of both groups (i.e., Nesiotites rafelinensis and Asoriculus gibberodon Petényi, 1864).
385	
386	Order Rodentia Bowdich, 1821
387	Family Cricetidae Fischer von Waldheim, 1817
388	Tragomys macpheei Agustí, Bover & Alcover, 2012
389	Material: 1 right m1 (IMEDEA 90614, holotype), 17 cheek teeth, 2 incisors, 3
390	mandible fragments, 2 maxillae fragments, 9 fragments of postcranial long bones, 1
391	calcaneum, and 1 astragalus [See Agustí et al. (2012) for an extensive list of material]
392	(CdR).
393	Agustí et al. (2012) recently described a new genus and a new species of
394	Cricetidae based on the material obtained from CdR, Tragomys macpheei. It displays
395	a large size, and a distinctive selenodont pattern and hypsodont teeth.

397	
398	Cricetinae unidentified
399	Material: Currently, circa 200 bones, complete or fragmented, including 10
400	mandibles, 3 maxillae, complete femora, humerus, radius, tibia, a partial skull, etc,
401	representing most of the elements of the skeleton (NB-1).
402	Remains of a large-sized cricetine with slightly selenodont and hypsodont
403	dentition have been recovered in the NB-1 (Fig. 3.b). Most probably, it corresponds to
404	the putative ancestor of Tragomys macpheei.
405	
406	Family Muridae Illiger, 1811
407	Muridae unidentified
408	Material: 3 mandibles, 1 maxillar, 1 humerus and 1 femur (NB-1).
409	Another slightly hypsodont small rodent has been recorded in NB-1 deposit
410	(Fig. 3.c). The absence of the anterior accessory cusp (tma) and the poorly marked
411	stephanodonty in the teeth studied allows the attribution of these remains to a derived
412	species of Occitanomys or Castillomys, but additional analysis is needed to go further
413	in the identification.
414	
415	Family Gliridae Thomas, 1897
416	<i>Hypnomys</i> sp.
417	Material: 1 m1 (IMEDEA 90622) and 1 M1 (IMEDEA 90623) (CdR).
418	In addition to <i>Tragomys macpheei</i> , a second rodent species is present at CdR.
419	This second species corresponds to a very early member of the dormice genus
420	Hypnomys. Since the scanty material does not permit to make inferences about its
421	specific identity, we will refer to as Hypnomys sp. (Fig. 4). In the upper first molar, a

422	continuous endoloph connects anteroloph, protoloph, metaloph and posteroloph (Fig.
423	4.b). The anterior centroloph is labially fused to the protoloph. The paracone is not
424	individualized as a cusp, nor is the metacone. An anterior extra-ridge is present
425	between the protoloph and the anterior centroloph. The posterior centroloph is fused
426	to the metaloph. The lingual ends of the anterior and posterior centrolophs are fused.
427	It presents three roots, two labials and one very wide lingual one. In this way,
428	Hypnomys sp. from CdR looks very much as the oldest species of the Hypnomys
429	described from Mallorca and Menorca, such as Hypnomys waldreni Reumer, 1979,
430	Hypnomys onicensis (Reumer, 1994) and Hypnomys eliomyoides Agustí, 1980
431	(Reumer 1979, 1981; Agustí 1980). However, it differs from these old Hypnomys
432	species by the still <i>Eliomys</i> -like, narrow M1 and m1. Its dimensions (first m1: 1.82 x
433	1.96 mm; first M1: 1.62 x 1.64 mm) are also lower than those of other Hypnomys
434	species, and closer to those of the late Miocene Eliomys, such as E. intermedius
435	Friant, 1953 and E. truci Mein & Michaux, 1970. However, the dormouse from CdR
436	differs significantly from <i>Eliomys</i> since the upper molar presents much less prominent
437	labial cusps, as it is also the case in <i>Hypnomys</i> .
438	
439	Eliomys/Hypnomys sp.
440	Material: Abundant material, including currently c. 300 bones representing most of
441	the elements of the skeleton (NB-1).
442	The glirid present in NB-1 (Fig. 3.d) displays small size. It most probably
443	represents the ancestor of, or an ancestral species inside, the Hypnomys lineage.
444	
445	Order Lagomorpha Brandt, 1855
446	Family Leporidae Gray, 1821

