Cooperation between wild lactococcal strains for cheese aroma formation

F. Amárita, M. de la Plaza, P. Fernández de Palencia, T. Requena*, C. Peláez

Department of Dairy Science and Technology, Instituto del Frío (CSIC), José Antonio Novais 10. Ciudad Universitaria, 28040 Madrid, Spain

Running title: Lactococcal cooperation for cheese aroma

*Correspondence to: Teresa Requena. Instituto del Frío (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain. Tel.: +34-915492300; Fax: +34-915493627; E-mail address: trequena@if.csic.es
Abstract

Several wild lactococcal strains were tested for their ability to produce aroma compounds during growth in milk. Strains were incubated alone and in combination with *Lactococcus lactis* IFPL730, which is characterized by showing α-keto acid decarboxylase activity. Volatile compounds from incubated milks were analyzed by means of solid-phase microextraction (SPME) and evaluated by gas chromatography-mass spectrometry (GC-MS). Incubated milks were also sniffed for sensory analysis to describe aroma attributes. The combination of *L. lactis* IFPL326 that showed the highest branched chain aminotransferase activity with IFPL730 contributed to the highest formation of leucine derived volatile compounds such as 3-methylbutanal, 3-methyl-1-butanol and 2-hydroxy-4-methyl pentanoic acid methyl ester. In addition, the milk incubated with this combination of strains was awarded by the test panellists with the highest scores for "ripened cheese" attribute and aroma intensity. The results indicate that combination of *L. lactis* strains harbouring complementary catabolic routes can contribute to improve cheese aroma formation, resulting the combined cultures with *L. lactis* IFPL730 in higher volatile compound formation than isolate strains.

*Keywords: Lactococcus lactis; cheese aroma; amino acid catabolism*
1. Introduction

Development of aroma in cheese is a complex process that, in addition, is perceived as one of the foremost reason for product acceptance by consumers. Several chemical and biochemical reactions lead to development of cheese aroma, among them amino acid catabolism by lactic acid bacteria (LAB) has been considered of paramount importance. LAB usually initiate amino acid catabolism by a transamination reaction that leads to the formation of α-keto acids that reversively convert into hydroxy acids (Yvon, Thirouin, Rijnen, Fromentier, & Gripon, 1997; Amárita, Requena, Taborda, Amigo, & Peláez, 2001a; Williams, Noble, & Banks, 2001). There are several LAB aminotransferases characterized in the literature. Aromatic aminotransferase from Lactococcus lactis (Yvon et al., 1997; Gao & Steele, 1998) converts aromatic amino acids, but also leucine and methionine. L. lactis branched-chain aminotransferase (Atiles, Dudley, & Steele, 2000; Yvon, Chambellon, Bolotin, & Roudot-Algaron, 2000) converts isoleucine, leucine and valine, and to a much lesser extent methionine, cysteine and phenylalanine. A third aminotransferase activity named aspartate aminotransferase that also uses α-ketoglutarate as amino group-acceptor has been described in L. lactis (Dudley & Steele, 2001). Recently, Thage, Rattray, Laustsen, Ardö, Barkholt and Houlberg (2004) characterized an aminotransferase from Lactobacillus paracasei that specifically converts branched-chain amino acids.

Amino acid transamination in cheeses is rather limited in the absence of exogenous added α-ketoglutarate, since this keto acid is essential for the amino acid transamination (Yvon, Berthelot, & Gripon, 1998; Banks, Yvon, Gripon, de la Fuente, Brechany, Williams, & Muir, 2001). An alternative to provide cells with extra α-ketoglutarate for amino acid transamination is its regeneration from glutamate by a glutamate
dehydrogenase recently detected in several LAB species (Tanous, Kieronczyk, Helinck, Chambellon, & Yvon, 2002; Kieronczyk, Skeie, Langsrud & Yvon, 2003). The α-keto acids are converted by LAB to carboxylic acids of impact in cheese aroma, such as isovaleric and isobutyric acid (Yvon & Rijnen, 2001). Non-oxidative enzymatic decarboxylation of α-keto acids to aldehydes is catalyzed in L. lactis by an α-ketoisovalerate decarboxylase (De la Plaza, Fernández de Palencia, Peláez, & Requena, 2004). Aldehydes can also be generated by chemical oxidation of α-keto acids catalyzed by bivalent cations (Nierop-Groot & de Bont, 1999; Bonnarme, Amarita, Chambellon, Semon, Spinnler, & Yvon, 2004).

