BALANCE DE SALES DE LA CUENCA DEL EBRO

Por

F. ALBERTO, R. ARAÚJO GUES y D. QUILEZ
1 C. S. I. C. Estación experimental Aula Dei. Zaragoza
2 INIA. Crida 03, Zaragoza

RESUMEN

Con base en los datos publicados por el M. O. P. U., se ha desarrollado el balance de masas de agua y sales de la Cuenca del Ebro. A través del mismo se han cuantificado las contribuciones de cada afluente al río Ebro y de éste al Mar Mediterráneo (Tortosa) y se han identificado las fuentes y sumideros del sistema y las áreas críticas con insuficiente información. El balance demuestra los elevados niveles de salinidad de varios ríos de la Cuenca, la gran importancia de las fuentes de sales en algunos tramos del río Ebro y su aportación de 6,7 millones de toneladas de sal en Tortosa. La aportación media de la Cuenca al Mar Mediterráneo es de unos 120 mg de sal por m² de superficie y por mm de precipitación.

ABSTRACT

The water and salt mass balances of the Ebro river basin were established on the basis of data published by M. O. P. U. (Ministry of Public Works). Through these mass balances, the contributions of each tributary to the Ebro river, as well as the contribution of the Ebro river to the Mediterranean Sea (Tortosa) were quantified. Also, the sources and sinks in the systems as well as the critical areas with inadequate information were indentified. This balance shows the high salinity levels in several rivers of the basin, the important salinity sources in some reaches of the Ebro river and its annual contribution of 6,7 million tons in Tortosa. Average load of the basin into the Mediterranean Sea is 120 mg of salt per surface m² and per mm of precipitation.

PALABRAS CLAVE

Balance de sales, balance de agua, aportes de sales, fuentes difusas, sumideros difusos, relación caudal-concentración.
INTRODUCCION

La degradación progresiva de la calidad de las aguas superficiales es un proceso irreversible vinculado a su utilización. Así, puede afirmarse que cualquier uso del agua implica un incremento de la concentración salina de sus aguas de retorno. En consecuencia, los repetidos ciclos de usovertido conducen a la salinización progresiva de los ríos a lo largo de su curso.

A partir de estas consideraciones, este capítulo presenta el balance de sales de las aguas superficiales de la Cuenca del Ebro, con los siguientes objetivos:

1. Cuantificación de las contribuciones de agua y sal de las subcuenkas e identificación de las áreas con mayores problemas de salinidad incluyendo las fuentes y sumideros de carácter difuso.

2. Estimación de los aportes de sales por unidad de superficie y por unidad de precipitación, y su relación con la geología de la Cuenca.

3. Identificación de áreas críticas con información insuficiente y establecimiento de prioridades en actividades de control y de investigación.

METODOLOGIA

La información de base utilizada es la publicada por el M. O. P. U. en sus libros de aforos (datos diarios de caudal de 166 estaciones) y de calidad de aguas (datos mensuales de CE de 65 estaciones). Debido al carácter puntual de esta última y a la variabilidad estacional de la salinidad, la obtención de medias anuales a partir de tan sólo doce valores mensuales puede conducir a importantes errores de interpretación debido a su escasa representatividad. Como método alternativo, se han establecido las ecuaciones de regresión entre CE y caudal para cada estación con datos conjuntos de calidad y aforos. Las ecuaciones ajustadas, así como los coeficientes de correlación, se presentan en la Tabla I. De los cuatro tipos de regresión analizados se eligió la semilogarítmica (CE = a + b 1n caudal), que es, en general, la de mayor coeficiente de correlación.