http://mc03.manuscriptcentral.com/inz

Integrative Zoology

447	Hypolagus balearicus Quintana, Bover, Alcover, Agustí & Bailon, 2010
448	Material: 1 left p3 (IMEDEA 90123, Holotype), 10 cheek teeth, 1 incisor, 5
449	postcranial bones [See Quintana et al. (2010) for an extensive list of material] (CdR).
450	Twenty juvenile bones (NB-1) are here tentatively attributed to Hypolagus, as cf.
451	Hypolagus.
452	The first record of Hypolagus in the Balearic Islands was reported by Quintana
453	et al. (2010). These authors described a new species, H. balearicus, based on tooth
454	characteristics and some postcranial features. The p3 of <i>H. balearicus</i> displays a small
455	size, trapezoidal outline, with a shallow and well-marked anteroflexid, shallow
456	protoflexid, deep hypoflexid and lack of paraflexid. All these characteristics allow the
457	differentiation of the Mallorca species from the other species of Hypolagus.
458	Additionally, more robust postcranial bones were also observed in this species. The
459	presence of Hypolagus in the Balearic Islands represents one of the westernmost
460	European records of the genus. The fossils obtained in NB-1 (Fig. 3.e) include
461	complete bones of juveniles that are here tentatively attributed to Hypolagus.
462	
463	Order Artiodactyla Owen, 1848
464	Family Bovidae Gray, 1821
465	Myotragus palomboi Bover, Quintana & Alcover, 2010
466	Material: 1 right metatarsal (IMEDEA 90140, Holotype), 4 cheek teeth, 2 incisiforms,
467	12 postcranial bones [See Bover et al. (2010) for an extensive list of material] (CdR);
468	2 bones and one tooth of a juvenile bovid (NB-1) are here tentatively attributed to
469	Myotragus, as cf. Myotragus (Fig. 3.f).
470	The earliest representative of Myotragus, M. palomboi, was described by
471	Bover et al. (2010). It displays relevant similarities that allow its attribution to

Myotragus, but there are remarkable differences between *M. palomboi* and the former earliest species of *Myotragus*, *M. pepgonellae* Moyà-Solà & Pons-Moyà, 1982. The CdR *Myotragus* has a larger p2, not hypsodont nor ever-growing incisors with more rectangular wear surface and with enamel surrounding the whole crown (and not elongated incisors as the other *Myotragus* species), and a lower robustness index of the studied postcranial bones than in *M. pepgonellae*. Specifically, the metatarsal bone is longer than the other representatives of the genus and its morphology seems to be intermediate between *M. pepgonellae* and the putative mainland ancestors *Aragoral* and Norbertia.

DISCUSSION

Insular environments are characterized by unbalanced faunas with a reduced number of endemic species displaying morphological traits that follow well-described patterns (the so-called "insularity syndrome"). The faunal record of the two Mallorcan deposits here presented partially agrees with this insular pattern. So far, in none of these deposits carnivores have been obtained and the number of recorded species is reduced (5 mammals and 6 reptiles in CdR and 6 mammals, at least 8 reptiles and 1 amphibian in NB-1).

Morphological traits observed in some taxa suggest that the fauna from CdR
and NB-1 would be in a first stage of its isolated evolution. The species of the fauna
from CdR displays more derived characters than that from NB-1. In this sense, the
large size of *Tragomys*, the reduction of premolar size observed in *M. palomboi* (a
progressive loss of teeth has been considered as an insular evolutionary effect in the *Myotragus* lineage, Alcover *et al.* 1981) and the characteristic selenodont teeth pattern
of *T. macpheei* points out to be at the beginning of an isolated evolution. The glirid,

Integrative Zoology

497	the soricid and the murid are only slightly modified, suggesting also a proximity to the
498	isolation event. On the other hand, although Hypolagus balearicus displays a
499	relatively smaller size of the p3 when compared to other species of Hypolagus, the
500	scarce postcranial bones available do not allow determining whether insular
501	evolutionary effects occurred in the species.
502	According to Bailon et al. (2010), the large size of Vipera sp. ('Oriental
503	Vipers Complex') from CdR cannot be explained in terms of insular evolution itself
504	but also as the result of a co-evolutionary process between this group of snakes and
505	the size of the preys. Additionally, as the mainland ancestor of this snake is unknown
506	no definitive inferences on dwarfism or gigantism can be done. The same accounts for
507	the remaining reptiles and for the amphibian.
508	The faunal composition of NB-1 and CdR represents a faunal assemblage that
509	could be related to the colonization pattern. It has been widely accepted that the
510	arrival of the faunal stock recorded for the Plio-Pleistocene in the Balearic Islands
511	occurred during the MSC (Agustí et al. 2006; van der Made et al. 2006: Bover et al.
512	2008 and references therein), around 5.6-5.32 Ma ago (Clauzon et al. 1996; Gautier et
513	al. 1994; Krijgsman et al. 1999). While the founder stock of terrestrial vertebrates was
514	initially thought to be composed in Mallorca of the ancestors of Myotragus,
515	Hypnomys, and Nesiotites lineages together with a reptile (Podarcis) and two
516	amphibians (Alytes and Discoglossus), the discovery of the two deposits studied in
517	this paper allows reporting a different scenario, and additionally it sheds light in the
518	understanding of the late Miocene/early Pliocene faunal assemblage from the Eivissan
519	deposit of Ses Fontanelles.
520	In Fig. 5, a schematic view of the faunal succession of terrestrial vertebrates
521	from the Balearic Islands throughout late Miocene/early Pliocene to Holocene is