The contribution to cheese aroma of aromatic aldehydes such as phenyl acetaldehyde has been related to a floral note in Camembert (Kubíčková & Grosch, 1997). Branched chain aldehydes are a major part of the volatile fraction of several cheeses (Engels, Dekker, de Jong, Neeter, & Visser, 1997). They have been related to malty flavours (Morgan, 1976; Rychlik & Bosset, 2001), but likewise 3-methylbutanal seems to be important to mask the strong aroma of butyric acid in Emmental cheese (Preininger, Warmke, & Grosch, 1996). Alcohols are formed from aldehydes by chemical or enzymatic reactions. As well as aldehydes, they contribute to a good overall flavour when they are in balance with other volatile compounds (Preininger et al., 1996).

Wild lactococcal strains seem to contain more active amino acid converting enzymes than starter strains (Ayad, Verheul, De Jong, Wouters, & Smit, 1999), leading to new aroma descriptors in cheese sensory analysis (Morales, Fernández-García, Gaya, & Núñez, 2003). Combination of wild strains can also contribute to aroma diversification by completion of the flavour formation pathways (Ayad, Verheul, Wouters, & Smit, 2001; Kieronczyk et al., 2003). The aim of the present work has been to evaluate the abilities of a number of wild L. lactis strains possessing complementary enzymatic
activities to produce cheese aroma compounds that were evaluated by means of gas chromatography and sensory analyses.

2. Materials and methods

2.1. Bacterial strains and growth conditions

Wild strains of *Lactococcus lactis* IFPL730, IFPL112, IFPL363, IFPL953 and IFPL326 used in this study, were isolated from raw milk cheeses. Working cultures were prepared from a stock maintained at –80 ºC in 10% reconstituted skimmed milk (Scharlau, Barcelona, Spain) by two overnight transfers at 30 ºC in M17 broth (Scharlau) supplemented with 0.5% glucose (G-M17).

An overnight culture of each strain was used to inoculate (0.1%) 10 ml G-M17 broth and incubated for 8 h at 30 ºC. Forty millilitres sterile (110 ºC, 10 min) 10% reconstituted skimmed milk powder were inoculated at 2% with each strain and incubated at 30 ºC for 24 h. Combination of strains (1:1) with *L. lactis* IFPL 730 were also used to inoculate (2%) skimmed milk. *L. lactis* IFPL730 showing α-keto acid decarboxylase activity (Amárita, Fernández-Esplá, Requena, & Peláez, 2001b; De la Plaza et al., 2004) was used in the mixed cultures to complete the amino acid transamination pathway leading to production of aldehydes.

2.2. Enzymatic assays
The branched-chain and aromatic aminotransferase activities of the lactococcal strains were determined by measuring the formation of \( \alpha \)-ketomethylvaleric acid (KMVA) from isoleucine and phenylpyruvic acid (PPA) from phenylalanine, respectively. The reaction mixtures (0.25 ml) contained either L-isoleucine or L-phenylalanine (10 mM) in 70 mM Tris-HCl (pH 7.8), 10 mM \( \alpha \)-ketoglutarate, 0.1 mM pyridoxal 5’-phosphate (PLP) and 0.1 mg ml\(^{-1}\) cell free extract (CFE), obtained as described by Amarita et al. (2001b). The \( \alpha \)-keto acids obtained after 3 h-incubation at 37 ºC were analysed by RP-HPLC using a Jasco RP-HPLC system (Jasco Co., Tokyo, Japan) as previously described (Amárita et al., 2001b).

The glutamate dehydrogenase activity of the strains was determined by measuring the glutamate-dependent reduction of NAD and NADP. The reaction mixture contained 40 mM Tris-HCl buffer (pH 8.8), 1 mM NAD\(^+\) or NADP\(^+\), 10mM L-glutamate and 0.1 mg ml\(^{-1}\) CFE in a total volume of 1 ml. The amount of NADH or NADPH formed by reduction of the substrate was monitored continuously by measuring absorbance at 340 nm in a Shimadzu UV-1601 spectrophotometer with a thermostatically CPS-240 controller (Shimadzu, Kyoto, Japan).

Enzymatic activities were expressed in \( \mu \)mol of product released per min and mg protein.