A partir de estas curvas semilogarítmicas y de los histogramas de frecuencias de aforos se han calculado la masa de sales (t), el aporte de agua (Hm³) y la concentración salina (TDS, mg/l) medios anuales de cada estación para los años hidrológicos 1974 a 1977. De forma análoga, a partir de los caudales medios mensuales se obtienen los valores mensuales de estas tres variables.
<table>
<thead>
<tr>
<th>LOCALIZACIÓN</th>
<th>N° de obs.</th>
<th>Y = a + bx</th>
<th>Y = a + b*bx</th>
<th>Y = a + e^bx</th>
<th>Y = a * x^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIO</td>
<td>ESTACION</td>
<td>r</td>
<td>a</td>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>EBRO</td>
<td>Miranda</td>
<td>1</td>
<td>120</td>
<td>.1405</td>
<td>422.15</td>
</tr>
<tr>
<td>EBRO</td>
<td>Castellón</td>
<td>2</td>
<td>119</td>
<td>.534***</td>
<td>790.27</td>
</tr>
<tr>
<td>EGA</td>
<td>Andoñuela</td>
<td>3</td>
<td>111</td>
<td>.390***</td>
<td>1237.29</td>
</tr>
<tr>
<td>ARGA</td>
<td>Peralta</td>
<td>4</td>
<td>115</td>
<td>.498***</td>
<td>1287.34</td>
</tr>
<tr>
<td>ARAGON</td>
<td>Caparros</td>
<td>5</td>
<td>117</td>
<td>.363***</td>
<td>729.30</td>
</tr>
<tr>
<td>EBRO</td>
<td>Zaragoza</td>
<td>9</td>
<td>119</td>
<td>.319***</td>
<td>1197.20</td>
</tr>
<tr>
<td>MARTIN</td>
<td>Hijar</td>
<td>14</td>
<td>82</td>
<td>.560***</td>
<td>2469.96</td>
</tr>
<tr>
<td>GUADALOPE</td>
<td>Alcaniz</td>
<td>15</td>
<td>118</td>
<td>.261***</td>
<td>966.31</td>
</tr>
<tr>
<td>CINCA</td>
<td>Fraga</td>
<td>17</td>
<td>117</td>
<td>.318***</td>
<td>117.74</td>
</tr>
<tr>
<td>ARAGON</td>
<td>Jaca</td>
<td>18</td>
<td>117</td>
<td>.118</td>
<td>218.19</td>
</tr>
<tr>
<td>VALIRA</td>
<td>Sec de Urgel</td>
<td>22</td>
<td>61</td>
<td>.232*</td>
<td>152.65</td>
</tr>
<tr>
<td>SEGRE</td>
<td>Sec de Urgel</td>
<td>23</td>
<td>88</td>
<td>.540***</td>
<td>216.51</td>
</tr>
<tr>
<td>SEGREG</td>
<td>Lérida</td>
<td>24</td>
<td>71</td>
<td>.667***</td>
<td>603.38</td>
</tr>
<tr>
<td>SEVEN</td>
<td>Serres</td>
<td>25</td>
<td>119</td>
<td>.358***</td>
<td>851.90</td>
</tr>
<tr>
<td>EBO</td>
<td>Tortosa</td>
<td>27</td>
<td>119</td>
<td>.441***</td>
<td>938.41</td>
</tr>
<tr>
<td>EBO</td>
<td>Mequinenza</td>
<td>29</td>
<td>71</td>
<td>.405***</td>
<td>972.31</td>
</tr>
<tr>
<td>IREGUA</td>
<td>Isiliana</td>
<td>36</td>
<td>84</td>
<td>.575***</td>
<td>374.47</td>
</tr>
<tr>
<td>NAVERILLA</td>
<td>Torre Montalvo</td>
<td>38</td>
<td>84</td>
<td>.701***</td>
<td>438.85</td>
</tr>
<tr>
<td>JILIONA</td>
<td>Calamocha</td>
<td>47</td>
<td>117</td>
<td>.173*</td>
<td>907.83</td>
</tr>
<tr>
<td>TIRON</td>
<td>Cuzcoitas</td>
<td>50</td>
<td>169</td>
<td>.321*</td>
<td>1134.95</td>
</tr>
<tr>
<td>ARBA</td>
<td>Galfar</td>
<td>60</td>
<td>92</td>
<td>.497***</td>
<td>1887.10</td>
</tr>
<tr>
<td>IRATI</td>
<td>Liedena</td>
<td>65</td>
<td>72</td>
<td>.411***</td>
<td>288.93</td>
</tr>
<tr>
<td>ARGA</td>
<td>Echaure</td>
<td>69</td>
<td>115</td>
<td>.440***</td>
<td>772.13</td>
</tr>
<tr>
<td>EGA</td>
<td>Estella</td>
<td>71</td>
<td>84</td>
<td>.541***</td>
<td>752.44</td>
</tr>
<tr>
<td>ZADORRA</td>
<td>Arce</td>
<td>74</td>
<td>120</td>
<td>.285***</td>
<td>541.98</td>
</tr>
<tr>
<td>JALON</td>
<td>Grúñen</td>
<td>87</td>
<td>90</td>
<td>.882***</td>
<td>1162.51</td>
</tr>
<tr>
<td>GALLEGU</td>
<td>Zaragoza</td>
<td>89</td>
<td>53</td>
<td>.682***</td>
<td>1916.14</td>
</tr>
<tr>
<td>RÍO</td>
