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Abstract

First indications for physics beyond the SM, such as neutrino masses
and dark matter, have attracted considerable attention. This the-
sis focuses on neutrinos in models derived from Grand Unified The-
ories (GUTs). Supersymmetric and nonSupersymmetric realizations
are studied. In [1] a numerical and analytical analysis of possible ILC-
LHC experimental data was done, identifying the parameter region in
which pure CMSSM and CMSSM plus Seesaw Type-I might be distin-
guishable.
Considering that neutrino masses could successfully be explained in
GUTs, in particular SO(10), in [2] supersymmetric models with ex-
tended gauge groups at intermediate LR scales where constructed, all
of which are inspired by SO(10) unification. Analyzing some special
combinations of the SUSY soft terms, it was shown that future LHC
data could contain information about the LR scale. Reconsidering the
possibility to explain unification in non-SUSY theories, in [3] a list of
non-SUSY models which unify equally well or better than the MSSM
was found. These models are interesting from the phenomenological
point of view: they can explain CKM and also obey proton decay limits
while giving testable phenomenology at the LHC. Finally, we briefly
explored the DM problem, searching for a consistent explanation of the
DM candidate in the framework of LR nonSUSY SO(10) GUT models
Considering the possible information that future Baryon Number Vi-
olation experiments might give for proton decay and GUTs, in [4] an
analysis of Witten’s mechanism within flipped SU(5) was done. Inter-
esting relations between neutrino parameters and proton decay partial
widths were found.
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Chapter 1

INTRODUCTION

The Standard Model (SM) is known currently as the best theory of the fundamen-
tal particles and interactions. This theory has been confirmed with ever increasing
precision by improved experimental tests. The recent discovery of the Higgs bo-
son at the ATLAS [5] and CMS [6] detectors has found its last missing piece. It
seems that the idea of spontaneous symmetry breaking as origin of mass has been
confirmed. However, some remaining puzzles can only be explained by physics
beyond the standard model (PBSM). In order to address these subjects, different
searches like neutrino oscillations, neutrinoless double beta decay, lepton num-
ber and baryon number violation process (LNV+BNV), etc, will be made in the
coming years. Furthermore, the next run at the LHC may help to solve some
exciting questions. The upgrade to 13 or 14 TeV, expected for 2015, will renew
the possibility to discover new particles and understand better the physics behind
the electroweak symmetry breaking. On the other hand, proton instability, if ob-
served, would provide a signal of Grand Unification. Up to now Water Cherenkov
detectors, such as Super-K [7], have provided the most stringent limits on proton
decay. It is likely that in the future this "classical" experiment will be comple-
mented by liquid argon detectors which could improve substantially the existing
limits (for certain decay modes).

Theories like Supersymmetry (SUSY) address successfully some the SM short-
comings. SUSY as a well-behaved theory at high energies can explain not only the
Higgs mass stabilization but also Gauge Coupling Unification (GCU). On the other
hand, experimental evidence also confirm the presence of PBSM. As an example,
there is a clear evidence for Dark Matter (DM) in the universe. This has led to a
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CHAPTER 1. INTRODUCTION 2

rich field of investigation in which many different models have been explored. For
example, SUSY DM (with the neutralino as a realistic candidate) but also non-
SUSY DM candidates such as generic WIMPS. A short review of the main SM
shortcomings and also some general features of BSM are presented in chapter 2.
Below, the outline, motivations and main results of this thesis are briefly discussed.

Neutrinos are the oddest of the fundamental particles. Oscillation experiments
[7, 8, 9, 10, 11, 12, 13] have shown these particles have mass, the first laboratory
measurement demonstrating the existence of physics beyond the standard model
(PBSM). At the same time, while many possible theoretical models have been
put forward to explain neutrino data, progress in theory has been rather limited,
for example: a) we do not know the scale of neutrino mass generation, b) we do
not know if neutrinos are Dirac or Majorana particles, among some other so far
not explained puzzles. The smallness of the neutrino masses can be successfully
explained by, for example, the well-known seesaw [14, 15, 16, 17, 18]. However,
the SM implementation of this mechanism leaves only unmeasurable small changes
in a very few observables, such as µ → eγ. This motivates to explore additional
BSM models to explain neutrino mass. A supersymmetric extension of the seesaw
is studied in chapter 3. In SUSY seesaw models, the soft mass terms contain
indirect information on the seesaw parameters through the RGE runnings. Im-
posing CMSSM boundary conditions and considering the possible experimental
information that LHC and ILC could give of the SUSY spectra, indirect hints of
seesaw type-I coming from the LHC-ILC SUSY mass spectra is explored [1].

The upcoming generation of large-scale experiments dedicated to the search of
Baryon Number Violation (BNV) [19, 20], will hopefully allow to study and test
with better sensitivity proton decay processes in SO(10) and SU(5) theories.
Nowadays, new multipurpose experiments which could improve about one order
of magnitude existing proton decay limits from Super-Kamiokande have been pro-
posed. These projects will function also as astrophysical neutrino observatories.
Taking up this motivation, in chapter 4 we investigate the possibility to generate
neutrino masses in the Flipped SU(5) model [4]. Despite the fact that the stan-
dard seesaw in unified models has been in part successful for explaining neutrino
masses, the hierarchy between the masses mR ≤ 1015 GeV and mG ≥ 1016 GeV is a
potential problem in GUTs. A mechanism that generates two-loop masses for the
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right handed neutrinos as first proposed by Witten in 1980 [21] could explain this
mild hierarchy. In this model the partial proton decay widths to neutral mesons
are governed in part by the neutrino parameters related via the Witten loop.

From the theoretical point of view, GUT models based on SO(10) offer a number of
advantages compared to the simplest models based on SU(5). For example, there
are several chains through which SO(10) can be broken to the SM using left-right
intermediate symmetry, thus potentially explaining the V-A structure of the SM.
Probably one of the most interesting aspects of SO(10) is that it automatically
contains the necessary ingredients to generate the seesaw mechanism since (a) the
right handed neutrinos are included in the irreducible 16 representation (rep) and
(b) B-L is one of the generators SO(10). In addition, this kind of models, apart
from offering experimental signals, e.g proton decay, give also rise to non-trivial
correlations among observables in the theory. Gauge coupling unification (GCU)
in SUSY [22, 23, 24, 25, 26, 27, 28] and nonSUSY [29, 30, 31] GUT models have
been widely studied in the literature. After the discovery (more than 20 years ago)
that the MSSM leads to almost perfect unification, LR models fell from favour be-
cause the minimal non-SUSY LR models can give gauge coupling unification only
if the intermediate scale lives in the ballpark range of [109, 1011] GeV, which is
completely untestable. However, in Supersymmetric extensions of SO(10), like
[32], the authors have demonstrated that a low LR scale becomes allowed, once
certain conditions are fulfilled. These models are non-minimal: more fields than
the minimal LR (mLR) are needed but not many more. A particular interesting
extension correspond to models in which the independence between the unifica-
tion scale mG and the LR intermediate scale mLR is imposed. This mechanism is
called in the literature sliding mechanism, and has been studied in [33]. Follow-
ing this idea, in [2] we constructed supersymmetric models with extended gauge
groups at intermediate steps, all of which are based on SO(10) unification. Three
different constructions based on different SO(10) breaking channels were consid-
ered: left-right group SU(3)c×SU(2)L×SU(2)R×U(1)B−L, the Pati Salam group
SU(4)×SU(2)R×SU(2)L group and SU(3)c×SU(2)L×U(1)R×U(1)B−L group. A
large number of models and configurations that unify and follow also sliding condi-
tions were found. These configurations predict different additional particle content
and some of them (being colored) could give rise to particularly large cross sections
at the LHC. Moreover, assuming mSugra boundary conditions, we calculated cer-



CHAPTER 1. INTRODUCTION 4

tain combinations of the soft terms, called invariants, which allow, if measured, to
obtain information on the scale of beyond MSSM physics. These topics are studied
in chapter 5, section 5.1. Considering that actually no signals of supersymme-
try in the sub-TeV domain have been seen by accelerator experiments at the LHC,
ATLAS/CMS, we decided to reconsider the question whether: a) SUSY is needed
for obtaining GCU and b) whether low-scale LR model can have good GCU. In
[3] we studied in detail intermediate scale models and identified potentially viable
(and yet very simple) non-SUSY scenarios where unification could be perfect. We
constructed a list of models with a LR symmetric intermediate stage at or close to
the electroweak scale, where GCU is achieved by adding to the SM a very simple
phenomenological realistic particle content that explains successfully CKM (and
neutrino) angles and obey limits from proton decay searches. This is explored in
chapter 5, section 5.2.

Nowadays, there exists clear evidence that there is DM in the universe and, as is
known, the SM fails to provide a DM candidate. One of the most interesting ques-
tions is to understand its nature, i.e, which particle DM is made of. Grand unified
theories provide a successful explanation of DM. In chapter 5, section 5.3 we
explore the possibility to connect nonSUSY SO(10) models with DM. Unlike the
typical DM models, in these scenarios, matter parity Z2 = (−1)3(B−L) (which sta-
bilize DM) is not an ad hoc symmetry. This symmetry is a remnant symmetry
after the breaking SO(10)→ SU(3)× SU(2)R × SU(2)L × U(1)B−L. There exist
few papers in the literature which deal with DM unified scenarios in the framework
of a gauged U(1)B−L symmetry, using SUSY R-parity [34] or using matter parity in
nonSUSY models [35, 36]. Therefore there are still many questions left unexplored
to investigate. In this section of the thesis, simple configurations which contain at
least a DM candidate and follow some phenomenological constraints are presented.

In summary, this thesis is organized as follows. The motivation and some topics in
PBSM, such as supersymmetry, neutrino physics, grand unified theories and dark
matter are discussed in chapter 2. In chapters 3,4,5 we present the results of the
papers [1],[2],[3],[4]. A possible connection between our nonSUSY SO(10) models
and DM is explored in chapter 5, section 5.3. General conclusions are given in
chapter 6. Some additional remarks are presented in the appendix.



Chapter 2

RESUMEN

Actualmente, el Modelo Estandar es conocido como la teoría que mejor explica las
interacciones fundamentales entre las partículas en el universo. Descubrimientos
recientes del boson de Higgs en ATLAS [5] y CMS [6] han encontrado la pieza per-
dida de esta teoría, además de representar una relevante evidencia experimental.
Parece entonces que la idea de la ruptura espontánea de la simetría como la teoría
que mejor explica el origen de las masas ha sido confirmada. Sin embargo, otros
interrogantes sólo pueden ser explicados por la física mas allá del Modelo Estandar.
En torno a esto, diferentes búsquedas como las oscilaciones de neutrinos, violación
del número leptónico y violación del número bariónico (LNV+BNV), entre otras,
se harán en los próximos años. Adicionalmente, la próxima puesta en marcha
del LHC ayudará a resolver otros interrogantes. El incremento en la energía de
este colisionador, de 8 a 14 TeV, esperada para el 2015, abrirá las posibilidades
de descubrir nuevas partículas y entender mejor la física detrás del rompimiento
espontáneo de la simetría. Por otro lado, el decaimiento del protón, si es obser-
vado, podría ser una señal relevante de las teorías de Gran Unificación. Hasta
ahora, los detectores Cherenkov, tal como el Super-K [7], han establecido límites
en la vida media del protón. Es posible que en el futuro, estos experimentos sean
complementados por detectores del Argon líquido, los cuales puede mejorar sus-
tancialmente los límites actuales.

Algunas teorías, tales como Supersimetría, explican satisfactoriamente algunos del
los interrogantes no resueltos en el Modelo Estandar. Supersimetría, como un
teoría consistente a altas energías, puede explicar no sólo la estabilización de la
masa del Higgs sino también la unificación de los acoplamientos gauge. Por otro
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lado, diferentes experimentos confirman también la presencia de física más allá
del Modelo Estandar. Un ejemplo claro de esto es la evidencia de la materia os-
cura en el universo, lo cual ha abierto el camino para que otros diferentes modelos
sean explorados. Un pequeño resumen de los principales interrogantes del mod-
elo estandar será estudiado en el capítulo 2. Un resumen general, las motivaciones
y los resultados relevantes de esta tesis serán discutidos brevemente en lo que sigue.

Experimentos de oscilaciones de neutrinos [7, 8, 9, 10, 11, 12, 13] han mostrado
que estas partículas tienen masa, lo cual constituye la primera evidencia experi-
mental de física más allá del Modelo Estandar. A pesar de los avances en la física
de neutrinos, algunos otros aspectos e interrogantes surgen, como por ejemplo: a)
hasta ahora no se sabe la escala de la masa de los neutrinos y b). no sabemos si
los neutrinos son particulas de Dirac ó de Majorana, entre otros. Varios intentos
para resolver estos interrogantes se han hecho en los ultimos 30 años. La masa
pequeña de los neutrinos puede ser satisfactoriamente explicada por el mecanismo
seesaw [14, 15, 16, 17, 18]. Sin embargo, en el Modelo Estandar, este mecanismo
deja inconmensurables cambios en los observables, tal como µ → eγ. Esto, entre
otros aspectos, es una de las motivaciones para ir mas allá del Modelo Estandar.
Una extensión supersimétrica del mecanismo seesaw es estudiada en el capítulo 3.
En los modelos seesaw supersimétricos, los términos soft contienen información in-
directa de los parámetros seesaw a traves de los acoplamientos gauge. Imponiendo
ciertas condiciones de frontera, y considerando los resultados experimentales que
el LHC y el ILC pueden dar del espectro SUSY, las señales del seesaw type-I que
vienen del espectro SUSY son estudiadas [1].

La próxima generación de experimentos dedicados a la busqueda de la violación
del número bariónico (BNV) [19, 20] dará límites del decaimiento del proton más
precisos, en teorías de unificación tales como SO(10) y SU(5). Recientemente,
nuevos experimentos tales como Super-Kamiokande, los cuales contribuirán en
un orden de magnitud a los límites del decaimiento del proton, serán puestos en
marcha en los próximos años. Estos experimentos funcionarán también como ob-
servatorios de astropartículas. Teniendo en cuenta esta motivación, en el capítulo
4 investigamos la posibilidad de generar la masa de los neutrinos en un modelo
basado en la teoría Flipped SU(5) [4]. A pesar de que la implementación estandar
del mecanismo seesaw en modelos de unificación ha sido en parte satisfactorio, la
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jerarquía entre la masa de los neutrinos y la escala de unificación es aún uno del los
principales interrogantes de las teorías de unificación. El mecanismo que genera
la masa de los neutrinos a 2 loop en SO(10) fue propuesto por primera vez por
Edward Witten en los años 1980’s [21]. En este modelo, basado en SU(5)× U(1)
las amplitudes de decaimiento del proton a mesones neutros son gobernados en
parte por los parámetros de los neutrinos explicados a travéz del Witten loop.

Desde el punto de vista teórico, los modelos de gran unificación basados en SO(10)
ofrecen un numero de ventajas comparados con los modelos simples en SU(5). Por
ejemplo, hay muchos canales a través de los cuales SO(10) puede ir al Modelo Es-
tandar usando simetrías intermedias LR, y así explicar por ejemplo la estructura
V-A del modelo estandar. Probablemente, uno de los aspectos más interesantes de
SO(10) es que automaticamente contiene los ingredientes necesarios para explicar
la masa de los neutrinos a través del mecanismo seesaw: a) los neutrinos derechos
son incluidos en la representación irreducible 16, b) B−L es uno de los generadores
de SO(10). Adicionalmente, este tipo de modelos, aparte de ofrecer señales exper-
imentales, como por ejemplo el decaimiento del protón, dan lugar también a cor-
relaciones no triviales entre los observables en la teoría. Teorías de unificación en
modelos supersimétricos [22, 23, 24, 25, 26, 27, 28] y no supersimétricos [29, 30, 31]
han sido ampliamente estudiados en la literatura. Después del descubrimiento de
que el modelo mínimo supersimétrico (MSSM) deja como consecuencia la unifi-
cación casi perfecta de los acoplamientos gauge, los modelos de unificación LR
no supersimétricos perdieron interés debido a que su escala de unificación era del
orden de los [109, 1011] GeV, lo cual no puede ser testeado experimentalmente. Sin
embargo, en extensiones supersimétricas de SO(10), tal como las explicadas en [32],
los autores han demostrado que es posible tener bajas escalas intermedias, una vez
se impongan ciertas condiciones. Esos modelos son no-mínimos: se necesitan más
campos que en el modelo mínimo LR (mLR) pero no muchos más. Algunas exten-
siones interesantes corresponden a modelos en los cuales se impone la independen-
cia entre la escala de unificaciónmG y la escala intermediamLR. Este mecanismo es
conocido en la literatura como el "sliding mechanism", y ha sido estudiado en [33].
Siguiendo esta idea, en [2] construimos modelos supersimétricos con grupos gauge
extra a escalas intermedias, todos ellos basados en SO(10). Tres construcciones
diferentes basadas en diferentes formas de romper la simetría fueron estudiados: el
grupo LR SO(10)→ SU(3)c× SU(2)R× SU(2)L×U(1)B−L, el grupo Pati Salam
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SU(4) × SU(2)R × SU(2)L y finalmente SU(3)c × SU(2)L × U(1)R × U(1)B−L.
Un gran número de modelos y configuraciones que unifican y siguen ciertas condi-
ciones fueron encontrados. Esas configuraciones predicen diferentes contenidos
de partículas y algunos de estos (siendo coloridos), pueden dar lugar a secciones
eficaces que pueden ser medidas en el LHC. Además, asumiendo las condiciones
de frontera de mSUGRA, fueron calculadas ciertas combinaciones de los términos
SOFT, llamados invariantes, los cuales, si son medidos, permiten obtener infor-
mación de la escala de la nueva física mas allá del modelo minimo supersimétrico
(MSSM). Estos temas son estudiados en el capítulo 5, sección 5.1. Considerando
que actualmente no hay señales de supersimetria a la escala sub-TeV, hemos deci-
dido reconsiderar la pregunta: a) se necesitan teorias supersimetricas para obtener
GCU? y b) models con baja escala LR podrían tener una buena unificación?. En
[3] estudiamos en detalle modelos con simetrías LR intermedias identificando es-
cenarios no supersimetricos donde la unificación puede ser aún perfecta. Una lista
de modelos donde la escala intermedia es cerca de la escala mZ fue construida.
En estos, se logra unificación añadiendo al modelo estandar un contenido simple
de partículas que explican fenomenología tal como CKM y los actuales límites del
decaimiento del proton. Estos aspectos son estudiados en el capítulo 5, sección 5.2.

Actualmente, la presencia de materia oscura en el universo es una clara evidencia y,
como es sabido, el modelo estandar no explica este hecho satisfactoriamente. Una
de los aspectos más interesantes es entender su naturaleza, es decir, que partícula
es el posible candidato a la materia oscura. Teorías de unificación ofrecen una
explicación satisfactoria de DM. En el capítulo 5, sección 5.3 exploramos breve-
mente la posibilidad de conectar modelos no supersimétricos basados en SO(10)
y materia oscura. Diferente a los modelos típicos que explican materia oscura,
en estos escenarios la simetría de paridad Z2 = (−1)3(B−L) no es una simetría
impuesta. Esta es una simetría remanente después de la ruptura espontánea de
SO(10) al modelo estandar SO(10) → SU(3) × SU(2)R × SU(2)L × U(1)B−L.
Existen pocos trabajos en la literatura donde se estudien los modelos con materia
oscura en un marco de simetrías gauge U(1)B−L [34, 35, 36]. Por lo tanto, hay
aún muchas preguntas para ahondar. En esta sección, configuraciones simples que
contienen como mínimo un candidato a la materia oscura y siguen ciertas condi-
ciones fenomenológicas son presentados.
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En resumen, esta tesis se organiza como sigue: la motivación y algunos temas rela-
cionados con la física más allá del modelo estandar, tales como supersimetría, fisica
de neutrinos, teorías de unificación y materia oscura son discutidos en el capítulo 2.
En los capítulos 3,4,5 presentamos los resultados de los artículos [1],[2],[3],[4]. En
breves palabras, una posible conección entre modelos nos supersimetricos SO(10)
y la materia oscura es discutida en el capítulo 5, sección 5.3. Conclusiones gen-
erales son dadas en el capítulo 6. Algunas extensiones a los modelos previamente
analizados se presentan en el apéndice.



Chapter 3

PHYSICS BEYOND THE
STANDARD MODEL

3.1 WHY TO GO BSM?
The Standard Model (SM) of elementary particles represents one of the greatest
achievements of physics in the last century, describing the universe in terms of
matter and forces. Particle interactions are derived from local symmetries and
explained at a fundamental level by the gauge principle. This theory has been
successfully tested by many experiments and one of the most important ones is
the Large Hadron Collider (LHC). The hunt for the Higgs boson has become the
major goal of these experiments and a measurement of its mass, to be around 125
GeV [5, 6], seems to confirm successfully the SM predictions from the fit of elec-
troweak precision data [37, 38]. But, although experiments show the extraordinary
power of the SM, it is considered only an effective theory which doesn’t provide
a real explanation for some other elementary particle properties, for example the
fermion masses and mixing angles 1. This theory is also not able to explain physics
at energies near the Plank scale where quantum gravitational effects become im-
portant. Below, some motivations to study PBSM are briefly discussed.

1It is important to note here that these quantities can not be predicted but are actually input
parameters in the SM.

10
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I. Gauge coupling unification

Although the SM is a successful theory of both the charged and neutral weak pro-
cesses, it doesn’t truly unify the three SU(3)c×SU(2)L×U(1)Y gauge couplings.
The idea of unification is not new to physics 2. One of the most important contri-
butions was made in the 1960′s by Glashow who proposed to unify the electromag-
netic and the weak interactions into the electroweak theory SU(2)L × U(1)Y [39].
The Glashow theory was later revisted by Weinberg who introduced the masses
for the W and Z particles through the spontaneous symmetry breaking [40], com-
pleting the basic setup of the electroweak theory. The hypothesis of Grand Unifi-
cation was introduced first by Pati and Salam [41], who describe a model based on
SU(4)×SU(2)L×SU(2)R and later by Georgi and Glashow [42] who proposed the
rank-4 simple group SU(5) as the GUT group. Since then SO(10) models [44, 45]
have been widely studied too. These models have the remarkable feature of ac-
commodating a complete family of fermions in a single representation, including
the right handed neutrinos. Therefore, this theory generically provides some in-
teresting and testable relations between the charged fermions and the Higgs sector
[46, 47, 48]. Furthermore, SO(10) contains a Left-Right (LR) subgroup (one of
the beaking chains to the SM is SO(10)→ SU(3)c×SU(2)L×SU(2)R×U(1)B−L)
so the implementation of the seesaw mechanism arises naturally.
GUTs make some interesting predictions and can potentially explain some of the
open questions of the SM. Here, some of these are briefly discussed:

a. Charge Quantization
One of the consequences of grand unified models, for example SU(5), is the expla-
nation of the experimentally observed charge quantization. This follows because
the eigenvalues of the generators of a simple non-abelian group are discrete, while
those corresponding to an Abelian group, like U(1) are continuous. Hence, in
SU(5), since the charge matrix Q is one of the group generators, its eigenvalues
are discrete and then quantized.

2In the 7th century B.C Anaximenes identifies the air as the fundamental component of
everything. Many years later Democrito and Leucipo affirmed that the matter is composed by
invisible particles called Atomos (Mechanistic Atomims). Centuries later Newton showed that
celestial moving and falling bodies can be described by an universal gravitational theory and two
hundred years later Maxwell proposed the Electromagnetism, unifying the electric and magnetic
forces.
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b. Proton decay
Symmetries like SU(5) transform quarks into leptons (they put quarks and lep-
tons in a common multiplet) which means that gauge interactions violate baryon
and lepton number. With the exchange of heavy vector bosons (MX,Y ), called
leptoquarks, dimension-6 operators arise, predicting a proton life-time of roughly
τ(p → e+π0) ' α2

Gm
5
p/M

4
X [49, 44]. Here αG is the common coupling constant at

the unification scale mG, mp is the proton mass and mX,Y is the leptoquark mass.
Recent experiments, like Super-Kamiokande, set stringent limits on the proton
decay life time. In SUSY models, unification occurs at a high scale MG ' 1016

GeV, so predicted proton decay half-lifes are about 1034−38 years [50].

c. Baryon number asymmetry in the universe
The origin of the baryon asymmetry in the universe has become a fundamental
question for cosmology today. Standard cosmology tells us that the early uni-
verse was extremely hot and energetic and it is expected that an equal number
of baryons and antibaryons in the universe existed. However, this hypothesis is
in contrast with what is observed by experiments. Direct observations show that
the universe contains no appreciable primordial antimatter. The ratio η = nb−nb

s
,

coming from measurements of the cosmic microwave background (CMB) by the
WMAP satellite [51], is η = 6.1×10−10. However, the standard cosmological model
cannot explain this observed value. The Sakharov Criteria define a set of three
necessary conditions that a baryon-generating mechanism must satisfy to produce
this matter and antimatter difference. The three conditions are : i) baryon num-
ber violation, ii) violation of C (charge conjugation) and CP (the composition of
parity and C) and iii) departure of termal equilibrium [52].

Since the linear combination B −L is left unchanged by SM sphaleron transition,
in the SM the baryon asymmetry may be generated from a lepton asymmetry
(Baryogenesis via leptogenesis [53, 54, 55]). It is possible to generate a net B − L
dynamically in the early universe adding right handed Majorana neutrinos to the
theory. In this case the primordial lepton asymmetry can be generated by the
out-of-equilibrium decay of the heavy right-handed Majorana neutrinos N c

L. This
lepton number will then be partially converted into baryon number via electroweak
sphaleron processes. These kind of scenarios can be realized in GUT theories like



CHAPTER 3. PHYSICS BEYOND THE STANDARD MODEL 13

SO(10) which contains the right handed neutrinos in a non-trivial representation
and breaks to the SM through SO(10)→ SU(3)c × SU(2)L × SU(2)L ×U(1)B−L.

d. Inflation and unification
The inflationary theory proposes that the universe expanded extremely quickly
in the first fraction of a nanosecond after it was born. This theory is considered
now a key in our understanding of the early universe. Data coming from WMAP
satellite and recently from Plank [56] indicate an almost scale-free spectrum of
Gaussian adiabatic density fluctuations just as predicted by simple models of in-
flation. Recently, the BICEP2 [57, 58] claimed to have measured signatures of
inflation by detecting the CGB (cosmic gravitational background) via its imprint
as the unique B-mode polarization signature of the CMB. This fact, if confirmed,
is also an indirect proof of the inflationary theory.

The measurement of r = 0.2 ± 0.05 (ratio of the tensor to scalar modes) by BI-
CEP2 suggests that the energy scale of the universe during inflation was similar
to the energy scale at which all the forces of the nature, except gravity, are unified
into a single force [58]. Some GUT-inflation models, like [59],[60], propose that the
inflaton might be the Higgs associated with the spontaneous breaking of the GUT
model like SU(5) and SO(10). Supersymmetric and nonSupersymmetric GUT-
inflation schemes in this direction have been widely discussed in the last years (for
example see the GUT Coleman-Weinberg inflation model described in [61]).

II. Neutrino mass

Neutrino oscillation experiments show that at least two neutrinos have non-zero
mass. One of the best studied mechanism to give mass to the neutrinos arises
in grand unified theories where the large mass of the right handed neutrinos is
explained through the seesaw mechanism. Here new entities called right handed
neutrinos are added to the SM.
Actual measurements of fluxes of solar, atmospheric and reactor neutrinos show
that at least two of the observed, weakly interacting neutrinos have a very small but
non-zero mass: ∆m2

sol = 7.67×10−5eV 2 and ∆m2
atm = 2.46×10−3eV 2 [8, 7, 9, 10].

However, the overall scale of the neutrino masses is not known, except an upper
limit of the order of 1 eV coming from direct experiments (double beta decay exper-
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iments [62, 63, 64]) and cosmology [65]. Current data, including the measurement
of reactor antineutrino reported by Daya Bay and RENO, and also the latest T2K
and MINOS fit the values of the mixing angles as: sin2θ12/10−1 = 2.78 − 3.75,
sin2θ23/10−1 = 3.92− 6.43, sin2θ13/10−2 = 1.77− 2.94 at 3σ of C.L [8, 7, 9, 10].

III. Dark matter

Nearly 95% of the total matter-energy content of the Universe has to be explained
by some physics beyond the SM [66]. Dark matter (DM) makes up the bulk of
the mass of galaxies and is fundamental in the formation of galaxies and stars.
Thus its study is essential for our understanding of the origin of the universe.
The present energy density in the universe is dominated by non-relativistic matter
(roughly 30% of the total) in the form of baryons and cold dark matter (CDM)
and dark energy (the remaining 70%). The density of the baryons can be inferred
through the knowledge of light element abundances. On the other hand, the total
density of the matter affects, through gravity, the evolution of perturbations and
then can be constrained by measuring the clustering properties of galaxies or the
by CMB observations [56].

Evidence for DM has grown over the years, and although no solid direct signal of
DM has been detected, several possible candidates have been proposed to explain
its properties 3. DM is widely thought to be a kind of massive elementary particle
originated from the big-bang with no electric charge nor color with low velocities,
that interacts weakly with the ordinary matter so-called WIMPs [67, 68]. Some
of the best known WIMP candidates are the neutralino and the lightest Kaluza-
Klein particles. Another widely studied DM candidate is the Axion introduced as
a possible solution to the strong CP problem. Axions are stable but much lighter
than the WIMPs.

In the next subsections, some topics of PBSM will be discussed, in particular,
supersymmetry, neutrino physics and grand unified theories.

3DM can not be seen directly, but it is possible to study its effects, for example the light bent
from the gravity of invisible objects (called gravitational lensing). Astronomers can also measure
that stars are orbiting around in their galaxies faster than they should be.
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3.2 SUPERSYMMETRY

3.2.1 Motivation

Supersymmetry (SUSY) is a global symmetry between fermions and bosons which
solves some of the shortcomings present in the SM [69, 70]. In the second half of
the 1970′s relevant progress in the study of supersymmetric theories was made:
The idea of supersymmetry was first explored by Golfand and Likhtman in 1971
[71]. Later Akulov and Volkov proposed the first model that connected SUSY and
particle physics [72]. In 1974, Wess and Zumino as well as Salam and Strathdee
combined SUSY with quantum field theories in the context of abelian and non-
abelian gauge theories respectively [73, 74]. In the early 1980′s gauge coupling
unification in SUSY models was studied [22, 23, 24].

SUSY is considered as a "well-behaved" theory at high energies and offers some in-
teresting features from the theoretical and phenomenological point of view solving
at the same time some of the problems present in the SM:

• How can the electroweak scalars remain massless far below the GUT scale (at
least 1015 GeV) when it is not protected by any symmetry which guarantees this?
This problem, known as the hierarchy problem, is solved in Supersymmetry which
automatically cancels the quadratic divergences in all orders of perturbation the-
ory [75]. If there is a symmetry that relates fermions (constituents of matter) and
bosons (mediators of interaction) there is a cancellation because of the negative
sign associated to the closed fermion loops as compared to the bosonic loops. This
cancellation is maintained up to logarithmic corrections after the soft SUSY break-
ing parameters are added. However this cancellation solves the hierarchy problem
only in part. The logarithmic divergences still remain in the theory. The larger
mSUSY , the larger the log divergences. Also (in the MSSM) the supersymmetric µ
term contains quadratic divergences.

• In the MSSM (Minimal Supersymmetric extension of the Standard Model) the
gauge couplings unify at an scale of about mG = 2× 1016GeV [75, 76]. In general
this property is achieved in supersymmetric theories where the SUSY scale mS

is close to the electroweak scale. Significant progress in supersymmetric SO(10)
GUTs has been made over the years. These models are particularly interesting
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and offer an number of advantages which will be discussed in the next chapters.

• Supersymmetry predicts a stable and neutral particle (the lightest supersym-
metric particle, LSP) which is usually a viable candidate to explain DM if R-parity
is conserved [77]. In supersymmetric theories, with Baryon and Lepton number
conservation, R-parity (Rp) can be expressed as (−1)3B+L+2S and the assumptions
of an exact Rp conservation guarantees that the lighest supersymmetric particle
(LSP) is stable 4. In the MSSM, the neutralino χ̃0

1 is considered as the most viable
LSP candidate 5. This candidate interacts weakly with the ordinary particles, so
is considered a good WIMP (weakly interacting massive particle) DM candidate.
The Gravitino G̃ (supersymmetric particle of the Graviton) is considered also as
a possible DM candidate6 which can be produced by WIMP decays or thermal
production.

• Any anticommutator of two SUSY transformations:

{Qr, Qs} = 2γµrsPµ,

is a local coordinate translation then the group parameters should be allowed to
be functions of the space-time point [79]. Supersymmetry is then expected to be
a theory of general coordinate transformations of space time, it means, a theory
of gravity, referred to here as supergravity.

Although SUSY remains attractive from the theoretical and phenomenological
point of view, no supersymmetric partners of any known particle has been dis-
covered yet. Thus SUSY must be broken at a scale beyond the electroweak scale.
As will be discussed in the next subsections, there are two ways to break super-
symmetry: i) SUSY is broken explicitly and ii) SUSY is broken spontaneously. In
both methods, new SUSY breaking terms so-called soft SUSY breaking terms are
added to the Lagrangian. In the following we review some of the main features
of the Minimal Supersymmetric Standard Model (MSSM) and the mechanisms of
SUSY breaking, in particular the CMSSM (constrained MSSM).

4As a DM candidate, the LSP particle needs also be neutral and non-coloured.
5Also the sneutrino ν̃ was considered as a viable LSP, but now this is ruled out [78].
6The Gravitino is a fermion which mediate the supergravity interactions. This LSP is pro-

duced relativistically and form warm DM which can affect structure formation on small scales.
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3.2.2 Setup and mathematics

A supersymmetric theory implies that all particles possess supersymmetric part-
ners having opposite statistics. This is because supersymmetric multiplets consist
of equal mass particles whose spins differ by (1/2). One of the first requirements
of supersymmetry is an equal number of fermionic and bosonic degree of freedom.
This means, SUSY is a symmetry between fermions and bosons:

Qa |fermion〉 ∝ |boson〉 , (3.1)
Qa |boson〉 ∝ |fermion〉 .

In order to write down the supersymmetric Lagrangian in the minimal supersym-
metric extension of the standard model (MSSM), it is necessary to introduce the
notation of the superfields that involves a spinor generator, i.e: a two-component
Weyl spinor generator Qα

7,8. The transformation properties with respect to the
Poincare group are [79]9:

[P µ, Qαi] = 0,

[Qαi,M
µν ] = 1

2(σµν)βαQβi,

{Qαi, Q
j
β} = 0,

{Qα̇i, Q
j

β̇} = 0. (3.2)

These equations, joined with the relations satisfied by the hermitian generators
Pµ and Mµν , comprise the super-Poincare algebra. In this theory the number of
bosons is equal to the number of fermions (nB = nF ) [69].

7The generators of such a symmetry must carry a spinorial index, since they correspond to
the transformation of an integer spin field into a spinor field. They are thus not commuting with
Lorentz transformations. In this sense, supersymmetry is necessarily a spacetime symmetry
[80, 70].

8The last commutation relation is for the case of N = 1 supersymmetry. For the particular
case of N = 2 it follows {Qαi, Q

j

β̇} = 2δji σ
µ

αβ̇
Pµ.

9More details in of the supersymmetry algebra is given in the Appendix A
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The supermultiplets are the irreducible representations of the supersymmetry al-
gebra. Each one contains bosonic and fermionic states and their degree of freedom
must be the same. The supermultiplets used for the MSSM are:
*(φ, ψ) chiral superfield: 1 Weyl fermion (nF = 2) and 2 real scalars (nB = 2).
*(V µ, λ) vectorial superfield: 1 spin mass zero boson (nB = 2) and 1 Weyl fermion
(nF = 2).

3.2.3 Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model MSSM is the most general renor-
malizable SUSY model respecting the gauge symmetries of the SM with the min-
imal number of fields, including R-parity 10 and the most general couplings under
the gauge group which satisfy several phenomenologycal constraints [75].

As mentioned before, a supersymmetry transformation does not change the SU(3)c
×SU(2)L×U(1)Y quantum numbers: that is to say, each SM field and its partner
in a SUSY supermultiplet must have the same SU(3)c × SU(2)L × U(1)Y num-
bers. The fields of the SM, which comprise spin − 0 Higgs, spin − 1

2 quark and
lepton fields, and spin− 1 gauge fields, can be assigned to chiral and gauge super-
multiplets. Therefore, for every particle a superpartner is introduced: for matter
fermions, the superpartners are taken to be spin zero scalars and are described,
along with the latter, by chiral superfieds. These scalars are called sfermions and
they can be classified into scalar leptons or sleptons and scalar quarks or squarks.
The superpartner fields of the SM gauge bosons are chosen to have spin− 1

2 and are
called gauginos. These and the bosons are described by vector superfields and can
be classified as zino (corresponding to the Z boson) and winos (corresponding to
W bosons). Spin zero Higgs bosons have spin− 1

2 superpartners called higgsinos.
Different from the SM, in the MSSM one Higgs doublet is no longer enough. This
theory contains two Higgses: Hu and Hd with different hypercharges. Hd is in the
same representation of the gauge group as left-handed leptons.

The MSSM spectrum is shown in Table 2.1, where the hypercharge has been
10In the MSSM the terms which include R-parity violation are not considered in the superpo-

tential.
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Sup. Bos Fer. SU(3)c SU(2)L U(1)Y Q
Ĝ g g̃ 8 1 0 0
V̂ W a W̃ a 1 3 0 (1, 0,−1)
V̂ ′ B B̃ 1 1 0 0
L̂ L̃i = (ν̃i, ẽ−i ) (νi, e−i )L 1 2 -1 (0,-1)
Êc Ẽi = (ẽi)∗R (ei)cL 1 1 2 1
Q̂ Q̃i = (ũi, d̃i)L (ui, di)L 3 2 1

3 (2
3 ,−

1
3)

Û c Ũi = (ũi)∗R (ui)cL 3∗ 1 −4
3 −2

3
D̂c D̃i = (d̃i)∗R (di)cL 3∗ 1 2

3
1
3

Ĥd (H0
d , H

−
d ) (H̃0

d , H̃
−
d )L 1 2 -1 (0,−1)

Ĥu (H+
u , H

0
u) (H̃+

u , H̃
0
u)L 1 2 1 (0, 1)

Table 3.1: MSSM particle content

normalized such that:

Qf = T f3L + Yf
2 . (3.3)

Although this model is a minimal version, there are yet a lot of parameters in the
theory. Besides the 19 parameters of the SM, there are 105 new ones: five real pa-
rameters and three CP-violating phases in the gaugino-Higgsino sector, 21 masses,
36 real mixing angles and 40 CP-violating phases in the squark and slepton sector.
Overall, this makes 124 parameters [80]. More fundamental theories (grand unifi-
cation, family symmetries, string theory, etc.) usually provide additional relations
between these parameters. In models such as minimal CMSSM we will be left with
only five extra parameters besides those of the SM.

Assuming R-parity, the MSSM superpotential is:

WMSSM = εab[Y ij
u Q̂

a
i Û

c
j Ĥ

b
u + Y ij

d Q̂
b
iD̂

c
jĤ

a
d + Y ij

e L̂
b
iÊ

c
jĤ

a
d − µĤa

d Ĥ
b
u], (3.4)

where i, j are the family indices, a, b = 1, 2 are the SU(2) indices and εab is the
totally antisymmetric Levi-Civita tensor. The matrices Yu, Yd and Ye are the usual
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Yukawa couplings while µ is a parameter with dimensions of mass.

The Lagrangian density of the theory associated to W can be written as 11:

LSUSY =−Dµφi∗Dµφi + iψi†σµDµψi −
1
2( ∂2W

∂φi∂φj
ψiψj + h.c)− ∂W

∂φi
(∂W
∂φ

)∗

− 1
4F

a
µνF

aνµ + iλ†aσ
µDµλa −

1
2g

2[(T a)ijφi∗φj]2 − gka(T a)ijφi∗φj

− [
√

2g(T a)ijφi∗ψjλa + h.c]. (3.5)

Due to the large number of parameters in this theory, its phenomenological anal-
ysis is not an easy task, unless, there is a theory at high energy which reduces
the number of parameters. This problem is also addressed by choosing the proper
mechanism to break the symmetry. Below we discuss mSUGRA or gravity medi-
ated supersymmetry breaking in which the SUSY breaking is mediated by gravity
in a hidden sector.

3.2.4 Supersymmetry breaking

In supersymmetric models, sparticles would be degenerated in mass with particles.
Since no sparticle has yet been observed at experiment, if SUSY is a symmetry of
Nature, it must be broken at low energies.

a. Spontaneous supersymmetry breaking

The criterion for spontaneous symmetry breaking is that the physical vacuum state
|0 > should not be invariant under a general supersymmetric transformation. This
means, |Ω > should not be annihilated by all the supersymmetry generators Qα,
i.e [79]:

Qα|0 > 6= |0 >, (3.6)
< 0|H|0 > 6= 0.

11Here, g is the gauge coupling constant, fabc the group structure constants, T a the represen-
tation matrices for each chiral supermultiplet and the k parameter is only allowed for U(1) gauge
factors (Fayet-Iliopoulos term). More details in the Appendix A.2
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Such violation occurs if and only if the global minimum has a positive value 12.
This supersymmetry breaking must arise from some fields in the theory which VEV
is not invariant under supersymmetric transformations. These fields are namely
known as the chiral Fi superfields, where < 0|H|0 >6= 0.
There are some shortcomings regarding to the spontaneous symmetry breaking
schemes: These always extend the MSSM to include new particles and interac-
tions at very high mass scales (D-terms and F-term).

b. SOFT supersymmetry breaking

From a practical point of view, it is useful, instead of breaking SUSY sponta-
neously, just to introduce extra terms that break supersymmetry explicitly in the
effective MSSM Lagrangian.
For realistic SUSY models, certain soft supersymmetry breaking operators which
involve new fields beyond those of the MSSM are explicitly added to the Lagrangian
density to make sparticles much heavier than particles. The coefficients of these
operators are treated as unknown parameters in the MSSM. 13. The symmetry
breaking in this case needs to be generated in a hidden sector, where the new fields
are singlets with respect to the SM gauge group. The symmetry breaking is then
transmitted to the observable sector by a messenger sector associated with a mes-
senger scale MM that needs to be at least two orders of magnitude above the mass
of the MSSM fields. When these fields are integrated out at lower energies, the
residual theory is described by the standard supersymmetric Lagrangian density
LSUSY plus some soft explicit supersymmetric breaking terms, described in Lsoft.

Possible terms that can be added to the Lagrangian of a supersymmetric gauge
theory without perturbing cancellation of quadratic divergences are:
- Scalar mass terms: φ∗iφj, bijφiφj.
- Trilinear scalar terms: aijkφiφjφk + h.c.
- Gaugino mass terms: 1

2Maλ
aλa.

12Whenever a supersymmetric vacuum state exist as a local minimum of the effective potential
it is the global minimum. If there is more than one supersymmetric vacuum, they are all
degenerate in energy with zero energy.

13In order to keep the properties of SUSY, for example, the cancellation of quadratic diver-
gences, the breaking terms must be of dimension lower than 4, i.e, SUSY breaking parameters
must be dimensionful.
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These are known as soft SUSY breaking terms and the Lagrangian that contains
these is called Lsoft:

Lsoft =− (1
2Maλ

aλa + 1
6a

ijkφiφjφk + 1
2b

ijφiφj + ciφi)+

c.c− (m2)ijφj∗φi. (3.7)

Considering all the fields, the Lagrangian which describes the soft SUSY terms in
the MSSM is:

Lsoft = −[12M1B̃B̃ + 1
2M2W̃

aW̃ a + 1
2M3g̃

bg̃b + huijũ
∗
RiQ̃j.Hu

+ hdij d̃
∗
RiQ̃j.Hd + hlij ẽ

∗
RiL̃j.Hd +BµHu.Hd + h.c]

+ (m2
Q̃

)ijQ̃∗i Q̃j + (m2
ũ)ijũ

∗
RiũRj + (m2

d̃
)ij d̃∗Rid̃Rj

+ (m2
L̃
)ijL̃∗i L̃j + (m2

ẽ)ij ẽ
∗
RiẽRj + (m2

Hu)H∗uHu + (m2
Hd

)H∗dHd, (3.8)

where a = 1, 2, 3 and b = 1, ...., 8. This is the most general soft supersymmetry-
breaking Lagrangian that is compatible with gauge invariance and matter parity
conservation in the MSSM. This Lagrangian breaks SUSY, since it introduces mass
terms for some fields but not for their superpartners.