2.3. Analysis of volatile compounds by solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS)

Ten millilitres of the incubated milks and 2 g NaCl were added to a 20 ml glass sample vial and fitted with a self-sealing septum at its top, through which the SPME syringe needle (bearing a fibre coated with 85 \( \mu \)m film thickness polyacrylate bonded to
a flexible fused silica core, Supelco, Bellefonte, USA) was introduced and maintained in the head space. The sample was then thermostated at 60 ºC for 40 min. The polar volatile analytes absorbed to the SPME fibre were then analysed by GC–MS (Agilent 6890N Network GC System, Palo Alto, USA). The compounds were separated by onto a HP-INNO-WAX polyethylene glycol capillary column (60 m × 250 µm × 0.5 µm, Agilent). The injection port was heated at 220 ºC, in splitless mode, and He flow was maintained at 1 ml min\(^{-1}\). The SPME fibre was maintained in the injection port for 10 min. The oven temperature programme was held at 45 ºC for 12.5 min, increased to 114 ºC at a rate of 4 ºC min\(^{-1}\), held at 114 ºC for 6 min, then increased to 143 ºC at a rate of 7 ºC min\(^{-1}\) and to 240 ºC at 15 ºC min\(^{-1}\), and held at 240 ºC for 4 min. Detection was performed with the mass spectrometer detector (MS 5973N, Agilent) operating in the scan mode (2.81 scan s\(^{-1}\)) and the ionization energy set at 70 eV. The temperatures of the ion source and the quadrupole mass analyser were held at 230 ºC and 150 ºC, respectively. The eluted compounds were identified by their retention times and by comparison of their mass spectra with those in the Wiley Mass Spectral database (Wiley & Sons Inc., New York, USA). Relative abundance of compounds was expressed in arbitrary units as peak areas referred to carbinol area, which was employed as internal standard. Samples were analysed in triplicate.

### 2.4. Sensory analysis

Aroma of the incubated milks was evaluated by 26 panellists. Members were asked for sensory descriptors such as yoghurt, butter, fresh cheese, ripened cheese and aromatic flavour (floral, herbaceous, almond-like or fruity), and the overall aroma.
intensity of samples. Descriptors and aroma intensity were scored after sniffing the
samples on a scale ranging from 0 (lacking) to 3 (strong).

2.5. Statistical analysis

The StatGraphics plus (version 2.1, Statistical Graphics Corp., Rockville, USA) was
used for statistical data processing. Analysis of variance (F-test) was run on the volatile
compounds detected by GC-MS and on aroma descriptors to ascertain whether or not
the differences in volatile formation between strains were significant (P < 0.05).
Principal component analysis (PCA) was applied to correlate the abundances of volatile
compounds with the scores of aroma descriptors.

3. Results and discussion

Relevant enzymes involved in the amino acid transamination pathway leading to
formation of aldehydes are aminotransferases and α-keto acid decarboxylases. The
amino group acceptor, α-ketoglutarate, is a limiting factor of the transamination
reaction (Yvon et al., 1998) and therefore, the presence of glutamate dehydrogenase
activity in LAB can be of key importance for volatiles formation in cheese. In the
present work lactococcal strains were evaluated for the presence of aminotransferase
and glutamate dehydrogenase activities. Results are shown in Table 1.
Aminotransferase activity was present in all strains being higher towards branched
chain than aromatic amino acids. Only strains IFPL112 and IFPL363 showed glutamate
dehydrogenase activity. *L. lactis* IFPL730 has been described to exhibit α-keto acid
decarboxylase activity with high specificity towards α-ketoisovalerate derived from
valine transamination (De la Plaza et al., 2004). The high specificity of the *L. lactis* α-
ketoisovalerate decarboxylase entitle it as the rate-controlling step in the formation of
branched-chain aldehydes by *L. lactis* (De la Plaza et al., 2004).