<td>LOCALIZACIÓN</td>
<td>N.º de obs.</td>
<td>Y = a + bx</td>
<td>Y = a + bnx</td>
<td>Y = a + bx</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NELA</td>
<td>Trespadreño</td>
<td>92</td>
<td>-0.464***</td>
<td>-0.769***</td>
<td>-0.518***</td>
</tr>
<tr>
<td>OCA</td>
<td>Oña</td>
<td>93</td>
<td>0.431***</td>
<td>0.596***</td>
<td>0.631***</td>
</tr>
<tr>
<td>SEGRE</td>
<td>Balaguer</td>
<td>115</td>
<td>-0.616***</td>
<td>-0.702***</td>
<td>-0.671***</td>
</tr>
<tr>
<td>NOGUERA R.</td>
<td>La Pilaña</td>
<td>97</td>
<td>0.594***</td>
<td>0.632***</td>
<td>0.608***</td>
</tr>
<tr>
<td>ARAGON</td>
<td>Yesa</td>
<td>101</td>
<td>-0.12</td>
<td>0.12</td>
<td>-0.14</td>
</tr>
<tr>
<td>HUERVA</td>
<td>Mezalorecha</td>
<td>105</td>
<td>-0.370***</td>
<td>-0.663***</td>
<td>-0.398***</td>
</tr>
<tr>
<td>Ebro</td>
<td>Sástago</td>
<td>112</td>
<td>-0.510***</td>
<td>-0.803***</td>
<td>-0.659***</td>
</tr>
<tr>
<td>SEGRE</td>
<td>Pons</td>
<td>114</td>
<td>0.601***</td>
<td>0.608***</td>
<td>0.641***</td>
</tr>
<tr>
<td>Ebro</td>
<td>Mendavia</td>
<td>120</td>
<td>-0.434***</td>
<td>-0.562***</td>
<td>-0.456***</td>
</tr>
<tr>
<td>Ebro</td>
<td>Flix</td>
<td>121</td>
<td>-0.352***</td>
<td>-0.327**</td>
<td>-0.381***</td>
</tr>
<tr>
<td>GALLEGRO</td>
<td>Anzánigo</td>
<td>123</td>
<td>0.084</td>
<td>0.055</td>
<td>0.089</td>
</tr>
<tr>
<td>ARGA</td>
<td>Huarte</td>
<td>139</td>
<td>0.187</td>
<td>0.17</td>
<td>0.152</td>
</tr>
<tr>
<td>Ebro</td>
<td>Palazuelos</td>
<td>163</td>
<td>0.089</td>
<td>0.032</td>
<td>0.084</td>
</tr>
<tr>
<td>Ebro</td>
<td>Pignatelli</td>
<td>162</td>
<td>0.694***</td>
<td>0.823***</td>
<td>0.723***</td>
</tr>
<tr>
<td>BAYAS</td>
<td>Miranda</td>
<td>165</td>
<td>-0.390***</td>
<td>-0.592***</td>
<td>-0.469***</td>
</tr>
<tr>
<td>JEREÁ</td>
<td>Palazuelos</td>
<td>166</td>
<td>-0.302***</td>
<td>-0.297***</td>
<td>-0.334***</td>
</tr>
<tr>
<td>NOGUERA P.</td>
<td>Camarasa</td>
<td>169</td>
<td>0.173</td>
<td>0.118</td>
<td>0.170</td>
</tr>
<tr>
<td>Matarraña</td>
<td>Maella</td>
<td>176</td>
<td>0.177</td>
<td>0.285*</td>
<td>0.214*</td>
</tr>
<tr>
<td>ARAGON</td>
<td>Sangüesa</td>
<td>205</td>
<td>0.517***</td>
<td>0.417***</td>
<td>0.554***</td>
</tr>
<tr>
<td>SEGRE</td>
<td>Pta S. Tirs</td>
<td>206</td>
<td>0.444***</td>
<td>0.508***</td>
<td>0.470***</td>
</tr>
<tr>
<td>SEGRE</td>
<td>Terona</td>
<td>207</td>
<td>0.670***</td>
<td>0.575***</td>
<td>0.722***</td>
</tr>
<tr>
<td>Ebro</td>
<td>Conchas Haro</td>
<td>208</td>
<td>0.382***</td>
<td>0.394***</td>
<td>0.404***</td>
</tr>
<tr>
<td>GALLEGRO</td>
<td>Zurea</td>
<td>209</td>
<td>0.326</td>
<td>0.577***</td>
<td>0.449***</td>
</tr>
<tr>
<td>Ebro</td>
<td>Riberarrio</td>
<td>210</td>
<td>0.567***</td>
<td>0.359***</td>
<td>0.420***</td>
</tr>
<tr>
<td>Ebro</td>
<td>Pina</td>
<td>211</td>
<td>0.714***</td>
<td>0.880***</td>
<td>0.806***</td>
</tr>
<tr>
<td>Ebro</td>
<td>Cherta</td>
<td>212</td>
<td>0.383***</td>
<td>0.332*</td>
<td>0.410**</td>
</tr>
<tr>
<td>ALHAMA</td>
<td>Alfaro</td>
<td>214</td>
<td>0.472***</td>
<td>0.259*</td>
<td>0.557***</td>
</tr>
<tr>
<td>HUERVA</td>
<td>Zaragoza</td>
<td>216</td>
<td>0.477***</td>
<td>0.488***</td>
<td>0.592***</td>
</tr>
<tr>
<td>ARGA</td>
<td>Orohín</td>
<td>217</td>
<td>0.660***</td>
<td>0.588*</td>
<td>0.712***</td>
</tr>
</tbody>
</table>
En ambos casos fue preciso convertir la CE a TDS, utilizando el factor de transformación