As noted Lsoft involves only scalars and gauginos and not their respective super-
partners. The soft terms in Lsoft are able to give masses to all of the scalars and
gauginos in a theory, even if the gauge bosons and fermions in chiral supermulti-
plets are massless. The gaugino massesMa are always allowed by gauge symmetry.
The (m2)ij terms are allowed for i; j such that φi, φj∗ transform in complex con-
jugate representations of each other under all gauge symmetries. The Feynman
diagrams corresponding to the allowed soft terms are shown in Figure 2.1. For
each of the mass graphs (a),(c),(d) there is another with all arrows reversed, cor-
responding to the complex conjugate term in the Lagrangian.

Now, we will turn to the transmission of supersymmetry breaking from the hidden
sector. The most popular scenarios are [75, 79]:
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Figure 3.1: Soft supersymmetric breaking terms: (a) Gaugino mass Ma; (b) scalar
squared mass (m2)ij; (c) scalar squared mass bij and scalar cubic coupling aijk.

* GMSB: Gauge mediation of symmetry breaking in which the messenger interac-
tion is the same as the SM gauge interaction.
* SUGRA: Gravitational mediation of symmetry breaking in which gravity is the
messenger of this breaking. When we turn to local supersymmetry, gravity be-
comes part of the theory and strongly modifies the description of SUSY breaking.
Indeed, the anticommutation relation: {Qr, Qs} = 2γµrsPµ impose to include local
translations. A local version of supersymmetry is called supergravity (the inclu-
sion of gravity modifies the criterion of spontaneous supersymmetry breaking) [80]
14.

mSUGRA parameters

CMSSM (or the "so-called" mSUGRA) is defined at the GUT-scale by the follow-
ing soft supersymmetry breaking parameters: a common scalar mass m0 (squarks,
sleptons, Higgs bosons), a common gaugino mass M1/2, a common trilinear cou-
pling A0, tanβ = vu/vd: the ratio of the Higgs (Hd, Hu) vacuum expectation values
and sign(µ): SUSY conserving Higgsino mass parameter. Considering an ideal-
ized limit in which the squark and slepton mass matrices are flavour-blind, this
means these parameters are assumed to take a simple structure at the GUT scale15:

14In this theory, an invariance under local transformations implies an invariance under local
coordinate shifts, generated by the four momentum operator Pµ and then an invariance under
the full Poincare Algebra.

15All the potentially dangerous flavour-changing and CP-violating effects in the MSSM can be
evaded if one assumes that SUSY breaking is suitably "universal" [81].
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•Universality: all scalar masses are equal and generation diagonal

M2
Q = M2

D = M2
U = M2

L = M2
R = m2

0I, (3.9)

(in this case, all the squark and slepton mixing angles are rendered trivial, because
squarks and sleptons with the same electroweak quantum numbers will be degen-
erate in mass and can be rotated into each other at will) 16

•All Gaugino masses are equal:

M1 = M2 = M3 = M1/2. (3.10)

Making the further assumption that the scalar couplings are each proportional to
the corresponding Yukawas in the superpotential:

hu = tuAu0, hd = tdAd0, he = teAe0. (3.11)

will ensure that only the squarks and sleptons of the third family can have large
couplings (where A0 is a common parameter).

All of these universality relations are assumed to be the result of some specific
model for the origin of supersymmetry breaking. This means, these relations are
indicative of an assumed underlying simplicity or symmetry of the Lagrangian at
some very high scale. These conditions are boundary conditions on the runnung
soft parameters at the high scale.
It is usual to define the mSUGRA parameter space as: (signµ,m0,M1/2, A0, tanβ).
Searches for SUSY by CMS and ATLAS define an excluded range in the mSUGRA
parameters space, ruling out certain regions in the parameter space. Figure 2.2
shows some of the LHC excluded regions for m0 and M1/2 parameters and the de-
pendence with different SUSY observables. This plot shows the exclusion limits at
95% C.L for 8 TeV analyses in the (m0 and m1/2) parameter space for the CMSSM
model with the remaining parameters set tanβ = 30, A0 = −2m0, µ > 0. Part
of the model plane accommodates the lightest neutral scalar Higgs boson mass of
125 GeV. The theoretical signal cross section uncertainties are not included in the

16This is true only at the GUT scale. This is not invariant under RGE.
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Figure 3.2: Region in CMSSM parameter space excluded by ATLAS [82].

limits shown [82].

It is known that the LHC collider should be able to detect signals of supersym-
metry. However, actual data don’t reveal considerable deviations from the SM.
It means, until now the world appears even more SM-like. Using the combined 7
TeV and 8 TeV data, the ATLAS and CMS collaboration find a signal for a Higgs
like boson at a mass of ' 126 GeV. In supersymmetric theories the Higgs boson
mass is predicted to be less than MZ and loop corrections are needed to fit the
mass above MZ . This mass value ( mh ' 126 GeV) implies for instance that the
squark masses are likely of the order of several TeV.

3.3 NEUTRINO PHYSICS

3.3.1 Introduction

Neutrinos have played a key role in the development of particle physics [16, 17]. In
the 1980′s a lot of activity in neutrino physics has devoted mainly to the gauge the-
oretic formulation of neutrino mass and oscillations 17. Some experiments and solar

17In the 1950′s it was believed that neutrinos only existed as a left handed neutrinos or right
handed antineutrinos.
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neutrino astronomy confirmed the idea of massive neutrinos and non-trivial mixing.
Ultimate confirmation of neutrino mass only came with the results of atmospheric,
solar and reactor neutrino experiments [8, 7, 9, 10]. The actual data of the masses
and mixings are: ∆m2

21[10−5eV 2] = 7.11 − 8.18, ∆m2
31[10−3eV 2] = 2.30 − 2.65,

sin2θ12/10−1 = 2.78−3.75, sin2θ23/10−1 = 3.92−6.43, sin2θ13/10−2 = 1.77−2.94
for the normal hierarchy and 3σ of c.l [83, 84, 85, 86, 87, 88, 89].

Despite the success of the experiments, some important questions are still open.
For instance, what is the nature of the neutrinos?. Most physicists expect the
neutrino to be a Majorana particle. The smallness of its mass with respect to the
charged fermions can be naturally explained by the seesaw mechanism, in which
singlet fermions Ni (assumed to have large Majorana masses) are added to the SM.
These can couple with the left handed neutrinos and the (up-type) Higgs doublet.
The dimension five operator mν = F

Γ (HL)(HL) induces Majorana masses also for
left handed neutrinos once the electroweak symmetry is broken. Current neutrino
data point to a seesaw scale of MR ' 1010 − 1015 GeV 18.

Although the seesaw mechanism describes qualitatively well the observations, it
lacks predictive power: the leptonic Lagrangian is defined at high energy by 21
parameters, whereas experimentally we can only measure at most 12 observables.
The remain 9 parameters, which are undetermined, are lost in the decoupling
process and can be arbitrarily chosen [90]. It may be possible to gain some indi-
rect information of these parameters in the supersymmetric version of the seesaw,
where the neutrino Yukawa couplings affect the renormalization group evolution of
the slepton parameters above the decoupling scale and thus can leave an imprint,
that in principle, could be disentangled using low energy experiments. Therefore,
the SUSY softs at the electro-weak scale contain indirect information about all
particles, intermediate scales and the seesaw scale. These aspects will be analyzed
in detail in Chapter 3.

18With such high scale, the effects of lepton flavor violation in processes other than neutrino
oscillations themselves become extremely small.
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3.3.2 Seesaw Models

The most widely accepted mechanism to generate the small neutrino masses is the
canonical see-saw mechanism, where the neutrinos are assumed to be Majorana
particles. Here three (at least two) very heavy gauge singlets, called right handed
neutrinos, are added to the spectrum of the Standard Model.
If neutrinos are Majorana particles, their masses below the scale Λ are described
by a unique dimension-5 operator [91]:

mν = F

Λ (LiH)T (LjH), (3.12)

where Li denotes an electroweak doublet (i, j = e, µ, τ) and H is the SM higgs
doublet. This operator violates lepton number by two units and generates the
neutrino mass mν ∝ v2 once the electroweak symmetry is broken and the Higgs
acquires a vacuum expectation value v =< H > [91].

In seesaw models, and with renormalizable interactions only, the effective operator
(2.12) is generated at tree level by the exchange of heavy particles and this can be
achieved in different ways [92] 19:
• Seesaw type I: exchanges a heavy SU(3)c × SU(2)L × U(1)Y fermionic singlet
[17, 45, 95]. Here, if the Majorana mass MR is much larger than the Dirac mass
mD, then the mass eigenvalues are approximately MR and m2

D/MR << MR.
• Seesaw type II: a SU(2) scalar triplet ∆ is added to the theory [17, 45]. This
field couples to the ordinary neutrinos through: L2 = Y2L

T∆L + h.c. Once the
triplet acquires a vacuum expectation value v =< ∆ >, it gives a neutrino mass
term proportional to: Y2∆ and to the Higgs field itself. This triplet vev induces a
change in the electroweak ρ parameter. This vev is experimentally constrained to
be below a few GeV s.
• Seesaw type III: exchanges of at least two SU(2)L fermionic triplets Σa with
zero hypercharge [92, 96].

In this thesis, we will describe in detail the type-I seesaw and its supersymmetric
implementation.

19This operator can be generated also at loop level. Two classical examples are the Zee model
(1-loop) [93] and the Babu-Zee model (2-loop)[94].
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Supersymmetric seesaw type I

In the case of seesaw type-I one postulates very heavy right-handed neutrinos with
the following superpotential below the GUT scale, MG:

WI = WMSSM +Wν . (3.13)

Here WMSSM is the usual MSSM part and

Wν = N̂ c
i Y

ν
ij L̂j · Ĥu + 1

2N̂
c
iMR,iiN̂

c
i . (3.14)

We have written eq. (3.13) in the basis whereMR and the charged lepton Yukawas
are diagonal. In the seesaw one can always choose this basis without loss of
generality. For the neutrino mass matrix, upon integrating out the heavy Majorana
fields, one obtains the well-known seesaw formula

mν = −v
2
u

2 Y
ν,TM−1

R Y ν , (3.15)

valid up to order O(mD/MR), mD = vu√
2Y

ν . Being complex symmetric, the light
Majorana neutrino mass matrix in eq. (3.15), is diagonalized by a unitary 3 × 3
matrix U [17]

m̂ν = UT ·mν · U . (3.16)

Inverting the seesaw equation, eq. (3.15), allows to express Y ν as [97]

Y ν =
√

2 i

vu

√
M̂R ·R ·

√
m̂ν · U †, (3.17)

where m̂ν and M̂R are diagonal matrices containing the corresponding eigenvalues.
R is in general a complex orthogonal matrix. Note that, in the special case R = 1,
Y ν contains only “diagonal” products

√
Mimi. For U we will use the standard

form

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

×

eiα1/2 0 0

0 eiα2/2 0
0 0 1
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with cij = cos θij and sij = sin θij. The angles θ12, θ13 and θ23 are the solar
neutrino angle, the reactor angle and the atmospheric neutrino mixing angle, re-
spectively. δ is the Dirac phase and αi are Majorana phases. Since U can be
determined experimentally only up to an irrelevant overall phase, one can find
different parameterizations of the Majorana phases in the literature.
Eq. (3.15) contains 9 a priori unknown parameters, eq. (3.17) contains 18. The
additional 9 unknowns encode the information about the high scale parameters,
the three eigenvalues of MR and the 3 moduli and 3 phases of R.

3.3.3 ν
′s and GUTs

Left-right intermediate scale

The left-right symmetric treatment of the weak interactions requires the existence
of the right handed neutrinos and the smallest group that implement this hypothe-
sis is SU(2)L×SU(2)R×U(1)B−L. Unlike SU(5), GUT’s models based on SO(10)
contain a left-right symmetry 20 and also the necessary ingredients to generate
automatically the seesaw mechanism: (i) the right handed neutrino is included in
the 16 which forms a fermion family; and (ii) is the minimal LR symmetric GUT
model that gauges the (B − L) symmetry. When the symmetry B − L is broken
the RH neutrinos acquire mass. The LR symmetry can be broken either by the
field Φ1,1,3,−2 or Φ1,1,2,−1. Thus, models where Φ1,1,2,−1 and Φ1,3,1,0 are present can
break the LR symmetry and also explain the CKM matrix. An additional singlet
Φ1,1,1,0 can explain an inverse seesaw, while an additional Φ1,1,3,−2 generates a see-
saw type-I 21.

SO(10) SUSY models usually break the LR symmetry at a rather large energy
scale, mR. If LR is broken by the vev of (B −L) = 2 triplets or by a combination
of (B − L) = 2 and (B − L) = 0 triplets, mR = 1015 GeV is the typical scale
consistent with the gauge coupling unification. This kind of high LR scale models
will never be probed experimentally and this explains, perhaps, why LR models
have not been studied very much in literature in the context of GCU. However, it
is quite straightforward to construct nonSUSY LR models where the LR scale is

20SO(10) breaks to the SM like SO(10)→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L → SM
21The indices are the transformation properties under the LR group, see Chapter 5 and the

appendix for notation.
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close to the EW scale. In Chapter 5 we will analyze in detail SUSY and nonSUSY
SO(10) GUT models with LR intermediate scales and simple configurations that
explain neutrino masses through different realizations of the seesaws mechanism.

Loop induced neutrino mass

SO(10) loop induced neutrino mass was first introduced by Edward Witten [98]. In
this model a pair of lepton-number violating vacuum expectation values (VEV’s)
is tied to the leptonic sector at two loop. Here, the RH neutrinos masses are
generated at the renormalizable level with just the minimal scalar content sufficient
for the desired spontaneous symmetry breaking (i.e., 10⊕ 16⊕ 45). The absolute
size of the Witten loop is governed by the position of the B−L breaking scaleMB−L

which is required to be around the GUT-scale (MG) in order to yield the correct
seesaw scale MR ' (α/π)2M2

B−L/MG in the 1013 GeV ballpark. The realization of
this mechanism in a flipped SU(5) theory will be studied in detail in Chapter 4.

3.4 GRAND UNIFIED MODELS
Particle interactions down to distances as small as 10−16 cm are perfectly described
by the SM gauge theory. However many attempts have been made to explain na-
ture with a unified theory that combines all the three fundamental interactions as
a component of a single force. Georgi and Glashow SU(5) unification [42], Pati
and Salam SU(4)c×SU(2)L×SU(2)R unification [41] and models based in SO(10)
[99] have been the three GUT groups studied most estensively in the literature.

Apart from reducing all gauge interactions to one single gauge group, GUTs have
some other advantages with respect to the SM, as described in the last section.
These features are realized for both supersymmetric and non-supersymmetric sce-
narios. SUSY GUTs appear as an extension of nonSUSY GUTs. However, they
lead to different low energy effective theories. For SUSY, the low energy spectrum
includes the SM states plus their supersymmetric partners and a pair of higgs
doublets. Figure 2.3 shows the running of the three SU(3)c × SU(2)L × U(1)Y
gauge couplings for the SM, MSSM, a simple nonSUSY GUT model based on the
LR group and a simple SUSY model based in the Pati-Salam group [2, 3]. As
is known, the three gauge couplings do not unify in a single point at any energy
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Figure 3.3: 1-loop evolution of the three gauge coupling constants with the energy
scale for four cases: SM (up-left), MSSM (up-right) a simple left-right nonSUSY
model (bottom-left) and a simple left-right Pati-Salam SUSY model (bottom-
right). [2, 3]

in the SM. In the MSSM there is unification (although not perfect 22) at a scale
of about mG = 1016 GeV. Simple Left-Right (LR) symmetric models (SUSY or
nonSUSY), where some additional particles need to be added, can unify equally
well or even better than the MSSM.

There are many ways to construct such unified models. However, more restrictive
requirements, such as a theory to provide a natural understanding of the small
neutrino masses and correct explanation of the CKM angles narrow down the
possibilities. In this thesis, SO(10) and SU(5) unified theories will be studied,
for both, supersymmetric and non-supersymmetric realizations. Special field con-

22Perfect unification for nonSUSY GUTs models can be realized if two loop contributions for
the gauge couplings is considered, already shown in [3].
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figurations that obey phenomenological requirements such as neutrino masses, a
candidate for DM, correct CKM angles and proton decay constraints will be con-
structed. Before entering in the detailed analysis (next chapters), some general
features of SU(5), flipped SU(5), SO(10) and LR gauge groups will be discussed
in this chapter. Proton decay processes and how these arise in GUT theories will
be discussed in some detail.

3.4.1 SU(5) Unification

To construct a GUT theory which describes the weak, electromagnetic and strong
interactions with only one gauge coupling, a simple gauge group is needed. This
group must be large enough to contain the 4 non-diagonal SM generators, thus
must be at least rank-4. Among all the possible simple Lie rank-4 groups [42],
the only ones with complex representations 23 are SU(5) and SU(3) × SU(3).
Since SU(3) × SU(3) can not accommodate fractionally charged particles, then
SU(5) remains as the simplest gauge group which can describe the SM without
introducing new fermions.

Preliminaries

1. Particle content

The fundamental 5 (Ψp) and the antisymmetric 10 (5 × 5χpq = −χpq) SU(5)
representations decompose under SU(3)c × SU(2)L as 24:

5 : Ψp
L → (3∗, 1)2/3 + (1, 2∗)−1,

10 : χpqL → (3, 2)1/3 + (3∗, 1)−4/3 + (1, 1)2. (3.18)

Given the quantum numbers of the fermions in the SM, it follows that the 15
helicity states of a generation are contained in the SU(5) irreducible representation
5 + 10:

23The SM fermions, with the following SU(3) × SU(2) quantum numbers: (νe, e−)L =
(1, 2), eL = (1, 1), (uα, dα)L = (3, 2), ucαL = (3∗, 1), dcαL = (3∗, 1) must be described by complex
representations.

24The right handed fields are described in terms to the left handed fields like Ψc = CΨT and
Ψc
L = (ΨR)c, with C = iγ2γ0.
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(Ψp)L =



dc1
dc2
dc3
e

−νe


L

, χpqL = 1√
2



0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 −ec

d1 d2 d3 ec 0


L

. (3.19)

The 24 gauge fields are accommodated in the adjoint Aij 24 dimensional represen-
tation, decomposed under SU(3)c × SU(2)L as:

24 = (8, 1)0 + (1, 3)0 + (1, 1)0 + (3, 2)−5/3 + (3∗, 2)5/3. (3.20)

This decomposition corresponds to the following gauge bosons: (8, 1)0: SU(3)-
Gluons, (1, 3)0: W+

u ,W
−
u ,W

3
u -SU(2) gauge fields, (1, 1)0: Bµ, (3, 2)−5/3: Xµ Lep-

toquarks and (3∗, 2)5/3: Yµ Leptoquarks25, 26. The 12 Leptoquarks mediate nucleon
decay processes, discussed in more detail in the next subsections.

2. SU(5) symmetry breaking

The breaking of the SU(5) gauge symmetry down to SU(3)c × U(1)Q is achieved
in two steps:

SU(5)→ SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)Q, (3.21)

at the scalesMX andMW respectively. The two Higgs which mediate the breaking
are:

H = {5}, Φ = {24}. (3.22)

Φ with vacuum expectation value 〈Φ〉 = diag V (1, 1, 1,−3/2,−3/2) mediates the
first symmetry breaking step and gives masses to the Leptoquarks: M2

X = M2
Y =

25
8 g

2m2
G (mG is the unification scale). In order to break the electroweak symmetry

at the weak scale MW and give mass to the quarks and leptons, the Higgs doublet
is needed in the 5-rep and gets vev: 〈H〉 = (0, 0, 0, 0, v√

2) 27. The additional states
25The Leptoquarks carry fractional charges: QX = −4/3 and QY = −1/3.
26The gauge bosons in SU(5) are described by the matrix Aµ in the appendix.
27H gives also mass to the W and Z bosons, where MW = 1

2gv, MZ = gv
2cosθW

and θW the
Weinberg angle.
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are the coloured Higgs scalars. The couplings of these coloured triplets violate
also baryon and lepton number, thus nucleon decay processes via the exchange of
a single Higgs scalar arise. This implies that the coloured triples must be very
heavy. The lightness of the doublet versus the heaviness of the triplet is known as
the doublet-triplet splitting problem.

Important features of SU(5)

1. Anomaly free

In general the anomaly of any fermion-representation is proportional to the trace of
its generators: Tr(T a(R), T b(R)T c(R)) = 1

2A(R)dabc (T a(R) is the representation
of the group and dabc is the totally symmetric coefficient appearing in the commu-
tation relation {λa, λb} = 2dabcλc) [100]. Using some simple SU(5) generator to
calculate A(R) and the property T a = T b = T c = Q it follows:

A(5∗)
A(10) = trQ3(Φi)

trQ3(Φij)
= −1, (3.23)

A(5∗) + A(10) = 0. (3.24)

Thus, the combination of 5∗ and 10 of the fermion-representation is anomaly free
in the SU(5) theory.

2. Charge quantization

SU(5) explains the experimentally observed charge quantization. The eigenval-
ues of the generators of a simple non-Abelian group are discrete while those cor-
responding to the Abelian U(1) group are continuous. Thus, in SU(5), since
the electric charge Q is one of the generators, its eigenvalues are discrete and
hence quantized. The traceless condition of the charged fermion matrix Q =
diag{1/3, 1/3, 1/3,−1, 0} (Q is one of the SU(5) generators) requires Tr(Q) =
3Qq + Qe + Qν = 0. It follows that Qq = −1

3Qe (quarks carry 1/3 of the electron
charge because they have three colours). SU(5) thus provides a rational basis to
understand the particle charges and electroweak hypercharge assignments.
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3. Proton decay

A special feature of GUTs is the nonconservation of baryon and lepton number.
The X and Y bosons that mediate proton decay couple two fermions with different
baryon and lepton number. In one case they couple to quarks and leptons (B1 =
1/3), in the other case they transform quarks to antiquarks (B2 = 2/3). Therefore,
through the mediation of a X boson, a (B = −1/3) channel can be converted into a
(B = 2/3) one, changing the baryon number one unit (∆B = 1). However, baryon
minus lepton number is conserved (∆(B − L) = 0) and SU(3)× SU(2)× U(1) is
invariant in these kind of processes. In section 2.4.3 more details of proton decay
are discussed.

3.4.2 Flipped SU(5)
Another possibility to unify the SM matter into a SU(5)-based framework is the
so-called flipped SU(5) scenario: SU(5) × U(1)X , which is a maximal subgroup
of SO(10). In this model, the generator of the electric charge is given as a linear
combination of the U(1) generator that resides in SU(5) and an extra U(1) gener-
ator, as if both of these originate from a SO(10)→ SU(5)× U(1) decomposition.
This guarantees anomaly cancellation at the price of introducing one extra state
per family, i.e, the right handed neutrino νc. The quantum numbers of the matter
multiplets in the SU(5) ⊗ U(1)X extensions of the canonical SU(5) framework
are dictated (up to an overall normalization factor) by the requirement of gauge
anomaly cancellation: 5M ≡ (5,−3), 10M ≡ (10,+1), 1M ≡ (1,+5). Besides the
“standard” SU(5) assignment there is a second “flipped” embedding of the Stan-
dard Model (SM) hypercharge into the correspondin g algebra, namely

Y = 1
5(X − T24), (3.25)

where the T24
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T24 =
√

3
5



1/3 0 0 0 0
0 1/3 0 0 0
0 0 1/3 0 0
0 0 0 −1/2 0
0 0 0 0 −1/2


, (3.26)

generator of SU(5) above is understood to conform the SM normalization (i.e.,
Y = T24 and Q = T 3

L + Y in the standard case). This swaps uc ↔ dc, νc ↔ ec,
u ↔ d and ν ↔ e with respect to the standard SU(5) field identification and,
hence, the RH neutrinos fall into 10M rather than28 1M . This also means that a
vacuum expectation value (VEV) of a scalar version of (10,+1) (to be denoted by
10H) can spontaneously break the SU(5) ⊗ U(1)X gauge symmetry down to the
SM29.

Besides that, the scheme benefits from several interesting features not entertained
by the “standard” SU(5) scenario, namely: i) The Yukawa Lagrangian

L 3 Y1010M10M5H + Y510M5M5∗H + Y15M1M5H + h.c, (3.27)

including the 5-dimensional scalar 5H = (5,−2) hosting the SM Higgs doublet,
yields Md = MT

d , Me arbitrary and, in particular, MD
ν = MT

u , none of which is
in a flagrant conflict with the observed quark and lepton flavour structure, as is
the case for Md = MT

e in the “standard” SU(5). ii) The gauge unification is in a
better shape than in the “standard” SU(5) case because only the two non-abelian
SM couplings are required to unify (which, indeed, they do at around 1016 GeV).
Note that the SM hypercharge is a “mixture” of the T24 and X charges and, thus,
the SM coupling g′ obeys a nontrivial matching condition including an unknown
coupling gX associated to the extra U(1)X gauge sector. Hence, there is no need
to invoke TeV-scale supersymmetry for the sake of gauge unification here as in
the case of “standard” SU(5). iii) Remarkably, the issue with the out-of-control
Planck-scale induced shifts of the effective gauge couplings (and thus induced large

28Recall that in the standard SU(5) Q, uc and ec are in 10M , dc and L in 5M and νc in 1M .
29This observation is the core of the “missing partner” doublet-triplet splitting mechanism

that brought a lot of interest to the flipped SU(5) scenario in 1980’s [102].
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uncertainties in the MG determination [103, 104, 105, 106]) is absent at leading
order because there is no way to couple the 10H , as the carrier of the large-scale
VEV to a pair of the gauge field tensors Fµν . Thus, the prospects of getting a
reasonable good grip on the proton lifetime in the flipped SU(5) are much better
than in the ordinary SU(5) model.

The main drawback of such a scenario is the fact that the simplest “conservative”
mechanism for generating a Majorana mass term for the RH neutrinos at the tree
level requires an extra 50-dimensional scalar field 50H ≡ (50,−2) whose large VEV
in the 10M10M50H contraction picks up just the desired components30.

3.4.3 Proton Decay in SU(5) GUTs

Proton decay, as a probe of fundamental interactions at extremely short distances,
is an instrument for the exploration of grand unified theories. Thus it is crucial to
have new experiments to search for these kind of processes and improve the current
bounds. In this subsection, some theoretical and experimental aspects of proton
decay will be described. In particular, the actual and future proposed experiments
will be discussed.

Gauge D = 6 operators

In SU(5), the effective Lagrangian, 31 which gives rise to processes that violate
baryon and lepton number (such as p→ e+π0) is described by:

LXY =igG√
2
Xµ,i(εijkuckγµujL + diγ

µe+)+ (3.28)

+ igG√
2
Yµ,i(εijkuckLγµdjL − uiLγµe+

L + diRγ
µνcR) + h.c.

The most important proton decay operators are in general those of minimal di-
mension with the appropriate quantum numbers. Operators with non-zero baryon

30as does
〈
126H

〉
coupled to 16M16M in SO(10).

31This Lagrangian is derived writing down the couplings of the components 5 and 10 with the
Leptoquarks in the kinetic Lagrangian: L = i(ψp)Lγµ(Dµψp)L + iX

pq

L γ
µ(DµX

pq
L )
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number must have at least three quarks fields to be colour singlets, and then at
least four fermion fields to form a Lorentz scalar. So, their dimension is at least six,
with ∆B 6= 0, ∆L 6= 0 and SU(3)c×SU(2)L×U(1) singlets [50, 107]. The possible
non-supersymmetric operators which conserve B−L (i.e, the proton always decay
into an antilepton) mediated by vector-like leptoquarks are [50]:

OB−L
I = k2

1εijkεαβu
c
iaLγ

µQjαaLeCb LγµQkβbL,

OB−L
II = k2

1εijkεαβu
c
iaLγ

µQjαaLdCkbLγµLβbL, (3.29)
OB−L
III = k2

2εijkεαβd
c
iaLγ

µQjβaLuCkbLγµLαbL,

OB−L
IV = k2

2εijkεαβd
c
iaLγ

µQjβaLνCb LγµQkαbL,

where k1 = gGUT/
√

2M(X,Y ), k2 = gGUT/
√

2M(X′ ,Y ′ ), M(X,Y ),M(X′ ,Y ′ ) ' MG are
the masses of the superheavy gauge bosons, and gGUT the coupling at the GUT
scale. The indices i, j and k are the colour indices, a, b the family indices and
α, β = 1, 2. The effective operators OB−L

I and OB−L
II appear when the superheavy

gauge fields (X, Y ) = (3, 2, 5/3) are integrated out (X, Y have electric charge 4/3
and 1/3 respectively). This is the case of theories based on minimal SU(5). In-
tegrating out (X ′ , Y ′) = (3, 2,−1/3) the operators OB−L

III and OB−L
IV are obtained,

corresponding to the case of flipped SU(5) scenarios [50].

The mass of the superheavy gauge bosons that mediate the decays is estimated
using the experimental lower bound of the proton decay τ(p→ π0e+) > 1.6× 1034

ys and:

Γp ∼ α2
G

m5
p

M4
V

. (3.30)

A general lower bound on the heavy gauge boson masses is:MV > (2.6−3.2)×1015

GeV for αG = 1/40 − 1/25. Note that, in order to satisfy experimental bounds,
the unification scale has to be very large.
The second contribution to proton decay is the scalar-like d = 6 operator, mediated
in this case by the scalar leptoquarks T = (3, 1,−2/3). For the SU(5) case, this
scalar lives in the 5H representation together with the SM Higgs, and the relevant
operators for proton decay are shown in the appendix. All the cases are mediated
by the Higgs triplet. Although these contribution are quite model dependent, it is
possible to give a naive estimation of the heavy scalar mass, using:
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Theory Decay Mode τp limit
Minimal SU(5) p→ e+π0 1028.5 − 1031.5

Minimal SUSY SU(5) p→ νk+ < 1030

SUGRA SU(5) p→ νk+ 1032 − 1034

Fipped SU(5) p→ π+ν >1038.5

Minimal SO(10) p→ e+π0 1030 − 1040

Minimal SUSY SO(10) p→ νk+ 1032 − 1034

p→ e+π0 < 5.3× 1034

Table 3.2: Theoretical proton life time predictions

Γp ∼ |Yu|2|Yd|2
m5
p

M4
T

, (3.31)

and τ(p→ π0e+) > 1.6× 1034 years.

Minimal SU(5) predicts a proton decay lifetime of about τp ∼ 1028.5− 1031.5 years
[108]. However, current limits (τp ∼ 1034) years [108] impose stringent bounds on
the mass of the X, Y bosons (O(1015) GeV) and thus exclude the minimal-SU(5)
predictions. Extended models, like flipped SU(5) [108] improve the proton decay
predictions. Table 2.2 shows the theoretical proton life time predictions in the
most relevant channels for different GUT theories [50, 108, 109, 110].

Some experiments for proton decay

From the theoretical point of view, the idea that the proton may be unstable arose
in the work of Sakharov in 1967, who postulated that an explanation of the baryon
asymmetry in the universe requires CP violation and baryon-number non conser-
vation [111, 112]. Further impetus for proton decay searches came from the work
of Pati and Salam in 1973 and latter with non-supersymmetric [42] , supersym-
metric and grand unification [50] in the framework of SU(5) and SO(10) theories.
On the other hand, several experimental attempts to test nucleon decay processes
have been done. Actual experiments are based on water Cherenkov detectors with
a good capability to observe the different proton decay modes. Two of the most
dominant channels tested in these experiments are p→ e+π0 and p→ K+ν. This
kind of detectors use water as the source of protons which decay into a positron
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Figure 3.4: Main proton decay chanel p→ e+π0

e+ and a pion π0 (first mode). The positron produces an electromagnetic shower
which is balanced by two electromagnetic showers from the decays of the pion to
two photons (π0 → γγ) 32. Figure 2.4 shows a schematic presentation of an ideal
p→ e+π0, π0 → γγ decay.

Super-Kamiokande (Kamioka nucleon decay experiment) 33 is the biggest (by far
at the moment) experiment to test neutrino properties and, on the other hand,
test grand unified theories. This experiment consists in a large water Cherenkov
detector filled with 50,000 tons of ultra pure water to test the most important
decay channels. Recent limits set by this experiment are [7]:

τ(p→ e+π0) ≥ 1.6× 1034ys.,

τ(p→ µ+π0) ≥ 4.7× 1032ys.,

τ(p→ K+ν) ≥ 2.3× 1033ys.,

τ(p→ K0µ+) ≥ 1.3× 1033ys.,

τ(p→ K0e+) ≥ 1.0× 1033ys. (3.32)

Nowadays, new multipurpose experiments which could improve about one order of
magnitude existing proton decay limits from Super-Kamiokande (i.e could extend

32For the other typical decay mode p → K+ν, the detector in this case search for the two
primary branches of the K+ decay.

33Kami: "Spirit" - oka: "hill" - nde: "nucleon decay experimente" is located underground in
the Mozumi Mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the
city of Hida in Gifu Prefecture, Japan.
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Experiment Features Decay Mode τp limit
HYPER-K Water Cherenkov Detector (Japan) p→ e+π0 1.3× 1035, 90 CL

5.7× 1034, 3σ CL
p→ K+ν 2.5× 1034, 90 CL

1.0× 1034, 3σ CL
MEMPHYS Megaton Mass Physics (EU) p→ π0e+ > 1035

Water Cherenkov like detector
with a fiducial mass of about 500 kt.

GLACIAR Giant Liquid Argon Charge Imaging (EU) p→ K+ν > 1035

Experiment.
Mass of about 100 kt.

LENA Low Energy Neutrino Astronomy (EU)
Liquid Scintillator like detector
51 kt. p→ K+ν > 2× 1034

Table 3.3: Some experiments for future proton decay measurements

proton life time searches sensitivities up to 1035 years) have been proposed. Three
detection techniques are being studied for such large detectors: Water-Cherenkov,
liquid scintillator and Liquid Argon. LAGUNA (Large Apparatus Studying Grand
Unification and Neutrino Astrophysics)[19] is a project with the purpose to explore
GUTs and neutrino physics in Europe. In North America, DUSEL (Deep Un-
derground Science and Engineering Laboratory) [20] located at South Dakota, is
envisioned for long baseline neutrino oscillation and GUT experiments. In Japan,
Hyper-K [113]will increase the sensitivity of the nucleon decays far beyond of
Super-K, mainly in the decay modes p → e+π0 and p → νK+. This experiment
will function also as an astrophysical neutrino observatory. The main properties
of these experiments are described in Table 2.3 [114, 115, 116]. 34 Figure 2.5 show
the status of the past, recent and future proton decay experiments, together with
the prediction of different theoretical models.

As the figure shows, next generation of experiments is needed to gain an order of
magnitude in nucleon decay sensitivity . In 10 years, proton decay half life times
would improve for the different decay channels by the different experiments.

34Future LBNE (17 kt-US) and DEAδALUS experiments will measure the chain p → K+ν.
The expected limit on proton decay is τp > (2× 1034) ys.
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Figure 3.5: Theoretical predictions and experimental bounds for proton decay
[117].

3.4.4 SO(10) unification
Nowadays, prospects for SO(10) being the minimal grand unified model have im-
proved, not only for SUSY models but also for non-SUSY ones. This gauge group
has some special advantages compared with the minimal SU(5) from both the the-
oretical and the phenomenological point of view. For example: neutrino mass and
dark matter explication, all fit rather naturally in grand unified SO(10) models.

Preliminaries

The smallest of the orthogonal SO(2n) gauge groups which can accommodate
complex representations and have rank ≥ 4 is SO(10) (with rank-5). Its two
maximal continuous subgroups are:

G224 = SU(4)c × SU(2)L × SU(2)R,
G5 = SU(5)× U(1). (3.33)

As is known, only complex representations are suitable for building a GUT theory
with the minimal particle content. SO(10) contains the 16 spinorial representation
which decomposes under G224 and G5 as follow.
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G224 : 16 : (2, 1, 4) + (1, 2, 4),
G5 : 16 : (10)1 + (5)−3 + (1)5. (3.34)

Symmetry breaking

Considering that SO(10) has rank-5 and the SM has rank-4, there are several ways
through which this group can break to the SM. Some of these channels involve dif-
ferent intermediate symmetries and scales:

In chain-I, SO(10) is broken in exactly one intermediate (LR symmetric) step to
the standard model group 35:

SO(10)→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L.

In chain-II, SO(10) is broken first to the Pati-Salam group:

SO(10) → SU(4)× SU(2)L × SU(2)R
→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L,

and finally, in chain-III:

SO(10) → SU(3)c × SU(2)L × SU(2)R × U(1)B−L
→ SU(3)c × SU(2)L × U(1)R × U(1)B−L.

In order for a group G to break into a subgroup H ⊃ G, there must be a field
transforming non-trivially under G which contains a singlet scalar of H that gets
a vacuum expectation value. From this observation alone we know that certain
fields must be present in the fundamental model if we are to achieve a given break-
ing sequence (here we note as LR: SU(3)c × SU(2)L × SU(2)R × U(1)B−L, PS:
SU(4)×SU(2)L×SU(2)R, (3211): SU(3)c×SU(2)L×U(1)R×U(1)B−L and (321):
SM):

35In the first stage, SO(10) is broken to the LR group at the mG scale of the order 2 × 1016

GeV. For the chain-I, for example, the breaking is given via the interplay of the vev 54. The
second symmetry breaking SU(3)c × SU(2)L × SU(2)R × U(1)B−L → SM occurs at the scale
mR, by means of the fields Φ1,1,3,−2 or Φ1,1,2,−1.
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1. The breaking of PS → LR is possible only with the Ψ15,1,1 while PS → 3211
requires the combination Ψ15,1,1 + Ψ1,1,3. For the direct breaking PS → 321 there
are two choices Ψ4,1,2, Ψ10,1,3 or their conjugates.
2. The breaking of LR→ 3211 requires the Φ1,1,3,0 representation while the direct
route LR → 321 is possible with the presence of Φ1,1,2,−1, Φ1,1,3,−2 or their conju-
gates.
3. The group 3211 can be broken down to 321 with the representation Φ′1,1, 1

2 ,−1,
Φ′1,1,1,−2 or their conjugates 36.

Some SO(10) properties

The Higgs Boson that gives mass to the quarks and leptons must belong to 10, 120,
or 126 dimensional SO(10) representations. The fermion masses arise when any
of 10H , 120H or 126H acquire nonzero vev’s in LY . This Lagrangian give rise to
the potential:

WY = Y ij
1016i10H16j + Y ij

12016i120H16j + Y ij
12616i126H16j. (3.35)

Note that 126H plays a double role, contributing to the symmetry breaking and
generating mass for the matter fermions 37. Once decomposed into its components
under the next step gauge symmetry, the component which gets a vev capable
of breaking the left right symmetry, being a SU(2)L singlet, can also generate a
Majorana mass for the neutrino through the Yukawa coupling of the 126H with
the matter multiplete 16f .
Some of the advantages of SO(10) compared with SU(5) are:

• All the fermions of one family are accommodated in only one 16-dimensional
spinor representation of SO(10), therefore, both the particle and the antiparticle
are assigned the same irreducible representation.
• Since SU(5) is a subgroup of SO(10), charge quantization works in the same
way as in SU(5). However, SO(10) is the smallest Lie group with a single anomaly
free representation. This implies, for the SU(5) anomalies, a cancellation of the 5

36The indices are the transformation properties under the LR, PS and (3211) groups, see
Chapter 5 and appendix for notation.

37126H generates mMνcνc.
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and 10 contributions.
• SO(10) is the minimal grand unified model that gauges the B−L symmmetry
and doesn’t need mirror fermions. The model does not have global symmetries.
• It gives naturallyMN >> MW and therefore, neutrinos get a tiny mass through
the seesaw mechanism. So, unlike the SU(5) models, in SO(10) massive neutrinos
arise naturally.
• As B−L is a subgroup of SO(10), a natural dark matter candidate can emerge.

However, although it seems that SO(10) is more realistic than SU(5), we find
enormous freedom in the ways to break this group to the SM. In this thesis, we
will work with some SO(10) models with intermediate scales, analyzing in detail
the additional scales and the phenomenology associated with.



Chapter 4

SUSY SPECTRA AND THE
SEESAW TYPE-I SCALE

4.1 Introduction
The seesaw mechanism [14, 15, 16, 17, 18] provides a rationale for the observed
smallness of neutrino masses [7, 8, 9, 10, 11, 12, 13]. However, due to the large
mass scales involved, no direct experimental test of “the seesaw” will ever be pos-
sible. Extending the standard model (SM) only by a seesaw mechanism does not
even allow for indirect tests, since all possible new observables are suppressed by
(some power of) the small neutrino masses. 1

The situation looks less bleak in the supersymmetric version of the seesaw. This is
essentially so, because soft SUSY breaking parameters are susceptible to all par-
ticles and couplings which appear in the renormalization group equation (RGE)
running. Thus, assuming some simplified boundary conditions at an high energy
scale, the SUSY softs at the electro-weak scale contain indirect information about
all particles and intermediate scales. Perhaps the best known application of this
idea is the example of lepton flavour violation (LFV) in seesaw type-I with CMSSM
2 boundary conditions, discussed already in [120]. A plethora of papers on LFV,

1“Low-energy” versions of the seesaw, such as inverse seesaw [223] or linear seesaw [119],
might allow for larger indirect effects. In this chapter we will focus exclusively on the “classical”
seesaw with a high (B-L) breaking scale.

2“constrained” Minimal Supersymmetric extension of the Standard Model, also sometimes
called mSugra in the literature.

46
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both for low-energy and for accelerator experiments, have been published since
then (for an incomplete list see, for example, [121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133]), most of them concentrating on seesaw type-I.

Seesaw type-I is defined as the exchange of fermionic singlets. At tree-level there
is also the possibility to exchange (Y=2) scalar triplets [17, 18], seesaw type-II, or
exchange (Y=0) fermionic triplets, the so-called seesaw type-III [92, 134]. Com-
mon to all three seesaws is that for mν ∼

√
∆m2

A ∼ 0.05 eV, where ∆m2
A is the

atmospheric neutrino mass splitting, and couplings of order O(1) the scale of the
seesaw is estimated to be very roughly mSS ∼ 1015 GeV. Much less work on SUSY
seesaw type-II and type-III has been done than for type-I. For studies of LFV in
SUSY seesaw type-II, see for example [135, 136], for type-III [137, 138].

Apart from the appearance of LFV, adding a seesaw to the SM particle content also
leads to changes in the absolute values of SUSY masses with respect to cMSSM
expectations, at least in principle. Type-II and type-III seesaw add superfields,
which are charged under the SM group. Thus, the running of the gauge couplings
is affected, leading to potentially large changes in SUSY spectra at the EW scale.
In [139] it was pointed out, that for type-II and type-III seesaw certain combina-
tions of soft SUSY breaking parameters are at 1-loop order nearly constant over
large parts of CMSSM parameters space, but show a logarithmic dependence on
mSS. 3 This was studied in more detail, including 2-loop effects in the RGEs, for
type-II in [136] and for type-III in [137]. Using forecasted errors on SUSY masses,
obtained from full simulations [141, 142], the work [143] calculated the error with
which the seesaw (type-II and -III) scale might be determined from LHC and future
ILC [144] measurements. Interestingly, [143] concluded that, assuming CMSSM
boundary conditions, ILC accuracies on SUSY masses should be sufficient to find
at least some hints for a type-II/type-III seesaw, for practically all relevant values
of the seesaw scale.

Seesaw type-I, on the other hand, adds only singlets. Changes in SUSY spectra
are expected to be much smaller and, therefore, much harder to detect. Certainly
because of this simple reasoning much fewer papers have studied this facet of the

3These so-called invariants can be useful also in more complicated models in which an inverse
seesaw is embedded into an extended gauge group [140].
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type-I SUSY seesaw so far. Running slepton masses with a type-I seesaw have
been discussed qualitatively in [129, 130, 145, 146]. In [147] it was discussed that
in cMSSM extended by a type-I seesaw, splitting in the slepton sector can be
considerably larger than in the pure CMSSM. This is interesting, since very small
mass splittings in the smuon/selectron sector might be measurable at the LHC, if
sleptons are on-shell in the decay chain χ0

2 → l±l̃∓ → l±l∓χ0
1 [148].

In this chapter, we calculate SUSY spectra with cMSSM boundary conditions and
a seesaw type-I. We add three generations of right-handed neutrinos and take spe-
cial care that observed neutrino masses and mixing angles are always correctly
fitted. We then follow the procedure of [143]. Using predicted error bars on SUSY
mass measurements for a combined LHC+ILC analysis, we construct fake “exper-
imental” observables and use a χ2-analysis to estimate errors on the parameters
of our model, most notably the seesaw scale. We identify regions in parameter
space, where hints for a type-I seesaw might show up at the ILC/LHC and discuss
quantitatively the accuracy which need to be achieved, before a realistic analysis
searching for signs of type-I seesaw in SUSY spectra can be carried out.

