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Introduction

Neutrinos are historically known for being elusive particles. Almost thirty years passed since

they were proposed by Pauli in order to be consistent with the observed electron spectrum

in β-decay process, to their discovery by Cowan and Reines in the late fifties. Aside of that,

neutrinos do not conserve flavor when traveling, which kept busy the neutrino community for

almost forty years until it was realized that neutrinos do oscillate. The difficulty comes from

the fact that one needs a compromise between the traveled distance and the neutrino energy to

be sensitive to neutrino oscillations. However, thanks to the technical improvements, neutrinos

are now less elusive. In fact, with the current facilities, we are able to detect neutrinos from

several sources, from extraterrestrial origin like the Sun or supernova explosions, as well as

from the cosmic protons that collide with the atmosphere. In addition to natural, we also have

artificial neutrino sources like reactors and accelerators. Even though the relic neutrinos from

the Big Bang have not been directly detected so far, they constitute another background of

neutrinos filling the universe. Thus, the neutrino spectrum spans several orders of magnitude

in neutrino energy, from eV to PeV.

When the experimental search for neutrinos started in the sixties with the radiochemical ex-

periments, almost all the attention and dedication was directed to the solar neutrino deficit.

Later on, with Kamiokande at the scene, atmospheric neutrino observations showed that there

was a deficit in the expected number of muon neutrinos. The development of new detector

technologies such as water Cherenkov detectors was needed to provide real time information.
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Only thanks to the reactor experiment KamLAND, the oscillation neutrino pattern started to be

unveiled. Another crucial experimental facility was the Sudbury Neutrino Observatory (SNO),

sensitive not only to electron neutrinos, as the other solar experiments, but also to the other

neutrino flavors through its neutral current (NC) interaction detection process. This new de-

tection technique established the electron neutrino flavor transition to muon and tau neutrinos.

Together with the results from Super-Kamiokande (SK) on the zenith dependence of the at-

mospheric neutrino flux, all the mentioned facilities favor the neutrino oscillation mechanism

as the explanation for the neutrino flavor change in solar and atmospheric neutrinos. Roughly

this was the situation in 2002.

The neutrino oscillation mechanism is based on the idea that flavor neutrino states are a

linear combination of mass eigenstates. A given neutrino flavor state, created in a weak process

together with a charged lepton with the same flavor, after traveling a long enough distance,

can be detected as a different flavor state. Notice that what is indeed detected is the charged

lepton created together with the neutrino. Thanks to the measurement of the Z boson decay

width by the electron-positron collider LEP, we know the number of active neutrinos is equal

to three, which is the number of flavors in the Standar Model (SM). In the three neutrino

framework, the oscillation mechanism relies on six parameters: three mixing angles, two mass

squared splittings (defining the solar and atmospheric scales) and a CP violating phase. In

order to gain information about those parameters, different neutrino experiments have been

designed. In general, neutrino experiments can be classified, according to the neutrino os-

cillation channel explored, in two types: appearance and disappearance experiments. In an

appearance experiment neutrinos are detected with a different flavor with respect to the one

present in the initial neutrino beam. On the other side, a disappearance experiment tests the

survival probability, i.e how many neutrinos of a given flavor have disappeared when travel-

ing. Current accelerator neutrino experiments are based on muon neutrino and antineutrino

beams since a tau beam is experimentally challenging due to the tau decays. Therefore, five

oscillation channels can be studied: electron appearance and muon disappearance, running in

neutrino and antineutrino modes and also the tau disappearance channel. Accelerator based

neutrino experiments are sensitive to the atmospheric mass splitting and mixing angle through

the muon disappearance channel, thus they are complementary to the atmospheric neutrino

experiments. The other channels one can study at neutrino oscillation experiments are electron
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neutrino disappearance from solar neutrinos and antineutrino disappearance from reactors.

Currently, with the design of artificial sources of neutrinos, mainly reactors and accelera-

tors, the attention has moved from the sky to the Earth. As expected, since 2002 neutrino

oscillation parameters have been determined more precisely. In particular, the atmospheric

mass splitting and very recently the corresponding mixing angle are better determined from

the muon disappearance channel at the accelerator experiments MINOS and T2K, respectively.