CE (mmhos/cm/25º C) = 631 TDS (mg/l)

deducido en el capítulo anterior, para el conjunto de estaciones de la Cuenca. Evidentemente, un refinamiento posterior del balance consistiría en utilizar los factores de transformación CE-TDS de cada estación. Aunque los mismos se han presentado en el capítulo anterior, el pequeño número de observaciones de cada estación no hace aconsejable todavía su utilización individualizada.

RESULTADOS Y DISCUSION

La Fig. 1 presenta los aportes de sal (en miles de toneladas) de agua (en hectómetros cúbicos) y la concentración (sólidos disueltos totales (TDS) en miligramos por litro) de cada estación (identificadas por el número de registro del M. O. P. U.), sobre un esquema de la red hidrográfica de la Cuenca del Ebro en el que la línea sólida central es el río Ebro, al que vierten los afluentes en los respectivos puntos de su cauce. Los valores representados resultan de promediar los años hidrológicos 1974, 75 y 77; de esta media se ha excluido el año 1976 por ser especialmente seco (su aporte en Tortosa fue de 8.455 Hm³ frente al promedio de los otros tres años, de 13.668 Hm³).

De esta Figura puede decirse que la Cuenca del Ebro es, hidrológicamente, muy compleja. Desde el punto de vista del TDS, puede observarse su claro incremento a lo largo del curso del Ebro hasta Flix (estación 121), donde hay una reducción por efecto de los aportes del Cinca y Segre, de menor concentración salina, y que los ríos de mayor concentración salina en la Cuenca son el Martín, Arba y Gállego. Por otro lado, se observa el paulatino incremento de las toneladas hasta alcanzar un aporte medio anual de 6,7 millones de toneladas en la estación de Tortosa (n.º 27).

Debido a la relación inversa entre caudal y concentración deducida en la mayor parte de las estaciones de la Cuenca, parece evidente que las concentraciones salinas de algunos ríos en los períodos de menor caudal deben ser superiores a las de la Figura 1. Como ejemplo, en la Fig. 2 se presenta el TDS medio de los años 1977, 1976 y del verano (julio, agosto y septiembre) de 1976 (con caudales medios en Tortosa de 491, 268 y 137 m³/s, respectivamente) para cinco afluentes y cinco estaciones del río Ebro. Puede observarse que mientras algunas estaciones no varían su concentración o lo hacen muy poco (Aragón, Miranda o Jalón), otras aumentan sustancialmente (Gállego, Ega o Zaragoza), hasta alcan-
Fig. 1. Balance hidrosalino de la Cuenca del Ebro. 
zar en algunos casos concentraciones en los meses de verano consideradas ya como limitantes para el riego de cultivos sensibles a la salinidad.