Lactococcal strains were combined with *L. lactis* IFPL730 for incubation in skimmed
milk in order to complete the transamination metabolic pathway leading to production
of aldehydes, and without the need of adding exogenous α-ketoglutarate. The volatile
compounds produced by single and mixed cultures after 24 h incubation in skimmed
milk were analyzed by solid-phase microextraction (SPME) and evaluated by GC-MS.
SPME is a simple and sensitive technique for the concentration of volatile compounds
that has been described useful for the characterization of cheese aroma by GC analysis
(Lecanu, Ducruet, Jouquand, Gratadoux, & Feigenbaumet, 2002; Frank, Owen, &
Patterson, 2004). Main volatile compounds obtained during strains growth in milk are
listed in Table 2, which include short chain fatty acids, alcohols, aldehydes and esters.
In general, combination of strains with *L. lactis* IFPL730 increased volatile content in
the incubated milks, although a direct correlation between presence of glutamate
dehydrogenase activity in strains IFPL112 and IFPL363 and volatile compounds
increase could not be established. The presence of IFPL730 showing α-keto acid
decarboxylase activity in mixed cultures increased acid, alcohol and ester contents,
being the highest values found with the combination of strains IFPL730 and IFPL326
(Table 2). Interestingly, *L. lactis* IFPL326 showed the highest aminotransferase activity
towards isoleucine (Table 1), which is a specific substrate for the lactococcal branched
chain aminotransferase (Atiles et al., 2000; Yvon et al., 2000). The combination of
strain IFPL326 with strain IFPL730, which is characterized by the presence of an α-
keto acid decarboxylase with high specificity for branched chain α-keto acids (De la
Plaza et al., 2004), contributed to the highest formation in the incubated milk of leucine
derived volatile compounds such as 3-methylbutanal, 3-methyl-1-butanol and 2-
hydroxy-4-methyl pentanoic acid methyl ester (Table 2). In addition, the milk incubated
with the combination of strains IFPL326 and IFPL730, showing the highest content in
volatile compounds, was awarded by the test panellists with the highest scores for
"ripened cheese" attribute and aroma intensity (Table 3).

All data obtained (volatile compound abundances and aroma descriptor
scores) were analyzed by PCA. The study showed that the first six principal components defined the
81.9% of the variability of the system (data not shown). Three-dimensional plot of the
three first principal components 1, 2 and 3 (Fig. 1), which accounted for 69.4% of the
variability, showed that the sensory attribute “ripened cheese” was well correlated with
the presence of 3-methylbutanal, 3-methyl-1-butanol, 2-hydroxy-4-methyl pentanoic
acid methyl ester and 2-phenyl ethanol. All four compound contents were highest in the
milk incubated with strains IFPL730 and IFPL326 (Table 2). 3-Methyl butanal has been
related to cheesy aroma in Gorgonzola cheese (Moio, Piombino, & Addeo, 2000) and 3-
methyl-1-butanol has been found to confer aroma of fresh cheese to bovine Mozzarella
cheese (Moio, Langlois, Etievant, & Addeo, 1993). In general, it has been considered
that hydroxyacid formation produces a leakage in the pathway of aroma compounds
formation from keto acids (Yvon & Rijnen, 2001; Van Kranenburg et al., 2002).
However, the high abundance of 2-hydroxy-4-methyl pentanoic acid methyl ester in the
milk incubated with strains IFPL730 and IFPL326 and its correlation with ripened
cheese attribute suggests that α-keto acid reduction is not a closed way for aroma
compounds formation.

In the other hand, aromatic aroma descriptors were not well correlated with
compounds such as 2-phenyl ethanol, which has been described as floral rose-like
(Kubícková & Grosh, 1997; Roger, Degas, & Gripon, 1988), or 4-ethoxy ethylbenzoate reported as fruity (Mauriello, Moio, Moschetti, Piombino, Addeo, & Coppola, 2001). The milk incubated with strains IFPL730 and IFPL326 also showed the highest abundance of both compounds (Table 2).

The incorporation of *L. lactis* IFPL730 to the incubated milks also caused an increase in the content of short chain fatty acids (Table 2). Above all these compounds, hexanoic acid content greatly increased by the combination of strains IFPL730 and IFPL326. This compound was nearly associated to ripened cheese attribute by PCA (Fig. 1), while butanoic acid was related to butter-like, fruity or yoghurt-like descriptors. Comparing these results and those described in literature, aroma descriptors do not match exactly for the same molecules since both butanoic and hexanoic acids have been related to cheese aroma (Urbach, 1995; Moio & Addeo, 1998). This point is in accordance with the established fact that the perception threshold of a compound is dependent on the matrix and the overall of molecules, and may be responsible of the modification of perceptions for a given compound (Curioni & Bosset, 2002).