However, the breakthrough in the neutrino field came from the measurement of the last mixing

angle by the observation of electron antineutrino disappearance at the Daya Bay, RENO and

Double Chooz reactor neutrino experiments in 2012. Likewise, the mentioned accelerator

experiments MINOS and T2K, are sensitive to the reactor mixing angle through the electron

appearance channel, also sensitive to the Dirac CP phase.

Neutrino oscillations are the leading mechanism that explains the neutrino flavor conversion

from all the detected sources. Thus, neutrinos have provided the first experimental evidence

for flavor violation in the leptonic sector. In addition, the striking implication from neutrino

oscillations is that neutrinos are massive. Using the particle content of the SM, Weinberg

showed that it is possible to construct an dimension five effective operator, suppressed by a

large scale, that will provide the masses to the neutrinos. However, the origin of this operator

has not been understood yet. Since neutrinos do not carry electric charge, a right-handed

Majorana mass term is allowed in the Lagrangian of the theory implying a violation of the

lepton number by two units. In the SM however, lepton or family number are accidental

symmetries and therefore, without the presence of a right-handed neutrino, the neutrinos are

massless. Nevertheless there is no fundamental reason why lepton number conservation should

be imposed. Consequently, it is expected that a general theory for massive neutrinos includes

both Dirac and Majorana mass terms.

Realizations of the Weinberg operator have their origin in seminal works done in the late sev-

enties and eighties, in particular guided by grand unified theories (GUT), motivated by the

idea that the scale that suppresses the neutrino masses is close to the GUT scale. In fact,

the Kamiokande experiment was originally designed to observe proton decay, in order to test

GUT theories. However, having such a big scale, GUT theories can not be probed directly and

thus they are not as interesting for neutrino mass generation as a low-scale realization of the

Weinberg operator. For instance, in the context of the inverse or linear see-saw mechanism,
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the active neutrinos are massless when lepton number conservation is imposed. Once one

allows for lepton number violation, active neutrinos become massive and in this case the mass

is naturally small since the lepton symmetry is recovered in the massless limit, and without

the necessity of any large scale. This point is phenomenologically attractive because those

scenarios may be probed at the LHC accelerator.

On the other side, lepton flavor violation (LFV) has not been observed in the charged

lepton sector so far. However, many extensions of the SM predict an enhancement of LFV in

charged leptons that can be as large as the experimental bounds. In particular, LFV may be

enhanced by the inclusion of massive neutrinos. Among the charged LFV processes, leptonic

tau and muon decays as well as muon conversion in nuclei provide the strongest constraints.

From the experimental side, current facilities like MEG at PSI have improved the limit on the

radiative muon decay branching ratio in one order of magnitude with respect to their previous

measurement and now the limit is 5.7×10−13, currently the strongest limit for LFV compared

with the other mentioned processes. Future sensitivities for the muon to electron conversion

in nuclei, in particular from the PRISM group, will improve up to five orders of magnitude the

current limits, of the order of ∼ 10−12. Thus, with current and future sensitivities, charged

LFV processes are a powerful tool to exclude or constrain some degrees of freedom in models

with a significant contribution to LFV.

Low-scale see-saw models are phenomenologically attractive since they can be tested by

low energy observables from neutrino oscillations as well as from the charged LFV. Also, the

new energy scale can be at the energy frontier and therefore it can be tested at the LHC.