522	presented. Although further analysis of the NB-1 fauna is needed, if we roughly
523	compare the taxonomical groups (rather than taxa at genus/species level) recorded in
524	the several Pliocene deposits from these islands, the Mallorcan deposits of NB-1 and
525	CdR share five species or close relatives of the six mammals and at least four reptiles
526	(a tortoise, Dopasia, Vipera sp. OVC, and a colubrine), and it seems adequate to
527	consider them as deeply related. Additionally, also four of the mammalian taxa and
528	probably two reptiles are shared by the Mallorcan and Eivissan deposits, suggesting
529	that the fauna from Ses Fontanelles is also related to the same colonizer stock. The
530	differences in taxa composition may be related to an insufficient fossil record or/and
531	to taphonomical reasons. Nevertheless, a more extensive study of the Mallorcan and
532	Eivissan Pliocene fauna is needed in order to confirm the relationship between these
533	deposits.
534	On the other hand, a clear relationship cannot be established between the late
535	Miocene/early Pliocene Mallorcan fauna and the Pliocene (sensu lato) Menorcan one.
536	The mammals present in the Pliocene deposits from Menorca, Nuralagus rex and
537	Muscardinus cyclopeus, can be clearly distinguished from the lagomorph and glirid,
538	respectively, present in NB-1, CdR and Ses Fontanelles deposits, and although some
539	of the reptiles could be similar (Gekkonidae, small Lacertidae) or may even be the
540	same taxa (Vipera natiensis, Colubrinae), further discoveries and analyses are needed
541	to definitively establish or reject a relationship among these faunas.
542	The knowledge on the Pliocene vertebrate fauna from Mallorca has been
543	improved thanks to the discovery of the deposits of NB-1 and CdR (Fig. 5). More
544	species than previously thought arrived to the Balearic Islands during the MSC. At
545	least six mammals and eight reptiles colonized Mallorca at this period. Most of them
546	became extinct during the Pliocene. In Mallorca, just three mammalian species have

Integrative Zoology

2	2
2	3

547	been recorded in the later early Pliocene deposits (Myotragus pepgonellae, Hypnomys
548	sp. and Nesiotites sp., Moyà-Solà & Pons-Moyà 1982; Pons-Moyà 1990). Remains of
549	a Vipera related to V. natiensis (Bailon & Bover unpublished) and of Podarcis have
550	been recovered in the late Pliocene deposit of Crulls de Cap Farrutx (in addition to the
551	three mammalian lineages with the species M. antiquus Pons-Moyà, 1977, H.
552	waldreni, and N. ponsi Reumer, 1979).
553	The presence of a remarkable number of reptiles in the Messinian-early
554	Pliocene fossil record of the Balearic Islands seems to agree with the subtropical
555	climate conditions, as recorded over the Mediterranean area (see Fauquette et al.
556	1999; Jiménez-Moreno et al. 2010 and references therein). Although an increase in
557	hypsodonty has been recorded in insular species and it is considered as part of an
558	'island syndrome' (e.g., Jordana et al. 2012) the very hypsodont dentition of
559	Myotragus palomboi and the hypsodont and selenodont dentition of Tragomys
560	macpheei might point out to the consumption of sclerophyll plants. The amblyodont
561	dentition of the Lacertidae nov. gen. et sp. from CdR could have also been an
562	important selective advantage to feed on particularly hard shell molluses in the warm
563	and dry climate during the earlier early Pliocene, as the shell of molluscs is known to
564	be harder and wider in arid conditions (Sacchi & Testard 1971).
565	The absence of carnivores in this fauna leaves the large Vipera sp. ('Oriental
566	Vipers Complex'), together with birds of prey, as a main predator for the Mallorcan
567	Pliocene fauna.
568	
569	REFERENCES