The rest of this chapter is organized as follows. In the next section we define the
supersymetric seesaw type-I model, fix the notation and define the CMSSM. In
section 4.3 we present our results. After a short discussion of the procedures and
observables in section 4.3.1, we show a simplified analysis, which allows to identify
the most important observables and discuss their relevant errors in section 4.3.2.
Section 4.3.2 then shows our full numerical results. We then close with a short
summary and discussion in section 4.4.

4.2 Setup

4.2.1 CMSSM, type-I seesaw and RGEs

The CMSSM is defined at the GUT-scale by: a common gaugino mass M1/2, a
common scalar mass m0 and the trilinear coupling A0, which gets multiplied by
the corresponding Yukawa couplings to obtain the trilinear couplings in the soft
SUSY breaking Lagrangian. In addition, at the electro-weak scale, tan β = vu/vd
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is fixed. Here, as usual, vd and vu are the vacuum expectation values (vevs) of the
neutral component of Hd and Hu, respectively. Finally, the sign of the µ parameter
has to be chosen.

Two-loop RGEs for general supersymmetric models have been given in [149]. 4 In
our numerical calculations we use SPheno3.1.5 [151, 152], which solves the RGEs
at 2-loop, including right-handed neutrinos. It is, however, useful for a qualitative
understanding, to consider first the simple solutions to the RGE for the slepton
mass parameters found in the leading log approximation [122, 128], given by

(∆M2
L̃)ij = − 1

8π2 (3m2
0 + A2

0)(Y ν†LY ν)ij (4.1)

(∆Al)ij = − 3
8π2A0Yli(Y ν†LY ν)ij

(∆M2
Ẽ)ij = 0,

where only the parts proportional to the neutrino Yukawa couplings have been
written. The factor L is defined as

Lkl = log
(
MG

Mk

)
δkl. (4.2)

Eq. (4.1) shows that, within the type-I seesaw mechanism, the right slepton pa-
rameters do not run in the leading-log approximation. Thus, LFV is restricted to
the sector of left-sleptons in practice, apart from left-right mixing effects which
could show up in the scalar tau sector. Also note that for the trilinear parameters
running is suppressed by charged lepton masses.

It is important that the slepton mass-squareds involve a different combination of
neutrino Yukawas and right-handed neutrino masses than the left-handed neutrino
masses of eq. (3.15). In fact, since (Y ν†LY ν) is a hermitian matrix, it obviously
contains only nine free parameters [123], the same number of unknowns as on the
right-hand side of eq. (3.17), given that in principle all 3 light neutrino masses, 3
mixing angles and 3 CP phases are potentially measurable.

Apart from the slepton mass matrices, Y ν also enters the RGEs for m2
Hu at 1-loop

level. However, we have found that the masses of the Higgs bosons are not very
4The only case not covered in [149] is models with more than one U(1) gauge group. This

case has been discussed recently in [150].
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sensitive to the values of Y ν , see also next section. We thus do not give approxi-
mate expressions for m2

Hu . For all other soft SUSY parameters, Y ν enters only at
the 2-loop level. Thus, the largest effects of the SUSY type-I seesaw are expected
to be found in the left slepton sector.

4.3 Numerical resuts

4.3.1 Preliminaries

We use SPheno3.1.5 [151, 152] to calculate all SUSY spectra and fit the neutrino
data. Unless noted otherwise the fit to neutrino data is done for strict normal hi-
erarchy (i.e. mν1 = 0), best-fit values for the atmospheric and solar mass squared
splitting [12] and tri-bimaximal mixing angles [153]. To reduce the number of free
parameters in our fits, we assume right-handed neutrinos to be degenerate and R
to be the identity. The seesaw scale, called mSS below, is equal to the degener-
ate right-handed neutrino masses. We will comment on expected changes of our
results, when any of these assumptions is dropped in the next subsections. Espe-
cially, recently there have been some indications for a non-zero reactor angle, both
from the long-baseline experiment T2K [154] as well as from the first data in Dou-
ble CHOOZ [155]. We will therefore comment also on non-zero values of θ13 = θR

5.

SPheno solves the RGEs at 2-loop level and calculates the SUSY masses at 1-loop
order, except for the Higgs mass, where the most important 2-loop corrections
have been implemented too. Theoretical errors in the calculation of the SUSY
spectrum are thus expected to be much smaller than experimental errors at the
LHC. However, since for the ILC one expects much smaller error bars, theory er-
rors will become important at some point. We comment on theory errors in the
discussion section.

Observables and their theoretically forecasted errors are taken from the tables
(5.13) and (5.14) of [141] and from [142]. For the LHC we take into account
the “edge variables”: (mll)edge, (mlq)edge

low , (mlq)edge
high, (mllq)edge and (mllq)thresh from

the decay chain q̃L → χ0
2q and χ0

2 → ll̃ → llχ0
1 [156, 157, 158]. In addition,

5θR was not yet measured at the time this work was done.
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we consider (mllb)thresh, (mτ+τ−) (from decays involving the lighter stau) and the
mass differences ∆g̃b̃i

= mg̃ −mb̃i
, with i = 1, 2, ∆q̃Rχ

0
1

= mq̃R −mχ0
1
and ∆l̃Lχ

0
1

=
ml̃L
− mχ0

1
. Since mũR ' md̃R

' mc̃R ' ms̃R applies for a large range of the
parameter space LHC measurements will not be able to distinguish between the
first two generation squarks. The combined errors for an LHC+ILC analysis, tables
(5.14) of [141], are dominated by the ILC for all non-coloured sparticles, except
the stau. For us it is essential that both, left and right sleptons are within reach
of the ILC. Also the two lightest neutralinos and the lighter chargino measured
at ILC are important. The errors in [141] were calculated for relatively light
SUSY spectra, thus we extrapolate them to our study points, see below, assuming
constant relative errors on mass measurements. We will comment in some detail
on the importance of this assumption below. Finally, we use the splitting in the
selectron/smuon sector [148] as an observable:

∆(mẽµ̃) = mẽ −mµ̃

mmean
l̃

. (4.3)

Here, mmean
l̃

= 1
2(mẽ+mµ̃). The LHC can, in principle, measure this splitting from

the edge variables for both, left and right sleptons, if the corresponding scalars are
on-shell. In CMSSM type-I seesaw only the left sector has a significant splitting,
we therefore suppress the index “L” for brevity. For this splitting [148] quote a
“one sigma observability” of ∆(mẽµ̃) ∼ 2.8 h for SPS1a. 6 For comparison, the
errors on the left selectron and smuon mass at the ILC for this point are quoted
as ∆(mẽ) ' 1 h and ∆(mµ̃) ' 2.5 h, respectively [141].

The negative searches for SUSY by CMS [159] and ATLAS [160] define an excluded
range in CMSSM parameter space, ruling out the lightest SPS study points, such
as SPS1a’ [142] or SPS3 [161]. For our numerical study, we define a set of five
points, all of which are chosen to lie outside the LHC excluded region, but have
the lightest non-coloured SUSY particles within reach of a 1 TeV linear collider.

6SPS1a has only the edge in the right-slepton sector on-shell, see discussion fig. (4.3).
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The points are defined as follows:

P1 → (m0 = 120,M1/2 = 600, A0 = 0, tan β = 10),
P2 → (m0 = 120,M1/2 = 600, A0 = 300, tan β = 10),
P3 → (m0 = 120,M1/2 = 600, A0 = −300, tan β = 10), (4.4)
P4 → (m0 = 180,M1/2 = 550, A0 = 0, tan β = 10),
P5 → (m0 = 180,M1/2 = 550, A0 = 300, tan β = 10).

All points have sgn(µ) > 0, masses are in units of GeV. Points P1-P3 lie very close
to the stau-coannihilation line. We have checked by an explicit calculation with
MicrOmegas [162, 163, 164, 165] that the relic density of the neutralino agrees
with the current best fit value of ΩCDMh

2 within the quoted error bars [13] for P1.
P4 and P5 have been chosen such that deviations from the pure cMSSM case are
larger than in P1-P3, see eq.(4.1), i.e. to maximize the impact of the seesaw type-I
on the spectra, see below.

At the date this work was done, all points described in (3.4) lie outside of the
LHC excluded region. However, now, negative searches for SUSY given by CMS
[55] and ATLAS [56] define an excluded range in the CMSSM parameter space,
ruling out all the SPS points studied in this work. Future LHC data, if there are
signals of supersymmetry, would reopen the window in the searches for signs of
type-I seesaw in the SUSY spectra.

4.3.2 Observables and seesaw scale

In this subsection we will first keep all parameters at some fixed values, varying
only the seesaw scale. These calculations are certainly simple-minded, but also
very fast compared to the full Monte Carlo parameter scans, discussed later. How-
ever, as will be shown in the in the next subsection, there is nearly no correlation
between different input parameters. Thus, the simple calculation discussed here
already gives a quite accurate description of the results of the more complicated
minimization procedures of the “full” calculation. Especially, this calculation al-
lows us to identify the most important observables and discuss their maximally
acceptable errors for our analysis.
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In fig. (4.1) we show

σi = mmSS
i −mcMSSM

i

mcMSSM
i

/
∆(mi), (4.5)

where ∆(mi) is the expected relative experimental error for the mass of sparticle i
at the ILC, as a function ofmSS. We remind the reader that we assume that ∆(mi)
can be extrapolated to our study points. To the left results for P1 and to the right
for P5. mcMSSM

i is the value of the mass calculated in the CMSSM limit and mmSS
i

the corresponding mass for a seesaw scale of mSS. These latter values have always
been calculated fitting the Yukawa matrix of the neutrinos at mSS, such that the
best fit values of solar and atmospheric neutrino mass differences are obtained
and mν1 ≡ 0 is maintained. As expected the departures from the CMSSM values
then increase with increasing seesaw scale. Note that the lines stop at values of
mSS ∼ (2 − 3) × 1015 GeV, since for larger values neutrino Yukawas, which are
required to fit the neutrino data, are non-perturbative.

Significant departures with respect to the CMSSM values are found (with decreas-
ing importance) for the following observables: left smuon mass, left selectron mass,
mass of χ0

1, mh0 and χ+
1 . We have checked that all other observables have much

milder dependences on mSS, as expected. The smuon mass is more important
than the selectron mass, despite the latter having a smaller predicted error, due to
our choice of degenerate right-handed neutrinos in the fits. With this assumption
the running of the smuon mass has contributions from Yukawas responsible for
both, atmospheric and solar scale, while the selectron has contributions from the
Yukawas of the solar scale only. The change in χ0

1 and χ+
1 masses are small in

absolute scale, but it is expected that ILC will measure these masses with very
high accuracy. Also mh0 shows some mild dependence on mSS, but on a scale of an
expected experimental error of 50 MeV [142], i.e. much smaller than our current
theoretical error, see below.

As the figure shows deviations from CMSSM expectations of the order of several
standard deviations are reached for left smuon and selectron for values of mSS

above 1014 GeV. Comparing the results for P1 (left) with those for P5 (right) it is
confirmed that P5 shows much larger deviations from CMSSM. We have checked
that results for the other points P2-P4 fall in between the extremes of P1 and P5.
Lines for P2 and P3 are nearly indistinguishable in such a plot, apart from some
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ẽ
µ̃
χ0
1

χ+
1

Figure 4.1: Calculated deviations of masses from their nominal cMSSM values as
function of mSS for the most important masses. To the left P1, to the right P5.

minor difference in the Higgs mass.

In fig. (4.2) we show the calculated χ2 as a function of mSS for 4 different CMSSM
points. Here, χ2 is calculated with respect to CMSSM expectations. To the left we
show χ2

T including all observables, to the right χ2
T without the mass splitting in the

(left) smuon-selectron sector. The figure demonstrates again that P1 (P5) has the
smallest (largest) departures from CMSSM expectations. A non-zero value of A0

can lead to significant departures from CMSSM expectations. Determination of
A0 from measurements involving 3rd generation sfermions and the lightest Higgs
mass will therefore be important in fixing mSS.

Fig. (4.2) also demonstrates that ∆(mẽµ̃) at its nominal error gives a signifi-
cant contribution to the total χ2. Thus, LHC measurements only might already
give some hints for a type-I seesaw [147]. However, with the rather large error
bars of mass measurements at the LHC it will not be possible to fix the CMSSM
parameters with sufficient accuracy to get a reliable error on the value of mSS.
Unfortunately, also the accuracy with which ∆(mẽµ̃) can be measured at the LHC
is quite uncertain. According to [148] such a splitting could be found for values as
low as (few) 10−4 or as large as (several) percent, depending on the kinematical
configuration realized in nature. Moreover, our points P1-P5 have heavier spectra
than the ones studied in [148], so larger statistical errors are to be expected.

Fig. (4.3) shows the relative deviation of ∆(mẽµ̃) for P1 (left) and P5 (right) for
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different assumed values of the error in this observable, relative to cMSSM. Here,
σ = 1, 2, 3, 4 means that we have multiplied the “error” quoted in [148] by factors
1, 2, 3, 4. The deviation drops below one sigma for any value of mSS shown for
P1 (P5) when this error is larger than twice (six times) the nominal error. This
implies that no hints for seesaw type-I can be found in LHC data if the error on
∆(mẽµ̃) is larger than 5 h (1.6 %) in case of P1 (P5).

We should also mention that the actual value of ∆(mẽµ̃) is not only a function
of mSS and the CMSSM parameters, but also depends on the type of fit used
to explain neutrino data. We have used degenerate right-handed neutrinos and
mν1 ≡ 0 in the plots shown above. Much smaller splittings are found for (a) nearly-
degenerate light neutrinos, i.e. mν1 ≥ 0.05 eV; or (b) very hierarchical right-handed
neutrinos. We have checked by an explicit calculation that, for example, for P5

and mν1 ≡ 0, ∆χ2 ≥ 5.89 7 for values of mSS larger than mSS ' 1.6 × 1014 GeV
from ∆(mẽµ̃) alone, whereas the same ∆χ2 is reached for mν1 = 0.05 eV only for
mSS >∼ 7 × 1014 GeV. Consequently, even though one expects that a finite mass
difference between left smuon and selectron is found in CMSSM type-I seesaw, this
is by no means guaranteed.

Similar comments apply to the errors for the selectron and smuon mass at the ILC.
For P1 (P5) the departure of the left selectron mass from the cMSSM expectations
is smaller than 1 σ even for mSS ∼ 3 × 1015 if the error on this mass is larger
than 1.5h (1%). For the left smuon the corresponding numbers are for P1 and P5

approximately 1.5% and 5%, respectively.
Naively one expects LFV violation to be large, whenever the neutrino Yukawa
couplings are large, i.e. for large values of mSS. That is, the regions testable by
SUSY mass measurements could already be excluded by upper bounds on LFV,
especially the recent upper bound on µ→ eγ by MEG [166]. That this conjecture
is incorrect is demonstrated by the example shown in fig. (4.4). In this figure we
show the calculated Br(µ→ eγ) to the left and the calculated χ2 (total and only
∆(mẽµ̃)) to the right for δ = π and two different values of the reactor angle, θ13 for
the point P1. For θ13 = 0 all values of mSS above approximately mSS ∼ 1014 GeV
are excluded by the upper bound Br(µ → eγ) ≤ 2.4 × 10−12 [166]. For θ13 = 6◦

nearly all values of mSS become allowed. At the same time, this “small” change
7∆χ2 ≥ 5.89 corresponds to 1 σ c.l. for 5 free parameters.
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Figure 4.4: To the left Br(µ→ eγ) and to right calculated χ2 as function of mSS

for two different values of the reactor angle θR.

in the Yukawas has practically no visible effect on the calculated χ2 from mass
measurements as the plot on the right shows. This demonstrates that SUSY mass
measurements and LFV probe different portions of seesaw type-I parameter space,
contrary to what is sometimes claimed in the literature. That one can fit LFV
and SUSY masses independently even for such a simple model as type-I seesaw is
already obvious from eq. (4.1): Even after fixing all low energy neutrino observ-
ables we still have nine unknown parameters to choose from to fit any entry of the
left slepton masses independently.

Fig. (4.4) also shows that non-zero values of θ13, as preferred by the most recent
experimental data [154, 155], should have very little effect on our parameter scans.
In our numerical scans, discussed next, we therefore keep θ13 = 0 unless mentioned
otherwise. We will, however, also briefly comment on changes of our results, when
θ13 is allowed to float within its current error.

Numerical scans

For the determination of errors on the CMSSM parameters and mSS we have used
two independent programmes, one based on MINUIT while the other uses a sim-
ple MonteCarlo procedure to scan over the free parameters. For a more detailed
discussion see [143]. Plots shown below are obtained by the MonteCarlo proce-
dure, but we have checked that results from MINUIT and our simplistic approach
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Figure 4.5: Calculated allowed parameter space for m0, M1/2, tan β, A0 and mSS

for 7 free parameters, P5 and mSS = 5× 1014 GeV. For discussion see text.

described above give very similar estimates for the χ2, with MINUIT only slightly
improving the quality of the fit. In this section we always use all observables in
the fits and quote all errors at 1 σ c.l., unless noted otherwise. Since our “fake”
experimental data sets are perfect sets, the minimum of χ2 calculated equals zero
and is thus not meaningful; only ∆χ2 calculated with respect to the best fit points
has any physical meaning in the plots shown below.

Fig. (4.5) shows the allowed parameter space obtained in a MonteCarlo run for
m0, M1/2, tan β, A0 and mSS for 7 free parameters, P5 and mSS = 5× 1014 GeV.
Shown are the allowed ranges of m0 and M1/2 versus mSS, as well as m0 versus
M1/2 and tan β versus A0. On top of the 4 CMSSM parameters and mSS in this
calculation we allow the solar angle (θ12) and the atmospheric angle (θ23) to float
freely within their allowed range. Errors on neutrino angles for this plot are taken
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Figure 4.6: Calculated χ2 distribution versus mSS for 7 free parameters, P5 and
mSS = 1014 GeV (to the left) and mSS = 5× 1014 GeV (to the right).

from [167]. Plots for other points and/or different sets of free parameters look
qualitatively very similar to the example shown in the figure. There is very little
correlation among different parameters, contrary to the situation found in case of
seesaw type-II and type-III [143]. Especially no correlations between m0, M1/2

and mSS are found. However, there is some correlation between tan β and A0,
driven by the fact that mh0

1
alone can only fix a certain combination of these two

parameters well. The correlation between tan β and A0 is slightly stronger than in
the cMSSM case, due to the contribution of A0 in the running of slepton masses,
see eq. (4.1).

For our assumed set of measurements, m0 and M1/2 are mainly determined by the
highly accurate measurements of right slepton and gaugino masses of the ILC. A0

and tan β are fixed by a combination of the lightest Higgs mass and the lighter
stau mass. LHC measurements help to break degeneracies in parameter space,
but are much less important. We stress that the highly accurate determination of
cMSSM parameters shown in fig. (4.5) is a prerequisite for determining reliable
errors on mSS. 8

Fig. (4.6) shows calculated χ2 distributions versus mSS for the same 7 free pa-
rameters as in fig. (4.5), P5 and mSS = 1014 GeV (to the left) and mSS = 5× 1014

8We have checked this explicitly in a calculation using only LHC observables.
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Figure 4.7: Calculated allowed range of mSS versus mSS for 5 (left) and 7 (right)
free parameters and P5. The two different error bars correspond to 1 and 3 σ c.l.

GeV (to the right). For the latter an upper (lower) limit of mSS ' 8 × 1014 GeV
(mSS ' 3× 1014 GeV) is found. For mSS = 1014 GeV a clear upper limit is found,
but for low values of mSS the χ2 distribution flattens out at ∆χ2 ∼ 6.5. This
different behaviour can be understood with the help of the results of the previous
subsection, see fig. (4.2). For mSS = 5 × 1014 GeV, there exists a notable differ-
ence in some observables with respect to the CMSSM expectation, especially left
smuon and selectron mass can no longer be adequately fitted by varying m0 and
M1/2 alone, without destroying the agreement with “data” for right sleptons and
gauginos. Therefore both, a lower and an upper limit on mSS exist for this point.
The situation is different for mSS = 1014 GeV, for which the spectrum is much
closer to CMSSM expectations. Larger values of mSS are excluded, since they
would require larger Yukawas, i.e. larger deviation from CMSSM than observed.
Smaller values of mSS, on the other hand, have ever smaller values of Y ν , i.e. come
closer and closer to CMSSM expectations. For an input value of mSS just below
mSS = 1014 GeV there is then no longer any lower limit on mSS, i.e. the data
becomes perfectly consistent with a pure CMSSM calculation. In this case one
can only “exclude” a certain range of the seesaw, say values of mSS above a few
1014 GeV.

One standard deviation is, of course, too little to claim an observation. We there-
fore show in fig. (4.7) ∆(mSS) versus mSS for 5 (left) and 7 (right) free parameters
and P5 at 1 and 3 σ c.l. At mSS = 1014 formally a 1 sigma “evidence” could be
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reached, but at 3 σ c.l. the spectrum is perfectly consistent with a pure CMSSM.
For larger values of mSS, however, several standard deviations can be reached. For
the two largest values ofmSS calculated in this figure, a 5 σ “discovery” is possible.

Fig. (4.7) shows ∆(mSS) for 5 and 7 free parameters. We have repeated this
exercise for different sets of free parameters and mSS = 5 × 1014. Here, 5 free
parameters correspond to the 4 CMSSM parameters plus mSS, 7 free parameters
are the original 5 plus θ12 and θ23. We have also tried other combinations such
as 6 parameters: original 5 plus θR and 8 parameters, where we let all 3 neutrino
angles float freely. Sets with larger numbers of free parameters are no longer suf-
ficiently sampled in our MonteCarlo runs, so we do not give numbers for these,
although in principle the calculation could allow also to let the neutrinos mass
squared differences to float freely. Error bars are slightly larger for larger number
of free parameters, as expected. However, since there is little or no correlation
among the parameters, the differences are so small as to be completely irrelevant.

4.4 Summary and conclusions
We have discussed the prospects for finding indirect hints for type-I seesaw in
SUSY mass measurements. Since type-I seesaw adds only singlets to the SM par-
ticle content, only very few observables are affected and all changes in masses are
small, even in the most favourable circumstances. Per-mille level accuracies will
be needed, i.e. measurements at an ILC, before any quantitative attempt search-
ing for type-I seesaw can hope for success, even assuming admittedly simplistic
CMSSM boundary condtions.

Our calculation confirms quantitatively that slepton mass measurements can con-
tain information about the type-I seesaw. Right sleptons are expected to be degen-
erate, while the left smuon and selectron show a potentially measurable splitting
between their masses. If such a situation is indeed found, an estimate of mSS

might be derivable from ILC SUSY mass measurements.

Above we have commented only on experimental errors. However, given the per-
mille requirements on accuracy, stressed several times, also theoretical errors in
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the calculation of SUSY spectra are important. Various potential sources of errors
come to mind. First of all, a 1-loop calculation of SUSY masses is almost certainly
not accurate enough for our purposes. We have tried to estimate the importance
of higher loop orders, varying the renormalization scale in the numerical calcula-
tion. Changes of smuon and selectron mass found are of the order of the ILC error
or even larger, depending on SUSY point and variation of scale. For the mass
of the lightest Higgs boson it has been shown that even different calculations at
2-loop still disagree at a level of few GeV [168]. Second, our calculation assumes
a perfect knowledge of the GUT scale. Changes in the GUT scale do lead to
sizeable changes in the calculated spectra for the same cMSSM parameters, which
can be easily of the order of the required precision of the calculation and larger.
In this sense, ∆(mẽµ̃) is an especially nice observable, since here the GUT scale
uncertainty nearly cancels out in the calculation. In summary, if ILC accuracies
on SUSY masses can indeed be reached experimentally, progress on the theoretical
side will become necessary too.

In our calculations, we have considered only SUSY masses. We have not taken into
account data from lepton flavour violation, mainly because currently only upper
limits are available. If in the future finite values for łi → łj + γ become available,
it would be very interesting to see, how much could be learned about the type-I
seesaw parameters in a combined fit. Including LFV one could maybe also allow
for non-degenerate right-handed neutrinos in the fits.

And, finally, despite all the limitations of our study, we find it very encouraging
that hints for type-I seesaw might be found in SUSY mass measurements at all.
We stress again, that LFV and SUSY mass measurements test different portions
of seesaw parameter space. For a more complete “reconstruction” of seesaw pa-
rameters, than what we have attempted here, both kinds of measurements would
be needed.

All fits were done in 2011, where points used were still allowed. However, ATLAS
and CMS actual data exclude now all of them. If SUSY is found at LHC, this
analysis could be repeated and then find realistic results.



Chapter 5

THE WITTEN MECHANISM
IN FLIPPED SU(5)

5.1 Introduction
The apparent absence of supersymmetry in the sub-TeV domain indicated by
the current LHC data reopens the question whether the unprecedented small-
ness of the absolute neutrino mass scale may be ascribed to a loop suppression
with the underlying dynamics in the TeV ballpark rather than the traditional see-
saw [14, 17, 134, 169, 170, 171] picture featuring a very high scale, typically far
beyond our reach. Recently, there has been a lot of activity in this direction with,
e.g., dedicated studies of the Zee [93], Zee-Babu [94, 172, 173, 174] and other mod-
els (cf. [175, 176] and references therein) focusing on their distinctive low-energy
phenomenology and, in particular, their potential to be probed at the LHC and
other facilities, see, e.g., [177, 178, 179, 180, 181].

With the upcoming generation of megaton-scale experiments [114, 182, 183] ded-
icated, besides precision neutrino physics, to the search of perturbative baryon
number violating (BNV) processes such as proton decay, the same question can
be readdressed from the high-energy perspective. In principle, there can be high-
scale loop diagrams behind the right-handed (RH) neutrino masses underpinning
the seesaw mechanism rather than a direct low-scale LL contraction, with possible
imprints in the BNV physics.

63
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Among such options, a prominent role is played by Witten’s scheme [98] in the
framework of the SO(10) grand unification (GUT) where a pair of lepton-number
violating vacuum expectation values (VEVs) is tied to the leptonic sector at two
loops. Its main beauty consists in the observation that the RH neutrino masses are
generated at the renormalizable level even in the simplest realization of SO(10)
with just the minimal scalar contents sufficient for the desired spontaneous sym-
metry breaking (i.e., 10⊕ 16⊕ 45, cf. [184] and references therein); hence, there is
in principle no need to invoke large scalar representations for that sake.

In practice, however, Witten’s mechanism has never found a clearly natural re-
alization as a basis for a potentially realistic model building. Among the possi-
ble reasons there is, namely, the dichotomy between the gauge unification con-
straints and the absolute size of Witten’s loop governed by the position of the
B − L breaking scale MB−L which is required to be around the GUT-scale (MG),
due to the (α/π)2 suppression factor, in order to yield the “correct” seesaw scale
MR ∼ (α/π)2M2

B−L/MG in the 1013 GeV ballpark.
On one hand, this is exactly the situation encountered in supersymmetric GUTs
where the one-step breaking picture characterized by a close proximity of MB−L

and MG is essentially inevitable; at the same time, however, the low-scale super-
symmetry makes the F -type loops at the GUT scale entirely academic due to the
large cancellation involved. On the other hand, non-SUSY GUTs generally require
MB−L � MG in order to account for the gauge unification constraints for which
Witten’s mechanism yields contribution much below the desired MR ∼ 1013 GeV.

In this respect, the beginning of the 1980s, when the low-energy SUSY was not yet
mainstream and the lack of detailed information about the standard model (SM)
gauge coupling evolution as well as the absolute light neutrino mass scale obscured
the issue with the too low Witten’s MR in non-SUSY scenarios, was the only time
when this business really flourished1. For a more recent attempt to implement
such ideas in a simple, yet potentially realistic scenario the reader is deferred to,
e.g., the works [185, 186] where the split supersymmetry scheme supports both
MB−L ∼ MG and very heavy scalar superpartners for which, in turn, the GUT-
scale F -type Witten’s loop is not entirely canceled.

1This can be seen with the citation counts of the original study [98] as about 70% of its
today’s total dates back to before 1985.
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In this chapter we approach this conundrum from a different perspective; in par-
ticular, we stick to the core of Witten’s loop while relaxing, at the same time, the
strict gauge unification constraints. For that sake, we depart from the canonical re-
alization of Witten’s mechanism in a full-fledged SO(10) GUT to its “bare-bone”
version which, as we point out, can be sensibly implemented within its simpler
cousin, namely, the flipped SU(5) [187, 188, 189]. Indeed, the strict full gauge
unification constraints inherent to the SO(10) GUTs are relaxed in such a sce-
nario [owing to the nonsimple structure of its SU(5) ⊗ U(1) gauge group] which,
in turn, makes it possible to have the rank-reducing vacuum expectation value
(VEV) governing Witten’s loop in the 1016 GeV ballpark even if the theory is
nonsupersymmetric.

The reason we are focusing just on the flipped SU(5) framework is twofold: First,
the baryon-number violating observables such as the d = 6 proton decay [50] may
still be used to constrain specific scenarios even if the underlying dynamics is as
high as at 1016 GeV, as we will comment upon in the following. This virtue is
obviously lost if one picks any of the “smaller” subgroups of SO(10) such as Pati-
Salam2 [41], let alone the number of left-right symmetric (LR) settings based on
the SU(3) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge symmetry. Second, the flipped
variant of SU(5)⊗U(1) ⊂ SO(10) is the only one for which a radiative generation
of the RH neutrino masses makes sense because in the standard SU(5) the RH
neutrinos are gauge singlets and as such they receive an explicit singlet mass term.

Besides this, the flipped scenario has got other virtues: the proton decay esti-
mates3 may be under better control than in the standard SU(5) because the lead-
ing theoretical uncertainties in the GUT-scale calculation (namely, the few-percent
ambiguities in the GUT-scale matching of the running gauge couplings due to the
Planck-induced effects [103, 104, 105, 106]) are absent. Furthermore, the flipped
scenario offers better perspectives for a solution of the doublet-triplet splitting
problem (if desired; see, e.g., [102]) and, unlike in the “standard” SU(5), there is
no monopole problem in the flipped case either.

2Let us recall that proton decay in Pati-Salam requires a conspiracy in the Higgs sector as it
does not run solely through the gauge interactions.

3For a nice discussion on how to use BNV observables to distinguish between the standard
and the flipped SU(5) see, e.g., [190].
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On top of that, the proposed scenario is in a certain sense even simpler than the
standard approach to the minimal4 renormalizable flipped SU(5) where the seesaw
scale is associated to the VEV of an extra scalar representation transforming as
a 50-dimensional four-index tensor under SU(5) coupled to the fermionic 10⊗ 10
bilinear (see, e.g., [191]) ; indeed, such a large multiplet is not necessary in the
flipped SU(5) à la Witten; as we shall argue, the two models can even be distin-
guished from each other if rich-enough BNV physics is revealed at future facilities.
In particular, we observe several features in the typical ranges predicted for the
Γ(p→ π0e+) and Γ(p→ π0µ+) partial widths [as well as for those related by the
isospin symmetry such as Γ(p→ ηe+) etc.] that are trivially absent in the model
with 50H in the scalar sector. Remarkably enough, this makes it even possible to
obtain rather detailed information about all kinematically allowed d = 6 nucleon
decay channels in large portions of the parameter space where the theory is stable
and perturbative.

The chapter is organized as follows: In Sec. 5.2, after a short recapitulation of the
salient features of the standard and flipped SU(5) models and the generic predic-
tions of the partial proton decay widths therein, we focus on the Witten’s loop as
a means to constrain the shape of the (single) unitary matrix governing the proton
decay channels into neutral mesons in the flipped case. In Sec. 5.3 we perform a
detailed analysis of the simplest scenario in which a set of interesting correlations
among the different partial proton decay widths to neutral mesons are revealed
with their strengths governed by the absolute size of Witten’s diagram. In Sec. 5.4,
we adopt this kind of analysis to the minimal potentially realistic scenario. Then
we conclude.

5.2 SU(5)⊗ U(1) à la Witten
Let us begin with a short account of the d = 6 proton decay in the SU(5)-based
unifications focusing, namely, on the minimal versions of the standard and flipped
scenarios and the potential to discriminate experimentally among them if proton

4Minimality here refers to models without extra matter fields; for an alternative approach
including, for instance, extra singlet fermions see, e.g., [192].
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decay would be seen in the future.

5.2.1 Proton decay in the standard and flipped SU(5)
Since the new dynamics associated to the rich extra gauge and scalar degrees of
freedom of the flipped SU(5) scenario takes place at a very high scale the most
promising observables it can find its imprints in are those related to the pertur-
bative baryon number violation, namely, proton decay. To this end, the flipped
version of the SU(5) unification is in a better shape than its “standard” cousin as it
provides a relatively good grip [50, 188] on the partial proton decay widths to neu-
tral mesons and charged leptons whereas there is usually very little one can say on
general grounds about these in the standard SU(5) where those are the charged me-
son plus antineutrino channels which are typically under better theoretical control.
Needless to say, this is very welcome as the observability of the charged leptons in
the large-volume liquid scintilator [114]/water-Cherenkow [182]/liquid Argon [183]
experiments boosts the expected signal to background ratio and, hence, provides
a way better sensitivity (by as much as an order-of-magnitude) in these channels
than in those with the unobserved final-state antineutrino.

Let us just note that this has to do, namely, with the hypercharge of the heavy
d = 6 proton-decay-generating gauge colored triplets which under the SM trans-
form as (3, 2,−5

6) in the standard SU(5) case and as (3, 2,+1
6) in the flipped

SU(5), respectively5. As for the former, the relevant d = 6 effective BNV oper-
ators are [50] of the OI ∝ ucQecQ and OII ∝ ucQdcL type while for the latter
these are OIII ∝ dcQucL and OIV ∝ dcQνcQ where “pairing” is always between
the first two and the last two fields therein. Hence, the neutral meson+charged
lepton decays in the standard SU(5) receive contributions from both OI and OII

while it is only OIII that drives it in the flipped scenario6. On the other hand, the
situation is rather symmetric in the charged meson+neutrino channels which in
both cases receive sizeable contributions from only one type of a contraction [OII

in SU(5) and OIII in its flipped version]. Let us also note that the predictivity
5This is also reflected by the classical notation where the SU(2) components of the former

are called X and Y while for the latter these are usually denoted by X ′ and Y ′.
6In fact, OIV is almost always irrelevant as it yields a left-hand antineutrino in the final state

with typically (in the classical seesaw picture) a very tiny projection on the light neutrino mass
eigenstates.



CHAPTER 5. THE WITTEN MECHANISM IN FLIPPED SU(5) 68

for these channels is further boosted by the coherent summation over the (virtu-
ally unmeasurable) neutrino flavors; hence, the inclusive decay widths to specific
charged mesons are typically driven by the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. For instance, in a wide class of simple SU(5) GUTs
(namely, those in which the up-type quark mass matrix is symmetric) the p-decay
widths to π+ and K+ can be written as

Γ(p→ π+ν) =F1|(VCKM)11|2M , (5.1)

Γ(p→ K+ν) =
[
F2|(VCKM)11|2 + F3|(VCKM)12|2

]
M ,

where F1,2,3 are calculable numerical factors and M is a universal dimensionful
quantity governed by the parameters of the underlying “microscopic” theory such
as the GUT scale, the gauge couplings, etc. This feature is yet more pronounced
in the simple flipped scenarios (namely, those in which the down-type quark mass
matrix is symmetric7); there one even obtains a sharp prediction

Γ(p→ K+ν) = 0, (5.2)

which is a clear smoking gun of the flipped SU(5) unification. For more details
an interested reader is deferred to the dedicated analysis [190]. Coming back to
the neutral meson channels in the simplest flipped SU(5) scenarios (i.e., assuming
symmetry of the down quark mass matrix), the partial widths of our main interest
may be written in the form

Γ(p→ π0e+
α )

Γ(p→ π+ν) = 1
2 |(VCKM)11|2|(VPMNSUν)α1|2 , (5.3)

Γ(p→ ηe+
α )

Γ(p→ π+ν) = C2

C1
|(VCKM)11|2|(VPMNSUν)α1|2 , (5.4)

Γ(p→ K0e+
α )

Γ(p→ π+ν) = C3

C1
|(VCKM)12|2|(VPMNSUν)α1|2 , (5.5)

where VPMNS stands for the Pontecorvo-Maki-Nakagawa-Sakata leptonic mixing
matrix and Uν is the unitary matrix diagonalizing the light neutrino masses8. Note

7This, in fact, is the prominent case when the flipped-SU(5) proton decay is robust, i.e.,
cannot be rotated away, cf. [50, 107, 190]; for a more recent account of the same in a flipped-
SU(5) scenario featuring extra matter fields see, e.g., [193].

8Let us anticipate that Eqs (5.3)-(5.5) are written in the basis in which the up-type quark
mass matrix is diagonal and real; needless to say, the observables of our interest are all insensitive
to such a choice. For more details see Appendix C.2.
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that VPMNSUν = UL
e is the LHS diagonalization matrix in the charged lepton sector

[see Eq. (C.9)]; we write it in such a “baroque” way because VPMNS is measurable
and, as will become clear, Uν is constrained in the model under consideration. The
absolute scale in Eqs. (5.3)-(5.5) is set by

Γ(p→ π+ν) = C1

(
gG
MG

)4
, (5.6)

where gG is the SU(5) gauge coupling and the numerical factors

C1 = mp

8πf 2
π

A2
L|α|2(1 +D + F )2, (5.7)

C2 =
(m2

p −m2
η)2

48πm3
pf

2
π

A2
L|α|2(1 +D − 3F )2, (5.8)

C3 =
(m2

p −m2
K)2

8πm3
pf

2
π

A2
L|α|2

[
1 + mp

mB

(D − F )
]2
, (5.9)

are obtained by chiral Lagrangian techniques, see [50] (and references therein), [190]
and Appendix C.1. From Eqs. (5.3)-(5.5), the theory’s predictive power for the
proton decay to neutral mesons (especially for the “golden” p→ π0e+ channel), in
particular, its tight correlation to neutrino physics, is obvious as the only unknown
entry in Eqs. (5.2)-(5.5) is the unitary matrix Uν .

In what follows we shall exploit the extra constraints on the lepton sector flavor
structure emerging in the flipped SU(5) model with Witten’s loop in order to
obtain constraints on the admissible shapes of the Uν matrix and, hence, get a
grip on the complete set of proton decay observables. Let us note that this is
impossible in the models in which the RH neutrino masses are generated in the
“standard” way (e.g., by means of an extra 50H) where, due to the entirely new
type of a contraction entering the lepton sector Lagrangian, Uν typically remains
unconstrained.

5.2.2 Witten’s mechanism in flipped SU(5)

The main benefit of dealing with a unification which is not “grand” (i.e., not based
on a simple gauge group) is the absence of the strict limits on the large-scale
symmetry breaking VEVs from an overall gauge coupling convergence at around
1016 GeV. Indeed, unlike in the SO(10) GUTs which typically require the rank-
breaking VEV (e.g., that of 16- or 126-dimensional scalars) to be several orders
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Figure 5.1: The gauge structure of Witten’s loop in the flipped SU(5) scenario
under consideration. Note that we display just one representative out of several
graphs that may be obtained from the one above by permutations.

of magnitude below MG [194, 195, 196, 197] and, hence, too low for Witten’s
loop to account for the “natural” 1012−14 GeV RH neutrino masses domain, no
such issue is encountered in the SU(5) ⊗ U(1) scenario due to its less restrictive
partial unification pattern. In particular, only the non-Abelian SM gauge couplings
are supposed to converge toward MG which, in turn, should be compatible with
the current proton lifetime limits; no other scale is needed. Furthermore, the
SU(5)⊗ U(1)-breaking VEV VG ≡ 〈10H〉 is perfectly fit from the point of view of
the gauge structure of Witten’s type of a diagram in this scenario.

Witten’s loop structure

As in the original SO(10) case the gauge and loop structure of the relevant graphs
(cf., Fig. 5.1) conforms9 several basic requirements: (i) there should be two VG’s
sticking out of the diagram so that the correct “amount” of the U(1)X breaking
is provided for the desired RH neutrino Majorana mass term; (ii) the interactions
experienced by the fermionic current must mimic the 10M10M50H coupling of the
renormalizable models in which the RH neutrino mass is generated at the tree
level; (iii) only the minimal set of scalars required for the spontaneous symmetry
breaking should be employed. Given that, the structure depicted in Fig. 5.1 turns
out to be the simplest option10; indeed, 5⊗24⊗24 (where 24 stands for the gauge

9Note that the quantum numbers of the submultiplets under the SU(5) subgroup of SO(10)
indicated in Witten’s original work [98] are irrelevant here as the RH neutrinos in the flipped
scenario reside in 10 of SU(5) rather than in a singlet.

10Note that minimality in this context depends on the specific construction of the perturba-
tion expansion as, e.g., one diagram in the broken phase approach with massive propagators
corresponds to a tower of graphs in the unbroken-phase theory when the VEVs are included in
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fields) is the minimum way to devise the desired 50. Note also that the U(1)X
charge of the gauge 24G’s is zero and, thus, the two units of X are delivered to the
leptons via their Yukawa interaction with 5H . We have checked by explicit calcu-
lation that, indeed, the gauge structure of the graph yields a nonzero contribution
for, and only for, the RH neutrino.

The right-handed neutrino mass matrix

Following the standard Feynman procedure the RH neutrino mass matrix can be
written in the form11

MM
ν =

( 1
16π2

)2
g4
GY10 µ

〈10H〉2

M2
G

×O(1) , (5.10)

where gG is the (unified) gauge coupling corresponding to that of the SU(5) part
of the gauge group, µ is the (dimensionful) trilinear scalar coupling among 10H ’s
and 5H , cf. Eq. (5.12), Y10 is the Yukawa coupling of 5H to the matter bilinear
10M ⊗ 10M , cf. Eq. (2.27), 〈10H〉 is the GUT-symmetry-breaking VEV, MG

denotes the GUT scale and, finally, the O(1) factor stands for the remainder of
the relevant expression. Besides the double loop-momentum integration (up to the
geometrical suppression factors that have already been taken out in Eq. (5.10)) this
may contain other structures specific for a particular evaluation method12 such as,
e.g., unitary transformations among the defining and the mass bases in different
sectors. Note also that the second power of MG in the denominator is expected
on dimensional grounds.
To proceed, we shall cluster g2

G with the two powers of VG and formally cancel this
against the M2

G factor (following the usual MG ∼ gGVG rule of thumb)

MM
ν =

( 1
16π2

)2
g2
GY10 µK , (5.11)

where the possible inaccuracy of this has been concealed into the definition of
the (hitherto unknown) factor K. This, in fact, is the best one can do until all
the interaction Hamiltonian.

11Note that due to the symmetry of Y10 the algebraic structure of the “permuted” graphs is
the same as the one in Fig. 5.1 and, hence, all contributions are covered by expression (5.10).

12Obviously, there are several equivalent approaches to the evaluation of the momentum inte-
grals involved in the O(1) factor: one can either work in the mass basis in which the propagators
are diagonal and the couplings contain the rotations from the defining to the mass basis or vice
versa; in principle, one may even work in a massless theory with VEVs in the interaction part of
the Lagrangian.
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the scalar potential couplings are fixed; since, however, we do not embark on
a detailed analysis of the effective potential and its spectrum underpinning any
possible detailed account for the relevant gauge unification constraints, all our
results will be eventually parametrized by the value of K. A qualified guess of the
size of the loop integral [198] (assuming no random cancellations) puts this factor
to the O(10) ballpark; hence, in what follows we shall consider K from about 5 to
about 50.
In the rest of this section we shall elaborate on Eq. (5.11); although there are
several undetermined factors there, namely, Y10, µ and K, the former two are
subject to perturbative consistency constraints following from the requirements
of the SM vacuum stability and general perturbativity which, together with the
above-mentioned bounds on K, impose rather strict limits on the absolute scale
of the RH neutrino masses.

Constraints from the SM vacuum stability

Here we attempt to identify the parameter-space domains that may support a
stable SM vacuum, i.e., those for which there are no tachyons (i.e., no negative-
sign eigenvalues of the relevant scalar mass-squared matrix) in the spectrum.