In conclusion, combination of *L. lactis* strains harbouring complementary amino acid catabolic routes can contribute to improve cheese aroma formation, resulting the combined cultures with *L. lactis* IFPL730 in higher volatile compound formation in milk than isolate strains. The impact on aroma intensity obtained by the incorporation in the culture of a strain showing α-keto acid decarboxylase activity identifies this as key reaction in the enzymatic conversion of amino acids, therefore being the rate-controlling step in volatile compounds formation. More studies regarding effect of the combined strains in cheese ripening are needed.
Acknowledgements

This work was performed under the auspices of the Consejo Superior de Investigaciones Científicas and was supported by Research Project AGL2002-03277.

References


cheese using alpha-ketoglutarate: amino acid degradation in relation to volatile

Bonnarme, P., Amarita, F., Chambellon, E., Semon, E., Spinnler, H. E., & Yvon, M.
(2004). Methylthioacetaldehyde, a possible intermediate metabolite for the
production of volatile sulphur compounds from L-methionine by *Lactococcus lactis*.
*FEMS Microbiology Letters, 236*, 85–90.

Curioni, P. M. G., & Bosset, J.O. (2002). Key odorants in various cheese types as
determined by gas chromatography-olfactometry. *International Dairy Journal, 12*,
959–984.

Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an
enzyme involved in the formation of aldehydes from amino acids by *Lactococcus

aminotransferase involved in aspartate biosynthesis, which is essential for growth in

comparative study of volatile compounds in the water-soluble fraction of various

Frank, D. C., Owen, C. M., & Patterson, J. (2004). Solid phase microextraction (SPME)
combined with gas-chromatography and olfactometry-mass spectrometry for
characterization of cheese aroma compounds. *Lebensmittel Wissenschaft und


Legend to Figure

Fig. 1. Principal component analysis plot (three-dimensional) from volatile compound data and aroma descriptor scores for Lactococcus lactis incubated milk. 1: 3-methylbutanal; 2: 3-methyl-1-butanol; 3: 2-hydroxy-4-methyl pentanoic acid methyl ester; 4: 2-phenyl ethanol; 5: 4-ethoxy benzoic acid ethyl ester; 6: hexanoic acid; 7: acetic acid; 8: 2-furanmethanol; 9: octanoic acid; 10: ethanol; 11: benzaldehyde; 12: butanoic acid; A: ripened cheese; B: yoghurt; C: butter; D: fresh cheese; E: herbaceous; F: floral; G: fruity and H: almond-like.
Table 1.

Glutamate dehydrogenase (Gdh), branched-chain aminotransferase (BcaT) and aromatic aminotransferase (AraT) activities of wild *Lactococcus lactis* strains.

<table>
<thead>
<tr>
<th><em>L. lactis</em> strain</th>
<th>Gdh</th>
<th>BcaT</th>
<th>AraT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFPL112</td>
<td>0.018</td>
<td>0.140</td>
<td>0.011</td>
</tr>
<tr>
<td>IFPL363</td>
<td>0.020</td>
<td>0.159</td>
<td>0.014</td>
</tr>
<tr>
<td>IFPL953</td>
<td>ND</td>
<td>0.127</td>
<td>0.094</td>
</tr>
<tr>
<td>IFPL326</td>
<td>ND</td>
<td>0.179</td>
<td>0.064</td>
</tr>
<tr>
<td>IFPL730</td>
<td>ND</td>
<td>0.126</td>
<td>0.081</td>
</tr>
</tbody>
</table>

1Activity expressed as µmol of NADPH (Gdh), KMVA (BcaT) or PPA (AraT) released per min and mg protein. ND: not detected
Table 2.