570	Adrover R, Agustí J, Moyà-Solà S, Pons-Moyà J (1985). Nueva localidad de
571	micromamíferos insulares del Mioceno medio en las proximidades de San
572	Lorenzo en la isla de Mallorca. Paleontologia i Evolució 18, 121-9.
573	Agustí J (1980). Hypnomys eliomyoides n. sp., nuevo glírido (Rodentia, Mammalia)
574	del Pleistoceno de Menorca (Islas Baleares). Endins 7, 49-52.
575	Agustí, J, Bover P, Alcover JA (2012). A new genus of endemic cricetid (Mammalia,
576	Rodentia) from the late Neogene of Mallorca (Balearic Islands, Spain).
577	Journal of Vertebrate Paleontology 32 , 722–6.
578	Agustí J, Garcés M, Krijgsman W (2006). Evidence for African–Iberian exchanges
579	during the Messinian in the Spanish mammalian record. Palaeogeography,
580	Palaeoclimatology, Palaeoecology 238 , 5–14.
581	Agustí J, Moyà-Solà S (1990). Neogene-Quaternary Mammalian faunas of the
582	Balearics. In: Azzaroli A, ed. International Symposium "Biogeographical
583	aspects of insularity". Atti dei Convegni dei Lincei 85. Accademia Nazionale
584	dei Linzei, Roma, pp. 459–68.
585	Agustí J, Moyà-Solà S, Pons-Moyà J (1982). Une espèce géante de Muscardinus
586	Kaup, 1829 (Gliridae, Rodentia, Mammalia) dans le gisement karstique de
587	Cala Es Pou (Miocène supérieur de Minorque, Baléares). Geobios 15, 783–9.
588	Alcover JA (1989). Les aus fòssils de la cova de ca na Reia. <i>Endins</i> 14–15, 95–100.
589	Alcover JA, Agustí J (1985). Eivissia canarreiensis n. gen., n. sp., nou glírid del
590	Pleistocè de les Pitiüses. Endins 10-11, 51-6.
591	Alcover JA, Moyà-Solà S, Pons-Moyà J (1981). Les quimeres del passat. Els
592	vertebrats fòssils del Plio-Quaternari de les Balears i Pitiüses. Monografies
593	Científiques 1. Editorial Moll, Palma de Mallorca.

Integrative Zoology

594	Augé M (2005). Evolution des lézards du Paléogène en Europe. Mémoires du
595	Muséum National d'Histoire Naturelle 192. Publications Scientifiques du
596	Muséum, Paris.
597	Bailon S (1989). Les Amphibiens et les Reptiles du Pliocène supérieur de Balaruc II
598	(Hérault, France). Palaeovertebrata 19, 7–28.
599	Bailon S (1991). Les amphibiens et les reptiles du Pliocène et du Quaternaire de
600	France et Espagne: mise en place et évolution des faunes (PhD thesis).
601	Université de Paris-7, Paris, France.
602	Bailon S (1999). Clés de détermination ostéologique des amphibiens anoures de
603	France. In: Desse J, Desse-Berset N, eds. Fiches d'ostéologie animale pour
604	l'Archéologie, Série C : varia. Centre de Recherches Archéologiques-CNRS,
605	Valbonne, pp. 1–38.
606	Bailon S (2000). Amphibiens et reptiles du Pliocène terminal d'Ahl al Oughlam
607	(Casablanca, Maroc). Geodiversitas 22, 539–58.
608	Bailon S (2004). Fossil records of Lacertidae in Mediterranean islands: the state of the
609	art. In: Pérez-Mellado V, Riera N, Perera A, eds. Proceedings of the Fourth
610	International Symposium of the Lacertids of the Mediterranean Basin. Institut
611	Menorquí d'Estudis, Maó, pp. 37–62.
612	Bailon S, Hossini S (1990). Les plus ancien Bufonidae (Amphibia, Anura) d'Europe:
613	les espèces du Miocène français. Annales de Paléontologie (Vertébré-
614	Invertébré) 76, 121–32.
615	Bailon S, Bover P, Quintana J, Alcover JA (2010). First fossil record of Vipera
616	Laurenti 1768 "Oriental vipers complex" (Serpentes: Viperidae) from the
617	Early Pliocene of the Western Mediterranean islands. Comptes Rendus Palevol
618	9, 147–54.

Page 62 of 77

619	Bailon S, Garcia-Porta J, Quintana J (2002). Première découverte de Viperidae
620	(Reptilia, Serpentes) dans les Îles Baléares (Espagne): des vipères du Néogène
621	de Minorque. Description d'une nouvelle espèce du Pliocène. Comptes Rendus
622	<i>Palevol</i> 1 , 227–34.
623	Bailon S, Quintana J, Garcia Porta J (2005). Primer registro fósil de las familias
624	Gekkonidae (Lacertilia) y Colubridae (Serpentes) en el Plioceno de Punta Nati
625	(Menorca, Islas Baleares). In: Alcover JA, Bover P, eds. Proceedings of the
626	International Symposium "Insular Vertebrate Evolution: The Palaeontological
627	Approach". Monografies de la Societat d'Història Natural de les Balears 12.
628	Societat d'Història Natural de les Balears, Palma de Mallorca, pp. 27–32.
629	Barahona F, Barbadillo LJ (1997). Identification of some Iberian lacertids using skull
630	characters. Revista Española de Herpetología 11, 47–62.
631	Barbadillo LJ (1989). Los Reptilia (Sauria y Amphisbaenia) de los yacimientos Plio-
632	Pleistocénicos de la Cuenca de Guadix-Baza. In: Alberdi MT, Bonadonna FB,
633	eds. Geología y Paleontología de la Cuenca de Guadix-Baza. Trabajos
634	Neogeno/Quaternario 11. Museo Nacional de Ciencias Naturales, Madrid, pp.
635	151–65.
636	Bate DMA (1914). A gigantic land tortoise from the Pleistocene of Menorca,
637	Geological Magazine 6, 100–7.
638	Bate DMA (1918). On a new genus of extinct muscardine rodent from the Balearic
639	Islands. Proceedings of the Zoological Society of London 1918, 209–22.
640	Bizon G, Bizon JJ, Bourrouilh R, Massa D (1973). Présence aux iles Baléares
641	(Méditerranée Occidentale) de sédiments "messiniens" déposés dans une mer
642	ouverte, à salinité normale. Comptes Rendus de l'Académie des Sciences
643	Naturelles de Paris 277, 985–988.