Tree-level scalar potential. Let us parametrize the tree-level scalar potential
as

V0 = 1
2m

2
10Tr(10†H10H) +m2

55†H5H (5.12)

+ 1
8(µεijklm10ijH10klH5mH + h.c.) +

+ 1
4λ1[Tr(10†H10H)]2 + 1

4λ2Tr(10†H10H10†H10H)

+ λ3(5†H5H)2 + 1
2λ4Tr(10†H10H)(5†H5H)

+ λ55†H10H10†H5H ,

where 10H and 5H are conveniently represented by a 5× 5 complex antisymmetric
matrix and a 5-component complex column vector, respectively, and the normal-
ization factors in the interaction terms have been chosen such that they ensure
simplicity of the resulting Feynman rules and, hence, of the results below. Note
that we choose a basis in which the GUT-scale VEV VG and the electroweak VEV
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v are accommodated in the following components:〈
1045

〉
= −

〈
1054

〉
= VG ,

〈
54
〉

= v . (5.13)

The SM vacuum. The SM vacuum stationarity conditions read

VG
[
m2

10 + V 2
G(2λ1 + λ2) + v2(λ4 + λ5)

]
= 0 , (5.14)

v
[
m2

5 + 2v2λ3 + V 2
G(λ4 + λ5)

]
= 0 .

There are in general four solutions to this system, namely,

VG = v = 0 : SU(5)⊗ U(1) ,
VG 6= 0, v = 0 : SU(3)⊗ SU(2)⊗ U(1) ,
VG 6= 0, v 6= 0 : SU(3)⊗ U(1) ,
VG = 0, v 6= 0 : SU(4)⊗ U(1) ,

with the preserved symmetry indicated on the right; the first three then correspond
to consecutive steps in the physically relevant symmetry breaking chain.

The scalar masses. As long as only the signs of the scalar mass-squares are at
stakes one can work in any basis. Using the “real field” one, i.e., Ψ = {10∗ij, 10ij, 5∗i , 5i}
the mass matrix M2 ≡ 〈∂2V/∂Ψ∗∂Ψ〉 evaluated in the SM vacuum has the fol-
lowing system of eigenvalues (neglecting all subleading terms):

m2
G1,...,16 = 0 (5.15)

m2
H =

[
4λ3 −

2(λ4 + λ5)2

2λ1 + λ2

]
v2 , (5.16)

m2
S = 2(2λ1 + λ2)V 2

G , (5.17)

m2
∆1 = −1

2(λ2 + λ5)V 2
G − 1

2VG
√

(λ2 − λ5)2V 2
G + 4µ2,

m2
∆2 = −1

2(λ2 + λ5)V 2
G + 1

2VG
√

(λ2 − λ5)2V 2
G + 4µ2. (5.18)

A few comments are worth making here:

• The 16 zeroes in Eq. (5.15) correspond to the Goldstone bosons associated to
the spontaneous breakdown of the SU(5)⊗U(1) symmetry to the SU(3)c⊗
U(1)Q of the low-energy QCD⊗QED,
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• mH is the mass of the SM Higgs boson. Let us note that the recent AT-
LAS [199] and CMS [200] measurements of mH indicate that the running ef-
fective quartic Higgs coupling at aroundMG, i.e., the parenthesis in Eq. (5.16)
should be close to vanishing, see, e.g., [201] and references therein,

• mS is the mass of the heavy singlet in 10H ,

• The remaining eigenvalues correspond to the leftover mixture of the colored
triplets with the SM quantum numbers (3, 1,−1

3) from 5H⊕10H (6 real fields
corresponding to each eigenvalue).

Absence of tachyons. Clearly, there are no tachyons in the scalar spectrum as
long as

2λ1 + λ2 > 0 , (5.19)
2λ3(2λ1 + λ2) > (λ4 + λ5)2 , (5.20)

λ2 + λ5 < 0 , (5.21)

and, in particular,

|λ2 + λ5|VG >
√

(λ2 − λ5)2V 2
G + 4µ2 , (5.22)

which may be further simplified to µ2 < λ2λ5V
2
G. Combining this with (5.21) one

further concludes that both λ2 and λ5 must be negative. This also means that λ1

must be positive and obey 2λ1 > |λ2| and, at the same time λ3 must be positive.
To conclude, the µ factor in formula (5.11) is subject to the constraint

|µ| ≤
√
λ2λ5VG. (5.23)

in all parts of the parameter space that can, at the tree level, support a (locally)
stable SM vacuum.

Perturbativity constraints

Let us briefly discuss the extra constraints on the RHS of Eq. (5.11) implied by the
requirement of perturbativity of the couplings therein. Since the graph in Fig. 5.1
emerges at the GUT scale it is appropriate to interpret these couplings as the
running parameters evaluated at MG. Note that the effective theory below this



CHAPTER 5. THE WITTEN MECHANISM IN FLIPPED SU(5) 75

threshold is the pure SM and, thus, one may use the known qualitative features of
the renormalization group evolution of the SM couplings to assess their behavior
over the whole domain from v to VG.

In general, one should assume that for all couplings perturbativity is not violated
at MG and below MG the same holds for the “leftover” parameters of the effective
theory. To that end, one should consider several terms in the perturbative expan-
sion of all amplitudes in the relevant framework and make sure the (asymptotic)
series thus obtained does not exhibit pathological growth of higher-order contribu-
tions (to a certain limit). This, in full generality, is clearly a horrendous task so we
shall as usual adopt a very simplified approach. In particular, we shall make use
of the fact that the running of all dimensionless couplings in the SM is rather mild
so, in the first approximation, it is justified to consider their values at only one
scale and assume the running effects will not parametrically change them. Hence,
in what follows we shall assume that

|λi| ≤ 4π ∀i (5.24)

for all the couplings in the scalar potential.

Resulting bounds on the Uν matrix

With this at hand one can finally derive the desired constraints on the Uν ma-
trix governing the proton decay channels to neutral mesons (5.3)-(5.5). Indeed,
using the seesaw formula, one can trade MM

ν in Eq. (5.11) for the physical light
neutrino mass matrix mLL and the Dirac part of the full 6 × 6 seesaw matrix13

MM
ν = −MD

ν (mLL)−1 (MD
ν )T which, due to the tight link between MD

ν and
the up-type quark mass matrix in the simplest scenarios, MD

ν = MT
u , yields

MM
ν = −MT

u (mLL)−1Mu. Furthermore, the basis in the quark sector can al-
ways be chosen such that the up-quark mass matrix is real and diagonal (see
Appendix C.2); at the same time, one can diagonalize mLL = UT

ν DνUν and ob-
tain:

MM
ν = −DuU

†
νD
−1
ν U∗νDu . (5.25)

13Needless to say, there are always at least three RH neutrinos in the flipped SU(5) models.
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Combining this with formula (5.11) and implementing the vacuum stability con-
straint (5.23) one obtains

|DuU
†
νD
−1
ν U∗νDu| ≤

αG
64π3

√
λ2λ5|Y10|VGK , (5.26)

where we denoted αG ≡ g2
G/4π. Finally, assuming maxi,j∈{1,2,3} |(Y10)ij| = 1 and

saturating the perturbativity constraints (5.24) we have

max
i,j∈{1,2,3}

|(DuU
†
νD
−1
ν U∗νDu)ij| ≤

αG
16π2VGK , (5.27)

which provides a very conservative global limit on the allowed form of Uν and,
hence, on the proton decay partial widths (5.3)-(5.5).

Unification constraints

Let us finish this preparatory section by discussing in brief the constraints from the
requirement of the convergence of the running SU(3)c and SU(2)L gauge couplings
at high energy which shall provide basic information about the scales involved, in
particular, the approximate value of the VG parameter. Given (5.13), the SU(2)L
doublet of the proton-decay-mediating colored triplet gauge fields (X ′, Y ′) has
mass MG = 1

2gGVG while the mass of the heavy U(1)T24 ⊗ U(1)X gauge boson
(i.e., the one orthogonal to the surviving massless SM B-field associated to hyper-
charge) reads MB′ = 2

√
3
5g

2
G + g2

XVG in the units in which the U(1)X generator is
normalized as in Eqs. (2.25).

Let us note again that in the flipped scenario of our interest the MG parameter
corresponds to the scale at which the (X ′, Y ′) are integrated into the theory in order
to obey the SU(3)c and SU(2)L unification constraints. The specific location of this
point and, thus, the absolute size of the proton decay width, however, depends also
on the position of the other thresholds due to the extra scalars to be integrated
in at around MG, in particular, the SU(5) ⊗ U(1)X/SU(3)c ⊗ SU(2)L ⊗ U(1)Y
Goldstone bosons (5.15), the heavy singlet (5.17) and the heavy colored triplets
(5.18). Rather than going into further details here we defer a dedicated analysis
of the situation in Appendix C.3 and, in what follows, we shall stick to just a
single reference scale of MG = 1016.5 GeV which corresponds to the lower limit
obtained therein. This, in turn, yields Γ−1(p → π+ν) of the order of 1038.5 years,
cf. Fig. C.1. Remarkably enough, there is also an upper limit of the order of 1042
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years which, however, is attained only in a “fine-tuned” region where the inequality
(5.23) is saturated.

5.3 A sample model analysis
In order to exploit formula (5.27), it is convenient to begin with its thorough
inspection which, as we shall see, will provide a simple analytic information on the
potentially interesting regions of the parameter space which will, subsequently,
feed into the analysis of the BNV observables. Later on, we shall compare the
analytics with results of a dedicated numerical analysis.

5.3.1 Parameter space

1. CP conserving setup. For the sake of simplicity, we shall start with Uν real
orthogonal which shall be parametrized by three CKM-like angles ω12, ω23 and
ω13:

Uν = U2-3(ω23)U1-3(ω13)U1-2(ω12)

where Ui-j(ωij) stands for a rotation in the i-j plane by an angle ωij, e.g.

U2-3(ω23) =


1 0 0
0 cosω23 sinω23

0 − sinω23 cosω23

 . (5.28)

Assuming normal neutrino hierarchy we parametrize the (diagonal) neutrino mass
matrix Dν = diag(m1,m2,m3) by the (smallest) massm1 of the mostly electronlike
eigenstate. The other two masses are then computed from the oscillation parame-
ters (∆m2

A = 2.43× 10−3 eV2, ∆m2
� = 7.54× 10−5 eV2 [202, 203]) and, for the sake

of this study, we mostly ignore the uncertainties in these observables. Let us note
that for the inverted hierarchy the analysis is technically similar but physically
less interesting, see below. As long as the ratios of m−1

i ’s are all below mt/mc, i.e.,
for m1 & 10−4 eV (which we shall assume in the simple analysis below), the LHS
of Eq. (5.27) is maximized for

(
DuU

†
νD
−1
ν U∗νDu

)
33

= m2
t

(
U †νD

−1
ν U∗ν

)
33
. Hence,

Eq. (5.27) gets reduced to (using VG = 2MG/gG)(
U †νD

−1
ν U∗ν

)
33
≤ K

gG
32π3m2

t

× 1016.5GeV ≈ K × 3 eV−1 , (5.29)
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where we have taken14 gG = 0.5. Besides that, one gets

(
U †νD

−1
ν U∗ν

)
33

= sin2 ω13

m1
+ cos2 ω13

(
sin2 ω23

m2
+ cos2 ω23

m3

)
, (5.30)

which shows that the CKM-like parametrization of Uν is very convenient because
ω12 drops entirely from Eq. (5.30).

For further insight, let us consider the extreme cases first. For ω13 = ω23 = 0 (and
for arbitrary ω12) one has

(
U †νD

−1
ν U∗ν

)
33

= m−1
3 , whereas for ω13 = ω23 = π

2 the
same equals to m−1

1 . While m−1
3 ranges from 11 eV−1 to 20 eV−1 for all m1’s lower

than the current Planck and large-scale-structure limit of about15 0.08 eV [204],
m−1

1 may range in principle from 12 eV−1 to infinity. This explains why the latter
setting may not be allowed by (5.29) ifm1 andK are small enough. For the general
case it is convenient to notice that the RHS of Eq. (5.30) is a convex combination
of the inverse neutrino masses. Thus, for m−1

1 ≤ K×3 eV−1 the inequality (5.29) is
satisfied trivially. This can be clearly seen in Fig. 5.2 where the allowed parameter
space is depicted: for m1 ≥ (3K)−1 eV, i.e, in the lower part of the plot, all ω23

and ω13 are are allowed. On the other hand, if (m−1
3 )min ≈ 11 eV−1 > K × 3 eV−1,

i.e, if K . 4, (5.29) is never fulfilled.

There are two different regimes in the nontrivial region m−1
1 ≥ K× 3 eV−1 ≥ m−1

3 :
if m−1

1 ≥ K × 3 eV−1 ≥ m−1
2 then for small enough ω13 any ω23 is allowed. More

interestingly, for m−1
2 ≥ K × 3 eV−1 ≥ m−1

3 , the allowed domain is confined to
bounded regions around16 ω13 = ω23 = 0. This fully justifies the “chimneylike”
shape in Fig. 5.2 for m−1

1 ≥ K × 3 eV−1. It also follows that the allowed region
becomes wider in the ω23 direction as K grows, see again Fig. 5.2. For K above a
certain critical value, the chimney would be wide open in the ω23 direction.
This is also why the results are less interesting for the inverted hierarchy – there
the two heavier neutrino masses are much closer to each other and, hence, the
interesting region where ω13 and ω23 are constrained turns out to be too narrow.

14For further details see Appendix C.3.
15Note that this value corresponds to the Planck+BAO limit [56] quoted in [204], i.e.,

∑
mν <

0.23 eV at 95% C.L.
16Note that the RHS of Eq. (5.30) is π-periodic.
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Figure 5.2: The shape of the allowed parameter space (ω23 and ω13 governing
Uν on the horizontal axes and the minus log of the lightest neutrino mass m1 on
the vertical; note that m1 decreases from bottom to top) in the CP conserving
setting discussed in Sec. 5.3.1 for K = 10 in the upper and K = 30 in the lower
panel, respectively. The allowed points are all those in the interior of the depicted
structure. The straight cut in the lower part corresponds to the current cosmology
limit on the lightest neutrino mass m1 . 8 × 10−2 eV [204], see the discussion in
the text.
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2. CP violation. Second, let us discuss the case when Uν is an arbitrary unitary
matrix. In the CKM-like parametrization

Uν = PLU2-3(ω23)U ′1-3(ω13, σ)U1-2(ω12)PR , (5.31)

where, as usual, PL = diag (eiρ1 , eiρ2 , eiρ3) and PR = diag (1, eiρ4 , eiρ5) are pure
phase matrices, U2-3(ω23) and U1-2(ω12) are as above, cf. Eq. (5.28), and U ′1-3(ω13, σ)
contains an extra Dirac-like phase σ analogous to the CP phase in the CKMmatrix:

U ′1-3(ω13, σ) =


cosω13 0 sinω13e

−iσ

0 1 0
− sinω13e

iσ 0 cosω13

 .
It is clear that ρ4 and ρ5 drop from the |(VPMNSUν)α1| combination in the decay
rates (5.3)-(5.5) and, hence, they do not need to be considered. Since the analytics
gets too complicated here let us just note that ρ1, ρ2 and ρ3 play a very minor
role in shaping the allowed parameter space and, thus, the only important phase
in the game is σ; for σ close to maximal the strict bounds on ω23 can be lost for
much lighter m1 than in the CP conserving case. As one can see in Fig. 5.3, for
significant σ’s the ω23 parameter is typically out of control unless m1 is taken to
be very tiny [assuming again, for simplicity, the dominance of the 33 element of
the RH neutrino mass matrix (5.25)].

5.3.2 Observables

Since there is no Uν in the partial proton decay widths to charged meson and the
rates (5.4)-(5.5) differ from (5.3) only by calculable numerical factors let us focus
here solely to Γ(p → π0`+) ≡ Γ` for ` = e, µ. It is not difficult to see that if
ω23 can be arbitrary (such as in the lower parts of the allowed regions in Figs. 5.2
and 5.3) there is no control over Γ`. However, if both ω13 and ω23 are restricted,
there may be an upper bound on |(VPMNSUν)21| and, hence, on Γµ, while there is
no such feature observed in Γe. On the other hand, there is a strong correlation
among Γe and Γµ which is clearly visible in the sum of the two decay rates; indeed,
there is instead a lower bound on Γe + Γµ. Hence, in what follows we shall stick
to these two independent observables and note that very similar features can be
seen in the decay rates to K0 and η related to these by the isospin symmetry.
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Figure 5.3: The same as in Fig. 5.2 for the CP violating setting with the “Dirac”
phase in Uν set to σ = π/2 and K = 20. The net effect of a nonzero σ is that ω23

remains unconstrained unless m1 is really tiny [for which case the dominance of
the 33 element in the RH neutrino mass formula (5.25) is assumed]. The effects
of the “outer” phases of Uν in the observables discussed in Sec. 5.3.1 are small so
we conveniently fixed all of them to zero.

To proceed, one also has to take into account that both Γµ and Γe + Γµ in general
depend on ω12. Since, however, these relations are linear one can derive analytic
expressions for “optimal” ω12’s in each case such that Γµ is maximized and Γe+Γµ
is minimized for any given values of ω13 and ω23. Focusing, for simplicity, on the
CP conserving case one has (V stands for the PMNS matrix)

tanωopt
12 = V23 sinω23 − V22 cosω23

V21 cosω13 − sinω13 (V23 cosω23 + V22 sinω23)

for the maximal value of Γµ (given ω13 and ω23) , whereas Γe + Γµ is (for given ω13

and ω23) minimized for

tanωopt
12 = V33 sinω23 − V32 cosω23

V31 cosω13 − sinω13 (V33 cosω23 + V32 sinω23) .

In Fig. 5.4, the solid contours in the upper two panels denote Γµ in units of
0.8 × 1

2Γ(p → π+ν)|(VCKM)11|2 ∼ (1038y)−1 (see Appendix C.3) evaluated at the
point {ωopt

12 (ω23, ω13), ω23, ω13}, i.e., at its upper limits for each ω23 and ω13; simi-
larly, the lower limits on Γe + Γµ are displayed in the lower panels (the color code
is such that the decay rates decrease in darker regions). At the same time, the
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dashed lines are boundaries of the regions allowed by (5.29) for different K’s, i.e.,
the “horizontal cuts” through different “chimneys” such as those in Fig. 5.2 at a
constant m1.

Remarkably enough, if K is not overly large, there is a global upper limit on Γµ,
and a global lower limit on Γe + Γµ on the boundaries of the relevant allowed
regions. Sticking to the (−π/2,+π/2) interval for both ω13 and ω23, which is fully
justified by the symmetry properties of the relevant formulas, the precise position
of such a maximum (minimum) could be found numerically or well approximated
by taking ω13 = 0 and the relevant ω23 on the boundary:

cos2 ω23 = m−1
2 − 3K eV−1

m−1
2 −m−1

3
. (5.32)

This formula holds for both observables, i.e., for the maximum of Γµ as well as for
the minimum of Γe + Γµ; one just has to choose ω23 ∈ (0, π/2) for the former and
ω23 ∈ (−π/2, 0) for the latter, respectively.

5.3.3 Results

In what follows, we shall focus on a pair of observables Xµ and Xe+µ defined
conveniently as

Xµ ≡
Γ(p→ π0µ+)

1
2Γ(p→ π+ν)|(VCKM)11|2

, (5.33)

Xe+µ ≡
Γ(p→ π0e+) + Γ(p→ π0µ+)

1
2Γ(p→ π+ν)|(VCKM)11|2

; (5.34)

their normalization (besides the trivial |(VCKM)11|2 piece) is fully governed by the
size of the Γ(p→ π+ν) factor studied in detail in Appendix C.3.

1. CP conserving case. If Uν is real and orthogonal, both analytic and nu-
merical analyses are tractable so it is interesting to see how these compare. In the
upper plot in Fig. 5.5, the solid lines indicate the analytic upper bounds on Xµ

for a set of different K’s whereas the lower plots depict the corresponding lower
bounds on Xe+µ, respectively. The points superimposed on both plots represent
the results of a numerical analysis. For that sake, m1 and the three CKM-like
angles ω12, ω23 and ω13 were chosen randomly and we fixed K = 7; only those
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Figure 5.4: Contour plots of the ω12-extremes (cf. Sec. 5.3.2) of the partial widths
Γ(p→ π0µ+) (upper panels, decreasing with darkening color) and Γ(p→ π0e+) +
Γ(p → π0µ+) (lower panels) superimposed with the (dashed) boundaries of the
regions allowed by Eq. (5.29) evaluated for m1 = 0.8 × 10−2 eV (left), and m1 =
0.8 × 10−3 eV (right), respectively. In all the plots the innermost and outermost
dashed contours correspond to K = 7 and K = 30 respectively.
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points satisfying the inequality (5.27) are allowed in the plot. We can see that,
in spite of the simple ω13 = 0 assumption on the extremes of X’s, the analytic
curves fit fairly well with the numerics. The agreement is slightly worse for larger
m1 which, however, is the case when the ω13 = 0 approximation becomes rather
rough.17

Concerning the physical interpretation of the results there are several options of
how to read figure Fig. 5.5 and similar plots given in the next section. For instance,
for a fixed K (assuming, e.g., one can learn more about the high-scale structure of
the theory from a detailed renormalization group analysis) a measurement of Xµ

imposes a lower limit on mass of the lightest neutrino (e.g., K = 7 and Xµ ∼ 0.8
is possible if and only if m1 & 10−2 eV etc.) Alternatively, for a given K and a
measured value of m1 one gets a prediction for Xµ (for example, if K = 7 and
m1 ∼ 10−2 eV then Xµ is required to be below about 0.8). Obviously, a similar
reasoning can be applied to Xe+µ.

2. CP violation. The numerical analysis for a complex Uν is far more involved
and, besides that, there is no simple analytics that it can be easily compared to.
We allowed the three CKM-like angles and all the CP phases to vary arbitrarily
within their domains and also m1 was scanned randomly on the logarithmic scale.
For σ close to zero one obtains similar features in Xµ and Xe+µ as in the CP
conserving case regardless of the other three phases ρ1, ρ2, ρ3, see Fig. 5.6. If,
however, also σ is varied randomly, then both of these effects can be seen only
for tiny m1 . 10−6 eV, cf. Fig. 5.7. This, at least for the case of a dominant 33
element of the RH neutrino mass formula (5.25), can be easily understood from the
shape of the allowed parameter space depicted on Fig. 5.3—there is no restriction
on ω23 for moderate m1 while for m1 very tiny ω13 and ω23 are again restricted to
a bounded area.

17It is clear from Fig. 5.4 that the approximation of reaching the minimum at ω13 = 0 is more
accurate for smaller m1 (plots on the right-hand side) where the allowed regions are very narrow
in the ω13 direction.
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Figure 5.5: The global upper limits on Xµ (upper plot) and the global lower
limits on Xe+µ (lower plot), cf. Eqs. (5.33) and (5.34), as functions of the lightest
neutrino mass (in the normal hierarchy case). The lowermost line on the upper
plot, and the uppermost line on the lower plot correspond to K = 7, with every
consecutive contour for K increased by 2. The dots represent an independent
numerical calculation of the same decay rates for K = 7 with randomly chosen
real Uν ’s; only those points satisfying (5.27) are permitted. The hatched area
corresponds to m1 > 0.08 eV which is disfavored by cosmology [204].
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Figure 5.6: The same as in Fig. 5.5 but for a complex Uν and K = 8. The “outer”
phases ρ1, ρ2 and ρ3 (cf. Eq. 5.31) are varied randomly while the “Dirac” phase σ
of Uν was fixed to zero. It is clear that the effect of ρi’s is very mild as the desired
features in the partial widths remain essentially intact.
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Figure 5.7: The same as in Fig. 5.6 but this time for entirely random phases in
Uν including σ. The effects in the partial widths are smeared until m1 . 10−6 eV
because, for larger m1, the important constraints on ω23 from perturbativity and
SM vacuum stability are lost, see Fig. 5.3.
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5.4 Potentially realistic scenarios
A careful reader certainly noticed that, up to now, we have left aside the fact that
in the most minimal model with only a single 5H in the scalar sector the size of
the Yukawa matrix entering Witten’s loop is further constrained by the need to
reproduce the down-quark masses. Indeed, in such a case

Y10 ∼ 1√
2Md/v , (5.35)

which, barring renormalization group running, is at most of the order of mb/v ∼
2%. Hence, in the very minimal model Witten’s loop is further suppressed and the
inequality (5.27) cannot be satisfied unless K is extremely large. In this respect,
the perturbativity limits implemented in the discussion above are, strictly speak-
ing, academic.

Another issue is the MM
ν ∝Md correlation which, regardless of the size of the pro-

portionality factor, renders the light neutrino spectrum too hierarchical. Indeed,
for mLL ∝MT

u (Md)−1Mu which in the Md-diagonal basis reads

mLL ∝ WRDuV
′
CKM(Dd)−1V ′TCKMDuW

T
R , (5.36)

(provided V ′CKM is the “raw” form of the CKM matrix including the five extra
phases usually rotated away in the SM context and WR is an unknown unitary
matrix) one typically gets m2 : m3 ∼ 0.001 while the data suggest this ratio to be
close to

√
∆m2

�/∆m2
A ∼ 0.1. Hence, a potentially realistic generalization of the

minimal scenario is necessary together with a careful analysis of the possible im-
pacts of the extra multiplets it may contain on the results obtained in the previous
sections.

There are clearly many options on how to avoid the unwanted suppression of
Y10 and get a realistic RH neutrino spectrum in more complicated models. One
may, for example, add extra18 vectorlike fermions that may allow large Y10 by
breaking the correlation (5.35), heavy extra singlets etc. However, in many cases
the structure of such a generalized scheme changes so much that some of the vital

18There does not seem to be any loop-induced effect in the quark and/or charged lepton sectors
of the original model that may provide the desired departure from the MM

ν ∝ MD degeneracy;
thus, extra degrees of freedom are necessary.
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ingredients of the previous analysis are lost. In order to deal with this, let us first
recapitulate the main assumptions behind the central formula (5.27) underpinning
the emergence of all the features in the proton decay channels into neutral mesons
seen in Sec. 5.3: First, the down-type quark mass matrix Md was required to be
symmetric. This is not only crucial for the sharp prediction (5.2) but, on more
general grounds, also to avoid the option of “rotating away” the d = 6 gauge-
driven proton decay from the flipped SU(5) altogether, cf. [50, 107, 190]. Second,
in getting a grip on the LHS of Eq. (5.10) we made use of the tight MD

ν = MT
u

correlation. Obviously, both these assumptions are endangered in case one embarks
on indiscriminate model building.

5.4.1 The model with a pair of scalar 5’s
Remarkably enough, the simplest concievable generalization of all, i.e., the model
with an extra 5-dimensional scalar (which resembles the two-Higgs-doublet exten-
sion of the SM), renders the scheme perfectly realistic and, at the same time, it
leaves all the key prerequisites of the analysis in Sec. 5.3 intact.

The Yukawa sector and flavor structure

Assuming both doublets in 5H⊕5′H do have nonzero projections onto the light SM
Higgs the extended Yukawa Lagrangian

L 3 Y1010M10M5H + Y ′1010M10M5′H +
+ Y510M5M5∗H + Y ′510M5M5′H

∗

+ Y15M1M5H + Y ′15M1M5′H + h.c. (5.37)

gives rise to the following set of sum rules for the effective quark and lepton mass
matrices

MD
ν = MT

u ∝ Y5v
∗
5 + Y ′5v

∗
5′ , (5.38)

Md = MT
d = Y10v5 + Y ′10v5′ (5.39)

Me = Y1v5 + Y ′1v5′ arbitrary. (5.40)

Naïvely, one would say that adding three extra 3×3 Yukawa matrices (symmet-
ric Y ′10, arbitrary Y ′5 and Y ′1) the predictive power of the theory would be totally
ruined. However, from the perspective of the analysis in Secs. 5.2 and 5.3 the
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only really important change is the presence of Y ′10; adding Y ′5 and Y ′1 does not
worsen the predictive power of the minimal setting at all because, for the former,
MD

ν = MT
u is still maintained and, for the latter, Me remains as theoretically un-

constrained as before.

Indeed, the net effect of Y ′10 is just the breakdown of the unwanted MM
ν ∝ Md

correlation due to an extra term in the generalized version of formula (5.10):

MM
ν =

( 1
16π2

)2
g4
G(Y10 µ+ Y ′10 µ

′)〈10H〉2

M2
G

×O(1) . (5.41)

Here µ′ is the trilinear coupling of 5′H to the pair of 10H ’s analogous to the third
term in formula (5.12); as long as µ′/µ is different enough from v′/v one can fit all
the down-quark masses without any need for a suppression in Y10 and Y ′10.
Given this, the whole analysis in Sec. 5.3 can be repeated with the only difference
that Eq. (5.23) becomes more technically involved (but, conceptually, it remains
the same) and, with that, there is essentially just an extra factor of 2 popping up
on the RHS of the generalized formula (5.27):

max
i,j∈{1,2,3}

|(DuU
†
νD
−1
ν U∗νDu)ij| ≤

αG
8π2VGK. (5.42)

Hence, all results of Sec. 5.3 can be, in first approximation, adopted to the fully
realistic case by a mere rescaling of the K factor. For example, the allowed points
depicted in Fig. 5.6 for K = 8 in the basic model are allowed in the generalized
setting with K = 4 and so on.

5.5 Summary and conclusions
In this work we point out that the radiative mechanism for the RH neutrino mass
generation, identified by E. Witten in the early 1980s in the framework of the sim-
plest SO(10) grand unified models, can find its natural and potentially realistic
incarnation in the realm of the flipped SU(5) theory. This, among other things,
makes it possible to resolve the long-lasting dichotomy between the gauge unifica-
tion constraints and the position of the B − L breaking scale governing Witten’s
graph: on one side, the current limits on the absolute light neutrino mass require
MB−L to be close to the GUT scale which, on the other hand, is problematic to
devise in the nonsupersymmetric unifications and even useless in the SUSY case
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where Witten’s loop is typically canceled. In this respect, the relaxed unifica-
tion constraints inherent to the flipped SU(5) scheme allow not only for a natural
and a very simple implementation of this old idea but, at the same time, for a rich
enough GUT-scale phenomenology (such as perturbative baryon number violation,
i.e., proton decay) so that the minimal model might be even testable at the near
future facilities.

In particular, we have studied the minimal renormalizable flipped SU(5) model
focusing on the partial proton decay widths to neutral mesons that, in this frame-
work, are all governed by a single unitary matrix Uν to which one gets a grip
through Witten’s loop. Needless to say, this is impossible in the usual case
when the tree-level RH neutrino masses are generated by means of an extra 50-
dimensional scalar and/or extra matter fields due to the general lack of constraints
on the new couplings in such models. Hence, there are two benefits to this ap-
proach: the scalar sector of the theory does not require any multiplet larger than
the 10-dimensional two-index antisymmetric tensor of SU(5) and, at the same
time, one obtains a rather detailed information about all d = 6 proton decay
channels in terms of a single and possibly calculable parameter.

To this end, we performed a detailed analysis of the correlations among the par-
tial proton decay widths to π0 and either e+ or µ+ in the final state and we
observed strong effects in the Γ(p → π0µ+) partial width (an upper bound) and
in Γ(p → π0e+) + Γ(p → π0µ+) (a lower bound) across a significant portion of
the parameter space allowed by the perturbative consistency of the model, as long
as normal neutrino hierarchy is assumed and the Dirac-type CP violation in the
lepton sector is small. In other cases, such effects are observable only if the lightest
neutrino mass is really tiny.

Concerning the strictness of the perturbativity and/or the SM vacuum stability
constraints governing the size of these effects, there are several extra inputs that
may, in principle, make these features yet more robust and even decisive for the
future tests of the simplest models. If, for instance, proton decay would be found
in the near future (at LBNE and/or Hyper-K) the implied upper limit on the
unification scale (which, obviously, requires a dedicated higher-loop renormaliza-
tion group analysis based on a detailed effective potential study) would further
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constrain the high-scale spectrum of the theory which, in turn, feeds into the com-
putation of Witten’s loop and, thus, the K factor; this, in reality, may be subject
to stronger constraints than those discussed in Sec. 5.2 with clear implications for
the relevant partial widths. To this end, there are also other high-energy signals
that may be at least partially useful for this sake such as the baryon asymmetry
of the Universe; although the Uν matrix drops from the “canonical” leading order
contribution to the CP asymmetry of the RH neutrino decays in leptogenesis, the
size of the effective Yukawa couplings may still be constrained and, thus, also the
K factor. This, however, is beyond the scope of the current study and will be
elaborated on elsewhere.



Chapter 6

SUSY AND NON-SUSY GUTS
WITH LR SYMMETRY

6.1 SO(10) INSPIRED MODELS WITH SLID-
ING SCALES

6.1.1 Introduction

In the MSSM (“Minimal Supersymmetric extension of the Standard Model”) gauge
couplings unify at an energy scale of about mG ' 2× 1016 GeV. Adding particles
arbitrarily to the MSSM easily destroys this attractive feature. Thus, relatively
few SUSY models have been discussed in the literature which have a larger than
MSSM particle content at experimentally accessible energies. Neutrino oscillation
experiments [7, 9, 10], however, have shown that at least one neutrino must have
a mass mAtm ≥ 0.05 eV. 1 A (Majorana) neutrino mass of this order indicates the
existence of a new energy scale below mG. For models with renormalizable inter-
actions and perturbative couplings, as for example in the classical seesaw models
[14, 95, 170, 205], this new scale should lie below approximately ΛLNV <∼ 1015 GeV.

From the theoretical point of view GUT models based on the group SO(10) [99]
offer a number of advantages compared to the simpler models based on SU(5).
For example, several of the chains through which SO(10) can be broken to the
SM gauge group contain the left-right (LR) symmetric group SU(3)c × SU(2)L ×

1For the latest fits of oscillation data, see for example [8].
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SU(2)R × U(1)B−L as an intermediate step [206], thus potentially explaining the
observed left-handedness of the weak interactions. However, probably the most
interesting aspect of SO(10) is that it automatically contains the necessary in-
gredients to generate a seesaw mechanism [170]: (i) the right-handed neutrino is
included in the 16 which forms a fermion family; and (ii) (B − L) is one of the
generators of SO(10).

SO(10) based models with an intermediate LR symmetry usually break the LR
symmetry at a rather large energy scale, mR. For example, [207, 208] use 210
and a pair of 126 and 126 to break SO(10) and conclude that, under certain
assumptions about the supersymmetry breaking scale, mR has to be larger than
roughly 1010 GeV. Similar conclusions were reached in [209, 210], where 45, 54
and a pair of 126 and 126 where used to break SO(10). Also in SUSY LR models
inspired by these SO(10) constructions usually mR is assumed to be quite large.
For example, if LR is broken in the SUSY LR model by the vev of (B − L) = 2
triplets [211, 212] or by a combination of (B − L) = 2 and (B − L) = 0 triplets
[213, 214], mR ' 1015 GeV is the typical scale consistent with gauge coupling
unification (GCU). The authors of [215] find a lower limit of mR >∼ 109 GeV from
GCU for models where the LR symmetry is broken by triplets, even if one al-
lows additional non-renormalizable operators or sizeable GUT-scale thresholds to
be present. On the other hand, in models with an extended gauge group it is
possible to formulate sets of conditions on the β-coefficients for the gauge cou-
plings, which allow to enforce GCU independent of the energy scale at which the
extended gauge group is broken. This was called the “sliding mechanism” in [33].
2 However, [33] was not the first to present examples of “sliding scale” models
in the literature. In [32] it was shown that, if the left-right group is broken to
SU(2)L × U(1)R × U(1)B−L by the vacuum expectation value of a scalar field
Φ1,1,3,0 then 3 the resulting U(1)R × U(1)B−L can be broken to U(1)Y of the SM
in agreement with experimental data at any energy scale. In [215] the authors
demonstrated that in fact a complete LR group can be lowered to the TeV-scale, if
certain carefully chosen fields are added and the LR-symmetry is broken by right
doublets. A particularly simple model of this kind was discussed in [217]. Finally,

2A different (but related) approach to enforcing GCU is taken by the authors of [216] with
what they call “magic fields”.

3The indices are the transformation properties under the LR group, see next section and
appendix for notation.
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the authors of [33] discussed also an alternative way of constructing a sliding LR
scale by relating it to an intermediate Pati-Salam stage. We note in passing that
these papers are not in contradiction with the earlier work [211, 212, 213, 214],
which all have to have large mR. As discussed briefly in the next section it is not
possible to construct a sliding scale variant for an LR model including pairs of
Φ1,1,3,−2 and Φ1,3,1,−2.

Three different constructions, based on different SO(10) breaking chains, were
considered in [33]. In chain-I SO(10) is broken in exactly one intermediate (LR
symmetric) step to the standard model group:

SO(10)→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L → MSSM. (6.1)

In chain-II SO(10) is broken first to the Pati-Salam group: [41]

SO(10) → SU(4)× SU(2)L × SU(2)R (6.2)
→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L → MSSM.

And finally, in chain-III:

SO(10) → SU(3)c × SU(2)L × SU(2)R × U(1)B−L (6.3)
→ SU(3)c × SU(2)L × U(1)R × U(1)B−L → MSSM.

In all cases the last symmetry breaking scale before reaching the SM group can be
as low as O(1) TeV maintaining nevertheless GCU. 4 The papers discussed above
[32, 33, 215, 217] give at most one or two example models for each chain, i.e. they
present a “proof of principle” that models with the stipulated conditions indeed
can be constructed in agreement with experimental constraints. It is then perhaps
natural to ask: How unique are the models discussed in these papers? The answer
we find for this question is, perhaps unsurprisingly, that a huge number of variants
exist in each class. Even in the simplest class (chain-I) we have found a total of
53 variants (up to 5324 “configurations”, see next section) which can have pertur-
bative GCU and a LR scale below 10 TeV, consistent with experimental data. For
the two other classes, chain-II and chain-III, we have found literally thousands of
variants.

4In fact, the sliding mechanism would work also at even lower energy scales. This possibility
is, however, excluded phenomenologically.
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With such a huge number of variants of essentially “equivalent” constructions
one immediate concern is, whether there is any way of distinguishing among all
of these constructions experimentally. Tests could be either direct or indirect.
Direct tests are possible, because of the sliding scale feature of the classes of
models we discuss, see section 6.1.2. Different variants predict different additional
(s)particles, some of which (being colored) could give rise to spectacular resonances
at the LHC. However, even if the new gauge symmetry and all additional fields
are outside the reach of the LHC, all variants have different β coefficients and
thus different running of MSSM parameters, both gauge couplings and SUSY soft
masses. Thus, if one assumes the validity of a certain SUSY breaking scheme,
such as for example mSugra, indirect traces of the different variants remain in
the SUSY spectrum, potentially measurable at the LHC and a future ILC/CLIC.
This was discussed earlier in the context of indirect tests for the SUSY seesaw
mechanism in [139, 218, 219] and for extended gauge models in [33]. We generalize
the discussion of [33] and show how the “invariants”, i.e. certain combinations of
SUSY soft breaking parameters, can themselves be organized into a few classes,
which in principle allow to distinguish class-II models from class-I or class-III and,
if sufficient precision could be reached experimentally, even select specific variants
within a class and give indirect information about the new energy scale(s).

6.1.2 Models

6.1.3 Supersymmetric SO(10) models: General considera-
tions

Before entering into the details of the different model classes, we will first list some
general requirements which we use in all constructions. These requirements are
the basic conditions any model has to fulfill to guarantee at least in principle that
a phenomenologically realistic model will result.

We use the following conditions:

• Perturbative SO(10) unification. That is, gauge couplings unify (at least) as
well as in the MSSM and the value of αG is in the perturbative regime.

• The GUT scale should lie above (roughly) 1016 GeV. This bound is motivated
by the limit on the proton decay half-live.
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• Sliding mechanism. This requirement is a set of conditions (different con-
ditions for different classes of models) on the allowed β coefficients of the
gauge couplings, which ensure the additional gauge group structure can be
broken at any energy scale consistent with GCU.

• Renormalizable symmetry breaking. This implies that at each intermediate
step we assume there are (at least) the minimal number of Higgs fields, which
the corresponding symmetry breaking scheme requires.

• Fermion masses and in particular neutrino masses. This condition implies
that the field content of the extended gauge groups is rich enough to fit exper-
imental data, although we will not attempt detailed fits of all data. In par-
ticular, we require the fields to generate Majorana neutrino masses through
seesaw, either ordinary seesaw or inverse/linear seesaw, to be present. 5

• Anomaly cancellation. We accept as valid “models” only field configurations
which are anomaly free.

• SO(10) completable. All fields used in a lower energy stage must be parts
of a multiplet present at the next higher symmetry stage. In particular, all
fields should come from the decomposition of one of the SO(10) multiplets
we consider (multiplets up to 126).

• Correct MSSM limit. All models must be rich enough in particle content
that at low energies the MSSM can emerge.

A few more words on our naming convention and notations might be necessary.
We consider the three different SO(10) breaking chains, eq. (6.1)-(6.3), and will
call these model “classes”. In each class there are fixed sets of β-coefficients, which
all lead to GCU but with different values of αG and different values of αR and αB−L
at low energies. These different sets are called “variants” in the following. And
finally, (nearly) all of the variants can be created by more than one possible set of
superfields. We will call such a set of superfields a “configuration”. Configurations
are what usually is called “model” by model builders, although we prefer to think
of these as “proto-models”, i.e. constructions fulfilling all our basic requirements.
These are only proto-models (and not full-fledged models), since we do not check

5For SO(10) based models including fit to fermion masses (also neutrinos) see, for example
[220, 221].
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for each configuration in a detailed calculation that all the fields required in that
configuration can remain light. We believe that for many, but probably not all, of
the configurations one can find conditions for the required field combinations being
“light”, following similar conditions as discussed in the prototype class-I model of
[217].

All superfields are named as Φ3c,2L,2R,1B−L (in the left-right symmetric stage),
Ψ4,2L,2R (in the Pati-Salam regime) and Φ′3c,2L,1R,1B−L (in the U(1)R × U(1)B−L
regime), with the indices giving the transformation properties under the group.
A conjugate of a field is denoted by, for example, Φ̄3c,2L,2R,1B−L , however, without
putting a corresponding “bar” (or minus sign) in the index. We list all fields we
use, together with their transformation properties and their origin from SO(10)
multiplets, complete up to the 126 of SO(10) in the appendix.

6.1.4 Model class-I: One intermediate (left-right) scale

We start our discussion with the simplest class of models with only one new inter-
mediate scale (LR):

SO(10)→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L → MSSM . (6.4)

We do not discuss the first symmetry breaking step in detail, since it is not rel-
evant for the following discussion and only mention that SO(10) can be broken
to the LR group either via the interplay of vevs from a 45 and a 54, as done
for example in [217], or via a 45 and a 210, an approach followed in [32]. In the
left-right symmetric stage we consider all irreducible representations, which can be
constructed from SO(10) multiplets up to dimension 126. This allows for a total
of 24 different representations (plus conjugates), their transformation properties
under the LR group and their SO(10) origin are summarized in table B.1 (and
table B.2) of the appendix.

Consider gauge coupling unification first. If we take the MSSM particle content
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as a starting point, the β-coefficients in the different regimes are given as: 6

(
bSM3 , bSM2 , bSM1

)
= (−7,−3, 21/5) ,(

bMSSM
3 , bMSSM

2 , bMSSM
1

)
= (−3, 1, 33/5) ,(

bLR3 , bLR2 , bLRR , bLRB−L
)

= (−3, 1, 1, 6) +
(
∆bLR3 ,∆bLR2 ,∆bLRR ,∆bLRB−L

)
,(6.5)

where we have used the canonical normalization for (B−L) related to the physical
one by (B − L)c =

√
3
8(B − L)p. Here, ∆bLRi stands for the contributions from

additional superfields, not accounted for in the MSSM.