A partir de la información base suministrada en la Fig. 1, se ha deducido el balance de agua y sales del río Ebro que se presenta en las Figs. 3 y 4, respectivamente. En estos diagramas se han representado los aportes y detracciones de agua y sal no explicados entre estaciones del Ebro, como saltos verticales en el trazado del perfil, y se les ha considerado como fuentes y sumideros difusos de agua y sal, en tanto no se profundice en su identificación.

Evidentemente, estas diferencias pueden también atribuirse a imprecisiones derivadas de la metodología seguida, de los datos de base utilizados o por información incompleta. Los canales se han considerado como sumideros puntuales, sustrayendo sus masas de agua y sal de las del río Ebro en sus puntos de derivación. Finalmente, en la Fig. 4 se presenta el TDS (mg/l) de cada afluente, así como el perfil de TDS del río Ebro desde Palazuelos hasta Tortosa.
Fig. 3. Balance de Agua del río Ebro. Media de los años hidrológicos 1974, 75 y 77
Fig. 4. Balance de Sales del río Ebro. Media de los años hidrológicos 1974, 75 y 77
### TABLA II

**Contribuciones de Agua y Sal en la Cuenca del Ebro**  
*(Media años hidrológicos 1974-75-77)*

**AGUA (Hm³ x 10³)**

<table>
<thead>
<tr>
<th>Aporte total: 16,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aportes ríos: 15,5</td>
</tr>
<tr>
<td>Cinca : 3,4 (20%)</td>
</tr>
<tr>
<td>Segre : 3,4 (20%)</td>
</tr>
<tr>
<td>Arga : 1,8 (11%)</td>
</tr>
<tr>
<td>Aragón : 2,2 (13%)</td>
</tr>
<tr>
<td>Arba : 0,4 (2%)</td>
</tr>
<tr>
<td>Resto : 4,3 (26%)</td>
</tr>
<tr>
<td>(93% del total)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuentes difusas: 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramo Palazuelos-Miranda : 0,51</td>
</tr>
<tr>
<td>Tramo Flix-Tortosa : 0,26</td>
</tr>
<tr>
<td>Tramo Miranda-Mendavia : 0,22</td>
</tr>
<tr>
<td>Resto : 0,11</td>
</tr>
<tr>
<td>(7% del total)</td>
</tr>
</tbody>
</table>

**Detracción total: 2,9**

<table>
<thead>
<tr>
<th>Detracciones canales: 2,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumideros difusos : 0,7</td>
</tr>
</tbody>
</table>

**Aporte neto en Tortosa: 13,7**

**SALES (Tm x 10⁶)**

<table>
<thead>
<tr>
<th>Aporte total: 7,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aportes ríos: 5,8</td>
</tr>
<tr>
<td>Cinca : 1,5 (19%)</td>
</tr>
<tr>
<td>Segre : 1,1 (14%)</td>
</tr>
<tr>
<td>Arga : 1,0 (13%)</td>
</tr>
<tr>
<td>Aragón : 0,5 (6%)</td>
</tr>
<tr>
<td>Arba : 0,3 (4%)</td>
</tr>
<tr>
<td>Resto : 1,4 (18%)</td>
</tr>
<tr>
<td>(74% del total)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuentes difusas: 2,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramo Pignatelli-Zaragoza : 1,03</td>
</tr>
<tr>
<td>Tramo Miranda-Mendavia : 0,46</td>
</tr>
<tr>
<td>Resto : 0,61</td>
</tr>
<tr>
<td>(26% del total)</td>
</tr>
</tbody>
</table>

**Detracción total: 1,2**

<table>
<thead>
<tr>
<th>Detracciones canales: 1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumideros difusos : 0,2</td>
</tr>
</tbody>
</table>

**Aporte neto en Tortosa: 6,7**

288
Una conclusión general de estas Figuras es el continuo incremento de la masa de agua y sal a lo largo del curso del río Ebro, fundamentalmente debido a los aportes de su margen izquierda. Ello es, en primer lugar, debido a la mayor extensión de esta cuenca de recepción (el 58% de la superficie total) y a su mayor pluviometría (el 65% de la precipitación total). Como, en segundo lugar, la mayor parte de los regadíos de la Cuenca se encuentran también en la margen izquierda del Ebro y dado que el aporte de masa de sales unitario del regadío es mucho mayor que el de un suelo natural (sobre todo con yeso en el perfil), el resultado final es que la masa de sales aportadas por esta margen izquierda supone casi el 90% de la total.