http://mc03.manuscriptcentral.com/inz

Integrative Zoology

644	Blain HA (2009). Contribution de la paléoherpétofaune (Amphibia & Squamata) à la
645	connaissance de l'évolution du climat et du paysage du Pliocène supérieur au
646	Pléistocène moyen d'Espagne. Treballs del Museu de Geologia de Barcelona
647	16 , 39–170.
648	Blain HA, Bailon S (2010). Anfibios y escamosos del Pleistoceno Inferior de
649	Barranco León y de Fuente Nueva 3 (Orce, Andalucía, España). In: Toro I,
650	Martínez-Navarro B, Agustí J, eds. Ocupaciones humanas en el Pleistoceno
651	Inferior y Medio de la Cuenca de Guadix-Baza. Junta de Andalucía,
652	Consejería de Cultura, Sevilla, pp. 165–83.
653	Blain HA, Bailon S, Agustí J (2007). Anurans and squamate reptiles from the final
654	Early Pleistocene of Almenara-Casablanca-3 (Castellón, East of Spain).
655	Systematic, climatic and environmental considerations. Geodiversitas 29, 269-
656	95.
657	Blain HA, Bailon S, Agustí J (2008). Amphibians and squamate reptiles from the
658	latest early Pleistocene of Cueva Victoria (Murcia, southeastern Spain, SW
659	Mediterranean): Paleobiogeographic and paleoclimatic implications.
660	Geologica Acta 6, 345–61.
661	Bour R (1985). Una nova tortuga terrestre del Pleistocè d'Eivissa: la tortuga de la
662	cova de ca na Reia. Endins 10–11, 57–62.
663	Bover P, Alcover JA (2000). La identitat taxonomica de Myotragus binigausensis
664	Moyà-Solà i Pons-Moyà 1980. Endins 23, 83-8.
665	Bover P, Quintana J, Agustí J, Bailon S, Alcover JA (2007). Caló den Rafelino: an
666	early Pliocene site in Mallorca, Western Mediterranean. In: Libro de
667	resúmenes del VII Simposio Internacional de Zoología. Topes de Collantes,
668	Sancti Spiritus, Cuba, pp. 119.

669	Bover P, Quintana J, Alcover JA (2008). Three islands, three worlds: Paleogeography
670	and evolution of the vertebrate fauna from the Balearic Islands. Quaternary
671	International 182, 135–44.
672	Bover P, Quintana J, Alcover JA (2010). A new species of Myotragus Bate, 1909
673	(Artyodactyla, Caprinae) from the Early Pliocene of Mallorca (Balearic
674	Islands, western Mediterranean). Geological Magazine 147, 871-85.
675	Clauzon G, Suc JP, Gautier F, Berger A, Loutre MF (1996). Alternate interpretation
676	of the Messinian salinity crisis: controversy resolved? Geology 24, 363-6.
677	Delfino M, Bailon S, Pitruzzella G (2011). The Late Pliocene amphibians and reptiles
678	from "Capo Mannu D1 Local Fauna" (Mandriola, Sardinia, Italy).
679	Geodiversitas 33 , 357–82.
680	Estes R (1983). Sauria terrestria, Amphisbaenia. In: Kuhn O, Wellnhofer P, eds.
681	Handbuch der Paläoherpetologie 10A. G. Fischer Verlag, Stuttgart & New
682	York, pp. 1–249.
683	Fauquette S, Suc JP, Guiot J, et al. (1999). Climate and biomes in the West
684	Mediterranean area during the Pliocene. Palaeogeography,
685	Palaeoclimatology, Palaeoecology 152, 15–36.
686	Florit X, Mourer-Chauviré C, Alcover JA (1989). Els ocells pleistocènics d'es Pouàs,
687	Eivissa. Nota preliminar. Butlletí de la Institució Catalana d'Història Natural
688	(Secció Geologia 5) 56, 35–46.
689	Garcia-Porta J, Quintana J, Bailon S (2002). Primer hallazgo de Blanus sp
690	(Amphisbaenia, Reptilia) en el Neógeno balear. Revista Española de
691	Herpetología 16, 19–28.
692	Gasc JP, Cabela A, Crnobrnja-Isailovic J, et al. (1997). Atlas of amphibians and
693	reptiles in Europe. Collection Patrimoines Naturels 29. Societas Europaea