As is well known, while the MSSM unifies, putting an additional LR scale below
the GUT scale with ∀∆bLRi = 0 destroys unification. Nevertheless GCU can be
maintained, if some simple conditions on the ∆bLRi are fulfilled. First, since in the
MSSM α3 = α2 at roughly 2×1016 GeV one has that ∆bLR2 = ∆bLR3 ≡ ∆b in order
to preserve this situation for an arbitrary LR scale (sliding condition). Next, recall
the matching condition

α−1
1 (mR) = 3

5α
−1
R (mR) + 2

5α
−1
B−L(mR), (6.6)

which, by substitution of the LR scale by an arbitrary one above mR, allows us
to define an artificial continuation of the hypercharge coupling constant α1 into
the LR stage. The β-coefficient of this dummy coupling constant for E > mR is
3
5b
LR
R + 2

5b
LR
B−L and it should be compared with bMSSM

1 (E < mR); the difference
is 3

5∆bLRR + 2
5∆bLRB−L − 18

5 and it must be equal to ∆b in order for the difference
between this α1 coupling and α3 = α2 at the GUT to be independent of the scale
mR. These are the two conditions imposed by the sliding requirement of the LR
scale on the β-coefficients [see eq. (6.7)]. Note, however, that we did not require
(approximate) unification of αR and αB−L with α3 and α2; it was sufficient to
require that α−1

2 = α−1
3 ≈ 3

5α
−1
R + 2

5α
−1
B−L. In any case, we can always achieve the

desired unification because the splitting between αR and αB−L at the mR scale is
a free parameter, so it can be used to force αR = αB−L at the scale where α3 and
α2 unify, which leads to an almost perfect unification of the four couplings. Also,
we require that unification is perturbative, i.e. the value of the common coupling
constant at the GUT scale is α−1

G ≥ 0. From the experimental value of αS(mZ)
[100] one can easily calculate the maximal allowed value of ∆b as a function of the

6For bSM1 and bSM2 we use the SM particle content plus one additional Higgs doublet.
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scale, where the LR group is broken to the SM group. This is shown in fig. 6.1 for
three different values of α−1

G . The smallest Max(∆b) is obtained for the smallest
value ofmR (and the largest value of α−1

G ). For α−1
G in the interval [0, 3] one obtains

Max(∆b) in the range [4.7, 5.7], i.e. we will study cases up to a Max(∆b) = 5 (see,
however, the discussion below).

50

Figure 6.1: Maximum value of ∆b allowed by perturbativity as function of the
scale mR in GeV. The three different lines have been calculated for three different
values for the unified coupling α−1

G , namely α−1
G = 0, 3, 10. An LR scale below

10 TeV (1 TeV) requires Max(∆b3) <∼ 5.7 (5.2) if the extreme value of α−1
G = 0 is

chosen and Max(∆b3) <∼ 5.1 (4.7) for α−1
G = 3.

All together these considerations result in the following constraints on the allowed
values for the ∆bLRi :

∆bLR2 = ∆bLR3 = ∆b ≤ 5, (6.7)

∆bLRB−L + 3
2∆bLRR − 9 = 5

2∆b ≤ 25
2 .

Given eq. (6.7) one can calculate all allowed variants of sets of ∆bLRi , guaranteed
to give GCU. Two examples are shown in fig. 6.2. The figure shows the running
of the inverse gauge couplings as a function of the energy scale, for an assumed
value of mR = 10 TeV and a SUSY scale of 1 TeV, for (∆bLR3 ,∆bLR2 ,∆bLRR ,∆bLRB−L)
= (0, 0, 1, 15/2) (left) and = (4, 4, 10, 4) (right). The example on the left has
α−1
G ' 25 as in the MSSM, while the example on the right has α−1

G ' 6. Note
that while both examples lead by construction to the same value of α1(mZ), they
have very different values for αR(mR) and αB−L(mR) and thus predict different
couplings for the gauge bosons WR and Z ′ of the extended gauge group.
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Figure 6.2: Gauge coupling unification in LR models formR = 104 GeV. Left panel
is for (∆bLR3 ,∆bLR2 ,∆bLRR ,∆bLRB−L) = (0, 0, 1, 15/2) and right panel for (4, 4, 10, 4).

With the constraints from eq. (6.7), we find that a total of 65 different variants can
be constructed. However, after imposing that at least one of the fields that breaks
correctly the SU(2)R×U(1)B−L symmetry to U(1)Y is present, either a Φ1,1,3,−2 or
a Φ1,1,2,−1 (and/or their conjugates), the number of variants is reduced to 53. We
list them in tables 6.1 and 6.2, together with one example of field configurations
which give the corresponding ∆bLRi .
We give only one example for each configuration in tables 6.1 and 6.2, although
we went through the exercise of finding all possible configurations for the 53 vari-
ants with the field content of table B.5. In total there are 5324 anomaly-free
configurations [222]. Only the variants (0,1), (0,2), (0,4) and (0,5) have only one
configuration, while larger numbers of configurations are usually found for larger
values of ∆bLR3 .

Not all the fields in table B.1 can lead to valid configurations. The fields which
never give an anomaly-free configuration are: Φ8,2,2,0, Φ3,2,2, 4

3
, Φ3,3,1,− 2

3
, Φ3,1,3,− 2

3
,

Φ6,3,1, 2
3
, Φ6,1,3, 2

3
and Φ1,3,3,0. Also the field Φ3,2,2,− 2

3
appears only exactly once in

the variant (5,5) in the configuration 4Φ1,2,1,1 + Φ3,1,1,− 2
3

+ Φ3,2,2,− 2
3

+ 4Φ1,1,2,1 +
2Φ1,1,1,2 +5Φ3,1,1,− 2

3
. Note that, the example configurations we give for the variants

(1,3) and (1,4) are not the model-II and model-I discussed in [33].

Many of the 53 variants have only configurations with Φ1,1,2,−1 (and conjugate)
for the breaking of the LR-symmetry. These variants need either the presence of
Φ1,3,1,0 [as for example in the configuration shown for variant (2,1)] or Φ1,1,3,0 [see,
for example (1,4)] or an additional singlet Φ1,1,1,0 (not shown, since no contribution
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(∆b,∆bR) Sample field combination

(0, 1) Φ̄1,1,2,−1 + 2Φ̄1,1,1,2 + Φ1,1,2,−1 + 2Φ1,1,1,2

(0, 2) 2Φ̄1,1,2,−1 + Φ̄1,1,1,2 + 2Φ1,1,2,−1 + Φ1,1,1,2

(0, 3) Φ̄1,1,2,−1 + Φ̄1,1,1,2 + Φ1,1,2,−1 + Φ1,1,3,0 + Φ1,1,1,2

(0, 4) 2Φ̄1,1,2,−1 + 2Φ1,1,2,−1 + Φ1,1,3,0

(0, 5) Φ̄1,1,2,−1 + Φ1,1,2,−1 + 2Φ1,1,3,0

(1, 1) Φ̄1,2,1,1 + Φ̄1,1,2,−1 + 2Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ1,2,1,1 + Φ1,1,2,−1 + 2Φ1,1,1,2 + Φ3,1,1,− 2
3

(1, 2) Φ̄1,1,2,−1 + 2Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + Φ1,2,2,0 + 2Φ1,1,1,2 + Φ3,1,1,− 2
3

(1, 3) 2Φ̄1,1,2,−1 + Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + Φ1,2,2,0 + Φ1,1,1,2 + Φ3,1,1,− 2
3

(1, 4) Φ̄1,1,2,−1 + Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + Φ1,1,3,0 + Φ1,2,2,0 + Φ1,1,1,2 + Φ3,1,1,− 2
3

(1, 5) 2Φ̄1,1,2,−1 + Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + Φ1,1,3,0 + Φ1,2,2,0 + Φ3,1,1,− 2
3

(1, 6) Φ̄1,1,2,−1 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 2Φ1,1,3,0 + Φ1,2,2,0 + Φ3,1,1,− 2
3

(2, 1) Φ̄1,1,2,−1 + 3Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + Φ1,3,1,0 + 3Φ1,1,1,2 + 2Φ3,1,1,− 2
3

(2, 2) 2Φ̄1,1,2,−1 + 2Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + Φ1,3,1,0 + 2Φ1,1,1,2 + 2Φ3,1,1,− 2
3

(2, 3) Φ̄1,1,2,−1 + 2Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 2Φ1,2,2,0 + 2Φ1,1,1,2 + 2Φ3,1,1,− 2
3

(2, 4) 2Φ̄1,1,2,−1 + Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + 2Φ1,2,2,0 + Φ1,1,1,2 + 2Φ3,1,1,− 2
3

(2, 5) Φ̄1,1,2,−1 + Φ̄1,1,1−2 + 2Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + Φ1,1,3,0 + 2Φ1,2,2,0 + Φ1,1,1,2 + 2Φ3,1,1,− 2
3

(2, 6) 2Φ̄1,1,2,−1 + 2Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + Φ1,1,3,0 + 2Φ1,2,2,0 + 2Φ3,1,1,− 2
3

(2, 7) Φ̄1,1,2,−1 + 2Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 2Φ1,1,3,0 + 2Φ1,2,2,0 + 2Φ3,1,1,− 2
3

(2, 8) Φ̄1,1,2,−1 + Φ̄3,1,2, 1
3

+ Φ1,1,2,−1 + Φ1,1,3,0 + 2Φ1,2,2,0 + Φ3,1,2, 1
3

(3, 1) Φ̄1,2,1,1 + Φ̄1,1,2,−1 + 4Φ̄1,1,1,2 + Φ1,2,1,1 + Φ1,1,2,−1 + Φ1,3,1,0 + Φ8,1,1,0 + 4Φ1,1,1,2

(3, 2) Φ̄1,1,2,−1 + 4Φ̄1,1,1,2 + Φ1,1,2,−1 + Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + 4Φ1,1,1,2

(3, 3) 2Φ̄1,1,2,−1 + 3Φ̄1,1,1,2 + 2Φ1,1,2,−1 + Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + 3Φ1,1,1,2

(3, 4) Φ̄1,2,1,1 + Φ̄1,1,3,−2 + Φ1,2,1,1 + Φ1,3,1,0 + Φ8,1,1,0 + Φ1,1,3,−2

(3, 5) Φ̄1,1,3,−2 + Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,3,−2

(3, 6) Φ̄1,1,2,−1 + 2Φ̄1,1,1,2 + Φ1,1,2,−1 + Φ1,1,3,0 + 3Φ1,2,2,0 + Φ8,1,1,0 + 2Φ1,1,1,2

(3, 7) 2Φ̄1,1,2,−1 + Φ̄1,1,1−2 + 2Φ1,1,2,−1 + Φ1,1,3,0 + 3Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,1,2

(3, 8) Φ̄1,1,2,−1 + Φ̄1,1,1,2 + Φ1,1,2,−1 + 2Φ1,1,3,0 + 3Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,1,2

(3, 9) 2Φ̄1,1,2,−1 + 2Φ1,1,2,−1 + 2Φ1,1,3,0 + 3Φ1,2,2,0 + Φ8,1,1,0

(3, 10) Φ̄1,1,2,−1 + Φ1,1,2,−1 + 3Φ1,1,3,0 + 3Φ1,2,2,0 + Φ8,1,1,0

Table 6.1: List of the 53 variants with a single LR scale. Shown are the 29 variants
with ∆b3 < 4. In each case, the fields shown are the extra ones which are needed
besides the ones contained in the MSSM representations (the 2 Higgs doublets are
assumed to come from one bi-doublet Φ1,2,2,0). The ∆b3,∆b2,∆bR,∆bB−L values
can be obtained from the first column through eqs (6.7).
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(∆b,∆bR) Sample field combination

(4, 1) Φ̄1,1,2,−1 + 5Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 2Φ1,3,1,0 + Φ8,1,1,0 + 5Φ1,1,1,2 + Φ3,1,1,− 2
3

(4, 2) 2Φ̄1,1,2,−1 + 4Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + 2Φ1,3,1,0 + Φ8,1,1,0 + 4Φ1,1,1,2 + Φ3,1,1,− 2
3

(4, 3) Φ̄1,1,2,−1 + 4Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + Φ1,3,1,0 + 2Φ1,2,2,0 + Φ8,1,1,0 + 4Φ1,1,1,2 + Φ3,1,1,− 2
3

(4, 4) Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ̄1,1,3,−2 + 2Φ1,3,1,0 + Φ8,1,1,0 + Φ1,1,1,2 + Φ3,1,1,− 2
3

+ Φ1,1,3,−2

(4, 5) Φ̄1,1,2,−1 + Φ̄3,1,1,− 2
3

+ Φ̄1,1,3,−2 + Φ1,1,2,−1 + 2Φ1,3,1,0 + Φ8,1,1,0 + Φ3,1,1,− 2
3

+ Φ1,1,3,−2

(4, 6) Φ̄3,1,1,− 2
3

+ Φ̄1,1,3,−2 + Φ1,3,1,0 + 2Φ1,2,2,0 + Φ8,1,1,0 + Φ3,1,1,− 2
3

+ Φ1,1,3,−2

(4, 7) Φ̄1,1,2,−1 + 2Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + Φ1,1,3,0 + 4Φ1,2,2,0 + Φ8,1,1,0 + 2Φ1,1,1,2 + Φ3,1,1,− 2
3

(4, 8) 2Φ̄1,1,2,−1 + Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + Φ1,1,3,0 + 4Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,1,2 + Φ3,1,1,− 2
3

(4, 9) Φ̄1,1,2,−1 + Φ̄1,1,1,2 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 2Φ1,1,3,0 + 4Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,1,2 + Φ3,1,1,− 2
3

(4, 10) 2Φ̄1,1,2,−1 + Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + 2Φ1,1,3,0 + 4Φ1,2,2,0 + Φ8,1,1,0 + Φ3,1,1,− 2
3

(4, 11) Φ̄1,1,2,−1 + Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 3Φ1,1,3,0 + 4Φ1,2,2,0 + Φ8,1,1,0 + Φ3,1,1,− 2
3

(5, 1) Φ̄1,2,1,1 + Φ̄1,1,2,−1 + 5Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ Φ1,2,1,1 + Φ1,1,2,−1 + 2Φ1,3,1,0 + Φ8,1,1,0

+5Φ1,1,1,2 + 2Φ3,1,1,− 2
3

(5, 2) Φ̄1,1,2,−1 + 5Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 2Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + 5Φ1,1,1,2

+2Φ3,1,1,− 2
3

(5, 3) 2Φ̄1,1,2,−1 + 4Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + 2Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + 4Φ1,1,1,2

+2Φ3,1,1,− 2
3

(5, 4) Φ̄1,2,1,1 + Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ Φ̄1,1,3,−2 + Φ1,2,1,1 + 2Φ1,3,1,0 + Φ8,1,1,0 + Φ1,1,1,2 + 2Φ3,1,1,− 2
3

+Φ1,1,3,−2

(5, 5) Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ Φ̄1,1,3,−2 + 2Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,1,2 + 2Φ3,1,1,− 2
3

+Φ1,1,3,−2

(5, 6) Φ̄1,1,2,−1 + 2Φ̄3,1,1,− 2
3

+ Φ̄1,1,3,−2 + Φ1,1,2,−1 + 2Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + 2Φ3,1,1,− 2
3

+Φ1,1,3,−2

(5, 7) 2Φ̄3,1,1,− 2
3

+ Φ̄1,1,3,−2 + Φ1,3,1,0 + 3Φ1,2,2,0 + Φ8,1,1,0 + 2Φ3,1,1,− 2
3

+ Φ1,1,3,−2

(5, 8) Φ̄3,1,2, 1
3

+ Φ̄1,1,3,−2 + 2Φ1,3,1,0 + Φ1,2,2,0 + Φ8,1,1,0 + Φ3,1,2, 1
3

+ Φ1,1,3,−2

(5, 9) 2Φ̄1,1,2,−1 + Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + Φ1,1,3,0 + 5Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,1,2

+2Φ3,1,1,− 2
3

(5, 10) Φ̄1,1,2,−1 + Φ̄1,1,1,2 + 2Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 2Φ1,1,3,0 + 5Φ1,2,2,0 + Φ8,1,1,0 + Φ1,1,1,2

+2Φ3,1,1,− 2
3

(5, 11) 2Φ̄1,1,2,−1 + 2Φ̄3,1,1,− 2
3

+ 2Φ1,1,2,−1 + 2Φ1,1,3,0 + 5Φ1,2,2,0 + Φ8,1,1,0 + 2Φ3,1,1,− 2
3

(5, 12) Φ̄1,1,2,−1 + 2Φ̄3,1,1,− 2
3

+ Φ1,1,2,−1 + 3Φ1,1,3,0 + 5Φ1,2,2,0 + Φ8,1,1,0 + 2Φ3,1,1,− 2
3

(5, 13) Φ̄1,1,2,−1 + Φ̄3,1,2, 1
3

+ Φ1,1,2,−1 + 2Φ1,1,3,0 + 5Φ1,2,2,0 + Φ8,1,1,0 + Φ3,1,2, 1
3

Table 6.2: List of the 53 variants with a single LR scale. Shown are the remaining
24 variants, with ∆b3 ≥ 4.
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to any ∆bLRi ), to generate seesaw neutrino masses. Using the Φ1,1,1,0 one could
construct either an inverse [223] or a linear [119, 224] seesaw mechanism, while
with Φ1,3,1,0 a seesaw type-III [134] is a possibility and, finally a Φ1,1,3,0 allows
for an inverse seesaw type-III [33]. The first example where a valid configuration
with Φ1,1,3,−2 appears is the variant (3,4). The simplest configuration is Φ1,2,1,1 +
Φ1,3,1,0 + Φ8,1,1,0 + Φ1,1,3,−2 + Φ̄1,2,1,1 + Φ̄1,1,3,−2 (not the example given in table 6.1).
The vev of the Φ1,1,3,−2 does not only break the LR symmetry, it can also gener-
ate a Majorana mass term for the right-handed neutrino fields, i.e. configurations
with Φ1,1,3,−2 can generate a seesaw type-I, in principle. Finally, the simplest pos-
sibility with a valid configuration including Φ1,3,1,−2 is found in variant (4,1) with
Φ1,1,2,−1+Φ8,1,1,0+Φ1,1,1,2+Φ3,1,1, 4

3
+Φ1,3,1,−2+Φ̄1,1,2,−1+Φ̄1,1,1,2+Φ̄3,1,1, 4

3
+Φ̄1,3,1,−2.

The presence of Φ1,3,1,−2 allows to generate a seesaw type-II for the neutrinos.

As mentioned in the introduction, it is not possible to construct a sliding scale
model in which the LR symmetry is broken by two pairs of triplets: Φ1,3,1,−2 +
Φ̄1,3,1,−2 + Φ1,1,3,−2 + Φ̄1,1,3,−2. The sum of the ∆b’s for these fields adds up to
(∆bLR3 , bLRL ,∆bLRR ,∆bLRB−L) = (0, 4, 4, 18). This leaves only the possibilities (4, 4),
(5, 4), (5, 5), etc. from table 6.2. However, the largest ∆bLRB−L of these models is
(5, 4) which allows for ∆bLRB−L = 31/2, smaller than the required 18. This obser-
vation is consistent with the analysis done in [215], where the authors have shown
that a supersymmetric LR-symmetric model, where the LR symmetry is broken by
two pairs of triplets, requires a minimal LR scale of at least 109 GeV (and, actually,
a much larger scale in minimal renormalizable models, if GUT scale thresholds are
small).

A few final comments on the variants with ∆bLR2 = ∆bLR3 = 0. Strictly speaking,
none of these variants is guaranteed to give a valid model in the sense defined in
sub-section 6.1.3, since they contain only one Φ1,2,2,0 → (Hu, Hd) and no vector-
like quarks (no Φ3,1,1, 4

3
or Φ3,1,1,− 2

3
). With such a minimal configuration the CKM

matrix is trivial at the energy scale where the LR symmetry is broken. We never-
theless list these variants, since in principle a CKM matrix for quarks consistent
with experimental data could be generated at 1-loop level from flavor violating
soft terms, as discussed in [225].

Before we end this section let us mention that variants with ∆bLR3 = 5 will not
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be testable at LHC by measurements of soft SUSY breaking mass terms (“invari-
ants”). This is discussed below in section 6.1.7.

6.1.5 Model class-II: Additional intermediate Pati-Salam
scale

In the second class of supersymmetric SO(10) inspired models we consider, SO(10)
is broken first to the Pati-Salam (PS) group. The complete breaking chain thus
is:

SO(10) → SU(4)× SU(2)L × SU(2)R (6.8)
→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L → MSSM.

The representations available from the decomposition of SO(10) multiplets up
to 126 are listed in table B.2 in the appendix, together with their possible SO(10)
origin. Breaking SO(10) to the PS group requires that Ψ1,1,1 from the 54 takes a
vev. The subsequent breaking of the PS group to the LR group requires that the
singlet in Ψ15,1,1, originally from the 45 of SO(10), acquires a vev. And, finally,
as before in the LR-class, the breaking of LR to SU(3)c×SU(2)L×U(1)Y can be
either done via Φ1,1,2,−1 or Φ1,1,3,−2 (and/or conjugates).

Figure 6.3: Maximum value of ∆bPS4 −∆bLR3 allowed by perturbativity as function
of the scale mPS in GeV. The different lines have been calculated for six different
values of ∆bLR3 . The plot assumes that mR = 1 TeV. The line near the bottom
corresponds to ∆bLR3 = 7.

The additional bi coefficients for the regime [mPS,mGUT ] are given by:

(bPS4 , bPS2 , bPSR ) = (−6, 1, 1) + (∆bPS4 ,∆bPS2 ,∆bPSR ), (6.9)



CHAPTER 6. SUSY AND NON-SUSY GUTS WITH LR SYMMETRY 106

where, as before, the ∆bPSi include contributions from superfields not part of the
MSSM field content.

In this class of models, the unification scale is independent of the LR one if the
following condition is satisfied:

0 =
(
∆bLR3 −∆bLR2 , 3

5∆bLRR + 2
5∆bLRB−L −∆bLR2 − 18

5

)
.

 2 3
−5 0

 .
 ∆bPS4 −∆bPS2 − 3

∆bPSR −∆bPS2 − 12

 . (6.10)

It is worth noting that requiring also that mPS is independent of the LR scale
would lead to the conditions in eq. (6.7), which are the sliding conditions for LR
models. We can see that this must be so in the following way: for some starting
values atmPS of the three gauge couplings, the scalesmPS andmG can be adjusted
such that the two splittings between the three gauge couplings are reduced to zero
at mG. This fixes these scales, which must not change even if mR is varied. As
such α−1

3 (mPS) − α−1
2 (mPS) and α−1

3 (mPS) − α−1
R (mPS) are also fixed and they

can be determined by running the MSSM up to mPS. The situation is therefore
equal to the one that lead to the equalities in eq. (6.7), namely the splittings
between the gauge couplings at some fixed scale must be independent of mR.

Since there are now two unknown scales involved in the problem, the maximum
∆bXi allowed by perturbativity in one regime do not only depend on the new scale
X, but also on the ∆bYi in the other regime as well. As an example, in fig. 6.3
we show the Max(∆bPS4 ) allowed by α−1

G ≥ 0 for different values of ∆bLR3 and for
the choice mR = 1 TeV and and mG = 1016 GeV. The dependence of Max(∆bPS4 )
on mR is rather weak, as long as mR does not approach the GUT scale.
If we impose the limits mR = 103 GeV, mPS ≤ 106 GeV and take mG = 1016 GeV,
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the bounds for the different ∆b′s can be written as: 7

∆bPS2 + 3
10∆bLR2 < 7.2, (6.11)

∆bPS4 + 3
10∆bLR3 < 10, (6.12)

2
5∆bPS4 + 3

5∆bPSR + 3
10

(2
5∆bLRB−L + 3

5∆bLRR
)
< 17. (6.13)

However, as fig. (6.3) shows, Max(∆bPS4 ) is a rather strong function of the choice
of ∆bLR3 . Note, that if mPS is low, say below 1010 GeV, larger ∆bLR3 are possible,
up to ∆bLR3 = 7, see fig. (6.3). The large values of Max(∆bLR) and Max(∆bPS)
allow, in principle, a huge number of variants to be constructed in class-II. This is
demonstrated in fig. (6.4), where we show the number of variants for an assumed
mR ∼ 1 TeV as a function of the scale mPS. Up to mPS = 1015 GeV the list is
exhaustive. For larger values of mPS we have only scanned a finite (though large)
set of possible variants. Note, that these are variants, not configurations. As in the
case of class-I practically any variant can be made by several possible anomaly-free
configurations. The exhaustive list of variants (mPS = 1015 GeV) contains a total
of 105909 possibilities and can be found in [222].

With such a huge number of possible variants, we can discuss only some general
features here. First of all, within the exhaustive set up to mPS = 1015 GeV, there
are a total of 1570 different sets of ∆bLRi , each of which can be completed by more
than one set of ∆bPSi . Variants with the same set of ∆bLRi but different comple-
tion of ∆bPSi have, of course, the same configuration in the LR-regime, but come
with a different value for mPS for fixed mR. Thus, they have in general different
values for αB−L and αR at the LR scale and, see next section, different values of
the invariants. For example, for the smallest values of ∆bLRi , that are possible in
principle [∆bLRi = (0, 0, 1, 3/2)], there are 342 different completing sets of ∆bPSi .

The very simplest set of ∆bLRi possible, ∆bLRi = (0, 0, 1, 3/2), corresponds to the
configuration Φ1,1,2,−1 + Φ̄1,1,2,−1. These fields are necessary to break SU(2)R ×

7In fact, the bounds shown here exclude a few variants with mPS < 106 GeV. This is because
of the following: while in most cases the most conservative assumption is to assume that mPS

is as large as possible (= 106 GeV; this leads to a smaller running in the PS regime) in deriving
these bounds, there are some cases where this is not true. This is a minor complication which
nonetheless was taken into account in our computations.
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Figure 6.4: The number of possible variants in model class-II, assuming mR is
of order mR ' 1 TeV as a function of mPS. Up to mPS = 1015 GeV the list is
exhaustive. For larger values of mPS we have only scanned a finite (though large)
set of possible variants.

U(1)B−L → U(1)Y . Their presence in the LR regime requires that in the PS-regime
we have at least one set of copies of Ψ4,1,2 + Ψ̄4,1,2. In addition, for breaking the
PS group to the LR group, we need at least one copy of Ψ15,1,1. However, the set
of Ψ4,1,2 +Ψ̄4,1,2 +Ψ15,1,1 is not sufficient to generate a sliding scale mechanism and
the simplest configuration that can do so, consistent with ∆bLRi = (0, 0, 1, 3/2), is
3Ψ1,2,2 +4Ψ1,1,3 +Ψ4,1,2 +Ψ̄4,1,2 +Ψ15,1,1, leading to ∆bPSi = (6, 3, 15) and a very low
possible value of mPS of mPS = 8.2 TeV for mR = 1 TeV (see, however, the discus-
sion on leptoquarks below). The next possible completion for Φ1,1,2,−1 +Φ̄1,1,2,−1 is
3Ψ1,2,2+5Ψ1,1,3+Ψ4,1,2+Ψ̄4,1,2+Ψ15,1,1, with ∆bPSi = (6, 3, 17) andmPS = 1.3×108

GeV (for mR = 1 TeV), etc.

As noted already in section 6.1.4, one copy of Φ1,2,2,0 is not sufficient to produce a
realistic CKM matrix at tree-level. Thus, the minimal configuration of Φ1,1,2,−1 +
Φ̄1,1,2,−1 relies on the possibility of generating all of the departure of the CKM
matrix from unity by flavor violating soft masses [225]. There are at least two pos-
sibilities to generate a non-trivial CKM at tree-level, either by adding (a) another
Φ1,2,2,0 plus (at least) one copy of Φ1,1,3,0 or via (b) one copy of “vector-like quarks”
Φ3,1,1, 4

3
or Φ3,1,1,− 2

3
. Consider the configuration Φ1,1,2,−1 +Φ̄1,1,2,−1 +Φ1,2,2,0 +Φ1,1,3,0

first. It leads to ∆bLRi = (0, 1, 4, 3/2). Since Φ1,2,2,0 and Φ1,1,3,0 must come from
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Ψ1,2,2 (or Ψ15,2,2) and Ψ1,1,3, respectively, the simplest completion for this set of
∆bLRi is again 3Ψ1,2,2 +4Ψ1,1,3 +Ψ4,1,2 +Ψ̄4,1,2 +Ψ15,1,1, leading to ∆bPSi = (6, 3, 15)
and value of mPS of, in this case, mPS = 5.4 TeV for mR = 1 TeV. Again, many
completions with different ∆bPSi exist for this set of ∆bLRi .

The other possibility for generating CKM at tree-level, adding for example a pair
of Φ3,1,1,− 2

3
+ Φ̄3,1,1,− 2

3
, has ∆bLRi = (1, 0, 1, 5/2) and its simplest PS-completion is

4Ψ1,2,2 + 4Ψ1,1,3 + Ψ4,1,2 + Ψ̄4,1,2 + Ψ6,1,1 + Ψ15,1,1, with ∆bPSi = (7, 4, 16) and a
mPS = 4.6×106 TeV for mR = 1 TeV. Also in this case one can find sets with very
low values of mPS. For example, adding a Φ1,2,2,0 to this LR-configuration (for a
∆bLRi = (1, 1, 2, 5/2)), one finds that with the same ∆bPSi now a value of mPS as
low as mPS = 8.3 TeV for mR = 1 TeV is possible.

We note in passing that the original PS-class model of [33] in our notation cor-
responds to ∆bLRi = (1, 2, 10, 4) and Φ1,1,2,−1 + Φ̄1,1,2,−1 + Φ1,2,1,1 + Φ̄1,2,1,1 +
Φ1,2,2,0 + 4Φ1,1,3,0 + Φ3,1,1,− 2

3
+ Φ̄3,1,1,− 2

3
, completed by ∆bPSi = (9, 5, 13) with

Ψ4,1,2 +Ψ̄4,1,2 +Ψ4,2,1 +Ψ4,2,1 +Ψ1,2,2 +4Ψ1,1,3 +Ψ6,1,1 +Ψ15,1,1. The lowest possible
mPS for a mR = 1 TeV is mPS = 2.4× 108 GeV. Obviously this example is not the
simplest construction in class-II. We also mention that while for the β-coefficients
it does not make any difference, the superfield Φ1,1,3,0 can be either interpreted as
“Higgs” or as “matter”. In the original construction [33] this “arbitrariness” was
used to assign the 4 copies of Φ1,1,3,0 to one copy of Ωc = Φ1,1,3,0, 8 i.e.“Higgs” and
three copies of Σc = Φ1,1,3,0, i.e. “matter”. In this way Ωc can be used to gen-
erate the CKM matrix at tree-level (together with the extra bi-doublet Φ1,2,2,0),
while the Σc can be used to generate an inverse seesaw type-III for neutrino masses.

As fig. (6.4) shows, there are more than 600 variant in which mPS can, in prin-
ciple, be lower than mPS = 103 TeV. Such low PS scales, however, are already
constrained by searches for rare decays, such as Bs → µ+µ−. This is because the
Ψ15,1,1, which must be present in all our constructions for the breaking of the PS
group, contains two leptoquark states. We will not study in detail leptoquark phe-
nomenology [226] here, but mention that in the recent paper [227] absolute lower
bounds on leptoquarks within PS models of the order of mPS ' 40 TeV have been

8The original paper [33] called this field Ω. However, in our notation it would be natural to
call Ω = Φ1,3,1,0.
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derived. There are 426 variants for which we find mPS lower than this bound, if
we put mR to 1 TeV. Due to the sliding scale nature of our construction this, of
course, does not mean that these models are ruled out by the lower limit found
in [227]. Instead, for these models one can calculate a lower limit on mR from
the requirement that mPS = 40 TeV. Depending on the model, lower limits on mR

between mR = [1.3, 27.7] TeV are found for the 426 variants from this requirement.

Two example solutions can be seen in fig. 6.5. We have chosen one example with a
very low mPS (left) and one with an intermediate mPS (right). Note, that different
from the class-I models, in the class-II models the GUT scale is no longer fixed to
the MSSM value mG ≈ 2×1016 GeV. Our samples are restricted to variants which
have mG in the interval [1016, 1018] GeV.

Figure 6.5: Gauge coupling unification for PS models with mR = 103

GeV. In the plot to the left (∆bLR3 ,∆bLRL ,∆bLRR ,∆bLRB−L,∆bPS4 ,∆bPSL ,∆bPSR ) =
(3, 5, 10, 3/2, 8, 5, 17), while the plot to the right corresponds to ∆b′s =
(3, 4, 12, 6, 8, 4, 12).

6.1.6 Models with an U(1)R × U(1)B−L intermediate scale

Finally, we consider models where there is an additional intermediate symmetry
U(1)R × U(1)B−L that follows the stage SU(2)R × U(1)B−L. The field content
relevant to this model is specified in table B.3 of the appendix. In this case the
original SO(10) is broken down to the MSSM in three steps,

SO(10) → SU(3)c × SU(2)L × SU(2)R × U(1)B−L (6.14)
→ SU(3)c × SU(2)L × U(1)R × U(1)B−L → MSSM.
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The first step is achieved in the same way as in class-I models. The subsequent
breaking SU(2)R ×U(1)B−L → U(1)R ×U(1)B−L is triggered by Φ5 = Φ1,1,3,0 and
the last one requires Φ′4 = Φ′1,1, 1

2 ,−1, Φ′20 = Φ′1,1,1,−2 or their conjugates.

In theories with more that one U(1) gauge factor, the one loop evolution of the
gauge couplings and soft-SUSY-breaking terms are affected by the extra kinetic
mixing terms. The couplings are defined by the matrix

G =
 gRR gRX
gXR gXX

 (6.15)

and A(t) = (GGT )/(4π) = (A−1(t0) − γ(t − t0))−1, where t = 1
2π log( µ

µ0
) [33].

Here, µ and µ0 stand for the energy scale and its normalization point and A is
the generalization of α to matrix form. The matrix of anomalous dimension, γ, is
defined by the charges of each chiral superfield f under U(1)R and U(1)B−L:

γ =
∑
f

QfQ
T
f , (6.16)

where Qf denotes a column vector of those charges. Taking the MSSM’s field
content we find

γ =
 7 0

0 6

 . (6.17)

To ensure the canonical normalization of the B − L charge within the SO(10)
framework, γ should be normalized as γcan = NγphysN , where N = diag(1,

√
3/8).

Then, the additional β coefficients for the running step [mB−L,mR] are given by,

(bB−L3 , bB−L2 , γB−LRR , γB−LXR , γB−LXX ) = (−3, 1, 6, 0, 7)+ (6.18)
(∆bB−L3 ,∆bB−L2 ,∆γRR,∆γXR,∆γXX).

As in the previous PS case, we consider mB−L = 103 GeV, mG ≥ 1016 GeV and
mR ≤ 106 GeV. Taking into account the matching condition:

pTY · A−1(mB−L) · pY = α−1
1 (mB−L) (6.19)
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and pTY = (
√

3
5 ,
√

2
5), the bounds on the ∆b are,

∆bLR2 + 3
10∆bB−L2 < 7.1, (6.20)

∆bLR3 + 3
10∆bB−L3 < 6.9,

3
5∆bLRR + 2

5∆bLRB−L+ 3
10p

T
Y ·∆γ · pY < 10.8.

Even with this restriction in the scales we found 15610 solutions, more than in the
PS case, due to the fact that there are more ∆b′s that can be varied to obtain solu-
tions. The qualitative features of the running of the gauge couplings are shown for
two examples in fig. (6.6). In those two examples the (∆bLR3 ,∆bLRL ,∆bLRR ,∆bLRB−L,
,∆bB−L3 ,∆bB−LL ,∆γRR,∆γXR,∆γXX) have been chosen as (0, 1, 3, 3, 0, 0, 1/2,
,−
√

3/8, 3/4) (left) and (2, 2, 4, 8, 2, 2, 1/2,−
√

3/8, 11/4) (right). The former cor-
responds to the minimal configuration Φ′1,1,1/2,−1+Φ̄′1,1,1/2,−1 in the lower regime and
Φ1,1,2,−1 +Φ̄1,1,2,−1 +Φ1,1,3,0 +Φ1,2,1,1 +Φ̄1,2,1,1 in the higher (LR-symmetric regime).
The latter corresponds to Φ′1,1,1/2,−1 +Φ̄′1,1,1/2,−1 +Φ′1,3,0,0 +2Φ′3,1,1,−2/3 +2Φ̄′3,1,1,−2/3
and 2(Φ1,1,2,−1 + Φ̄1,1,2,−1) + Φ1,1,3,0 + Φ1,3,1,0 + Φ1,1,1,2 + Φ̄1,1,1,2 + 2(Φ3,1,1,−2/3 +
Φ̄3,1,1,−2/3), respectively.

Figure 6.6: Gauge coupling unification in models with an
U(1)R × U(1)B−L intermediate scale, for mR = 103 GeV. Left:
(∆bLR3 ,∆bLRL ,∆bLRR ,∆bLRB−L,∆bB−L3 ,∆bB−LL ,∆γRR,∆γXR,∆γXX) =
(0, 1, 3, 3, 0, 0, 1/2,−

√
3/8, 3/4). Right: (2, 2, 4, 8, 2, 2, 1/2,−

√
3/8, 11/4). The

line, which appears close to zero in the U(1)R × U(1)B−L regime is the running
of the off-diagonal element of the matrix A−1, i.e. measures the size of the
U(1)-mixing in the model.

For models in this class, the sliding condition requires that the unification scale is
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independent of mB−L and this happens when

0 =
(
∆bB−L3 −∆bB−L2 , pTY ·∆γ · pY −∆bB−L2

)
.

 0 1
−1 0

 . (6.21)
 ∆bLR3 −∆bLR2

3
5∆bLRR + 2

5∆bLRB−L −∆bLR2 − 18
5

 .
Similarly to PS models, in this class of models the higher intermediate scale (mR)
depends, in general, on the lower one (mB−L). However, there is also here a
special condition which makes both mR and mG simultaneously independent of
mB−L, which is

∆bLR3 = ∆bLR2 = pTY ·∆γ · pY . (6.22)

Models of this kind are, for example, those with ∆b3 = 0 and mR large, namely
mR ≥ 1013 GeV. One case is given by the model in [33], where mR ' 4×1015 GeV.

6.1.7 Leading-Log RGE Invariants

In this section we briefly recall the basic definitions [33] for the calculation of the
“invariants” [139, 218, 219]. In mSugra there are four continuous and one discrete
parameter: The common gaugino mass M1/2, the common scalar mass m0, the
trilinear coupling A0 and the choice of the sign of the µ-parameter, sgn(µ). In
addition, the ratio of vacuum expectation values of Hd and Hu, tan β = vu

vd
is a

free parameter. The latter is the only one defined at the weak scale, while all the
others are assigned a value at the GUT scale.

Gaugino masses scale as gauge couplings do and so the requirement of GCU fixes
the gaugino masses at the low scale

Mi(mSUSY ) = αi(mSUSY )
αG

M1/2. (6.23)

Neglecting the Yukawa and soft trilinear couplings for the soft mass parameters
of the first two generations of sfermions one can write

m2
f̃ −m

2
0 =

M2
1/2

2πα2
G

∑
Rj

N∑
i=1

c
f,Rj
i α

Rj
i−α

Rj
i+

(
α
Rj
i− + α

Rj
i+

)
log m

Rj
+

m
Rj
−
. (6.24)
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Here, the sum over “Rj” runs over the different regimes in the models under con-
sideration, while the sum over i runs over all gauge groups in a given regime. mRj

+

and mRj
− are the upper and lower boundaries of the Rj regime and αRji+ , αRji− are the

values of the gauge coupling of group i, αi, at these scales. As for the coefficients
ci, they can be calculated from the quadratic Casimir of representations of each
field under each gauge group i and are given for example in [33]. In the presence
of multiple U(1) gauge groups the RGEs are different (see for instance [150] and
references contained therein) and this leads to a generalization of equation (6.24)
for the U(1) mixing phase [33]. Here we just quote the end result (with a minor
correction to the one shown in this last reference) ignoring the non-U(1) groups:

m̃2
f̃− − m̃

2
f̃+ =

M2
1/2

πα2
G

QT
fA− (A− + A+)A+Qf log m+

m−
, (6.25)

where m+ and m− are the boundary scales of the U(1) mixing regime and A+,
A− are the A matrix defined in the previous section (which generalizes α) evalu-
ated in these two limits. Likewise, m̃2

f̃+ and m̃2
f̃− are the values of the soft mass

parameter of the sfermion f̃ at these two energy scales. The equation above is a
good approximation to the result obtained by integration of the following 1-loop
RGE for the soft masses which assumes unification of gaugino masses and gauge
coupling constants:

d

dt
m̃2
f = −

4M2
1/2

α2
G

QT
fA

3Qf . (6.26)

Note that in the limit where the U(1) mixing phase extends all the way up to
mG, the A matrix measured at different energy scales will always commute and
therefore equation (6.25) presented here matches the one in [33] and in fact both
are exact integrations of (6.26). However, if this is not the case, it is expected that
there will be a small discrepancy between the two approximations, which never-
theless is numerically small and therefore negligible.

From the five soft sfermion mass parameters of the MSSM and one of the gaugino
masses it is possible to form four different combinations that, at 1-loop level in the
leading-log approximation, do not depend on the values of m0 and M1/2 and are
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therefore called invariants:

LE = (m2
L̃
−m2

Ẽ
)/M2

1 , (6.27)
QE = (m2

Q̃
−m2

Ẽ
)/M2

1 ,

DL = (m2
D̃
−m2

L̃
)/M2

1 ,

QU = (m2
Q̃
−m2

Ũ
)/M2

1 .

While being pure numbers in the MSSM, invariants depend on the particle content
and gauge group in the intermediate stages, as shown by eq. (6.24).
We will not discuss errors in the calculation of the invariants in detail, we refer
the interested reader to [33] and for classical SU(5) based SUSY seesaw models to
[218, 219].

We close this subsection by discussing that not all model variants which we pre-
sented in section 6.1.2 will be testable by measurements involving invariants at the
LHC. According to [228] the LHC at

√
s = 14 TeV will be able to explore SUSY

masses up to mg̃ ∼ 3.2 TeV (3.6 TeV) for mq̃ ' mg̃ and of mg̃ ∼ 1.8 TeV (2.3 TeV)
for mq̃ � mg̃ with 300 fb−1 (3000 fb−1). The LEP limit on the chargino, mχ > 105
GeV [100], translates into a lower bound for M1/2, with the value depending on
the ∆b. For the class-I models with ∆b = 5 this leads to M1/2 >∼ 1.06 TeV. One
can assume conservatively m0 = 0 GeV and calculate from this lower bound on
M1/2 a lower limit on the expected squark masses in the different variants. All
variants with squark masses above the expected reach of the LHC-14 will then
not be testable via measurements of the invariants. This discards all models with
∆b = 5 as untestable unfortunately.

For completeness we mention that if we take the present LHC limit on the gluino,
mg̃ >∼ 1.1 TeV [229], this will translate into a lower limit M1/2 >∼ 4.31 TeV for
∆b = 5. We have also checked that models with ∆b = 4, can still have squarks
with masses testable at LHC, even for the more recent LHC bound on the gluino
mass.

6.1.8 Classification for invariants

For a given model, the invariants defined in eq. (6.27) differ from the mSugra
values, and the deviations can be either positive or negative once new superfields
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(and/or gauge groups) are added to the MSSM. The mSugra limit is reached in our
models when the intermediate scales are equal to mG, but it should be noted that,
in general, when there are two intermediate scales, the smallest one (henceforth
called m−) cannot be pushed all the way up to the unification scale. Therefore,
in those cases, the invariants measured at the highest possible m− are slightly
different from the mSugra invariants.

With this in mind, for each variant of our models, we considered whether the
invariants for min m−(=mSUSY ) are larger or smaller than for max m−, which
tends to be within one or two orders of magnitude of mG. With four invariants
there are a priori 24 = 16 possibilities, and in table 6.3 each of them is assigned a
number.

Set # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∆LE + + + + + + + + − − − − − − − −
∆QE + + + − + − − − + + + − + − − −
∆DL + + − + − + − − + + − + − + − −
∆QU + − + + − − + − + − + + − − + −

Class-I? � � � �
Class-II? � � � � � � � � �
Class-III? � � � � � � � �

Table 6.3: The 16 different combinations of signs for 4 invariants. We assign a
“+” if the corresponding invariant, when the lowest intermediate scale is set to
mSUSY , is larger than its value when this scale is maximized, and “−” otherwise.
As discussed in the text, only 9 of the 16 different sign combinations can be realized
in the models we consider. Moreover, for class-I only the sets 1,2, 10 and 14 can
be realized, see discussion. For class-III we also have found only sets 1, 2, 3, 6, 7,
8, 10 and 14, but here our search was not exhaustive.

However, it is easy to demonstrate that not all of the 16 sets can be realized in
the three classes of models we consider. This can be understood as follows. If all
sfermions have a common m0 at the GUT scale, then one can show that

m2
Ẽ
−m2

L̃
+m2

D̃
− 2m2

Ũ
+m2

Q̃
= 0 (6.28)



CHAPTER 6. SUSY AND NON-SUSY GUTS WITH LR SYMMETRY 117

holds independent of the energy scale, at which soft masses are evaluated. This
relation is general, regardless of the combination of intermediate scales that we may
consider and for all gauge groups we consider. It is a straightforward consequence
of the charge assignments of the standard model fermions and can be easily checked
by calculating the Dynkin coefficients of the E,L,D,U and Q representation in the
different regimes. In terms of the invariants, this relation becomes:

QE = DL+ 2QU, (6.29)

i.e. only three of the four invariants are independent. From eq. (6.29) it is clear
that if ∆DL and ∆QU are both positive (negative), then ∆QE must be also pos-
itive (negative). This immediately excludes the sets 4, 5, 12 and 13.