Relative abundance\(^1\) (mean ± SE) of volatile compounds obtained by solid phase microextraction (SPME) from *Lactococcus lactis* incubated milk.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(RT^2)</th>
<th>IFPL730</th>
<th>IFPL112</th>
<th>IFPL363</th>
<th>IFPL953</th>
<th>IFPL326</th>
<th>730-112</th>
<th>730-363</th>
<th>730-953</th>
<th>730-326</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methylbutanal</td>
<td>12.71</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.20±0.06a</td>
</tr>
<tr>
<td>Etanol</td>
<td>13.89</td>
<td>0.19±0.00a</td>
<td>0.82±0.01cd</td>
<td>0.28±0.04ab</td>
<td>1.04±0.09de</td>
<td>0.53±0.03bc</td>
<td>1.21±0.25e</td>
<td>1.18±0.07e</td>
<td>0.66±0.01c</td>
<td>1.25±0.18e</td>
</tr>
<tr>
<td>3-Methyl-1-butanol</td>
<td>29.07</td>
<td>0.18±0.00a</td>
<td>ND</td>
<td>ND</td>
<td>0.83±0.05b</td>
<td>0.46±0.24a</td>
<td>0.22±0.01a</td>
<td>0.27±0.15a</td>
<td>1.10±0.03b</td>
<td>4.59±0.19c</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>41.33</td>
<td>0.18±0.01a</td>
<td>0.38±0.01bc</td>
<td>0.13±0.01a</td>
<td>0.28±0.00ab</td>
<td>0.29±0.15ab</td>
<td>0.50±0.09c</td>
<td>0.73±0.04d</td>
<td>0.47±0.03bc</td>
<td>1.02±0.10e</td>
</tr>
<tr>
<td>2-Hydroxy-4-methyl pentanoic acid methyl ester</td>
<td>41.95</td>
<td>0.09±0.01a</td>
<td>ND</td>
<td>ND</td>
<td>0.31±0.02bc</td>
<td>ND</td>
<td>0.24±0.02abc</td>
<td>0.16±0.08ab</td>
<td>0.38±0.01c</td>
<td>1.51±0.20d</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>43.46</td>
<td>0.03±0.02a</td>
<td>ND</td>
<td>0.03±0.02a</td>
<td>0.05±0.03a</td>
<td>0.02±0.02a</td>
<td>0.13±0.01b</td>
<td>ND</td>
<td>0.05±0.05a</td>
<td>ND</td>
</tr>
<tr>
<td>4-Ethoxy benzoic acid ethyl ester</td>
<td>44.78</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.77±0.38b</td>
<td>0.06±0.03a</td>
<td>2.83±0.29c</td>
<td>2.59±0.14c</td>
<td>2.55±0.21c</td>
<td>4.60±0.10d</td>
</tr>
<tr>
<td>Butanoic acid</td>
<td>45.01</td>
<td>0.08±0.01a</td>
<td>ND</td>
<td>0.06±0.03a</td>
<td>0.57±0.46a</td>
<td>ND</td>
<td>0.51±0.29a</td>
<td>0.10±0.10a</td>
<td>0.39±0.27a</td>
<td>0.14±0.14a</td>
</tr>
<tr>
<td>2-Furanmethanol</td>
<td>45.35</td>
<td>0.06±0.03a</td>
<td>0.18±0.01bcd</td>
<td>ND</td>
<td>0.14±0.02abc</td>
<td>0.06±0.06bc</td>
<td>0.21±0.04cd</td>
<td>0.36±0.06ef</td>
<td>0.26±0.04de</td>
<td>0.48±0.06f</td>
</tr>
<tr>
<td>Hexanoic acid</td>
<td>47.73</td>
<td>0.39±0.02a</td>
<td>1.03±0.07bcd</td>
<td>0.41±0.07a</td>
<td>0.99±0.05bc</td>
<td>0.80±0.04ab</td>
<td>1.53±0.29cd</td>
<td>1.48±0.04cd</td>
<td>1.56±0.25d</td>
<td>2.35±0.38e</td>
</tr>
<tr>
<td>2-Phenyl ethanol</td>
<td>48.88</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.29±0.01ab</td>
<td>0.24±0.00a</td>
<td>0.43±0.01c</td>
<td>ND</td>
<td>0.32±0.01b</td>
<td>0.76±0.07d</td>
</tr>
<tr>
<td>Octanoic acid</td>
<td>50.20</td>
<td>0.56±0.03ab</td>
<td>1.49±0.16bcd</td>
<td>0.44±0.05a</td>
<td>0.75±0.38ab</td>
<td>1.06±0.06abc</td>
<td>2.18±0.06d</td>
<td>2.20±0.30d</td>
<td>1.04±0.53ab</td>
<td>1.99±0.10cd</td>
</tr>
</tbody>
</table>

\(^1\)Relative abundance expressed in arbitrary units as percentage of the carbinol peak. ND: not detected. Means followed by the same letter within the same row are not significantly different (\(P > 0.05\)).

\(^2\)RT, retention time (min).
Table 3.

Aroma scores\(^1\) (mean ± SE) of *Lactococcus lactis* incubated milk.