A modo de síntesis del balance de agua y sales del río Ebro, la Tabla II resumen los aportes (ríos y “fuentes difusas”) y las detracciones (cañales y “sumideros difusos”) de agua y sal, tanto en valores absolutos como en valores relativos.

De esta Tabla y de las Figuras 3 y 4 pueden extraerse las siguientes conclusiones:

1. De los cinco ríos que mayor agua aportan al Ebro, el Cinca, Segre y Aragón lo hacen con aguas de una concentración salina inferior a la del Ebro en Tortosa y en cada punto de desembocadura actúan como diluyentes del agua del Ebro. Por el contrario, los otros dos ríos (Arga y Arba) aportan agua de mayor concentración salina.

   En términos unitarios, la cuenca del Ebro aporta anualmente al mar (Tortosa) 80 t de sal por km² de superficie y, si se tiene también en cuenta la precipitación, el aporte es de unos 120 mg por m² de superficie y por mm de precipitación.

2. Las detracciones de los cañales que derivan del río Ebro suponen el 13,1% del aporte total de agua y el 12,7% del total de sales, lo cual supone la detracción de aguas de dilución para los aportes del Ebro en Tortosa. Simultáneamente, estas detracciones conducen a incrementos de la concentración salina aguas abajo del punto de derivación por efecto del incremento del factor de concentración debido a la evapotranspiración. Así, para la Cuenca del Colorado (USA), se ha evaluado que el 3% de la concentración salina en la presa Hoover es debida a este tipo de detracciones (USDI, 1981).

3. Mientras el total de las fuentes y sumideros difusos de agua son del mismo orden de magnitud (1.100 y 700 Hm³, respectivamente), las fuentes difusas de sal son sustancialmente mayores que los sumideros (2,1 frente a 0,2 millones de toneladas). Consecuentemente, se deduce que la concentración salina de las fuentes difusas de agua es muy superior a la de los sumideros difusos, lo cual parece razonable por la presencia de yesos y otras sales más solubles en los suelos de la Cuenca. De he-
cho, la concentración media de sales de estas fuentes difusas —deducida de TDS = Tm x 10⁶ /Hm³ x 10³— es de 1,909 mg/l. Aunque evidentemente esta cifra sólo es orientativa, refleja el carácter salino de estas fuentes, subsuperficiales en su mayor parte.

4. En general, la coherencia de los resultados obtenidos se refleja en el hecho de que las fuentes y sumideros difusos de agua llevan asociadas las correspondientes fuentes y sumideros difusos de sal. Sólo se ha presentado una excepción en el tramo Sástago (n.º 112) - Flix (n.º 121), en el que hay un aporte de sal de 157,000 t y un sumidero de agua de 377 Hm³. Esta excepción puede explicarse, al menos en parte, por la presencia en este tramo de embalses que actúan como sumideros de agua (evaporación) y de industrias químicas que pueden actuar (además de como sumideros de agua) como fuentes de sal.

En este sentido puede añadirse que la evaporación de los embalses es una fuente potencialmente importante de salinización, sobre todo si están situados en áreas de elevada evaporación potencial y su relación superficie-volumen embalsado es elevada. Así, en la Cuenca del Colorado la evaporación de los embalses contribuye con un 12% a la salinidad de las aguas de la presa Hoover (USDI, 1981).

5. Con mucho, la mayor fuente difusa de sal se presenta en el tramo Pignatelli (n.º 162) - Zaragoza (n.º 11), que aporta 1,03 millones de toneladas para un volumen de agua de tan sólo 11 Hm³. De estas cifras se deduce una concentración salina de esta fuente de casi 94 g/l. Esta cantidad, aunque extraordinariamente elevada, puede estar justificada por la presencia de un importante diapiro salino en este tramo (Remolinos), del cual se abastece una industria para la producción de sal común.

6. El balance de masas realizado ha permitido demostrar la existencia de áreas con insuficiente información, como la de los tramos Sástago - Flix, Pignatelli - Zaragoza, Miranda - Mendavia (importante fuente de agua y sales), Zaragoza - Escatón (sumidero de agua y sales), las cuencas del río Cinca y Arba, cuyos ríos son los desagües naturales de importantes polígonos de riego, etc. La evaluación más rigurosa de las contribuciones de agua y sal en la Cuenca exige una ampliación en el número de estaciones y en la frecuencia de las medidas, tarea emprendida por la Comisaría de Aguas del Ebro.
REFERENCIAS