Within the MSSM group eq. (6.28) allows one relation among the invariants.
However, one can calculate the relations among the Dynkin indices of the MSSM
sfermions within the extended gauge groups we are considering and in these there
is one additional relation:

QU = LE. (6.30)

Since eq. (6.30) is valid only in the regime(s) with extended gauge group(s), it is
not exact, once the running within the MSSM regime is included. However, taking
into account the running within the MSSM group one can write:

QU = LE + f(mR), (6.31)

with

f (mR) = 2
33

{[ 33
10πα

MSSM
1 log

(
mR

mSUSY

)
− 1

]−2
− 1

}
. (6.32)

Here, αMSSM
1 is the value of α1 at mSUSY . It is easy to see that f(mR) is always

small (< 0.3) and positive and, vanishes if mR approaches mSUSY . Note, that
here mR stands for the scale where the MSSM group is extended, in the class-III
models it is therefore mB−L.

Eq. (6.31) allows to eliminate three more cases from table 6.3. Since f(mR) is pos-
itive, ∆QU ≤ ∆LE always, so, it is not possible to have ∆LE = − and ∆QU = +.
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This excludes three additional sets from table 6.3: 9, 11 and 15, leaving a total of
9 possible sets.

Finally, in class-I models it is possible to eliminate four more sets, namely all of
those with ∆DL < 0. It is easy to see, with the help of eq.(6.24) that this is
the case. It follows from the fact that in the LR case, the cLi are non-zero for
U(1)B−L and SU(2)L with the values 3/4 and 3/2, respectively. Since also the
sum is smaller than the cD3 (and α3 is larger than the other couplings, D must run
faster than L in the LR-regime.
By the above reasoning set 6 seems to be, in principle, possible in class-I, but
is not realized in our complete scan. We found a few examples in class-II, see
below. Due to the (approximate) relation QU=LE it seems a particularly fine-
tuned situation. We also note in passing, that in the high-scale seesaw models of
type-II [218] and seesaw type-III [219] with running only within the MSSM group,
all invariants run always towards larger values, i.e. only set 1 is realized in this case.

The above discussion serves only as a general classification of the types of sets of
invariants that can be realized in the different model classes. The numerical values
of the invariants, however, depend on both, the variant of the model class and the
scale of the symmetry breaking. We will discuss one example for each possible set
next.

Invariants in model class-I

Fig. (6.7) shows examples of the mR dependence of the invariants corresponding
to the four cases: sets 1, 2, 10 and 14 of table 6.3. Note that we have scaled down
the invariants QE and DL for practical reasons. Note also the different scales in
the different plots.
In all cases QU ' LE, if the LR scale extends to very low energies. As explained
above, this is a general feature of the extended gauge groups we consider and thus,
measuring a non-zero QU-LE allows in our setups, in principle, to derive a lower
limit on the scale at which the extended gauge group is broken.

Sets 1 and 2 show a quite similar overall behavior in these examples. Set 1, how-
ever, can also be found in variants of class-I with larger β coefficients, i.e. larger
quantitative changes with respect to the mSugra values. It is possible to find vari-
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Figure 6.7: mR dependence of the invariants in model class-I. The examples of
∆bLRi = (∆bLR3 , bLRL ,∆bLRR ,∆bLRBL) for these sets are as follows. Set 1: (2, 2, 9, 1/2),
Set 2: (1, 1, 7, 1), Set 10: (4, 4, 3, 29/2), Set 14: (0, 0, 2, 6). For a discussion see
text.

ants within class-I which fall into set 2, but again due to the required similarity
of QU and LE, this set can be realized only if both QU and LE are numerically
very close to their mSugra values. Set 14 in class-I, finally, is possible only with
QE and DL close to their mSugra values, as can be understood from eq. (6.29).

In general, for variants with large ∆bLR3 changes in the invariants can be huge, see
for example the plot shown for set 10. The large change is mainly due to the rapid
running of the gaugino masses in these variants, but also the sfermion spectrum
is very “deformed” with respect to mSugra expectations. For example, a negative
LE means of course that left sleptons are lighter than right sleptons, a feature that
can never be found in the “pure” mSugra model. Recall that for solutions with
∆bLR3 = 5, the value of the squark masses lies beyond the reach of the LHC.
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6.1.9 Model class-II

Fig. (B.2) shows examples of the invariants for class-II models for those cases
of sets, which can not be covered in class-I. Again, QU and DL are scaled and
different plots show differently scaled axes.

Figure 6.8: ThemR dependence of the invariants in model class-II. The examples shown
correspond to the choices of ∆b = (∆bLR3 ,∆bLRL ,∆bLRR ,∆bLRBL,∆bPS4 ,∆bPSL ,∆bPSR ): Set
3: (0, 1, 10, 3/2, 14, 9, 13), Set 6: (0, 0, 1, 9/2, 63, 60, 114), Set 7: (0, 3, 12, 3/2, 6, 3, 15), Set
8: (0, 0, 9, 3/2, 11, 8, 12), Set 16: (0, 0, 7, 3/2, 11, 8, 10).

The example for set 3 shown in fig. (B.2) is similar to the one of the original
prototype model constructed in [33]. For set 6 we have found only a few examples,
all of them show invariants which hardly change with respect to the mSugra values
of the invariants. The example for set 7 shows that also QE can decrease consid-
erably in some variants with respect to its mSugra value. Set 8 is quantitatively
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similar to set 2 and set 16 quite similar numerically to set 14. To distinguish these,
highly accurate SUSY mass measurements would be necessary.
Again we note that larger values of ∆bLR, especially large ∆bLR3 , usually lead to nu-
merically larger changes in the invariants, making these models in principle easier
to test.

6.1.10 Model class-III

Figure 6.9: The mB−L dependence of the invariants in class-III. To the left
the example chooses: (∆bLR3 ,∆bLRL ,∆bLRR ,∆bLRBL,∆bBL3 ,∆bBLL ,∆γRR,∆γXR,∆γXX) =
(0, 1, 3, 3, 0, 0, 1/2,−

√
3/8, 3/4). To the right: (2, 2, 4, 8, 2, 2, 1/2,−

√
3/8, 11/4).

Here, the invariants depend on mB−L with a milder or stronger dependence, de-
pending on the value of ∆b3. For almost all the solutions with ∆b3 = 0 , the values
QU , DL, QE are constants and only in LE a mild variation with mB−L is found.
This fact was already pointed out in [33]. However, we have found that class-III
models can be made with ∆b3 > 0 and these, in general, lead to invariants which
are qualitatively similar to the case of class-I discussed above. In fig. (6.9) we show
two examples of invariants for class-III, one with ∆b3 = 0 and one with ∆b3 = 2.
The solutions with ∆b3 6= 0 fall in two kinds: The minimum value of mR is very
large. Then, the invariants have the same behavior than those in which ∆b3 = 0.
The minimum value of mR is low. The invariants are not constants and look simi-
lar to the ones in the class-I models. The generally mild dependence on mB−L can
be understood, since it enters into the soft masses only through the changes in the
abelian gauge couplings. Class-III models are therefore the hardest to “test” using
invariants.
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6.1.11 Comparison of model classes

The classification of variants that we have discussed in section 6.1.8 only takes into
account what happens when the lowest intermediate scale is very low, O(mSUSY ).
When one varies continuously the lowest intermediate scale (mR in the LR and PS-
class models or mB−L in the BL-class of models), each variant draws a line in the
4-dimensional space (LE,QU,DL,QE). The dimensionality of such a plot can be
lowered if we use the (approximate) relations between the invariants shown above,
namely QU ≈ LE and QE = DL + 2QU . We can then choose two independent
ones, for example LE and QE, so that the only non-trivial information between
the 4 invariants is encoded in a (LE,QE) plot. In this way, it is possible to simul-
taneously display the predictions of different variants. This was done in fig. (6.10),
where LR-, PS- and BL-variants are drawn together. The plot is exhaustive in the
sense that it includes all LR-variants, as well as all PS- and BL-variants which can
have the highest intermediate scale below 106 GeV. In all cases, we required that
α−1 at unification is larger than 1/2 when the lowest intermediate scale is equal to
mSUSY .

There is a dot in the middle of the figure - the mSugra point - which corresponds
to the prediction of mSugra models, in the approximation used. It is expected
that every model will draw a line with one end close to this point. This end-point
corresponds to the limit where the intermediate scales are close to the GUT scale
and therefore the running in the LR, PS and BL phases is small so the invari-
ants should be similar to those in mSugra models. So the general picture is that
lines tend to start (when the lowest intermediate scale is of the order of 103 GeV)
outside or at the periphery of the plot, away from the mSugra point and, as the in-
termediate scales increase, they converge towards the region of the mSugra point,
in the middle of the plot. In fact, note that all the blue lines of LR-class models
do touch this point, because we can slide the LR scale all the way to mG. But
in PS- and BL- models there are two intermediate scales and often the lowest one
cannot be increased all the way up to mG, either because that would make the
highest intermediate scale bigger than mG or because it would invert the natural
ordering of the two intermediate scales.

It is interesting to note that the BL-class with low mR can produce the same
imprint in the sparticle masses as LR-models. This is to be expected because
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Figure 6.10: Parametric (LE,QE) plot for the different variants (see text). The
thicker lines labeled with I, II, III and IV indicate the result for the four prototype
models presented in [33].

with mR close to mB−L the running in the U(1)-mixing phase is small, leading
to predictions similar to LR-models. The equivalent limit for PS-class models is
reached for very high mPS, close to the GUT scale (see below). On the other
hand, from fig. (6.10) we can see that a low mPS actually leads to a very different
signal on the soft sparticle masses. For example, a measurement of LE ≈ 10 and
QE ≈ 15, together with compatible values for the other two invariants (QU ≈ 10
and DL ≈ −5) would immediately exclude all classes of models except PS-models,
and in addition it would strongly suggest low PS and LR scales.

Fig. (6.11) illustrates the general behavior of PS-models as we increase the separa-
tion between the mLR and mPS scales. The red region in the (LE,QE) plot tends
to rotate anti-clockwise until it reaches, for very high mPS, the same region of
points which is predicted by LR-models. Curiously, we also see in fig. (6.11) that
some of these models actually predict different invariant values from the ones of
LR models. What happens in these cases is that since the PS phase is very short,
it is possible to have many active fields in it which decouple at lower energies.
So even though the running is short, the values of the different gauge couplings
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Figure 6.11: Parametric (LE,QE) plots for different PS-variants showing the effect
of the PS scale.

actually get very large corrections in this regime and these are uncommon in other
settings. For example, it is possible in this special subclass of PS-models for αR
to get bigger than α3/α4 before unifying!. One can see from fig. (6.11) that many,
although not all PS-models can lead to large values of LE. This can happen for
both low and high values of mPS and is a rather particular feature of the class-II,
which can not be found in the other classes.

6.1.12 Summary and conclusions

We have discussed SO(10) inspired supersymmetric models with extended gauge
group near the electro-weak scale, consistent with gauge coupling unification thanks
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to a “sliding scale” mechanism. We have discussed three different setups, which
we call classes of models. The first and simplest chain we use breaks SO(10)
through a left-right symmetric stage to the SM group, class-II uses an additional
intermediate Pati-Salam stage, while in class-III we discuss models which break
the LR-symmetric group first into a U(1)R × U(1)B−L group before reaching the
SM group. We have shown that in each case many different variants and many
configurations (or “proto-models”) for each variant can be constructed.

We have discussed that one can not only construct sliding models in which an in-
verse or linear seesaw is consistent with GCU, as done in earlier work [32, 33, 217],
but also all other known types of seesaws can, in principle, be found. We found
example configurations for seesaw type-I, type-II and type-III and even inverse
type-III (for which one example limited to class-II was previously discussed in
[33]).

Due to the sliding scale property the different configurations predict potentially
rich phenomenology at the LHC, although by the same reasoning the discovery
of any of the additional particles the models predict is of course not guaranteed.
However, even if all the new particles - including the gauge bosons of the extended
gauge group - lie outside of the reach of the LHC, indirect tests of the models are
possible from measurements of SUSY particle masses. We have discussed certain
combinations of soft parameters, called “invariants”, and shown that the invari-
ants themselves can be classified into a few sets. Just determining to which set
the experimental data belongs would allow to distinguish, at least in some cases,
class-I from class-II models and also in all but one case our classes of models are
different from the ordinary high-scale seesaw (type-II and type-III) models. De-
pending on the accuracy with which supersymmetric masses can be measured in
the future, the invariants could be used to gain indirect information not only on
the class of model and its variant realized in nature, but also give hints on the
scale of beyond-MSSM physics, i.e. the energy scale at which the extended gauge
group is broken.

We add a few words of caution. First of all, our analysis is done completely at
the 1-loop level. It is known from numerical calculations for seesaw type-II [218]
and seesaw type-III [219] that the invariants receive numerically important shifts
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at 2-loop level. In addition, there are also uncertainties in the calculation from
GUT-scale thresholds and from uncertainties in the input parameters. For the lat-
ter the most important is most likely the error on αS [33]. With the huge number
of models we have considered, taking into account all of these effects is imprac-
tical and, thus, our numerical results should be taken as approximate. However,
should any signs of supersymmetry be found in the future, improvements in the
calculations along these lines could be easily made, should it become necessary.
More important for the calculation of the invariants is, of course, the assumption
that SUSY breaking indeed is mSugra-like. Tests of the validity of this assumption
can be made also only indirectly. Many of the spectra we find, especially in the
class-II models, are actually quite different from standard mSugra expectations
and thus a pure MSSM-mSugra would give a bad fit to experimental data, if one
of these models is realized in nature. However, all of our variants still fulfill (by
construction) a certain sum rule, see the discussion in section 6.1.8.

Of course, so far no signs of supersymmetry have been seen at the LHC, but with
the planned increase of

√
s for the next run of the accelerator there is still quite

a lot of parameter space to be explored. We note in this respect that we are
not overly concerned about the Higgs mass, mh ∼ (125 − 126) GeV, if the new
resonance found by the ATLAS [5] and CMS [6] collaborations turns out to be
indeed the lightest Higgs boson. While for a pure MSSM with mSugra boundary
conditions it is well-known [230, 231, 232, 233] that such a hefty Higgs requires
multi-TeV scalars, 9 all our models have an extended gauge symmetry. Thus, there
are new D-terms contributing to the Higgs mass [235, 236], alleviating the need
for large soft SUSY breaking terms, as has been explicitly shown in [237, 238] for
one particular realization of a class-III model [32, 33].

Finally, many of the configuration (or proto-models) which we have discussed
contain exotic superfields, which might show up in the LHC. It might therefore
be interesting to do a more detailed study of the phenomenology of at least some
particular examples of the models we have constructed.

9Multi-TeV scalars are also required, if the MSSM with mSugra boundary conditions is ex-
tended to include a high-scale seesaw mechanism [234].
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6.2 LHC-SCALE LEFT RIGHT SYMMETRY
AND UNIFICATION

6.2.1 Introduction

It is well-known that with only the standard model (SM) field content the gauge
couplings do not unify at a single energy scale, while the minimal supersymmetric
standard model (MSSM) leads to quantitatively precise gauge coupling unification
(GCU), if the scale of supersymmetry is “close” to the electro-weak (EW) scale
[26]. 10 However, there are many extensions of the SM that lead to GCU without
supersymmetry (SUSY). In particular, it is much less known that already in [30]
GCU was studied in a number of non-SUSY extensions of the SM. We also mention
one particular example with vector-like quarks (VLQ) that was discussed recently
in [31], where the Higgs mass and stability bounds and the GCU were considered
in an SM extension with two different VLQs.

On the other hand, there are rather few publications which discuss GCU within
left-right symmetric extensions of the SM. The main reason for this is probably the
fact that for minimal left-right (LR) symmetric extensions of the SM the couplings
do not unify unless the LR scale is rather high, say (109 − 1011) GeV, as has been
shown already in [240].

While for the SM the term “minimal” is unambiguously defined, for LR symmetric
extensions of the SM the term “minimal-LR” model has been used for quite differ-
ent models in the literature. Usually in “minimal LR” models a second SM Higgs
doublet is added to the SM field content at the LR scale to complete a bi-doublet,
Φ1,2,2,0, 11 as required by the LR group. To break the LR group to the SM group
one then (usually) adds a pair of triplets Φ1,3,1,−2 + Φ1,1,3,−2 [45, 170, 241]. Here
the presence of the left-triplet Φ1,3,1,−2 allows to maintain parity in the LR phase,
i.e. gL = gR, sometimes also called “manifest LR” symmetry. This construction

10Actually, within supersymmetric models it is only required that the new fermions (higgsinos,
wino and gluino) have masses near the EW scale, as in the so-called “split SUSY” scenario
[29, 239].

11Throughout this thesis we will use the notation Φ for scalars and Ψ for fermions with the
subscript denoting the quantum numbers with respect to either the left-right (SU(3)c×SU(2)L×
SU(2)R × U(1)B−L) or the SM group (SU(3)c × SU(2)L × U(1)Y ).
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automatically also creates a seesaw mass for the right-handed neutrinos from the
vacuum expectation value of the Φ1,1,3,−2 [45]. We will call this setup the “minimal
LR” (mLR) model in the following. Alternatively, also a pair of doublets, Φ1,2,1,−1

+ Φ1,1,2,−1, could break the LR group for an equally simple setup. However, in
this case one would need to rely on an inverse [223] (or linear [119, 224]) seesaw
for generating neutrino masses.

In [242] it has been argued that a “truly minimal LR model” has only two dou-
blets Φ1,2,1,−1 + Φ1,1,2,−1 but no bi-doublet. In this case, all fermion masses are
generated from non-renormalizable operators (NROs). While this setup has in-
deed one field less than the above “minimal-LR” models, it needs some additional
unspecified new physics to generate the NROs and, thus, can not be considered a
complete model. Unification in this “truly minimal” setup is achieved for an LR
scale around roughly 108 GeV (and a grand unified theory (GUT) scale of roughly
1015 GeV [243].

A LR model with only bi-doublets can not generate the observed Cabibbo-Kobaya-
shi-Maskawa (CKM) mixing angles at tree-level, see the discussion in the next
section. This can be solved by adding a second Φ1,2,2,0 plus a pair of (B − L)
neutral triplets, Φ1,3,1,0 + Φ1,1,3,0. A supersymmetric version of this setup has
been discussed in [213, 214], see also [244]. We will call this model the “minimal
ΩLR” (mΩLR) model. Fig. 6.12 shows the running of the gauge couplings for the
minimal setup (“mLR”), including 2-loop beta coefficients, in the left plot and
for the mΩLR model in the right plot. Note, that the best fit point (b.f.p.) for
mLR = 3× 1010 GeV and mG = 2× 1015 GeV in the mLR model, while the b.f.p.
for mLR = 3× 1011 GeV and mG = 6× 1014 GeV in the mΩLR model.12

Obviously, such a large scale for the LR-symmetry will never be probed experi-
mentally and this explains, perhaps, why LR models have not been studied very
much in the literature in the context of GCU. It is, however, quite straightforward
to construct LR symmetric models, where the LR is close to the EW scale. Just
to give an indication, the running of the inverse gauge couplings for two example
models, which we will discuss later in this paper and which lead to correct GCU
with a very low LR scale, are shown in fig. 6.13. As discussed in section 6.2.5,

12The authors of [213, 214] called this the “minimal supersymmetric LR” model. In this
original supersymmetric version the b.f.p. for the LR scale from GCU is equal to the GUT scale.
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Figure 6.12: Gauge coupling unification, including the 2-loop β-coefficients, for
two “minimal” left-right models, to the left “mLR”, to the right “mΩLR” model.
For definition of the models and discussion see text.

many such examples can be constructed and moreover, many of these examples
give perfect GCU at a price of only (a few copies of) one or a few additional types
of fields.
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Figure 6.13: Gauge coupling unification at 2-loop level (full lines) and 1-loop level
(dashed lines), for two LR models with a low scale of LR breaking. The figure to
the left has the field content SM + Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2, while the model
to the right is defined as SM + 2Ψ3,1,1,−2/3 + 2Φ1,2,1,1 + 2Φ1,1,3,−2. For discussion
see text.

Our work is, of course, not the first paper in the literature to discuss GCU with
a low LR scale. Especially supersymmetric models with an extended gauge group
have attracted recently some attention. Different from the non-SUSY case, in
SUSY LR models one needs to pay special attention not to destroy the unification
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already achieved within the MSSM. This can be done in different ways. In the
supersymmetric model of [32] the LR symmetry is broken at a large scale, but the
subgroup U(1)R × U(1)B−L survives down to the EW scale. In this construction,
the scale where U(1)R × U(1)B−L is broken to U(1)Y does not enter in the deter-
mination of the GUT scale, mG. We call this a “sliding scale” mechanism, since
U(1)R×U(1)B−L can slide down from (nearly) mG to any arbitrary value, without
destroying GCU. In [215] the authors demonstrated that in fact a complete LR
group can be lowered to the TeV-scale, if certain carefully chosen fields are added
and the LR-symmetry is broken by right doublets. A particularly simple model
of this kind was discussed in [217]. Finally, the authors of [33] discussed also an
alternative way of constructing a sliding LR model by relating it to an intermedi-
ate Pati-Salam stage. Many examples of such “sliding-scale” supersymmetric LR
constructions have then be discussed in [2].

However, supersymmetry is not needed in low scale LR models to achieve GCU, as
first discussed in the relatively unknown paper [245]. Our work is based on similar
ideas as this earlier paper [245], but differs in the following aspects from it: (a) We
do not insist on manifest LR symmetry. While parity maintaining LR models are,
of course, a perfectly valid possibility, they only form a subclass of all LR models.
(b) The study [245] concentrated exclusively on GCU. We also discuss constraints
on model building due to the requirement of explaining correctly the CKM in
LR symmetric models. We further take in account constraints coming from the
requirement that we should have the necessary fields to have a successful seesaw
mechanism for neutrino masses. (c) We add a discussion of “sliding models”; as
discussed above a particular (but interesting) sub-class of LR models. And, (d) we
pay special attention to uncertainties in the predictions of the LR and GUT scales
(and the resulting uncertainty in the proton decay half-lives). As shown below,
these uncertainties are entirely dominated by the current theory error, due to the
(calculable but) unknown threshold errors.

The rest of this chapter is organized as follows. In the next section we discuss
our minimal requirements for the construction of low-scale LR symmetric models.
Special emphasis is put on the discussion of how to generate a realistic CKMmatrix
at tree-level. In section 6.2.5 we then discuss a number of possible LR models. We
first consider “minimal” low-scale setups, i.e. models which fulfil all requirements
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discussed in section 6.2.2 with a field content as small as possible. We then discuss
also “sliding-scale LR models”. By this term we understand models, which lead to
the correct unification, but in which the scale, where LR symmetry is broken, is
essentially a free parameter. This latter models are non-minimal, but reminiscent
of the supersymmetric LR constructions discussed in [2]. In section 6.2.8 we then
discuss uncertainties for the prediction of the LR scale and the proton decay half-
life in the different models, before turning to a short summary and conclusion in
section 6.2.9. A number of details and tables of possible models are given in the
appendices.

6.2.2 Basic requirements

There are several basic conceptual and phenomenological requirements that we
shall impose on the set of all possible LR-symmetric extensions of the Standard
model. From the bottom-up perspective these are:

• Rich enough structure to account for the CKM mixing even after the SM
Higgs doublet is promoted to the LR bi-doublet, and a rich enough structure
to support some variant of the seesaw mechanism.

• Consistency of the assumed high-scale grand unified picture; here we shall
be concerned, namely, with the perturbativity of the models up to at least
the unification scale, the quality of the gauge coupling convergence (to be
at least as good as in the minimal supersymmetric standard model) and
compatibility with the current proton decay limits.

Technically, we shall also assume that the masses of the extra degrees of freedom
are well clustered around at most two scales, i.e., the LR scale and the GUT scale;
if this was not the case there would be no way to navigate through the plethora
of possible scenarios. Implicitly, the LR scale will be located in the TeV ballpark
otherwise decoupling would make the new physics escape all LHC tests.

6.2.3 Account for the SM flavour physics

The need to accommodate flavour physics is clearly the least speculative of the
requirements above and, thus, the one we begin with.
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Two bi-doublets plus one extra scalar

With just the SM fermions at hand, there must obviously be more than a sin-
gle bi-doublet coupled to the quark and lepton bilinears in any renormalizable
LR-symmetric theory; otherwise, the Yukawa lagrangian (in the “classical” LR
notation with Q ≡ Ψ3,2,1,1/3, Φ ≡ Φ1,2,2,0 and so on, cf. table B.5)

LY = YQQ
T iτ2ΦQc + YLL

T iτ2ΦLc + h.c. , (6.33)

yields Mu ∝ Md irrespective of the vacuum expectation value (VEV) structure of
Φ and, hence, VCKM = 1 at the SU(2)R breaking scale. With a second bi-doublet
at play, one has instead

LY = Y 1
QQ

T iτ2Φ1Qc+Y 2
QQ

T iτ2Φ2Qc+Y 1
LL

T iτ2Φ1Lc+Y 2
LL

T iτ2Φ2Lc+h.c. , (6.34)

which admits Mu non-proportional to Md (and, therefore, a potentially realistic
CKM provided13

v1
u

v2
u

6= v1
d

v2
d

, where 〈Φi〉 ≡

vid 0
0 viu

 . (6.35)

Note that we conveniently chose the SU(2)R index to label columns (i.e., they
change in the vertical direction) while the SU(2)L indices label the rows. Needless
to say, the VEV structure of such a theory is driven by the relevant scalar potential.
With just the two bi-doublets at play it can be written in a very compact form

V 3 −1
2µ

2
ijTr(τ2ΦiT τ2Φj) , (6.36)

where the mass matrix µ can be, without loss of generality, taken symmetric, cf.
eq. (6) in [213]. In such a simple case, however, it is almost obvious that the con-
dition (6.35) can not be satisfied because of the Φ1 ↔ Φ2 interchange symmetry
which yields v1

d/v
1
u = v2

d/v
2
u implying v1

d/v
2
d = v1

u/v
2
u. Hence, either eq. (6.34) or

eq. (6.36) require further ingredients.

Let us first try to devise (6.35) by adding some extra scalar fields so that the
simple scalar potential (6.36) loses the Φ1 ↔ Φ2 symmetry.To this end, it is clear

13 Note that in the opposite case one can go into a basis in which one of the two bi-doublets
is entirely deprived of its VEVs and, hence, one is effectively back to the single-Φ case (6.33).
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that the desired asymmetric term must contain at least a pair of Φ’s and anything
that can be coupled to such a bilinear, i.e., an SU(2)R singlet or a triplet, either
elementary (with a super-renormalizable coupling) or as a compound of two dou-
blets. Clearly, a singlet field (of any kind) behaves just like the explicit singlet
mass term in (6.36) and, as such, it does not lift the undesired degeneracy.

Hence, only the triplet option is viable, either in the form of an elementary scalar14

Φ1,1,3,0 (to be denoted Ωc, see again table B.5) which couples to the bi-doublets
via an antisymmetric coupling α

V 3 αijTr[ΦiT τ2~τΦjτ2].~Ωc , (6.37)

or a non-elementary triplet made of a pair of SU(2)R doublets χc ≡ Ψ1,1,2,−1 (and
χc†) replacing, effectively, ~Ωc → χc†~τχc. Let us mention that the former option
has been entertained heavily in the SUSY LR context [213, 214] where the re-
quirement of renormalizability of the superpotential simply enforces this route; in
the non-SUSY framework, however, the doublet solution is at least as good as the
triplet one.

To conclude, we shall consider all settings with the SM matter content, a pair
of LR bi-doublets and either and extra Ωc-like SU(2)R triplet or an extra χc-like
SU(2)R doublet consistent with the requirement of a realistic SM flavour.

Extra fermions

Relaxing the strictly SM-like-matter assumption, one may attempt to exploit the
mixing of the chiral matter with possible vector-like fermions emerging in various
extensions of the SM. Among these, one may, for instance, arrange the mixing
of the SM left-handed quark doublet Q = Ψ3,2,+1/6 with the Q′ part of an extra
Q-type vector-like pair

Q′ ⊕Q′∗ ≡ Ψ′3,2,+1/6 ⊕Ψ′3,2,−1/6 , (6.38)

14We discard the “symmetric solution” with an elementary Ω ≡ Φ1,3,1,0 because such a field
can not get any significant VEV without ruining the SM ρ parameter.
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or a mixing of the SM uc = Ψ3,1,−2/3 and/or dc = Ψ3,1,+1/3 (in the notation in
which all matter fields are left-handed) with the extra uc and/or dc-like fields

u′c ⊕ u′c∗ ≡ Ψ′3,1,−2/3 ⊕Ψ′3,1,+2/3 , d′c ⊕ d′c∗ ≡ Ψ′3,1,+1/3 ⊕Ψ′3,1,−1/3 . (6.39)

For the sake of simplicity, we shall consider all these possibilities at once and
then focus on several special cases with either some of these fields missing or with
extra correlations implied by the restoration of the LR symmetry at some scale.
The relevant piece of the Yukawa-type + mass lagrangian in such a case reads
(omitting all the gauge indices as well as the omnipresent transposition and C−1

Lorentz factors in all terms):

LmatterY+mass = YuQu
cHu + YdQd

cHd + Y ′uQ
′ucHu + Y ′dQ

′dcHd + Y ′cu Qu
′cHu

+ Y ′cd Qd
′cHd + Y ′′cu Q′u′cHu + Y ′′cd Q′d′cHd +MQ′Q′∗Q

′Q′∗

+ Md′cd′c∗d
′cd′c∗ +Mu′cu′c∗u

′cu′c∗ +MQQ′∗QQ
′∗ +Mdcd′c∗d

cd′c∗

+ Mucu′c∗u
cu′c∗ + h.c. (6.40)

where Yu and Yd are the standard 3×3 Yukawa matrices of the SM; the dimension-
alities of the other matrix couplings (primed Y ’s) and/or direct mass terms (M ’s)
should be obvious once the number of each type of the extra matter multiplets is
specified.

In the QCD⊗QED phase, this structure gives rise to the following pair of the up-
and down-type quark mass matrices (the last columns and rows indicate whether
the relevant field comes from an SU(2)L doublet or a singlet and, hence, justify
the qualitative structure of the mass matrix; note also that we display only one
of the off-diagonal blocks of the full Dirac matrices written in the Weyl basis and
we do not pay much attention to O(1) numerical factors such as Clebsches and/or
normalisation):
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Mu uc u′c∗ u′c SU(2)
u Yuvu MQQ′∗ Y ′cu vu 2
u′ Y ′uvu MQ′Q′∗ Y ′′cu vu 2
u′c∗ MT

ucu′c∗ Y ′′cTu vu MT
u′cu′c∗ 1

SU(2) 1 2 1

(6.41)

Md dc d′c∗ d′c SU(2)
d Ydvd MQQ′∗ Y ′cd vd 2
d′ Y ′dvd MQ′Q′∗ Y ′′cd vd 2
d′c∗ MT

dcd′c∗ Y ′′cTd vd MT
d′cd′c∗ 1

SU(2) 1 2 1

Given this, there are several basic generic observations one can make:

• The spectrum of both these matrices always contains three “light” eigenval-
ues, i.e., those that are proportional to the SU(2)L breaking VEV. This, of
course, provides a trivial consistency check of their structure.

• Removing the second row+column in both Mu,d (that corresponds to in-
tegrating out Q′ ⊕ Q′∗) and/or the third row+column in Mu (and, thus,
integrating out u′c⊕ u′c∗) and/or the third row+column in Md (and thus in-
tegrating out d′c⊕d′c∗) the game is reduced to all the different cases discussed
in many previous studies in the SM context.

• There are several entries in Mu and Md that are intercorrelated already
at the SM level; yet stronger correlations can be expected if the effective
lagrangian (6.40) descends from a LR-symmetric scenario. For example,
grouping u′c ⊕ u′c∗ and d′c ⊕ d′c∗ into SU(2)R doublets Q′c ⊕Q′c∗ the degen-
eracy among Mu and Md would be exact up to (model-dependent) SU(2)R-
breaking terms; in such a case the (dis-)similarity of the up and down quark
spectra and mixing matrices depends on the details of the specific SU(2)R-
breaking mechanism which, obviously, will be able to smear such degeneracies
(and, thus, open room for a potentially realistic spectra and the CKM ma-
trix) only if the relevant VEV is comparable to (or larger than) the singlet
mass terms therein. Note that here we implicitly assume that there is no



CHAPTER 6. SUSY AND NON-SUSY GUTS WITH LR SYMMETRY 136

other mechanism such as the one described in the previous section operating
to our desire.

Hence, if one wants to make use of the extra vector-like fermions in order to ac-
count for a realistic SM quark masses and mixing in the LR setting, such extra
matter fields should be included at (or below) the LR scale, otherwise they will
effectively decouple. This is the second route to the realistic SM flavour that we
shall entertain in what follows.

To conclude, without going into more details, we shall consider all scenarios in-
cluding some of the combinations of the extra matter fields discussed above with
masses at the LR scale eligible for the subsequent renormalization group (RG)
analysis. In this respect, it is also worth stressing that there are many specific
realisations of the structures above at the LR level that differ namely by the origin
of the desired vector-like fermions therein and, thus, by the specific structure of
the effective mass matrices above. An interested reader is deferred to section 6.2.5
where several examples are discussed in more detail.

Seesaw & neutrino masses

We also require there are fields in the model that may support some variant of the
seesaw mechanism, either ordinary or inverse/linear, and, thus, provide Majorana
masses for neutrinos. Technically, the requirements are identical to those given
in the previous SUSY study [2] so we shall just recapitulate them here: i) in
models where the LR symmetry is broken by Φ1,1,3,−2 one automatically has a
right-handed neutrino mass and, thus, type-I seesaw; if Φ1,3,1,−2 is also present,
type-II contribution to the seesaw formula is likely. ii) as for the models with the
LR breaking driven by Φ1,1,2,−1 one may implement either an inverse [223] and/or
linear [119, 224], seesaw if Ψ1,1,1,0 is present, or a variant of type-III seesaw if
Ψ1,3,1,0 and/or Ψ1,1,3,0 is available.

6.2.4 Consistency of the high-scale grand unification

Perturbativity

Since the analysis in the next sections relies heavily on perturbative techniques we
should make sure these are under control in all cases of our interest. In particular,
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one should assume that for all couplings perturbativity is not violated at mG and
below mG the same holds for all the effective parameters of the low-energy theory.
To this end we shall, as usual, adopt a very simplified approach assuming that
none of the gauge couplings explodes throughout the whole “desert” and, at the
same time, the unified coupling does not diverge right above the unification scale.
On top of that, a perturbative description does not make much (of a quantitative)
sense either even if the couplings are formally perturbative up to mG (and the
spectrum is compact) when some of them diverge very close above mG: in fact,
the results would be extremely sensitive to the matching scale selection because
their rapid just-above-mG growth is equivalent to large thresholds for not-so-well
chosen matching scale.

Grand unification

Technically, mG is best defined as the mass scale of the heavy vector bosons gov-
erning the perturbative baryon number violating (BNV) processes. At first ap-
proximation, this may be determined as the energy at which the running gauge
couplings in the MS scheme converge to a point; from consistency, this is then
assumed to be the scale where the heavy part of the scalar and vector spectrum
is integrated in. Needless to say, if accuracy is at stakes, this picture is vastly
oversimplified. The main issue of such an approach is the lack of a detailed infor-
mation about the high-energy theory spectrum which, in reality, may be spread
over several orders of magnitude15. The “threshold effects” thus generated can then
significantly alter the naïve picture by as much as a typical two-loop β-function
contribution.

This makes it particularly difficult to get a good grip on the GUT scale from a
mere renormalization group equations (RGE) running - with the thresholds at play
the running gauge couplings in the “usual” schemes such as MS do not intersect at
a point and the only way mG may be accurately determined is, indeed, a thorough
inspection of the heavy spectrum, see, e.g., [247]. In this respect, perhaps the best
that may be done in the bottom-up approach (in which, by definition, the shape

15Note that this, in fact, is rather typical for “simple” models which tend to suffer from
the emergence of pseudo-Goldstone bosons associated to spontaneously broken accidental global
symmetries, especially when there are several vastly different scales at play, cf. [184].
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of the heavy spectrum is ignored) is to define mG by means of a χ2 optimisation
based on an educated guess of the relevant theory error, cf. section 6.2.8.

Another issue which often hinders the determination of MG is the proximity of
the unification and Planck scales which usually makes it impossible to neglect
entirely the Planck-suppressed effective operators, especially those that, in the
broken phase, make the gauge kinetic terms depart from their canonical form. In
the canonical basis, these then yield yet another source of out-of-control shifts
in the GUT-scale matching conditions, i.e. smear the single-point gauge unifica-
tion picture yet further, see for instance [105] and references therein. A simple
back-of-the-envelope calculation reveals that in most cases such effects are again
comparable to those of the two-loop contributions in the gauge beta functions.
Furthermore, the real cut-off Λ associated to the quantum gravity effects may be
further reduced below the Planck scale if the number of propagating degrees of
freedom above is very large, cf. [246].

Since none of these issues may be addressed without a thorough analysis of the
coupled system of the two-loop renormalization group equations augmented with a
detailed information about the high-scale spectrum (and, possibly, even quantum
gravity), in what follows we shall consider a unification pattern to be fine if the ef-
fective MS running gauge couplings do converge to a small region characterised by
a certain “radius” in the “t−α−1 plot” (with 2πt ≡ log(µ/MZ) and µ denoting the
MS regularization scale). Note that, in practice, we shall perform a χ2-analysis of
the gauge coupling RG evolution pattern with three essentially free parameters at
play, namely, mLR (denoting the LR-scale where the part of the spectrum that re-
stores the SU(2)R gauge symmetry is integrated in), mG (the scale of the assumed
intersection of the relevant effective gauge couplings of the intermediate-scale LR
model) and αG (the unified “fine structure” coupling); with these three degrees of
freedom, however, an ideal fit of all three SM effective gauge couplings, i.e., αs,
αL and αY , is (almost) always achievable. Hence, we shall push the χ2-analysis
further in attempt to assess the role of the theoretical uncertainties in the possible
future determination of these three parameters that may be obtained in several
different ways, cf. Sect. 6.2.8.
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Proton lifetime

There are in general many ingredients entering the proton lifetime predictions in
the grand unification context with very different impact on their quality and ac-
curacy. Barring the transition from the hadronic matrix elements to the hard
quark-level correlators (assumed to be reasonably well under control by the meth-
ods of the lattice QCD and/or chiral Lagrangian techniques), these are namely the
masses of the mediators underpinning the effective BNV operators. At the d = 6
level, these are namely the notorious GUT-scale X and Y (and/or X ′ and Y ′)
gauge bosons, and also the three types of potentially dangerous scalars Φ3,1,−1/3,
Φ3,1,−4/3 and Φ3,3,−1/3 (descending from the fields nr. 9, 10, 14 and 19 in table B.5)
with direct Yukawa couplings to matter. In both cases, the flavour structure of the
relevant BNV currents is the central issue that can hardly be ignored in any ded-
icated proton lifetime analysis. From this point of view, the gauge-driven p-decay
is usually regarded to as being under a better control because it depends only on
the (unified) gauge coupling and a set of unitary matrices encoding transitions
from the defining to the mass bases in the quark and lepton sectors (whose matrix
elements, barring cancellations, are typically O(1)) while the scalar BNV vertices
are governed by the Yukawa couplings and, thus, are often (unduly) expected to
be suppressed for the processes involving the first generation quarks and leptons.
In either case, a detailed study of the flavour structure of the BNV currents is
far beyond the scope of the current study; the best one can do then is to assume
conservatively the gauge channels’ dominance and suppose that the elements of
the underlying unitary matrices are of order 1.

However, in theories with accidentally light (TeV-scale) states one should not fin-
ish at the d = 6 level but rather consider also d > 6 BNV transitions that may
be induced by such “unusual” scalars. To this end, let us just note that the emer-
gence of d = 7 baryon number violating operators has been recently discussed in
some detail in [248] (see also [91, 249]) and a specific set of scalars (in particu-
lar, Φ3,2,1/6, Φ3,2,7/6 and Φ3,1,2/3) underpinning such transitions in SO(10) GUTs
has been identified. Nevertheless, in the relevant graphs these fields are often ac-
companied by the “usual” d = 6 scalars above and, thus, for acceptable d = 6
transitions the d = 7 BNV operators tend to be also suppressed so we shall not
elaborate on them any further. Since neither these issues may be handled without
a very detailed analysis of a specific scenario, for the sake of the simple classifica-
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tion of potentially viable settings intended for the next section we shall stick to
the leading order (i.e., d = 6) purely gauge transitions and implement the current
SK constraint of τp→π0e+ & 1034 years [250]. This will be imposed through the
simple phenomenological formula

Γp ≈ α2
Gm

5
p/m

4
G , (6.42)

which, technically, provides a further input to the χ2 analysis in section 6.2.8. We
shall also ignore all the effects related to pulling the effective d = 6 operators from
mG down to the electroweak scale, see, e.g., [251, 252, 253].

6.2.5 Low scale left-right models

We will start our discussion with the simplest class of models with only one new
intermediate scale, which we will denote by mLR. Later on we will also discuss
the possibility to have a “sliding” LR scale “on top” of a SM-group stage with ex-
tended particle content. These latter models are slightly more complicated in their
construction than the minimal ones, but interesting since they are reminiscent of
the supersymmetric sliding models discussed in [2, 33].

We do not discuss the breaking of SO(10) to the left-right group in detail and only
mention that SO(10) can be broken to the LR group either via the interplay of
VEVs from a 45 and a 54, as done for example in [217], or via a 45 and a 210,
an approach followed in [32]. In the left-right symmetric stage we consider all ir-
reducible representations, which can be constructed from SO(10) multiplets up to
dimension 126. The reason for considering multiplets up to the 126 is simply be-
cause the right triplet, Φ1,1,3,−2, which presents one of the two simplest possibilities
to break the LR group correctly, comes from the 126 in the SO(10) stage. Thus,
we allow for a total of 24 different representations (plus conjugates), in our lists of
models. Larger multiplets could be easily included, but lead of course to more elab-
orate models. The transformation properties of all our allowed multiplets under
the LR group and their SO(10) origin are summarized in table B.5 of the appendix.

In this section, we will keep the discussion mostly at the 1-loop level for simplicity.
Two-loop β-coefficients can be easily included, but do not lead to any fundamental
changes in the models constructed. Recall that at 1-loop order two copies of a
complex scalar give the same shift in the β-coefficients ∆(bi) as one copy of a
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Weyl fermion. The coefficients for scalars and fermions differ at two-loop order,
of course, but these differences are too small to be of any relevance in our model
constructions considering current uncertainties, see section 6.2.8.

6.2.6 “Minimal” models

Consider gauge coupling unification first. At 1-loop level, the evolution of the
inverse gauge couplings can be written as:

α−1
i (t) = α−1

i (t0) + bi
2π (t− t0), (6.43)

where ti = log(mi), as usual. Here, the β-coefficients in the different regimes are
given as: (

bSM3 , bSM2 , bSM1

)
= (−7,−19/6, 41/10) ,(

bLR3 , bLR2 , bLRR , bLRB−L
)

= (−7,−3,−3, 4) +(
∆bLR3 ,∆bLR2 ,∆bLRR ,∆bLRB−L

)
, (6.44)

where we have used the canonical normalization for (B − L) related to the phys-
ical one by (B − L)c =

√
3
8(B − L)p. Here, ∆bLRi stand for the contributions

from additional fields, not accounted for in the SM, while the coefficients for
the groups SU(2)L × SU(2)R include the contribution from one bi-doublet field,
Φ1,2,2,0. We decided to include this field in the bLRi directly, since the SM Higgs
h = Φ1,2,1/2 ∈ Φ1,2,2,0 in all our constructions.

Next, recall the matching condition

α−1
1 (mLR) = 3

5α
−1
R (mLR) + 2

5α
−1
B−L(mLR). (6.45)

Eq. (6.45) allows us to define an artificial continuation of the hypercharge coupling
αeff1 into the LR stage. The β-coefficient of this dummy coupling for E > mLR is
3
5b
LR
R + 2

5b
LR
B−L and its definition allows us to find the GUT scale simply from the

equality of three couplings, since the splitting between αR and αB−L at the mLR

scale is a free parameter.