Integrative Zoology

694	Herpetologica, Muséum National d'Histoire Naturelle & Service du Patrimone
695	Naturel, Paris.
696	Gautier F, Clauzon G, Suc JP, Cravatte J, Violantini D (1994). Âge et durée de la
697	crise de salinité messinienne. Comptes Rendus de l'Académie des Sciences
698	Naturelles de Paris, Serie II 318 , 1103–9.
699	Gibbard PL, Head MJ, Walker MJC, The Subcomission on Quaternary Stratigraphy
700	(2010). Formal ratification of the Quaternary System/Period and the
701	Pleistocene Series/Epoch with a base at 2.58 Ma. Journal of Quaternary
702	<i>Science</i> 25 , 96–102.
703	Gómez-Pujol L, Balaguer P, Fornós JJ (2007). El litoral de Mallorca: síntesis
704	geomórfica. In: Fornós JJ, Ginés J, Gómez-Pujol L, eds. Geomorfología
705	litoral: Migjorn y Llevant de Mallorca. Monografies de la Societat d'Història
706	Natural de les Balears 15. Societat d'Història Natural de les Balears, Palma de
707	Mallorca, pp. 39–59.
708	Gràcia F, Clamor B, Lavergne JJ (2000). Les coves de cala Varques (Manacor,
709	Mallorca). Endins 23, 41–57.
710	Gràcia F, Watkinson P, Monserrat T, Clarke O, Landreth R (1997). Les coves de la
711	zona de Ses Partions (Felanitx, Mallorca). Endins 21, 5-36.
712	Hemmer H, Kadel B, Kadel K (1981). The Balearic toad (Bufo viridis balearicus
713	(Boettger, 1881)), human Bronze Age culture, and Mediterranean
714	biogeography. Amphibia-Reptilia 2, 217-30.
715	Jiménez-Moreno G, Fauquette S, Suc JP (2010). Miocene to Pliocene vegetation
716	reconstruction and climate estimates in the Iberian Peninsula from pollen data.
717	Review of Palaeobotany and Palynology 162, 403–15.

7	18	Jordana X, Marín-Moratalla N, DeMiguel D, Kaiser TM, Köhler M (2012). Evidence
7	19	of correlated evolution of hypsodonty and exceptional longevity in endemic
7	20	insular mammals. Proceedings of the Royal Society B 279, 3339–3346.
7	21	Kotsakis T (1981). La lucertole (Lacertidae, Squamata) del Pliocene, Pleistocene e
7	22	Olocene delle baleari. Bolletí de la Societat d'Història Natural de les Balears
7	23	25 , 135–50.
7	24	Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999). Chronology, causes
7	25	and progression of the Messinian Salinity Crisis. Nature 400, 652–5.
7	26	McDowell SB (1987). Systematics. In: Seigel RA, Collins JT, Novak SS, eds. Snakes:
7	27	ecology and evolutionary biology. Macmillan, New York, pp. 3–50.
7	28	Mein P, Adrover R (1982). Une faunule de mammifères insulaires dans el Miocène
7	29	moyen de Majorque (Îles Baléares). Geobios Mémoire Spécial 6, 451-63.
7	30	Moyà-Solà S, Pons-Moyà J (1982). Myotragus pepgonellae nov. sp., un primitivo
7	31	representante del género Myotragus Bate, 1909 (Bovidae, Mammalia) en la
7	32	isla de Mallorca (Baleares). Acta Geologica Hispanica 17, 77–87.
7	33	Moyà-Solà S, Köhler M, Alba D, Pons-Moyà J (2007). El significado de Myotragus
7	34	batei y M. binigausensis en la evolución del género Myotragus (Bovidae,
7	35	Mammalia) en las Islas Baleares. In: Pons GX, Vicens D, eds. Geomorfologia
7	36	Litoral i Quaternari. Homenatge a Joan Cuerda Barceló. Monografies de la
7	37	Societat d'Historia Natural de les Balears, 14. SHNB, Palma de Mallorca, pp.
7	38	155–80.
7	39	Moyà-Solà S, Pons-Moyà J, Alcover JA, Agustí J (1984). La fauna de vertebrados
7	40	neógeno-cuaternaria de Eivissa (Pitiuses). Nota preliminar. Acta Geologica
7	41	<i>Hispanica</i> 19 , 33–5.