<table>
<thead>
<tr>
<th>Aroma descriptor</th>
<th>IFPL730</th>
<th>IFPL112</th>
<th>IFPL363</th>
<th>IFPL953</th>
<th>IFPL326</th>
<th>730-112</th>
<th>730-363</th>
<th>730-953</th>
<th>730-326</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid</td>
<td>0.23±0.10a</td>
<td>0.31±0.12a</td>
<td>0.35±0.12(^*)</td>
<td>0.35±0.12a</td>
<td>0.31±0.12a</td>
<td>0.08±0.05a</td>
<td>0.23±0.10a</td>
<td>0.23±0.10a</td>
<td>0.27±0.12a</td>
</tr>
<tr>
<td>Yoghurt</td>
<td>0.50±0.15ab</td>
<td>0.65±0.19b</td>
<td>1.46±0.22c</td>
<td>1.38±0.20c</td>
<td>0.54±0.18ab</td>
<td>0.88±0.19b</td>
<td>0.73±0.19b</td>
<td>0.15±0.09a</td>
<td></td>
</tr>
<tr>
<td>Butter</td>
<td>0.04±0.04a</td>
<td>0.04±0.04a</td>
<td>0.08±0.05(^*)</td>
<td>0.35±0.16b</td>
<td>0.15±0.09ab</td>
<td>0.08±0.05a</td>
<td>0.08±0.05a</td>
<td>0.08±0.08a</td>
<td>0.08±0.05a</td>
</tr>
<tr>
<td>Fresh cheese</td>
<td>0.15±0.09a</td>
<td>0.15±0.09a</td>
<td>0.19±0.11(^*)</td>
<td>0.23±0.14a</td>
<td>0.12±0.06a</td>
<td>0.19±0.10a</td>
<td>0.27±0.12a</td>
<td>0.15±0.09a</td>
<td>ND</td>
</tr>
<tr>
<td>Ripened cheese</td>
<td>0.15±0.09a</td>
<td>0.08±0.05a</td>
<td>0.04±0.04(^*)</td>
<td>0.23±0.14a</td>
<td>0.27±0.13a</td>
<td>0.08±0.05a</td>
<td>0.04±0.04a</td>
<td>0.27±0.12a</td>
<td>0.85±0.22b</td>
</tr>
<tr>
<td>Potato-like</td>
<td>0.19±0.12a</td>
<td>0.12±0.08a</td>
<td>0.12±0.08(^*)</td>
<td>0.12±0.08a</td>
<td>0.15±0.12a</td>
<td>0.15±0.12a</td>
<td>0.15±0.09a</td>
<td>0.12±0.12a</td>
<td>0.04±0.04a</td>
</tr>
<tr>
<td>Almond-like</td>
<td>0.08±0.08a</td>
<td>0.04±0.04a</td>
<td>0.04±0.04(^*)</td>
<td>0.04±0.04a</td>
<td>0.08±0.05a</td>
<td>0.08±0.08a</td>
<td>0.04±0.04a</td>
<td>0.15±0.09a</td>
<td>0.27±0.14a</td>
</tr>
<tr>
<td>Fruity</td>
<td>0.08±0.05ab</td>
<td>0.04±0.04a</td>
<td>0.12±0.08(^*)b</td>
<td>0.12±0.06ab</td>
<td>0.23±0.13b</td>
<td>0.12±0.08ab</td>
<td>ND</td>
<td>0.04±0.04a</td>
<td>ND</td>
</tr>
<tr>
<td>Floral</td>
<td>0.04±0.04a</td>
<td>ND</td>
<td>0.04±0.04(^*)</td>
<td>0.08±0.08a</td>
<td>0.08±0.05a</td>
<td>ND</td>
<td>0.15±0.09a</td>
<td>0.12±0.08a</td>
<td>0.15±0.07a</td>
</tr>
<tr>
<td>Intensity</td>
<td>1.08±0.12ab</td>
<td>0.88±0.15a</td>
<td>1.35±0.15bc</td>
<td>1.58±0.15c</td>
<td>1.35±0.14bc</td>
<td>1.00±0.14ab</td>
<td>1.04±0.13ab</td>
<td>1.31±0.14bc</td>
<td>2.15±0.16d</td>
</tr>
</tbody>
</table>

\(^1\)Scores vary between 0 (lacking) to 3 (strong). ND: not detected. Means followed by the same letter within the same row are not significantly different (P > 0.05).