Finding a model which unifies correctly, then simply amounts to calculating a set
of consistency conditions on the ∆(bLRi ), which can be derived from eq. (6.43), by
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equating αeff1 = α2 and α2 = α3. Two examples, for which a correct unification
is found with a low value of mLR are shown in fig. 6.14. Note that, the model to
the left has a rather low unification scale (while the one to the right has a rather
high one). The half-life for proton decay in the best fit point at 1-loop level (at
2-loop level) for the model on the left is estimated to be T1/2 ' 1033 y (T1/2 ' 1031

y), below the lower limit from Super-K [254, 250]. This will be important in the
discussion on the error bar for proton decay in section 6.2.8 and is a particular
feature of all model constructions without additional coloured fields, see below.
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Figure 6.14: Two example models for which correct unification is found for a low
value of the scale mLR. The model to the left has a rather low unification scale,
see text. Note that these are the same two models already shown in fig. 6.13 in
the introduction.

As discussed in the previous section, we then require a number of additional con-
ditions for a model to be both, realistic and phenomenologically interesting: (i)
all models must have the agents to break the LR symmetry to the SM group; (ii)
all models must contain (at least) one of the minimal ingredients to generate a
realistic CKM and generate neutrino masses and angles; (iii) models must have
perturbative gauge couplings all the way to mG; (iv) mG should be large enough to
prevent too rapid proton decay, numerically we have used (somewhat arbitrarily)
mG ≥ 1015 GeV as the cut-off in our search; and, lastly (v) the predicted mLR

should be low enough such that at least some of the new fields have masses acces-
sible at the LHC. As the cut-off in the search we used, again somewhat arbitrarily,
mLR = 10 TeV. 16

16For both, mG and mLR the values quoted are only the limits used in the search for models.
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Before discussing the different model classes, we first ask the question how in-
volved our constructions are. Different criteria can be defined for comparing the
complexity of different models, perhaps the two simplest ones are: (i) nf : the
number of additional different kinds of fields introduced and (ii) nc: the total
number of new fields introduced. Consider first the classical, “minimal” high-scale
LR models, mentioned already in the introduction. As shown in table 6.4 the
mLR [241, 170, 45] introduces only 2 kind of fields, each with only one copy for
a total of 2 new fields, while the mΩLR already needs 5 different fields. How-
ever, a realistic model should not only try to minimize the number of new fields,
it should also fulfil basic phenomenological constraints discussed previously. On
this account, we would not consider the mLR a valid model, since it has a trivial
CKM at tree-level, while the mΩLR is excluded (or at least at the boundary of
being excluded 17) by the constraints from the proton decay half-life. The model
mmΩLR (more-minimal ΩLR), on the other hand, can pass the phenomenologi-
cal tests, with only (nf ,nc)=(3,3). However, this model does not have gL = gR
(“exact parity”) at the scale where the LR symmetry is broken and exact parity
symmetry was required in most constructions of LR models, that we have found in
the literature. The question whether exact parity (“manifest”) LR symmetry is a
more important requirement for a “good” model than having the smallest possible
number of new fields clearly is more a matter of taste than a scientific measure.
We decided not to insist on exact parity and instead construct models with the
fewest number of total fields possible. The models we construct then can be sepa-
rated into two different classes: (a) models in which a realistic CKM is generated
by the extension of the scalar sector and (b) models in which a realistic CKM is
generated by the extension of the fermion sector.

Model class [a]: “Scalar” CKM models

Consider first models of class (a). The breaking the LR group can be either
achieved via a right triplet, Φ1,1,3,−2 (case [a.1]), or by a (right) doublet, Φ1,1,2,−1

(case [a.2]), as discussed in the previous section. Several examples of simple models
for both classes are given in table 6.4.
Consider the triplet case first. The minimal field content for the triplet case con-

Whether a particular model survives the constraints from proton decay searches depends not
only on the values of mG and αG but also on their uncertainties, see section 6.2.8.

17See the discussion in section 6.2.8.
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Name Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]
mLR Φ1,1,3,−2 + Φ1,3,1,−2 2 2 � / 3 · 1010 1033±2.5

mΩLR Φ1,2,2,0 + Φ1,1,3,0 + Φ1,3,1,0 + Φ1,1,3,−2 + Φ1,3,1,−2 5 5 � � 3 · 1011 1030.8±2.5

mmΩLR Φ1,2,2,0 + Φ1,1,3,0 + +Φ1,1,3,−2 3 3 / � 3 · 109 1034.3±2.5

Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]
Φ1,2,2,0 + Φ1,1,3,0 + 3Φ1,1,3,−2 3 5 / � 1 · 102 1030.6±2.5

Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2 3 6 / � 2 · 103 1031.3±2.5

2Φ1,2,2,0 + Φ1,1,3,0 + Φ8,1,1,0 + 2Φ1,1,3,−2 4 6 / � 5 · 102 1041.3±2.5

3Φ1,2,2,0 + Φ1,1,3,0 + 3Φ6,1,1,4/3 + 2Φ1,3,1,−2 + Φ3,1,2,−2 5 10 � � 4 · 102 1036.3±2.5

Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]
Φ1,2,2,0 + 16Φ1,1,2,−1 2 17 / � 1 · 104 1031.6±2.5

Φ1,2,2,0 + Φ1,1,2,−1 + 3Φ1,1,3,−2 3 5 / � 2 · 103 1031.3±2.5

Φ1,2,2,0 + Φ1,1,2,−1 + Φ1,1,3,−2 + Φ3,1,3,−2/3 4 4 / � 2 · 103 ???
2Φ1,2,2,0 + Φ1,1,2,−1 + Φ6,1,1,−4/3 + 2Φ1,1,3,−2 4 6 / � 1 · 102 1039.6±2.5

Φ1,2,2,0 + 2Φ1,1,2,−1 + 2Φ1,2,1,1 + Φ8,1,1,0 + 10Φ1,1,1,2 5 16 � � 3 · 103 1041±2.5

Table 6.4: A comparison of some of the simplest possible LR models. Configuration
gives the actual (extra) fields used in the model on top of the SM fields. nf stands for
#(fields) and counts how many different fields are used in the construction, while nc
is #(copies) and counts the total number of different copies of fields. “Parity?” gives
whether a given model predicts gL = gR and “CKM?” whether it has a non-trivial
CKM matrix at tree-level, see the discussion in the previous section. mLR gives the
approximate best fit point (including 2-loop coefficients) for the scale of LR breaking,
while T1/2 [y] gives the estimated half-life for proton decay. The error bar quoted for
T1/2 is an estimation derived from the discussion in section 6.2.8. The first table gives
“minimal” LR models for comparison: These models all have mLR far above the EW
scale. The second table gives models with low predicted mLR and CKM generated
by scalar triplets (model class [a.1]), while the 3rd gives model examples with CKM
generated by right-doublets (model class [a.2]). For discussion see main text. The model
containing the field Φ3,1,3,−2/3 does not give a proton decay half-life, since the scalar
field Φ3,1,3,−2/3 can induce proton decay via an unknown Yukawa coupling.
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sists in nΦ1,2,2,0Φ1,2,2,0 + nΦ1,1,3,0Φ1,1,3,0 + nΦ1,1,3,−2Φ1,1,3,−2 and the simplest model
we have found is given by nΦ1,2,2,0 = 1, nΦ1,1,3,0 = 1 and nΦ1,1,3,−2 = 3 for a total of
nc = 5 copies, followed by nΦ1,2,2,0 = 1, nΦ1,1,3,0 = 3 and nΦ1,1,3,−2 = 2 for a total
of nc=6. Both models have rather short proton decay half-lives, with the nc=6
model doing slightly better than the nc=5 model. For this reason we used the
nc=6 model in figs (6.13) and (6.14) and in section 6.2.8 for our discussion. Once
additional new fields are allowed with non-zero coefficients, a plethora of models
in this class can be found. Example models for each of the 24 fields are given in
table B.6 in the appendix. Here, let us only briefly mention two more examples:
2Φ1,2,2,0 +Φ1,1,3,0 +Φ8,1,1,0 +2Φ1,1,3,−2 and 3Φ1,2,2,0 +Φ1,1,3,0 +3Φ6,1,1,4/3 +2Φ1,3,1,−2 +
Φ1,1,3,−2. The former shows (see discussion of fig. 6.15 below) that at the price of
introducing one coloured field, the proton decay half-life constraint can be com-
pletely evaded, while the latter demonstrates that it is possible to obtain exact
parity symmetry even with different number of copies of fields in the left and right
sector of the model - at a price of a few additional copies of fields.

Consider now model class [a.2]: nΦ1,2,2,0Φ1,2,2,0 +nΦ1,1,2,−1Φ1,1,2,−1 +· · · . In this case,
in principle the simplest model possible consists in only two different fields, since
Φ1,1,2,−1 can play the double role of breaking the LR symmetry and generating
the non-trivial CKM, as explained in the previous section. However, as table 6.4
shows, our condition of having a low mLR <∼ 10 TeV enforces a large number of
copies for this possibility: nΦ1,2,2,0 = 1, but nΦ1,1,2,−1 = 16, not a very minimal
possibility. Table 6.4 also shows that with three different fields, much smaller mul-
tiplicities lead to consistent solutions. With 3 different fields a solution with nc=5
exists, for four different fields nc=4 is possible in one example. However, again,
the example with nc=5 has a rather short T1/2, while the nc=4 contains a copy
of Φ3,1,3,−2/3. This field induces proton decay via a dimension-6 operator, see dis-
cussion in the previous section and thus does not lead to a realistic model, unless
either the ∆(L) = 1 or the ∆(B) = 1 Yukawa coupling is eliminated by the im-
position of some symmetry. The next simplest model then contains (nf=4,nc=5).
This case, however, has a b.f.p. for the mLR above our usual cutoff. Once we allow
for (nf=4,nc=6) or larger, again many possibilities exist, one example is given in
table 6.4. As for the case [a.1], models with exact parity are possible, but require
a larger number of copies of fields.
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Figure 6.15: One-loop estimated proton lifetime for “colourless models” as a func-
tion of mLR. The figure shows T1/2 [y] estimated from mG defined as the point
where α2 = α3 with from top to bottom: ∆(bLR2 ) = 0, 1

6 ,
1
3 and 1

2 and ∆(bLR3 ) = 0
(“colourless models”), see text. The horizontal line is the experimental limit from
Super-K [250, 254].

Before closing this discussion on model class (a), we briefly comment on the com-
paratively low values for the proton lifetime for all cases in which no coloured field
is added to the configuration. In the SM (with one Higgs and at 1-loop order)
α2 equals α3 at a scale of roughly mG23 = 1017 GeV. Adding a second Higgs, as
necessary to complete the bi-doublet in our LR models,18 lowers this GUT scale
to roughly mG23 = 2 · 1016 GeV. Any addition of a field charged under SU(2)L
increases b2, leading to a further reduction in mG23 , unless some coloured field is
added at the same time. Thus, all models with a second Φ1,2,2,0 (or other fields
charged under SU(2)L) but no additional coloured particles will have a GUT scale
below 1016 GeV. This is indeed quite an important constraint, as is shown in
fig. 6.15. Recall, for a Φ1,2,1,1 the ∆(bLR2 ) = 1

6 , while for Φ1,2,2,0 the ∆(bLR2 ) = 1
3 .

Thus, “colourless” models can have at most one additional Φ1,2,2,0, otherwise they
are ruled out by proton decay constraints. We note, that the figure is based on
a 1-loop calculation and that this conclusion is only strengthened, once 2-loop β
coefficients are included, compare to the lifetimes quoted in table 6.4.
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Configuration nf nc parity? CKM? mLR [GeV] T1/2 [y]
2Ψ3,1,1,−2/3 + 2Φ1,2,1,1 + 2Φ1,1,3,−2 4 6 / � 3 · 103 1040±5

2Ψ3,1,1,−2/3 + 2Φ1,1,2,−1 + Φ1,2,2,0 + 4Φ1,1,3,0 5 11 / � 1 · 104 1039.9±2.5

2Ψ3,1,1,−2/3 + 2Φ1,1,2,−1 + 2Φ1,2,1,1 + 4Φ1,1,3,0 5 12 / � 9 · 103 1039.9±2.5

2Ψ3,1,1,−2/3 + Φ1,2,1,1 + Φ1,1,2,−1 + 9Φ1,1,1,2 5 13 � � 1 · 102 1043.4±2.5

2Ψ3,1,1,4/3 + 3Φ1,2,1,1 + Φ1,1,3,−2 + Φ3,1,1,4/3 5 7 / � 6 · 103 1040±2.5

2Ψ3,1,1,4/3 + 3Φ1,2,1,1 + 5Φ1,1,2,−1 + Φ3,1,1,4/3 5 11 / � 1 · 104 1040±2.5

2Ψ3,2,1,1/3 + Φ8,1,1,0 + 4Φ1,1,3,−2 4 7 / � 1 · 102 1043±2.5

2Ψ3,2,1,1/3 + Φ6,1,1,2/3 + 4Φ1,1,3,−2 4 7 / � 1 · 102 1039.3±2.5

2Ψ3,2,1,1/3 + Ψ3,1,3,−2/3 + 6Φ1,1,3,−2 4 9 / � 4 · 103 1040.3±2.5

Table 6.5: A comparison of models with CKM generated by an extension in the
fermion sector, “fermionic CKM” or “VLQ-CKM”. In nf we always count the two
Ψ3,i,j,k as two separate fields, because both Ψ and Ψ̄ are needed to generate the
CKM.

Model class [b]: “Fermionic” CKM models

We now turn to a discussion of models with additional fermions, see table 6.5. As
discussed in section 6.2.2, a non-trivial CKM can be generated in LR models with
extensions in the fermion sector essentially by three kind of fields, corresponding
to vector like copies of the SM fields uc, dc and Q. In the list of 24 different fields
shown in table B.5 in the appendix, there are in fact several which contain states
which can play the role of the VLQs after the breaking of the LR symmetry.

Consider, for example, the case of u′c = Ψ′3̄,1,−2/3. The Ψ′3̄,1,−2/3 could be generated
from Ψ3̄,1,−2/3 ∈ Ψ̄3̄,1,1,−4/3, Ψ̄3̄,1,2,−1/3 or Ψ̄3̄,1,3,2/3. Similarly, d′c = Ψ′3̄,1,1/3 ∈
Ψ̄3̄,1,1,2/3, Ψ̄3̄,1,2,−1/3 or Ψ̄3̄,1,3,2/3, while Q′ = Ψ′3,2,1/6 ∈ Ψ3,2,1,1/3, Ψ3,2,2,4/3, Ψ3,3,1,−2/3

and Ψ3,2,2,−2/3. In the SM regime, therefore, different terms from the LR regime can
lead to the same effects. We will consider only the three simplest possibilities here,
Ψ′3,1,1,4/3, Ψ′3,1,1,−2/3 and Ψ′3,2,1,1/3, where we have marked the fields with a prime
again to note that they have to be introduced in vector-like pairs. Other cases
can be constructed in a similar manner. For these three fields the corresponding

18As in the MSSM, where a second Higgs doublet must be present.
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Lagrangian terms in the LR-regime are:

L = mΨ3,1,1,4/3Ψ′3,1,1,4/3Ψ̄′3̄,1,1,−4/3 +mΨ3,1,1,−2/3Ψ′3,1,1,−2/3Ψ̄′3̄,1,1,2/3 (6.46)
+ mΨ3,2,1,1/3Ψ′3,2,1,1/3Ψ̄′3̄,2,1,−1/3 + ȲΨ3,1,1,4/3Ψ̄′3̄,1,1,−4/3Φ1,2,1,1Ψ3,2,1,1/3

+ YΨ3,1,1,4/3Ψ′3,1,1,4/3Φ1,1,2,−1Ψ3̄,1,2,−1/3 + ȲΨ3,1,1,−2/3Ψ̄′3̄,1,1,2/3Φ̄1,2,1,−1Ψ3,2,1,1/3

+ YΨ3,1,1,−2/3Ψ′3,1,1,−2/3Φ̄1,1,2,1Ψ3̄,1,2,−1/3 + YΨ3,2,1,1/3Ψ′3,2,1,1/3Φ1,2,2,0Ψ3̄,1,2,−1/3,

where Ψ3,2,1,1/3 = Q and Ψ3̄,1,2,−1/3 = Qc correspond to the SM left and right-
handed quarks in the LR regime. Note, that Φ1,2,2,0 contains the SM-like VEV vu,
while for Ψ3,1,1,4/3 and Ψ3,1,1,−2/3 the corresponding mass terms are generated from
the VEVs of Φ1,2,1,1 and Φ1,1,2,−1. Recall that, as discussed in section 6.2.2, not all
terms are necessary and in principle two terms (one mass term and one Yukawa
term) are sufficient in all cases to generate the desired structure.

In table 6.5 we give some simple example models for these cases: Ψ′3,1,1,−2/3,
Ψ′3,1,1,4/3 and Ψ′3,2,1,1/3. Here, we wrote 2Ψ for Ψ + Ψ̄ simply to get a more com-
pact table. Since we count these as two different kinds of fields and at least one
Φ1,1,3,−2 or Φ1,1,2,−1 is needed to break the LR symmetry, the minimal nf seems
to be three in these constructions. However, once we impose mLR <∼ 10 TeV, no
solution with nf=3 survives, although there are many solutions with nf=4 and
5. Perhaps the simplest case possible is the model in the first line, which fulfils
all our conditions for the price of just two extra Φ1,1,2,1 and one extra Φ1,1,3,−2.
In general, models which break the LR symmetry via Φ1,1,2,−1 need more copies
of fields to get a consistent model with low mLR, nc≥ 11. Also, it is possible to
conserve parity exactly, as the table shows. However, the model with the smallest
nc that we found still has nc=13. We have not found any model with less than
nc=7 for the cases Ψ′3,1,1,4/3 → uc

′ and Ψ′3,2,1,1/3 → Q′.

In case of models with VLQs, the constraints from proton decay are relatively easy
to fulfil, see table 6.5. This is simply due to the fact that VLQs add a non-zero
∆(bLR3 ), by which mG can be raised to essentially any number desired.

6.2.7 “Sliding” LR models

We now turn to the discussion of “sliding-LR” models. These are defined as models
where the unification is independent of the intermediate scale mLR. In (minimal)



CHAPTER 6. SUSY AND NON-SUSY GUTS WITH LR SYMMETRY 149

supersymmetric extensions of the SM “sliding-LR” models are the only possibility
to have a low mLR [2, 32, 33]. However, as we show in this subsection, supersym-
metry is not a necessary ingredient to construct sliding models.

We will discuss in the following just two examples of sliding LR models. The first
one, based on the idea of “split” supersymmetry [29, 239], shows the relation of
our non-supersymmetric sliding models, with the supersymmetric ones discussed
in [2]. The second one is based on a SM extension with vector-like quarks, first
mentioned in [30] and recently discussed in much more detail in [31]. This second
example serves to show, how non-SUSY sliding models can be just as easily con-
structed as supersymmetric ones. The sliding conditions can be understood as a
set of conditions on the allowed β coefficients of the gauge couplings in the LR
regime [2], assuring that at 1-loop order ∆(αi) at the GUT scale are independent
of the additional particle content in the LR regime. In order to achieve successful
unification, therefore, it is necessary to first add to the standard model an addi-
tional field content at some scale mNP . Although not necessary from a theoretical
point of view, we require that mNP is at a “low” scale, i.e. mNP <∼ 10 TeV, to
ensure that the models predict some interesting collider phenomenology. We will
call this additional field content “configuration-X” and “SM+X”. A list of simple
X-configurations, which when added to the SM at mNP in the range mNP (few)
TeV lead to unification as precise or better than the one obtained in the MSSM,
is given in table B.7 in the appendix. In this table (at least) one example for each
one of our 24 fields is presented.

As the first example, we will discuss the “split SUSY-like” case, which corre-
sponds to X = 5Φ1,2,1/2 + 2Φ1,3,0 + 2Φ8,1,0. As is well-known, in split SUSY the
sparticle spectrum is "split" in two regimes: all scalars (squarks, sleptons and all
Higgs fields except h0) have masses at a rather high scale, typically 1010 GeV,
while the fermions, gluino (Ψ8,1,0), wino (Ψ1,3,0), bino (Ψ1,1,0) and the higgsinos
(H̃u = Ψ1,2,−1/2, and H̃d = Ψ1,2,1/2) must have TeV-ish masses. This way GCU is
maintained with a ∆(αi) at the GUT scale as small as is the case in the MSSM
(but at a different value of αG). However, while in split SUSY Φ1,2,1/2 is added
at the high scale, for our LR constructions we will need this second Higgs at a
low scale and, therefore, we call this scenario “split SUSY-like”. Note that, while
split SUSY uses fermions at the low scale, GCU can be maintained also with a
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purely bosonic X, since only the 2-loop coefficients change (slightly), which can be
compensated by a slight shift in mNP . We note in passing that this particular X
has, of course, all the interesting phenomenology of split SUSY, like a candidate
for the dark matter, or a quasi-stable gluino at the LHC [29].

The quantum numbers of this particular particle content in the LR regime are then:
Φ1,2,1/2 ∈ Φ1,2,2,0, Φ1,3,0 ∈ Φ1,3,1,0 and Φ8,1,0 ∈ Φ8,1,1,0, with the ∆bLRi coefficients
corresponding to this particular X given by:

(∆bLR3 ,∆bLR2 ,∆bLRR ,∆bLRB−L) = (2, 2, 2/3, 0). (6.47)

Imposing now the requirement that mG is independent of the intermediate scale
mLR, results in the set of conditions:

∆bLR3 = ∆bLR2 ≡ ∆b, (6.48)

∆bLRB−L + 3
2∆bLRR − 11 = 5

2(∆b). (6.49)

Obviously, many different sets of ∆b′s can fulfil these conditions and also realize
particle configurations that provide a realistic CKM. To provide just the simplest
example, consider scalar CKM models, class [a.1]. These require at least one
copy of Φ1,1,3,0 and Φ1,1,3,−2 each, as discussed in the previous subsection. The
simplest sliding solution for this class is given by Φ1,1,3,0 + 4Φ1,1,3,−2 with ∆b′s =
(0, 0, 10/3, 6) (and a mG = 2× 1016 GeV). In the LR regime we thus have SM (+
Higgs completed to one bi-doublet) particle content plus Ψ1,2,2,0+Ψ1,3,1,0+Ψ8,1,1,0+
Φ1,1,3,0 + 4Φ1,1,3,−2. Fig. 6.16 shows the independence of the GCU from the value
of mLR. Note again, that GCU is lost, once mNP is raised above a certain value,
the b.f.p. for mNP , including 2-loop coefficients, being mNP = 1.1 TeV.
As in the case of the non-sliding solutions, of course it is also possible to construct
sliding-LR models of class [a.2], the simplest 2-field solution is 2Φ1,1,2,−1 +20Φ1,1,1,2

with ∆b′i = (0, 0, 1/3, 21/2).
As mentioned above, unification in non-SUSY extensions of the SM have been
studied already in [30]. A particular interesting example is the one studied in [31],
which adds two kinds of VLQs to the SM particle content, namely Q′ = Ψ3,2,1/6

and d′c = Ψ3̄,1,1/3. This model could, potentially, explain the much discussed en-
hancement in h→ γγ [255, 256]. 19

19The latest CMS data now gives much smaller h → γγ, see the web-page of CMS public
results at: twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG.
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Figure 6.16: Evolution of the gauge couplings for the sliding-LR model example
discussed in the text based on split SUSY. The plot to the left shows mLR = 10
TeV, while the plot to the right has mLR = 1010 GeV.

As our second sliding-LR example, we thus choose X = 2Ψ3,2,1/6 + 2Ψ3,1,1/3 +
Φ1,2,1/2, which in the LR regime corresponds to X = 2Ψ3,2,1,1/3 + 2Ψ3,1,1,2/3, with
the Φ1,2,1/2 used to complete the Φ1,2,2,0. The ∆bLRi coefficients of this configuration
are:

(∆bLR3 ,∆bLR2 ,∆bLRR ,∆bLRB−L) = (2, 2, 0, 1). (6.50)

The sliding conditions in this case are the same as above and the simplest solution
following these conditions and allowing to break the LR symmetry correctly is:
2Φ1,1,1,2 + 4Φ1,1,3,−2, with ∆b′i = (0, 0, 8/3, 7). The running of the inverse gauge
couplings for this example is shown in fig. 6.17.

6.2.8 Uncertainties in new physics scale and proton half-
life

One of the aspects of model building for new physics models, rarely discussed in
the literature, are uncertainties. While ideally, of course, predictions such as the
existence of new particles at the TeV scale should be testable over the whole range
of the allowed parameter space, in reality most model builders content themselves
with showing that for some particular choice of parameters consistent solutions for
their favorite model exist. In this section we discuss uncertainties for the predic-
tions of our LR models. In these models, once we have fixed the particle content
of a particular version, there are essentially three free parameters: mLR, mG and
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Figure 6.17: Evolution of the inverse gauge couplings in the second example of
sliding-LR models: 2Ψ3,2,1,1/3 + 2Ψ3,1,1,2/3 + 2Φ1,1,1,2 + 4Φ1,1,3,−2. This example is
non-SUSY and with a CKM explained by VLQs (class [b]).

αG. However, since there are also three gauge couplings, with values fixed by ex-
periment, for any given model mLR, mG and αG are fixed up to some error by the
requirement of gauge coupling unification. This results essentially in two predic-
tions: First, the mass scale, where the gauge bosons of the extended gauge sector
and (possibly) other particles of the model should show up. This scale coincides,
of course, with the range of mLR, as derived from the fit. And, second, derived
from mG and αG, we obtain a range for the predicted half-life of proton decay.

The analysis of this section uses a χ2 minimization, which fits the three measured
SM gauge couplings as functions of the three unknowns. We start by discussing
the error budget. The total error budget can be divided into a well defined exper-
imental error plus a theory error. For the experimental input we use [100]:

α−1
1 = 58.99± 0.020 (6.51)
α−1

2 = 29.57± 0.012
α−1

3 = 8.45± 0.050 .

The experimental errors quoted are at the 1-σ confidence level (CL). Note espe-
cially the small value of ∆(α−1

3 ), according to [100], compared to the older value
of ∆(α−1

3 ) ' 0.14 [257].



CHAPTER 6. SUSY AND NON-SUSY GUTS WITH LR SYMMETRY 153

Much more difficult to estimate is the theory error. In our discussion presented
in section (6.2.5) we have used 1-loop β-coefficients for simplicity. Two-loop β-
coefficients for general non-supersymmetric theories, have been derived long ago
[258, 259], see also [260], and can be easily included in a numerical analysis. How-
ever, a consistent 2-loop calculation requires the inclusion of the 1-loop thresholds
from both, light states at the LR-scale and heavy states at the GUT scale. While
we do fix in our constructions the particle content in the LR-symmetric phase, we
have not specified the Higgs content for the breaking of SO(10) to the LR group
in detail. Thus, the calculation of the GUT scale thresholds is not possible for us,
even in principle. The ignorance of the thresholds should therefore be included as
(the dominant part of) the theoretical error, once two-loop β-coefficients are used
in the calculation.

The 1-loop thresholds are formally of the order of a 2-loop effect and, thus, it seems
a reasonable guess to estimate their size by a comparison of the results using 1-loop
and 2-loop β coefficients in the RGE running. This, however, can be done using
different assumptions. We have tried the following four different definitions for the
theory error:

• (i) Perform a χ2
min search at 1-loop and at 2-loop. Consider the difference

∆(α−1
G )th ' |(α−1

G )(1−loop)− (α−1
G )(2−loop)| as the theoretical error, common to

all αi.

• (ii) Perform a χ2
min search at 1-loop and at 2-loop. Calculate ∆(α−1

i )th '
|(α−1

i )exp− (α−1
i )(2−loop)| using m1−loop

G as the starting point, but keeping the
mLR and α−1

G from the 2-loop calculation. This generates ∆(α−1
i )th which

depend on the group i, but does not take into account the overall shift on
α−1
G caused by the change from 1-loop to 2-loop coefficients.

• (iii) Perform a χ2
min search at 1-loop and at 2-loop. Calculate ∆(α−1

i )th '
|(α−1

i )exp − (α−1
i )(2−loop)| using m1−loop

G and (α−1
G )1−loop as the starting point,

but keeping the mLR from the 2-loop calculation. This takes into account
both, the shift of mG and α−1

G from 1-loop to 2-loop calculation.

• (iv) Perform a χ2
min search at 1-loop. For the b.f.p. of mG, α−1

G and mLR

found, calculate the values of (α−1
i )(2−loop). Use ∆(α−1

i )th ' |(α−1
i )exp −

(α−1
i )(2−loop)| as the error. One should expect this definition to give, in
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principle, the most pessimistic error estimate. See, however, the discussion
below.

Def.: ∆(α−1
1 ) ∆(α−1

2 ) ∆(α−1
3 ) ∆(α−1)

(i) 0.76 0.76 0.76 0.76
(ii) 0.57 0.41 1.18 0.72
(iii) 1.31 0.34 0.40 0.68
(iv) 1.21 0.41 0.40 0.67

Def.: ∆(α−1
1 ) ∆(α−1

2 ) ∆(α−1
3 ) ∆(α−1)

(i) 0.86 0.86 0.86 0.86
(ii) 0.46 0.46 1.18 0.70
(iii) 1.30 0.39 0.30 0.66
(iv) 1.11 0.44 0.22 0.59

Table 6.6: Example shifts (“errors”) in ∆(α−1
i ) for the particular models: SM +

Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2 (left) and SM + 2Ψ3,1,1,−2/3 + 2Φ1,2,1,1 + 2Φ1,1,3,−2

(right), see also fig. 6.13, determined using the four different methods defined in
the text. ∆(α−1) is the mean deviation.

Example shifts (“errors”) in ∆(α−1
i ) determined by the four different methods

defined above and for two particular models, discussed in previous sections, are
given in table 6.6. The first and most important observation is that the theory
errors estimated in this way are always much larger than the experimental errors
on the gauge couplings. We would like to stress, however, that in absolute terms
∆(α−1

G )th ' 0.5 corresponds only to a 1÷ 2 % shift in the value of α−1
G , depending

on the model. It is found that all four methods lead to very similar ∆(α−1), but
which of the couplings is assigned the smallest error depends on the method and
on the model.

Perhaps more surprising is that method (iv) in the examples shown in the table
does not automatically lead to the largest ∆(α−1

i ) nor to the largest average error,
∆(α−1), in these examples 20. We can attribute this somewhat unexpected result

20For the MSSM method (iv) indeed leads to the largest ∆(α−1
i ), see below.
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Figure 6.18: Contour plot of the χ2 distribution in the plane (mLR, T1/2) for the
model: SM + Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2, using the four different approaches to
estimate the theoretical error, defined in the text: Top row: (i) left and (ii) right,
bottom row (iii) left and (iv) right. The cyan (blue, red) region corresponds to
the allowed region at 68 % (95 % and 3-σ) CL. In all four cases the model is ruled
out by proton decay constraints at one sigma, but allowed at 2-σ CL. For further
discussion see text.

to the correlated shifts induced by the simultaneous change in mLR and mG in
method (iv), which can even conspire in some models to give an unrealistically
small deviation in one particular coupling, see the value of ∆(α−1

3 ) in the second
model shown in table 6.6, for example.

In fig. 6.18 we then show the χ2 distributions using the four different set of values
of ∆(α−1

i ) for the model used in the left panel of table 6.6. Here, the χ2
min (denoted

by the cross) and the corresponding 1, 2- and 3-σ CL contours are shown in the
plane (mLR, T1/2), where T1/2 is the proton decay half-life estimated via eq. (6.42).
While at first glance, the different methods seem to produce somewhat different
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results, a closer inspection reveals that the two main conclusions derived from this
analysis are in fact independent of the method. First, in all four methods the
model is excluded by the lower limit for the proton decay half-live from Super-K
[254, 250] data at the one sigma level, but becomes (barely) allowed at 2-σ CL.
And, second, while the model has a preferred value for the mLR scale within the
reach of the LHC, the upper limit on mLR - even at only 1-σ CL! - is very large,
between [5×107, 2×109] GeV depending on the method. The model could therefore
be excluded by (a) a slight improvement in the theoretical error bar or (b) from an
improved limit on the proton decay, but not by direct accelerator searches. This
latter conclusion is, of course, not completely unexpected, since the value of mLR

enters in the analysis only logarithmically as the difference between mG and mLR.
As fig. 6.18 shows, in three of the four methods the error in the determination of
the T1/2 is around 2÷ 2.5 orders of magnitude at one sigma, while in method (ii)
- due to the correlation with mLR - we find approximately T1/2 = 1031+2.8−3.5 y.
This is mainly due to a change in the GUT scale, when going from the 1-loop to
the 2-loop β-coefficients. Note, that the value of mG enters in the fourth power in
the calculation of T1/2; thus, an error of a factor of 100 corresponds only to a shift
of a factor of ∆(mG) ' 3 in the GUT scale.
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Figure 6.19: Contour plot of the χ2 distribution in the plane (mLR,mG) for the
model: SM + 2Ψ3,1,1,−2/3 +2Φ1,2,1,1 +2Φ1,1,3,−2, using the four different approaches
to estimate the theoretical error, defined in the text: (i) left and (iv) right. Meth-
ods (ii) and (iii) lead to results similar to (i) and (iv), respectively, and are therefore
not shown.
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In fig. 6.19 we show the χ2 distributions, for the model on the right panel of ta-
ble 6.6, using two of the four methods for determining ∆(α−1

i ) of table 6.6. The
plots for methods (ii) and (iii) lead to results similar to (i) and (iv), respectively,
and are therefore not shown. Again, mLR is only very weakly constrained in this
analysis, but for this model, the b.f.p. of the GUT scale is much larger, around
mG ' 1017 GeV, so proton decay provides hardly any constraints on this model.
Note the strong correlation between mLR and mG in the plot on the left, which
leads to a much larger “error” bar in the predicted range of the proton decay half-
life for this model, roughly 5 orders of magnitude at one sigma CL.

We have repeated this exercise for a number of different LR models 21, see the
appendix and discussion in the previous section and have always found numbers of
similar magnitude. We have checked, however, that these “large” shifts in ∆(α−1

i )
are not a particular feature of our LR models. For this check we have calculated
∆(α−1

G )th also for a number of models with only the SM group up to the GUT
scale (see appendix). There, instead of mLR we used the energy where the new
particles appear, call it mNP , as a free parameter. Very similar values and varia-
tions for ∆(α−1

i )th are found in this study too. It may be interesting to note that
the smallest ∆(α−1

G )th we found corresponds to a model which is essentially like
split supersymmetry 22 with a ∆(α−1

G )th of only ∆(α−1
G )th ' 0.25. (In methods

(ii)-(iv) the ∆(α−1
G )th vary for this model between 0.05 and 0.78 with a mean of

0.55.) On the other hand, for the MSSM we find a ∆(α−1
G )th ' 0.82 and values

of ∆(α−1
i )th even up to ∆(α−1

i )th ' 2, depending on which of our four methods is
used. Thus, the uncertainties discussed in this section should apply to practically
all new physics models, which attempt to achieve GCU.

Reducing the theory error on α−1
i will be possible only, if thresholds are calculated

at both new physics scales, mLR and mG. Since this task is beyond the scope of
the present work, in fig. 6.20 we show plots as a function of the unknown theory
error ∆(α−1). The model considered is excluded by the proton decay constraint
at 2-σ CL up to an error of roughly ∆(α−1) ' 0.6, indicating that even a minor
improvement in the theory error can have important consequences for all models
with a relatively low GUT scale, say mG ∼ (1−3)×1015 GeV. On the other hand,

21Among them the two “minimal” LR models discussed in the introduction.
22This is the first example of SM+X configurations discussed in section 6.2.7.
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Figure 6.20: Allowed range cyan (blue, red) of T1/2 (left) and mLR (right) at 1-, 2-
and 3-σ CL as a function of the error in ∆(α−1). The plot is for the model SM +
Φ1,2,2,0+3Φ1,1,3,0+2Φ1,1,3,−2. The horizontal line in the left plot is the experimental
lower limit [254, 250], while the vertical line at ∆(α−1) = 0.76 corresponds to the
estimated uncertainty in this model using method (i).

in order to be able to fix the LR-scale to a value low enough such that accelerator
tests are possible, requires a much smaller theory error. The exact value of this
“minimal” error required depends on the model, but as can be seen from fig. 6.20
theory errors of the order of ∆(α−1

i ) <∼ 0.1 will be necessary.

6.2.9 Summary and conclusions

In this work we attempted to construct a comprehensive list of non-SUSY models
with LR-symmetric intermediate stage close to the TeV scale that may be obtained
as simple low-energy effective theories within a class of renormalizable non-SUSY
SO(10) grand unifications assuming some of the components of scalar representa-
tions with dimensions up to 126 to be accidentally light. In order to make our way
through the myriads of options we assumed that all such light fields (besides those
pushed down by the need to arrange for the low LR breaking scale) necessary to
maintain the SO(10)-like gauge coupling unification are clustered around the same
(TeV) scale.
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Remarkably enough, the vast number of settings that pass all the phenomenologi-
cal constraints (in particular, the compatibility with the quark and lepton masses
and mixings, the current proton lifetime limits, perturbativity and gauge coupling
unification) can be grouped into a relatively small number of types characterised,
in our classification, by the extra fields underpinning the emergence of the SM
flavour structure. Needless to say, the popular low-scale LR alternatives to the
MSSM such as, e.g., split-SUSY, simple extensions of the mLR and/or mΩLR
models, are all among these.

In the second part of the study we elaborate in detail on the theoretical uncer-
tainties affecting the possible determination of (not only) the LR scale from the
low-energy observables focusing namely on the impact of different definitions of
the χ2 reflecting the generic incapability of the simplistic bottom-up approach to
account for most of the details of the full top-down analysis. To this end, we per-
form a numerical analysis of a small set of sample scenarios to demonstrate how
difficult it is in general to extrapolate the low-energy information over the “desert”
to draw any strong conclusion about the viability of the underlying unified theory
without a detailed account for, e.g., the GUT-scale thresholds and other such high-
scale effects. Nevertheless, within the bottom-up approach employed in this study
the character of our results is inevitably just indicative and further improvements
are necessary before drawing any far-fetched conclusions. To this end, the simple
classification of the basic potentially realistic schemes given in Sect. 6.2.5 may be
further improved in several directions, among which perhaps the most straightfor-
ward are, e.g., the viability of arranging the considered spectra in specific SO(10)
GUTs, their perturbativity beyond the unification scale, etc.

6.3 SO(10) and Dark Matter
Several astrophysical observations seem to indicate that the luminous matter in
the Universe is just a tiny fraction of its total content. While the dark matter
(DM) has not been directly detected, its gravitational effects have been observed,
ranging from the inner kiloparsecs of galaxies out to some Mpc scales. The most
relevant DM observations come from the rotational speed of galaxies (circular ve-
locities of stars and gas as a function of their distance from their galactic centers),
gravitational lensing, the cosmic microwave background and other extragalactic
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measurements.

However, until now, the nature of the DM is still unknown. A widely studied can-
didate is the Weakly Interacting Massive Particle (WIMP) which interact weakly
with ordinary matter and are electrically neutral. A plethora of non-baryonic DM
candidates have been proposed, some of these are:
- Neutralino: If R-parity is conserved, the lightest supersymmetric particle (LSP)
is stable and would provide a natural candidate for DM. The LSP neutralino (nor-
mally the lightest supersymmetric particle, a superposition of the superpartners of
the gauge bosons and the Higgs bosons), is probably the best WIMP candidate.
- Axions: which can be efficiently produced through thermal and non-thermal
processes in the early Universe under the form of cold, warm or even hot DM.
- Gravitinos: In models where the gravitino is the LSP, it is quite light (KeV) and
thus, would be warm DM (WDM).

There are basically two ways to detect dark matter: direct and indirect detection.
Direct searches detect DM particles by measuring nuclear recoils produced by DM
elastic scattering 23. Indirect DM searches try to detect the radiation produced in
DM annihilations, i.e, the products of WIMP annihilations, such as gamma-rays,
neutrinos, positrons, electrons and antiprotons. There are many experiments un-
derway to attempt to detect WIMPs both directly and indirectly, whose sensitivity
will be improved in the coming years. Direct detection experiments typically oper-
ate in deep under ground laboratories to reduce the background from cosmic rays.
Experiment like XENON [261, 262] and LUX [263] will increase the sensitivity to
Dark Matter Signals. Indirect detection experiments like PAMELA [264], EGRET
[265] and the Fermi Gamma Ray Telescope search for the products (gamma rays)
of WIMP annihilation or decay. Searches at LHC might provide some hints or
even detect DM indirectly through missing energy searches.

Some other extended BSM scenarios can explain remarkably well DM too. Here,
a discrete Z2 symmetry must be added to stabilize the DM particle. On the other
hand in GUT frameworks, for instance SO(10), the Z2 could be a remnant of the
GUT group. In the next subsection we explain how these kind of scenarios are

23Another strategy for DM direct searches is the direct production of DM particles in labora-
tory experiments.
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realized in SO(10), discussing the possible DM candidates and configurations.

6.3.1 Dark Matter and GUTs

As is known, a discrete symmetry is needed to stabilize DM. It could be a remnant
symmetry of the GUT group, in this case SO(10). SO(10) can be broken to the
SM with an intermediate symmetry:

SO(10)→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L, (6.52)

U(1)B−L can leave an Z2 unbroken. This Z2 is known as matter parity, denoted
as Mp:

Mp = (−1)3(B−L). (6.53)

A multiplet which belongs to the 16 and 144 SO(10)-reps is Z2-odd and a mul-
tiplet which belong to the 45, 54, etc. SO(10)-reps is Z2-even. Therefore for an
extra field to be a possible candidate to dark matter must be either a or b:

a. An extra fermion charged even under U(1)B−L.
b. An extra scalar charged odd under U(1)B−L.

Table 2.2 shows the possible DM candidates contained in different SO(10) repre-
sentations up to the 126.
Some of the simple configurations which could be realistic to explain DM are:

Φ1,2,2,0 + 2Φ1,1,3,0 + 2Φ1,1,2,−1 + 2Φ1,1,3,−2,

2Ψ3,2,1,1/3 + Φ8,1,1,0 + 4Φ1,1,3,−2,

Φ1,1,2,0 + Φ1,1,2,−1 + 3Φ1,1,3,−2.

Note that, for the first configuration, the fields Φ1,2,2,0 and Φ1,1,3,0 realize the scalar
CKM, Φ1,1,3,−2 breaks the LR symmetry and the neutral component of Φ1,1,2,−1 is
the DM candidate.

For the first configuration: Φ1,1,2,0 +2Φ1,1,3,0 +2Φ1,1,2,−1 +Φ1,1,3,−2, the most generic
potential, compatible with the symmetries and also Z2 invariant, is described by:
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SU(3)c 1 1 1
SU(2)L 1 1 3
SU(2)R 2 3 1
U(1)B−L -1 -2 -2
Q 0 0 0
(B − L) odd even even
Rep 16 45 126
Scalar �
Fermion � �

Table 6.7: Different dark matter candidates using SO(10) representation up to
126.

W =YQQΦQc + YLLΦLc + µ2

2 ΦΦ +m2
∆c∆c∆c +m2

ΩcΩcΩc +m2
χcχ

cχc+

+ α1L
c∆cLc + α2ΦΩcΦ + α3χ

c∆cχc + α4χc∆cχc + α5χ
cΩcχc+

β1(∆c∆c)(∆c∆c) + β2(ΩcΩc)(ΩcΩc) + β3(χcχc)(χcχc)+
β4(ΦΦ)(χcχc) + β5(ΦΦ)(ΩcΩc) + β6(ΦΦ)(∆c∆c). (6.54)

The couplings α2,....,5 have dimension of mass and α1, β1,....6 are dimensionless.