Integrative Zoology

742	Moyà-Solà S, Quintana J, Alcover JA, Köhler M (1999). Endemic island faunas of the
743	Mediterranean Miocene. In: Rössner GE, Heissig K, eds. The Miocene land
744	mammals of Europe. Pfeil, Munchen, pp. 435-42.
745	Pinya S, Carretero MA (2011). The Balearic herpetofauna: a species update and a
746	review on the evidence. Acta Herpetologica 6, 59-80.
747	Pomar L, Rodríguez-Perea A, Sabat F, Fornós JJ (1990). Neogene stratigraphy of
748	Mallorca Island. Paleontologia i Evolució 2, 271–320.
749	Pons-Monjo G, Moyà-Solà S, Furió M (2012). New data on the origin of Nesiotites
750	(Soricidae, Mammalia) in Menorca (Balearic Islands, Spain). Comptes Rendus
751	<i>Palevol</i> 11 , 393–401.
752	Pons-Moyà J (1990). Estratigrafía y fauna del yacimiento kárstico de Cala Morlanda
753	(Manacor, Mallorca). Endins 16, 59-62.
754	Pons-Moyà, J, Moyà-Solà S, Alcover JA, Agustí J (1981). La fauna de Mamíferos de
755	los yacimientos menorquines con Geochelone gymnesica (Bate, 1914). Acta
756	Geologica Hispanica 16, 129–30.
757	Quintana J (1998). Aproximación a los yacimientos de vertebrados del Mio-
758	Pleistoceno de la isla de Menorca. Bolletí de la Societat d'Història Natural de
759	<i>les Balears</i> 41 , 101–17.
760	Quintana J, Agustí J (2007). Los mamíferos insulares del Mioceno medio y superior
761	de Menorca (islas Baleares, Mediterráneo occidental). Geobios 40, 677-87.
762	Quintana J, Alcover JA, Moyà-Solà S, Sanchiz B (2005). Presence of Latonia (Anura,
763	Discoglosidae) in the Insular Pliocene of Minorca (Balearic Islands). In:
764	Alcover JA, Bover P, eds. Proceedings of the International Symposium
765	"Insular Vertebrate Evolution: The Palaeontological Approach".

http://mc03.manuscriptcentral.com/inz

1	0
- 4	
•	/
~	_

766	Monografies de la Societat d'Història Natural de les Balears 12. Societat
767	d'Història Natural de les Balears, Palma de Mallorca, pp. 293-6.
768	Quintana J, Bover P, Alcover JA, Agustí J, Bailon S (2010). Presence of Hypolagus
769	Dice, 1917 (Mammalia, Lagomorpha) in the Neogene of the Balearic Islands
770	(Western Mediterranean): Description of Hypolagus balearicus nov. sp.
771	<i>Geobios</i> 43 , 555–67.
772	Quintana J, Moyà-Solà S, Köhler M (2011). Nuralagus rex, gen. et sp. nov., an
773	endemic insular giant rabbit from the Neogene of Minorca (Balearic Islands,
774	Spain). Journal of Vertebrate Paleontology 31 , 231–40.
775	Rage JC (1984). Serpentes. Handbuch der Paläoherpetologie, Part II. Gustav Fischer
776	Verlag, Stuttgart - NewYork.
777	Reumer JWF (1979). On two new micromammals from the Pleistocene of Mallorca.
778	Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,
779	<i>Series B</i> 82 , 473–82.
780	Reumer JWF (1981). The Pleistocene small mammals from Sa Pedrera de S'Ònix,
781	Majorca (Gliridae, Soricidae). Proceedings of the Koninklijke Nederlandse
782	Akademie van Wetenschappen, Series B 84, 3–11.
783	Reumer JWF (1982). Some remarks on the fossil vertebrates from Menorca, Spain.
784	Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,
785	<i>Series B</i> 85 , 77–87.
786	Roček Z (1984). Lizards (Reptilia: Sauria) from the lower Miocene locality Dolnice
787	(Bohemia, Czechoslovakia). Rozpravy Ceskoslovenske akademie ved Rada
788	Matematickych a Prirodnich 94, 1–69.