Chapter 7

CONCLUSIONS
The observation of neutrino masses in recent oscillation experiments is the main
motivation for this thesis. The seesaw mechanism is, perhaps, the simplest way
to explain neutrino masses and provides a rationale for their observed smallness.
The seesaw type-I adds only singlets to the SM particle content, so all changes
in the observables apart from neutrino masses are small. In addition, due to the
large mass scales for the RH neutrinos involved, no direct experimental test will
be possible. This motivates to study extensions of the SM which have testable ob-
servables. In this thesis four different BSM scenarios that explain neutrino masses
were explored: i) a supersymmetric version of the seesaw type-I, ii) Witten’s loop
in a flipped SU(5) model, iii) SUSY and iv) nonSUSY SO(10)−inspired GUT
models with U(1)B−L intermediate symmetries where different seesaw mechanisms
are realized. Below I present a summary and short conclusions of the different
papers:

In [1] indirect hints of type-I seesaw that could be contained in SUSY mass mea-
surements have been analyzed. Using published estimated errors on SUSY mass
observables for a combined LHC+ILC analysis, we performed a theoretical χ2

study to identify parameter regions where pure CMSSM and CMSSM plus seesaw
type-I might be distinguishable with LHC+ILC data. This analysis was done be-
fore the recent LHC results. Now, negative searches for SUSY given by CMS [55]
and ATLAS [56] define an excluded range in the CMSSM parameter space, ruling
out all the SPS points studied in this work. However, future LHC data, if there
are signals of supersymmetry, would reopen the window in the searches for signs
of type-I seesaw in the SUSY spectra.
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Although seesaw mechanism explains remarkably well the neutrino masses, the
three RH neutrinos, which live at a high scale mR > 1014GeV, are added by hand.
This motivates to study other methods to explain neutrino masses rather than the
simple seesaw. For example, a two loop suppression for νR can arise in the Flipped
SU(5) model. Here interesting relations between the partial proton decay widths
and the neutrino parameters can be found [4].

Neutrino masses are sucessfully explained in SO(10)−inspired GUT models with
LR intermediate scales. In these scenarios, the U(1)B−L is a subgroup of SO(10),
so different realizations of the seesaw arise naturally. In SUSY SO(10) models
some conditions which enforce that the three gauge couplings unify independent
of the intermediate scale mLR where imposed. In this case, mLR can be as low
as 1 TeV, then phenomenologically testable models arise. In addition, assuming
CMSSM boundary conditions some combinations of the soft terms, called “invari-
ants” give information of the scale of beyond-MSSM physics. These aspects are
studied in [2]. Considering that no signal of SUSY have been seen in the ac-
tual accelerators experiments, in [3] we also attempt to construct a comprehensive
list of nonSUSY SO(10) models with LR symmetric intermediate stages. These
models unify equal or better than the MSSM even if the LR scale is in the LHC
domain. The main aspects of a realistic model building conforming the basic con-
straints from the quark and lepton sector flavour structure, proton decay limits
and neutrino mass are discussed. We put special attention on the theoretical un-
certainties in particular, its role in the possible extraction of the LR-breaking scale.

Given the evidence of DM in the universe as well as the actual cosmological mea-
surements hinting at inflation, we explored a possible connection between the
nonSUSY SO(10) models with DM. Very simple configurations which contain at
least a DM candidate and respect some other phenomenological constraints were
found. The relation between the DM and GUT parameters would be an interesting
future topic to complete the work done in this thesis. Also, searches of perturba-
tive baryon number violating (BNV) processes in the near future would constraint
the high energy mass spectrum of the theory. A more precise computation using
two-loop RGEs, as well as the inclusion of threshold effects could also be imple-
mented to obtain more precise predictions.
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In conclusion, supersymmetry and also grand unified theories are still considered
to be among the most attractive candidates to address some of the shortcomings
present in the SM. Neutrino masses and other interesting phenomenology like CKM
mixing, proton decay limits and DM is successfully explained in these theories. It
is expected that the next run of the LHC at 13-14 TeV center of mass energy,
as well as new generation of low energy experiments help to address the models
beyond the standard model. The future progress of experiments regarding the DM
and baryon number violating (BNV) searches could give us interesting hints how
to improve and complete the work here presented.



Appendix A

Some Algebra in Supersymmetry

A.1 Two component notation
In the Weyl representation, the gamma matrices are described by:

γµ =

 0 σµ

σµ 0

 , (A.1)

where µ = 0, 1, 2, 3 and σµ = (I2, σ) , σµ = (I2,−σ) = σµ.

The Dirac spinor is written as:

ΨD = ΨR + ΨL. (A.2)

In this basis, this spinor can be written in terms of two-component, complex and
anticommuting objects: ξα, (χ†)α̇:

ΨD =

 ξα

χα̇

 (A.3)

Ψc
D =

 χα

ξ
α̇

 ,
where: α, α̇ : 1, 2.
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These latter definitions specify how to raise undotted indices and to lower dotted
indices:

χα = εαβχβ (A.4)
ξα̇ = εα̇β̇ξ

β̇,

where:

εαβ =

 0 −1
1 0

 (A.5)

εα̇β̇ =

 0 1
−1 0

 .
The left and right components of the Dirac spinor are written then:

ΨL =

 ξα

0

 (A.6)

ΨR =

 0
χα̇

 .
With the properties of Majorana spinors:

Ψc
M = ΨM (A.7)

and with the latter equations, it follows that, for Majorana spinors:

ξα = χα, (A.8)

which implies:

χα̇ = ξ
α̇
. (A.9)

It is sometimes useful to write a general Dirac spinor ΨD in terms of two Majorana
spinors.
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A.2 Supersymmetric Lagrangian
A supersymmetry transformation in a realistic supersymmetric model, turns a
bosonic state Φi into its superpartner Weyl fermion Ψi state and vice versa. It
also converts the gauge boson field Aαµ into a two component Weyl fermion gaugino
λa and vice versa [69]:

δφi = εΨi, (A.10)
δ(Ψi)α = i(σµε†)αDµφi + εαFi,

δFi = iε†σµDµΨi +
√

2g(T aφ)iε†λ†a,

δAaµ = − 1√
2

(ε†σµλa + λ†aσµε),

δλaα = − i

2
√

2
(σµσνε)αF a

µν + 1√
2
εaD

a,

δDa = 1√
2

(ε†σµDµλ−Dµλ
†σµε).

The index i runs over the gauge and flavor indices of the fermions, εα is the
infinitesimal, anti-commuting two-component Weyl fermion object which parame-
terizes the supersymmetry transformation, Fi and Di are complex auxiliary fields
which do not propagate and can be eliminated using their equations of motion.
The index a runs over the adjoint representation of the gauge group under which
all the chiral fields transform in a representation with hermitian matrices satisfy-
ing [Ta, Tb] = ifabcT c.

The gauge transformations are described by:

Dµφi = ∂µφi + igAaµ(T aφ)i, (A.11)
DµΨi = ∂µΨi + igAaµ(T aφ)i,
Dµλ

a = ∂µλ
a − igfabcAbµλc,

F a
µν = ∂µA

a
µ − ∂νAaµ − gfabcAbµAcν ,

where g is the gauge coupling.

Under these transformations, the Lagrangian density can be written as:
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L = LK + LMλ + LY + LS, (A.12)

where:

LK = LC + LMG + LλG + LGG, (A.13)

LMλ = ig
√

2(φ∗j(Ta)ikλaψk − φi(T a)ikλ
aΨk), (A.14)

LY = −1
2[
∑
lk

dW [φ̂]
dφldφk

ΨlΨk + h.c], (A.15)

LS = −1
2 |gφ

∗
i (Ta)ijφj|2 −

∑
i

|dW [φ̂]
dφi

|2, (A.16)

where LMλ includes the interactions between the SM fields, their supersymmetric
partners and the gauginos (gauge field supersymmetric partners). LY includes all
type of Yukawa interactions that appear in the superpotential. LS includes the
interactions between the scalar fields F and D (these fields are very important in
the study of the symmetry breaking). LK is defined by:

LC =
∑
j

|∂µφj|2 − iΨjσµ∂
µΨj −

1
4V

a
νµV

µν
a − iλ

a
σµ∂

µλa + h.c, (A.17)

LMG = −gΨiσ
µV a

µ (Ta)ijΨj − igφ∗iV a
µ (Ta)ij

←→
∂µφj (A.18)

+ g2V a
µ V

bµφ∗i (TaTb)ijφj + h.c,

LλG = igfabcλ
aσµλ

b
V c
µ + h.c, (A.19)
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LGG = −gF a
bcV

b
µV

c
ν ∂

µV ν
a −

1
4g

2F a
bcfadcV

b
µV

c
ν V

dµV eν , (A.20)

where LC are the kinetic terms, LMG give the interactions between each particle
with the gauge fields, LλG the interactions between gauge fields and gauginos and
LGG describes the interactions between gauge fields.

The gauge fields are defined in the usual form:

Vµν = ∂µVν − ∂νVµ, (A.21)
F a
µν(V ) = ∂µV

a
ν − ∂νV a

µ + gfabcV
b
µV

c
ν , (A.22)

Dµ = ∂µ − igV a
µ (Ta)ij. (A.23)

In a renormalizable supersymmetric field theory, the interactions and masses of
all particles are determined by their gauge transformation properties and by the
superpotential W [φ̂j]. W is the most general supersymmetric term that contain
the chiral matter fields and is renormalizable:

W [φ̂j] =
∑
j

kiφi + 1
2
∑
i,j

mijφ̂iφ̂j + 1
3
∑
i,j,k

λijkφ̂iφ̂jφ̂k. (A.24)

W determines only part of the scalar interactions of the theory as well the fermion
masses and the Yukawa couplings. Also the D-terms from the gauge part give
contributions to the scalar potential.

A.3 Lie Group and Lie Algebras
As is known, the SM is the best descriptions of physics at low energies. However
there are some theories beyond the SM which unify all the forces and particles and
explain also successfully the interactions in the nature. The three best studied
GUT models in literature are: Georgi and Glashow SU(5) theories, models based
in the Pati Salam PS group SU(4)× SU(2)L × SU(2)R, and SO(10), all of which
typically are studied with finite-dimensional gauge group representations. In this
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chapter, group representations, algebras and particle content of these GUT models
will be discussed.

GUT theories are described by simple Lie groups G that can not be decomposed as
a product of other groups [266]. A gauge theory based on G requires an invariant
inner product on its Lie algebra. When G is simple, this form is unique up to a
scalar factor, called ’coupling constant’. When G is the product of simple factors,
there is one coupling constant for each factor of G. Therefore, by using a simple
Lie group, the number of coupling constants in the theory is minimized.

In order to understand how the SM can be extended to larger gauge symmetries,
such that the matter content is agruped in a single representation (and then re-
duce the number of parameters in the theory), we need to explore some theoretical
features of the Lie algebras [266, 267]:

A Lie Group is defined such that each of its elements depends smoothly on a set
of continuous parameters:

g(α). (A.25)

The identity element e requires to choose the parametrization such that α = 0
corresponds to e. Thus, in the neighbourhood of the identity, it is assumed the
each element of the group can be described by N parameters such that:

g(α)|α=0 = e, (A.26)

which is also followed by the representations of the group:

D(α)|α=0 = e. (A.27)

In some neighbourhood of α a Taylor expansion of these representations can be
done such that:

D(dα) = 1 + i
d

dαα
Xα, (A.28)

Xα = −i d

dαα
D(α)|α=0. (A.29)
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whereXα are the generators of the group. With the specific properties: D(a)D(b) =
D(ab) and D(e) = 1 , the D(α) representation can be written like:

D(α) = lim
k→0

(1 + idααXα/k)k = eiααXα , (A.30)

in the limit when k is large, (1 + idααXα/k) tends to (1.59). This defines a
particular parametrization (exponential parametrization) which is widely used in
the standard (U) representations of the Lie SU(N) groups defined by:

U(λ) = eiλααXα, (A.31)

and multiplied as:

U(λ1)U(λ2) = U(λ1 + λ2). (A.32)

However, if we multiply two representations generated by diferent combinations of
the generators, we have:

eiααXαeiβbXb 6= ei(αα+βα)Xα . (A.33)

A Lie algebra is described by the commutation relations between the generators
of the group:

[Xa, Xb] = ifabcXc. (A.34)

This commutator relation is called the Lie Algebra of the group, which is deter-
mined by the structure constant which is fixed by the group multiplication laws.

If there is any unitary representation of the algebra, the fabc coefficients are real,
so:

[Xa, Xb]† = −if ∗abcXc, (A.35)

since we are interested in groups which have unitary representations, we will as-
sume fabc real.



Appendix B

Grand Unified Theories

B.1 Basics

B.1.1 SU(5)
SU(5) is defined by its adjoint representation (the 5 × 5 complex unitary matri-
ces with determinant 1). There are 25 independent real 5 × 5 matrices, i.e, 50
independent complex unitary matrices U. The unitary condition UU † = 1 and
detU = 1, give 25 + 1 constrains, leaving this 24 independent matrices (Ta). In
the fundamental representation, SU(5) is characterized by a generalization of the
Gell-Mann matrices, denoted by Ma and a = 1, ....., 24, normalized as:

Tr(MaMb) = 2δab
Tr(Mc) = 0, (B.1)

and Ta = Ma

2 , a = 1, ........., 24. The gauge bosons Aµa , belonging to the 24 adjoint
representation, can be written as a 5× 5 matrix:

Aµ =
24∑
a=1

Aaµ
Ma

2 , (B.2)

and taking into account the form of the 24 generators, we finally have:
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Aµ = 1√
2



X1
µ Y 1

µ

Gluones X2
µ Y 2

µ

X3
µ Y 3

µ

X
1
µ X

2
µ X

3
µ W 3

µ/
√

2 W+
µ

Y
1
µ Y

2
µ Y

3
µ W−

µ W 3
µ/
√

2


+

1√
30
Bµ



−2 0 0 0 0
0 −2 0 0 0
0 0 −2 0 0
0 0 0 3 0
0 0 0 0 3


. (B.3)

The matrix contains the SU(3)c Gluons: Aaµ = 1, ...., 8, the SU(2)L gauge bosons:
W 3
µ ,W

+
µ ,W

−
µ and the U(1)Y boson: Bµ. In addition there are twelve bosons, de-

noted as X, Y .

B.1.2 SO(10)
SO(10) is described by the orthogonal N×N group transformation matrices which
obey: O†O = 1 and det(O) = 1. An infinitesimal transformation is defined by:

Oij → Oij + wij. (B.4)

We find, for example, the decomposition of the 45 dimensional representation of
SO(10) under SU(3)c × SU(2)L × SU(2)R × U(1)B−L:

45 G3221−−−→ (1, 3, 1, 0) + (1, 1, 3, 0) + (8, 1, 1, 0) + (1, 1, 1, 0)

+ (3, 2, 2, 2
3) + (3, 2, 2,−2

3) + (3, 1, 1, 1
3) + (3, 1, 1,−1

3). (B.5)

In order for a group G to break into a subgroup H, there must be a field transform-
ing non-trivially under G which contains a singler of H that adquires a vacuum
expectation value. We can see that, in this case the 45 contains a singlet of the
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group G3,2,2,1. Therefore, if the multiplet develops a vev in that direction, G3,2,2,1

remains as an unbroken subgroup. On the other hand, some of the multiplets
which can break SO(10) to G4,2,2 are contained in the representations: 54, 210, 16
and 126. In particular, for the 126 we have:

126 G422−−→ (6, 1, 1) + (15, 2, 2) + (10, 3, 1) + (10, 1, 3). (B.6)

It is clear that the multiplet which breaks G3,2,2,1 or G4,2,2 down to the SM is
contained in (1, 3, 10). This 126 representation provides a large mass to the right
handed neutrinos.

B.2 List of fields in the Left-Right models
We have considered SO(10) inspired models which may contain any irreducible
representation up to the dimension 126 (1, 10, 16, 16, 45, 54, 120, 126, 126).
Once the gauge group is broken to SU(4)×SU(2)L×SU(2)L or SU(3)c×SU(2)L×
SU(2)R×U(1)B−L these SO(10) fields break up into a multitude of different irre-
ducible representation of these groups.

In addition, if SU(2)R is broken down further to U(1)R the following branching
rules apply: 3→ −1, 0,+1; 2→ ±1

2 ; 1→ 0. The standard model hypercharge in
the canonical normalization, is then equal to the combination√

3
5 [U(1)R hypercharge] +

√
2
5 [U(1)B−L hypercharge]. In tables B.1, B.2 and B.3

we present the list of relevant fields respecting these conditions. Here we used
ordered naming of the fields.

B.3 NonSUSY GUTs
Extending the SM with some particle content X particle added at the scale mNP

(new physics scale), it is possible to achieve a unification equal or better than in
the MSSM. We find there is a large number of such solutions. However, all of these
can be classified into a small number of series, that predict a specific value of mG

and ∆α−1(mG). The ∆b coefficients (shift with respect to the SM b
′s values) that
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Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9 Φ10 Φ11 Φ12 Φ13 Φ14

χ χc Ω Ωc Φ δd δu

SU(3)C 1 1 1 1 1 1 8 1 3 3 6 6 3 3
SU(2)L 1 2 1 3 1 2 1 1 1 1 1 1 2 1
SU(2)R 1 1 2 1 3 2 1 1 1 1 1 1 1 2
U(1)B−L 0 +1 -1 0 0 0 0 +2 −2

3 +4
3 +2

3 −4
3 +1

3 +1
3

PS
Origin

Ψ1

Ψ10

Ψ12 Ψ13 Ψ3 Ψ4
Ψ2

Ψ7

Ψ10

Ψ11

Ψ9
Ψ8

Ψ9

Ψ10 Ψ9 Ψ11 Ψ12 Ψ13

Φ15 Φ16 Φ17 Φ18 Φ19 Φ20 Φ21 Φ22 Φ23 Φ24

∆ ∆c

SU(3)C 8 1 1 3 3 3 6 6 1 3
SU(2)L 2 3 1 2 3 1 3 1 3 2
SU(2)R 2 1 3 2 1 3 1 3 3 2
U(1)B−L 0 -2 -2 +4

3 −2
3 −2

3 +2
3 +2

3 0 −2
3

PS
Origin

Ψ7 Ψ16 Ψ17 Ψ7
Ψ14

Ψ16

Ψ15

Ψ17

Ψ16 Ψ17 Ψ5 Ψ6

Table B.1: Naming conventions and transformation properties of fields in the
left-right symmetric regime (not considering conjugates). The charges under the
U(1)B−L group shown here were multiplied by a factor

√
8
3 .
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Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10 Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 Ψ16 Ψ17

SU(4) 1 1 1 1 1 6 15 6 10 15 20’ 4 4 6 6 10 10
SU(2)L 1 2 3 1 3 2 2 1 1 1 1 2 1 3 1 3 1
SU(2)R 1 2 1 3 3 2 2 1 1 1 1 1 2 1 3 1 3

SO(10)
Origin

1

54

10

120
45 45 54

45

54

120

126

10

126
120 45 54 16 16 120 120 126 126

Table B.2: Naming conventions and transformation properties of fields in the
Pati-Salam regime (not considering conjugates)

Φ′1 Φ′2 Φ′3 Φ′4 Φ′5 Φ′6 Φ′7 Φ′8 Φ′9 Φ′10 Φ′11 Φ′12 Φ′13 Φ′14 Φ′15 Φ′16

SU(3)C 1 1 1 1 1 1 1 8 1 3 3 6 6 3 3 3
SU(2)L 1 2 1 1 3 1 2 1 1 1 1 1 1 2 1 1
U(1)R 0 0 −1

2 +1
2 0 +1 +1

2 0 0 0 0 0 0 0 −1
2 +1

2

U(1)B−L 0 +1 -1 -1 0 0 0 0 +2 −2
3 +4

3 +2
3 −4

3 +1
3 +1

3 +1
3

LR
Origin

Φ1

Φ5

Φ2 Φ3 Φ3
Φ4

Φ23

Φ5 Φ6 Φ7
Φ8

Φ̄17

Φ9

Φ20

Φ10
Φ11

Φ22

Φ12 Φ13 Φ14 Φ14

Φ′17 Φ′18 Φ′19 Φ′20 Φ′21 Φ′22 Φ′23 Φ′24 Φ′25 Φ′26 Φ′27 Φ′28 Φ′29 Φ′30 Φ′31

SU(3)C 8 1 1 1 3 3 3 3 3 6 6 6 1 3 3
SU(2)L 2 3 1 1 2 2 3 1 1 3 1 1 3 2 2
U(1)R +1

2 0 -1 +1 −1
2 +1

2 0 -1 +1 0 -1 +1 +1 −1
2 +1

2

U(1)B−L 0 -2 -2 -2 +4
3 +4

3 −2
3 −2

3 −2
3 +2

3 +2
3 +2

3 0 −2
3 −2

3

LR
Origin

Φ15 Φ16 Φ17 Φ17 Φ18 Φ18 Φ19 Φ20 Φ20 Φ21 Φ22 Φ22 Φ23 Φ24 Φ24

Table B.3: Naming conventions and transformation properties of fields in the
U(1) mixing regime (not considering conjugates). The charges under the U(1)B−L
group shown here were multiplied by a factor

√
8
3 .
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describe the elements of each series are related by:

(∆b1,∆b2,∆b3) = (∆b1i + (n/3),∆b2i + (n/3) + ∆b3i + (n/3))

where the ∆b′is, for n = 0, describe the lowest variants that begin each series.
There are 12 of these series, and again, each one with a specific value of mG and
∆α−1(MG). The list of series is given in Table 7.4.

Series mG ∆α−1
G

(0, 2, 2) 1.03× 1017 0.391
(1/10, 11/6, 3/2) 7.79× 1015 0.516
(2/15, 2, 11/6) 2.68× 1016 0.082
(1/6, 13/6, 13/6) 1.03× 1017 0.387
(1/6, 5/2, 8/3) 4.46× 1017 0.172
(4/15, 2, 5/3) 7.79× 1015 0.516
(3/10, 11/6, 3/2) 7.79× 1015 0.428
(3/10, 13/6, 2) 2.68× 1016 0.082
(3/10, 5/2, 5/2) 1.03× 1017 0.639
(1/3, 8/3, 17/6) 4.46× 1017 0.172
(7/15, 7/3, 13/6) 2.68× 1016 0.082
(7/15, 8/3, 8/3) 1.03× 1017 0.639

Table B.4: List of the possible series of ∆b leading to GCU. mG is the GUT
scale and ∆αG is the the difference of the couplings α−1

1 − α−1
2 at mG, for a fixed

mNP = 1TeV.

All the sets have ∆α−1(mG) < 0.8. This means, we are finding solutions with a
unification equal or better than for the MSSM.
Fig. 7.1 shows the behavior of ∆α−1(mG) with mNP for each one of the series. We
can see that perfect unification (∆α−1(mG) = 0) is reached at mNP . We can see
that some series, for example Series 12, 9, 6 and 2 do not reach "perfect unification"
if we consider values for mNP into the interval 2 − 3 TeV (realistic values for the
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LHC). It is important to note that only 6 of these series predict different values
for mG and ∆α−1(mG), as we can see also in the figure. This is expected because,
for example: Serie4: Serie1 +(1/6), Serie6= Serie2 +(1/6)...and similar relation
for other ones.
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Figure B.1: α−1
G as function of mNP for the different series.

We analized the predicted value of α−1
S (mZ) for the models in each series in order

to compare with the actual measured value, as in Fig. 7.2. Here, it is possible to
find the interval mNP in which the measured value of α−1

S (mZ) is reached in each
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serie. For example, in Series 2 and 9 this value is reached for large values of mNP .
This can be also understood looking at Fig. 7.1.

100 200 500 1000 2000 5000
7.0

7.5

8.0

8.5

9.0

9.5

mNP

Α
S-

1
Hm

G
L

Figure B.2: Dependence of predicted α−1
S (mZ) with the new physics scale mNP . The

colors correspond to: Black: (Serie1, Serie4), Blue: (Serie2, Serie6), Orange: (Serie3,
Serie8, Serie11), Purple: (Serie5, Serie10), Red: (Serie7), Magenta: (Serie9, Serie12).

B.3.1 List of fields

We have considered SO(10) based models which contain any irreducible repre-
sentation up to dimension 126 (1, 10, 16, 16, 45, 54, 120, 126, 126). Once SO(10) is
broken, the fields divide into different irreducible representations and the quantum
numbers under SU(3)c× SU(2)L× SU(2)R×U(1)B−L are presented in table B.5,
where we used an ordered naming of the fields.

B.3.2 List of simple configurations-LR regime

The breaking of the LR symmetry to the SM : LR → SM requires the presence
of one of the fields: Φ1,1,3,−2 or Φ1,1,2,−1. All configurations contain then at least
one of these fields and also one bi-doublet Φ1,2,2,0 (to complete “SM+ bi-doublet”
basic field content). Table B.6 shows the simplest LR configurations for [a.1] scalar
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CKM (where the necessary fields are: Φ1,1,3,0, Φ1,2,2,0, Φ1,1,3,−2 or Φ1,1,2,−1) for each
one of the fields presented in table B.5.

B.3.3 SM-X extended unification: list of simple configu-
rations

It is possible to achieve one-step unification of the SM coupling constants within
non-SUSY models. This is performed adding to the SM a new particle content
at scale mNP . This particle content can be as simple as the configurations shown
in table B.7, which added to the SM lead “SM + X” models that unify equal
or even better than the MSSM. Therefore, for each one of the fields in table B.5
(in the SM version) one of the simplest X configurations is obtained as follows:
α−1

2 (mG) − α−1
1 (mG) < 0.9 (unification equal or better that the MSSM) and

1015 < mG < 1018 GeV in order to obtain proton life times allowed by the ac-
tual bounds.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scalar χ χc Ω Ωc Φ

Fermion B̃ L Lc Σ Σc G̃ δd δu Q Qc

SU(3)C 1 1 1 1 1 1 8 1 3 3 6 6 3 3
SU(2)L 1 2 1 3 1 2 1 1 1 1 1 1 2 1
SU(2)R 1 1 2 1 3 2 1 1 1 1 1 1 1 2
U(1)B−L 0 +1 -1 0 0 0 0 +2 −2

3 +4
3 +2

3 −4
3 +1

3 +1
3

SO(10)
Origin

1

54

45

16 16 45 45

10

120

126

45

54
120

10

126

120

45 120 54 16 16

15 16 17 18 19 20 21 22 23 24

Scalar ∆ ∆c

Fermion

SU(3)C 8 1 1 3 3 3 6 6 1 3
SU(2)L 2 3 1 2 3 1 3 1 3 2
SU(2)R 2 1 3 2 1 3 1 3 3 2
U(1)B−L 0 -2 -2 +4

3 −2
3 −2

3 +2
3 +2

3 0 −2
3

SO(10)
Origin

120 126 126
120

126

120

126

120

126
126 126 54

45

54

Table B.5: Naming conventions and transformation properties of fields in the
left-right symmetric regime (not considering conjugates). The charges under the
U(1)B−L group shown here were multiplied by a factor

√
8
3 . The hypercharge

is defined by: Y = TR3 + (B−L)
2 . B̃ and G̃ correspond to the bino and gluino

respectively. Symbols in the lines called "Scalar" and "Fermion" quote names used
for these fields in the literature.
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Extra field Configuration ∆b′s mG T1/2

Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ1,1,3,−2 (0, 1
3 ,

11
3 , 3) 2× 1015 1033±2.5

Φ1,2,2,0 + Φ1,1,3,0 + 3Φ1,1,3,−2 (0, 1
3 , 3,

9
2) 2× 1015 1033±2.5

Φ1,2,1,1 2Φ1,2,2,0 + 2Φ1,1,3,0 + 4Φ3,1,1,−2/3 + Φ1,2,1,1 + 2Φ1,1,3,−2 (2
3 ,

5
6 ,

10
3 ,

47
12) 8× 1015 1035±2.5

Φ1,1,2,−1 Φ1,2,2,0 + 2Φ1,1,3,0 + 2Φ1,1,2,−1 + 2Φ1,1,3,−2 (0, 1
3 ,

10
3 ,

7
2) 2× 1015 1033±2.5

Φ1,3,1,0 Φ1,2,2,0 + Φ1,1,3,0 + Φ1,3,1,0 + 3Φ1,1,3,−2 (1, 1, 3, 9
2) 3× 1016 1037±2.5

Φ8,1,1,0 2Φ1,2,2,0 + Φ1,1,3,0 + Φ8,1,1,0 + 2Φ1,1,3,−2 (1, 2
3 ,

8
3 , 3) 4× 1017 1042±2.5

Φ1,1,1,2 Φ1,2,2,0 + 2Φ1,1,3,0 + 2Φ1,1,1,2 + 2Φ1,1,3,−2 (0, 1
3 , 3, 4) 2× 1015 1033±2.5

Φ3,1,1,−2/3 2Φ1,2,2,0 + Φ1,1,3,0 + 5Φ3,1,1,−2/3 + 2Φ1,1,3,−2 (5
6 ,

2
3 ,

8
3 ,

23
6 ) 1× 1017 1039±2.5

Φ3,1,1,4/3 3Φ1,2,2,0 + Φ1,1,3,0 + 4Φ3,1,1,4/3 + 2Φ1,1,3,−2 (2
3 , 1, 3,

17
3 ) 2× 1015 1033±2.5

Φ6,1,1,2/3 2Φ1,2,2,0 + Φ1,1,3,0 + Φ6,1,1,2/3 + 2Φ1,1,3,−2 (5
6 ,

2
3 ,

8
3 ,

10
3 ) 1× 1017 1039±2.5

Φ6,1,1,−4/3 2Φ1,2,2,0 + 3Φ1,1,3,0 + Φ6,1,1,−4/3 + Φ1,1,3,−2 (5
6 ,

2
3 ,

10
3 ,

17
6 ) 1× 1017 1039±2.5

Φ3,2,1,1/3 Φ1,2,2,0 + Φ1,1,3,0 + 2Φ3,1,1,−2/3 + Φ3,2,1,1/3 + 3Φ1,1,3,−2 (2
3 ,

5
6 , 3,

59
12) 8× 1015 1035±2.5

Φ3,1,2,1/3 Φ1,2,2,0 + Φ1,1,3,0 + Φ3,1,2,/3 + 2Φ1,1,3,−2 (1
3 ,

1
3 ,

17
6 ,

37
12) 3× 1016 1037±2.5

Φ8,2,2,0 4Φ1,2,2,0 + 3Φ1,1,3,0 + Φ8,2,2,0 + 3Φ1,1,3,−2 (4, 4, 8, 9
2) 3× 1016 1037±2.5

Φ1,3,1,−2 Φ1,2,2,0 + Φ1,1,3,0 + 2Φ8,1,1,0 + 2Φ1,3,1−2 + 2Φ1,1,3,−2 (2, 5
3 ,

7
3 , 6) 4× 1017 1042±2.5

Φ3,2,2,4/3 Φ1,2,2,0 + Φ1,1,3,0 + Φ8,1,1,0 + 2Φ3,2,2,4/3 + Φ1,1,3−2 (7
3 ,

7
3 , 4,

11
3 ,

41
6 ) 3× 1016 1037±2.5

Φ3,3,1,−2/3 Φ1,2,2,0 + Φ1,1,3,0 + 2Φ8,1,1,0 + Φ3,3,1,−2/3 + 4Φ1,1,3−2 (5
2 ,

7
3 ,

11
3 ,

13
2 ) 1× 1017 1037±2.5

Φ3,1,3,−2/3 2Φ1,2,2,0 + 2Φ1,1,3,0 + Φ3,1,3,−2/3 + Φ1,1,3,−2 (1
2 ,

2
3 ,

14
3 , 2) 8× 1015 1035±2.5

Φ6,3,1,2/3 Φ1,2,2,0 + 3Φ1,1,3,0 + 2Φ8,1,1,0 + Φ6,3,1,2/3 + 5Φ1,1,3,−2 (9
2 ,

13
3 ,

17
3 ,

17
2 ) 1× 1017 1039±2.5

Φ6,1,3,2/3 2Φ1,2,2,0 + Φ1,1,3,0 + 3Φ1,3,1,0 + Φ6,1,3,2/3 + 2Φ1,1,3,−2 (5
2 ,

8
3 ,

20
3 , 4) 8× 1015 1035±2.5

Φ1,3,3,0 2Φ1,2,2,0 + 3Φ1,1,3,0 + 3Φ8,1,1,0 + Φ1,3,3,0 + 2Φ1,1,3,−2 (3, 8
3 , 6, 3) 4× 1017 1042±2.5

Φ3,2,2,−2/3 Φ1,2,2,0 + 1Φ1,1,3,0 + 3Φ3,1,2,1/3 + Φ3,2,2,−2/3 + Φ1,1,3,−2 (5
3 ,

4
3 ,

25
6 ,

29
12) 4× 1017 1042±2.5

Table B.6: Simple LR configurations which can explain [a.1] scalar CKM. One
of the bi-doublets Φ1,2,2,0 is already considered in the basic field content (SM+bi-
doublet). mG and T1/2 have been calculated at 1-loop. The first two configurations
correspond to the minimal solutions, each one with the basic [a.1] scalar CKM field
content.
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Extra field Configuration ∆b′s mG

Φ1,2,1/2 Φ1,2,1/2 + 4Φ3,2,1/6 + 4Φ3,1,1/3 (1
2 ,

13
6 , 2) 3× 1016

5Φ1,2,1/2 + 2Φ1,3,0 + 2Φ8,1,0 (1
2 ,

13
6 , 2) 3× 1016

Φ3,2,1/6 3Φ3,2,1/6 ( 1
10 ,

3
2 , 1) 2× 1015

4Φ3,2,1/6 + 2Φ3,1,−1/3 ( 4
15 , 2,

5
3) 8× 1015

Φ3,1,2/3 4Φ3,1,2/3 + 2Φ1,2,1/2 + 5Φ3,2,1/6 (43
30 ,

17
6 ,

17
3 ) 2× 1015

4Φ3,1,2/3 + Φ1,2,1/2 + 5Φ1,3,0 + 3Φ8,1,0 (7
6 ,

7
2 ,

11
3 ) 4× 1017

Φ3,1,−1/3 4Φ3,1,−1/3 + Φ1,2,1/2 + 4Φ3,2,1/6 (1
2 ,

13
6 , 2) 3× 1016

4Φ3,1,−1/3 + 4Φ1,2,1/2 + 3Φ1,3,0 + 2Φ8,1,0 (2
3 ,

8
3 ,

8
3) 1× 1017

Φ1,1,−1 3Φ1,1,−1 + 3Φ1,2,1/2 + 3Φ1,3,0 + 2Φ8,1,0 ( 9
10 ,

5
2 , 2) 2× 1015

Φ1,1,−1 + 2Φ1,3,0 + 2Φ8,2,1/2 (9
5 , 4, 4) 1× 1017

Φ3,1,0 3Φ1,3,0 + 2Φ8,1,0 (0, 2, 2) 1× 1017

Φ8,1,0 2Φ8,1,0 + 3Φ1,3,0 (0, 2, 2) 1× 1017

Φ6,1,1/3 2Φ6,1,1/3 + 3Φ1,3,0 ( 4
15 , 2,

5
3) 8× 1015

Φ6,1,−2/3 2Φ6,1,−2/3 + Φ6,3,1/3 + Φ3,2,−5/2 (23
10 ,

9
2 ,

9
2) 1× 1017

Φ8,2,1/2 Φ8,2,1/2 + 3Φ3,2,1/6 + Φ1,2,1/2 (1, 3, 3) 1× 1017

Φ1,3,−1 3Φ1,3,−1 + 3Φ1,3,0 + 4Φ8,2,1/2 (9
5 , 4, 4) 1× 1017

Φ1,1,−2 2Φ1,1,−2 + 2Φ3,3,−1/3 + 3Φ8,1,0 (2, 4, 4) 1× 1017

Φ3,2,7/6 Φ3,2,7/6 + 2Φ1,3,0 + 3Φ8,2,1/2 + 2Φ1,3,−1 (16
3 ,

22
3 ,

22
3 ) 1× 1017

Φ3,3,−1/3 Φ3,3,−1/3 + Φ1,3,−1 + 2Φ8,1,0 (4
5 ,

8
3 ,

5
2) 3× 1016

Φ3,1,−4/3 5Φ3,1,−4/3 + 2Φ6,3,1/3 + 2Φ8,1,0 (92
15 , 8,

47
6 ) 3× 1016

Φ6,3,1/3 Φ6,3,1/3 + Φ6,1,4/3 + Φ8,2,1/2 (10
3 ,

16
3 ,

16
3 ) 1× 1017

Φ6,1,4/3 Φ6,1,4/3 + Φ6,3,1/3 + Φ8,2,1/2 (10
3 ,

16
3 ,

16
3 ) 1× 1017

Φ3,2,−5/6 Φ3,2,−5/6 + 4Φ1,3,0 + 3Φ8,1,0 (5
6 ,

19
6 ,

10
3 ) 4× 1017

Table B.7: Simple X configurations which lead “SM+X” unification at mG:
[1015, 1018] GeV. The first two configurations correspond to the examples described
in section 6.2.7. Note that fields Φ3,1,−1/3, Φ3,1,−4/3, and Φ3,3,−1/3 are potentially
dangerous for d=6 proton decay, see section 6.2.2.



Appendix C

Proton decay and flipped SU(5)

C.1 The proton decay rates
In this appendix we rederive some of the results of paper [190] and rewrite them
in our notation. The proton decay partial widths to neutral mesons in the flipped
SU(5) model read

Γ(p→ π0e+
β ) = C1

2
∣∣∣c(eβ, dC)

∣∣∣2 , (C.1)

Γ(p→ ηe+
β ) = C2

∣∣∣c(eβ, dC)
∣∣∣2 , (C.2)

Γ(p→ K0e+
β ) = C3

∣∣∣c(eβ, sC)
∣∣∣2 . (C.3)

with the constants C1, C2, C3 defined in (5.7)-(5.9). The p-decay widths to charged
mesons obey

Γ(p→ π+ν) = C1

3∑
i=1

∣∣∣c(νi, d, dC)
∣∣∣2 , (C.4)

Γ(p→ K+ν) =
3∑
i=1

∣∣∣B4c(νi, d, sC) +B5c(νi, s, dC)
∣∣∣2 , (C.5)

where

B4 =
m2
p −m2

K

2fπ
√

2πm3
p

AL|α|
2mp

3mB

D ,

B5 =
m2
p −m2

K

2fπ
√

2πm3
p

AL|α|
[
1 + mp

3mB

(D + 3F )
]
,
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can be obtained from the chiral Lagrangian. AL takes into account renormalization
from MZ to 1 GeV. The flavor structure of the basic contractions can be written
as

c(eα, dCβ ) = k2
(
Ud(UL

u )†
)
β1

(UR
u (UL

e )†)1α, (C.6)

c(νl, dα, dCβ ) = k2(UdU †d)βα(UR
u U

†
ν)1l. (C.7)

Here k = gG/MG and the unitary matrices Ud, UR,L
u , Uν and UR,L

e provide the
diagonalization of the quark and lepton mass matrices:

mLL = UT
ν DνUν

Me = (UL
e )TDeU

R
e

Md = UT
d DdUd

Mu = (UL
u )TDuU

R
u .

Note that Md and mLL are symmetric, hence, instead of a biunitary, a single-
unitary-matrix transformation can be used to diagonalize each of them. In this
notation

VCKM ∝ UL
u U
†
d (C.8)

VPMNS ∝ UL
e U
†
ν (C.9)

where the proportionality sign turns into equality once the extra phases (unphysical
from the SM perspective) are stripped down. Hence, the flavor structure of the
d = 6 proton decay widths to neutral mesons and charged leptons is governed by∣∣∣c(eα, dCβ )

∣∣∣2 = k4|(VCKM)1β|2|(UR
u (UL

e )†)1α|2. (C.10)

For a symmetric Md another important feature of the flipped SU(5) scheme is re-
covered: c(νl, dα, dCβ ) ∝ δαβ; this implies Γ(p→ K+ν) = 0. Moreover, considering∑3
l=1 |(UR

u U
†
ν)1l|2 = 1 one gets

Γ(p→ π+ν) = mp

8πf 2
π

A2
L|α|2(1 +D + F )2. (C.11)

C.2 The choice of Mu diagonal basis
It is convenient to choose the basis in which Mu is diagonal, i.e., UL

u = UR
u = I.

To justify this choice, we have to prove that all the quantities of our interest are
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independent of this choice. This concerns, in particular, the CKM and PMNS
matrices and the proton decay widths (C.1)-(C.5), i.e., the coefficient (C.10).

First, obviously, a transformation UL
u → UL

u V where V is a unitary matrix must be
compensated by a simultaneous change Ud → UdV so that the CKM matrix (C.8)
remains intact. Second, changing UR

u → UR
uW by a unitary W requires UL

e →
UL
e W otherwise (C.10) is not preserved. On top of that, UR

u is related to Uν via see-
saw mLL = UT

ν DνUν = MT
u

(
MM

ν

)−1
Mu = −(UR

u )TDuU
L
u

(
MM

ν

)−1
(UL

u )TDuU
R
u ,

hence also Uν → UνW is induced. The transformations of UL
e and Uν then act

against each other so that also the PMNS matrix (C.9) remains unchanged. Thus,
it is possible to choose UL

u = UR
u = I without affecting any of the quantities

discussed in Secs 5.2 and 5.3. In theMu-diagonal basis the coefficient (C.10) reads∣∣∣c(eα, dCβ )
∣∣∣2 = k4

2|(VCKM)1β|2|(VPMNSUν)α1|2. (C.12)

C.3 SU(3)c ⊗ SU(2)L gauge unification
In order to get any quantitative grip on the absolute scale of the proton lifetime
in the model(s) of interest, in particular, on Γ(p+ → π+ν) providing the over-
all normalization of the results depicted in Figs [4.5, 4.6, 4.7] one has to inspect
thoroughly the constraints emerging from the requirement of the (partial) gauge
coupling unification. Since the model is not “grand” unified in the sense that only
the non-Abelian part of the SM gauge group is embedded into a simple component
of the high-energy gauge group, this concerns only the convergence of the g3 and
g couplings of the SM. Besides the “initial condition” defined by the values of αs
and α2 ≡ g2/4π = α/ sin2 θW at the MZ scale and the relevant beta-functions the
most important ingredient of such analysis is the heavy gauge and scalar spectrum
shaping the evolution of αs and α2 in the vicinity of MG [conveniently defined as
the mass of the (X ′, Y ′) gauge bosons] and, ultimately, their coalescence above the
last of the heavy thresholds.

As a reference setting let us start with the situation corresponding to the very
simplest approximation in which all these heavy fields happen to live at a single
scale (MG); then, MG turns out to be at 1016.8 − 1017 GeV at one loop where the
uncertainty corresponds to the 3-σ band for αs(MZ) and it gets reduced to about
1016.6 − 1016.8 GeV at two loops.
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Figure C.1: The unification constraints on the mass of the (X ′, Y ′) gauge bosons
(the left ordinate) and Γ−1(p+ → π+ν) (the right ordinate) drawn for constant
x = µ/λVG as functions of the masses of the scalar colored triplets ∆1 and ∆2,
cf. (5.18) in the simplified case of λ2 = λ5. The upper part of the plot corresponds
to the “fine-tuned” region with x very close to 1 with the mass of ∆1 significantly
lower than MG, cf. Eq. (5.23), while the lower part corresponds to x < 1. The
bands (one loop in dashed and two loops in solid) correspond to the 3-σ uncertainty
in αs and their boundary on the right depicts the “perturbativity” limit |λi| < 4π,
cf. Sec. 5.2.2.

Needless to say, such a single-mass-scale assumption is oversimplified as, in fact,
the masses of the heavy colored triplet scalars ∆1 and ∆2, cf. Eq. (5.18) and the
masses of the (X ′, Y ′) gauge bosons [to quote only those states that are relevant
here, i.e., SU(3)c ⊗ SU(2)L nonsinglets] depend on different sets of parameters
and, hence, may differ considerably; this, in particular, applies for ∆1 that may
be almost arbitrarily light if the inequality (4.26) gets saturated. This, obviously,
may lead to a significant change in the “naïve” estimate above.

In what follows, we shall focus on a simplified setting in which λ2 = λ5 ≡ λ reflect-
ing the symmetry of the relevant relations (5.18) and (5.23) under their exchange
and fix gG = 0.5. Hence, the masses of ∆1, ∆2 and (X ′, Y ′) are fully fixed given
λ, µ and VG. This also means that if one fixes m∆2 , λ and µ, then m∆1 and MG

are fully determined and the unification condition can be tested. In turn, it can
be used to get a correlation among the unification-compatible values of, say, m∆2

and MG; the resulting situation is depicted in Fig. C.1. The shape of the allowed



regions therein (in particular, the relatively shallow slope of the allowed bands
for a fixed proportionality factor x between µ and λVG) is easily understood: the
effect of integrating in the (X ′, Y ′) gauge bosons (plus the relevant Goldstones in
the Feynman gauge) is much stronger than that of the two colored scalars ∆1,2

(assuming x < 1, i.e., m∆1 not parametrically smaller than m∆2) and, hence, a
small shift in MG is enough to compensate even for significant changes in m∆1,2 .

To conclude, the (two-loop) unification constraints limit the allowed domain ofMG

to the interval stretching from approximately 1016.5 GeV attained in the bulk of
the parameter space up to about 1017.5 GeV if the fine-tuned configurations with
x ∼ 1 are considered.
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