Integrative Zoology

789	Rofes J, Bover P, Cuenca-Bescós G, Alcover JA (2012). Nesiotites rafelinensis sp.
790	nov., the earliest shrew (Mammalia, Soricidae) from the Balearic Islands,
791	Spain. Palaeontologia Electronica 15, 8A.
792	Sacchi CF, Testard P (1971). Ecologie animale. Doin, Paris.
793	Sanchiz B (1977). La Familia Bufonidae (Amphibia, Anura) en el Terciario Europeo.
794	Trabajos Neogeno/Quaternario 8, 75–111.
795	Seguí B (1998). Els ocells fòssils de Mallorca i Menorca. Successió estratigràfica
796	d'aus en els rebliments càrstics de les Gimnèsies (PhD thesis). Universitat de
797	les Illes Balears, Palma de Mallorca, Spain.
798	Seguí B (1999). A late Tertiary woodcock from Minorca, Balearic Islands, Western
799	Mediterranean. Condor 101, 909–15.
800	Seguí B (2002). A new genus of crane (Aves: Gruiformes) from the late Tertiary of
801	the Balearic Islands, Western Mediterranean. Ibis 144, 411-22.
802	Seguí B, Quintana J, Fornós JJ, Alcover JA (2001). A new fulmarine petrel (Aves:
803	Procellariiformes) from the upper Miocene of the Western Mediterranean.
804	Palaeontology 44, 933–48.
805	Szyndlar Z (1991). A review of Neogene and Quaternary snakes of Central and
806	Eastern Europe. Part I: Scolecophidia, Boidae, Colubrinae. Estudios
807	<i>Geológicos</i> 47 , 103–26.
808	Szyndlar Z, Rage JC (1999). Oldest fossil vipers (Serpentes: Viperidae) from the old
809	World. <i>Kaupia</i> 8 , 9–20.
810	van der Made J, Morales J, Montoya P (2006). Late Miocene turnover in the Spanish
811	mammal record in relation to palaeoclimate and the Messinian salinity crisis.
812	Palaeogeography, Palaeoclimatology, Palaeoecology 238, 228–46.

813 Vidal N, Rage JC, Couloux A, Hedges SB (2009). Snakes (Serpentes). In: Hedges SB
--

- 814 Kumar S, eds. *The Timetree of Life*. Oxford University Press, Oxford, pp. 390–

7.

Integrative Zoology

1		
2 3 4	817	FIGURE LEGENDS
5	818	Figure 1 Map and location (top) of the late Miocene/early Pliocene interval deposits
7 8	819	presented in this paper and Pliocene Balearic deposits mentioned in the text: (a) View
9 10	820	of the Na Burguesa-1 (NB-1) deposit. (b) View of the Caló den Rafelino (CdR)
11 12	821	deposit. Abbreviations: CdR = Caló den Rafelino, CF = Crull de Cap Farrutx, CM =
13 14 15	822	Cala Morlanda, NB-1 = Na Burguesa-1, PN = Punta Nati, SF = Ses Fontanelles.
16 17	823	Figure 2 Several reptiles from the Mallorcan late Miocene/early Pliocene deposits: (a-
18 19	824	c) Dorsal vertebra of <i>Dopasia</i> sp. from CdR (IMEDEA 90115) in dorsal (a), anterior
20 21	825	(b) and ventral (c) views: (d) Osteoderm in dorsal view Dopasia sp. from NB-1: (e-f)
22 23	826	Dorsal vertebra of Scolecophidia from NB-1 in dorsal (e) and ventral (f) views: (g)
24 25 26	827	Right dentary of Scindidae cf. Chalcides from NB-1 in medial view. Scale bars equal
20 27 28	828	1 mm.
29 30	829	Figure 3 Mammalian species obtained in NB-1: (a) Soricinae indet., jaw, lingual
31 32	830	view, (b) Cricetinae indet., jaw, lingual view, (c) Muridae indet., jaw, lingual view,
33 34	831	(d) Eliomys/Hypnomys, jaw, lingual view, (e) cf. Hypolagus, femur, frontal view, (f)
35 36 27	832	cf. Myotragus, proximal epiphysis of a right femur, frontal view. Scale bars equal 1
38 39	833	cm.
40 41	834	Figure 4 Occlusal view of the two teeth of <i>Hypnomys</i> sp. retrieved from the Caló den
42 43	835	Rafelino (CdR) deposit: (a) IMEDEA 90622, left m1, (b) IMEDEA 90623, left M1.
44 45	836	Scale bar equals 1 mm.
46 47 48	837	Figure 5 Diagram of the late Miocene/early Pliocene to Holocene vertebrate
48 49 50	838	terrestrial fauna from the Balearic Islands. (*) The taxonomical identity of the
51 52	839	described species from Menorca Myotragus binigausensis Moyà-Solà & Pons-Moyà,
53 54	840	1980, Hypnomys eliomyoides Agustí, 1980 and Nesiotites meloussae Pons-Moyà &
55 56	841	Moyà-Solà, 1980 is unclear and it is under discussion (Reumer 1982; Bover &
58 59		

- 842 Alcover 2000; Moyà-Solà et al. 2007; Pons-Monjo et al. 2012). Here we consider
- 843 these species as being synonymous of the Mallorcan coetaneous taxa, following
- 844 Bover et al. (2008). Gray arrows indicate contacts between Mallorca and Menorca
- 845 during Quaternary glaciations.

http://mc03.manuscriptcentral.com/inz

109x54mm (300 x 300 DPI)

322x618mm (300 x 300 DPI)