Finally, since these models predict more than three mass eigenstates for the neutrinos, the

lepton mixing matrix is rectangular with three rows and more than three columns due to the

extra singlet states. However, only the light part, the effective three by three part of the lepton

mixing matrix, is observable through neutrino oscillations. Therefore, the three by three part

of the lepton mixing matrix is no longer unitary. In the type-I see-saw the lack of unitarity is

inversely proportional to the scale that suppresses the neutrino masses, and therefore negligi-

ble. Differently, in the low scale see-saw schemes, heavy neutrinos can be at ∼ TeV, while

neutrino masses are naturally small, producing a unitarity deviation at the percent level that

might be seen in oscillation experiments as a zero distance effect.
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As it has been discussed, extensions of the SM are needed in order to provide neutrino

masses and also other observations such as the baryon asymmetry of the universe and the

existence of dark matter (DM). Related to neutrinos, we have roughly described the type-I

see-saw and the low-scale see-saw just in the previous paragraph, and we have also mentioned

that they can have an origin from GUT inspired models. It is expected that in a particu-

lar model beyond the SM, additional neutrino interactions might appear. In order to study

those new neutrino interactions in a model-independent way one can use an effective approach

parametrizing the extra contribution as general coefficients, as if we had integrated out the

heavy field contributions. The standard approach to the phenomenological study of the neu-

trino non-standard interactions (NSI) consists in parametrizing their strength with respect to

the SM effective neutrino interactions, proportional to the Fermi constant. Thus, one may

keep the Lorentz structure of the SM with generic dimensionless couplings. We should distin-

guish between two kinds of NSI: neutral current (NC), which is mostly relevant for neutrino

propagation in matter (although it may also affect detection as well), and charged current

(CC) NSI that may affect neutrino production and/or detection. There exist many works in

the literature constraining NC NSI using oscillation neutrino experiments as well as neutrino

elastic scattering data. However, few works are dedicated to constrain the CC NSI and since

we are entering in a precision era for the determination of the oscillation neutrino parameters,

it is worthy to test the possible impact of CC NSI at current oscillation experiments.

In order to develop the main ideas commented above, the outline of this thesis is the

following: in the first chapter we introduce the neutrino oscillation mechanism in general.

Then, we focus on the three neutrino framework introducing the parameters involved in the

process and how they are determined using the data sets from different sources. Individual

reactor and accelerator neutrino experiments are also discussed. We conclude with the results

of global fit analysis where we determine the impact of the new data upon all the neutrino

oscillation parameters.

Before 2012, the lepton mixing matrix was compatible with particular structure with two

large mixing angles, solar and atmospheric, while the reactor mixing angle compatible with

zero. This pattern might result from the imposition of a discrete flavor symmetry. Particularly,



6

the so called tri-bimaximal mixing was a suggestive way to explain the leptonic mixing that can

be realized by the A4 group. However, after the determination of a non zero reactor mixing

angle, the tri-bimaximal ansatz is excluded. In the second chapter, we modify the model by

Babu, Ma and Valle, which is an A4 based model, in order to predict a leptonic mixing matrix

compatible with current neutrino phenomenology.

Then we move to the study of the low scale seesaw mechanism from a phenomenological

point of view. In the third chapter, from a bottom–up approach, we introduce the basic

ingredients to obtain inverse and linear seesaw type I realizations by adding extra singlets in

the SM. Since those models predict an enhancement of the LFV and large NSI effects that will

manifest as a unitarity deviation, we list the current observable limits and we introduce the

corresponding theoretical value for radiative charged LFV process branching ratio. Finally, we

constrain the amount of NSI using the complementarity between the low energy observables,

neutrino oscillations, and the current bounds on radiative charged LFV processes.

Using as a motivation of the NSI prediction the models discussed in chapter 3, in the last

chapter we adopt a model independent approach to develop the basic formalism to introduce

the NSI. Then, we focus on the CC NSI and we study its effects on the determination of the

reactor mixing angle using the Daya Bay data.



Resumen de la tesis

Transiciones de sabor han sido observadas en diferentes fuentes de neutrinos. Históricamente,

una cantidad menor de neutrinos solares y atmosféricos fue medida en comparación con lo

esperado según los modelos teóricos. En el 2002, el mecanismo de oscilación explicó con éxito

el déficit tanto de los neutrinos solares como de los neutrinos atmosféricos. Actualmente, las

transiciones de sabor en neutrinos producidos en diversas fuentes como el Sol, la atmósfera

terrestre, aceleradores y reactores son correctamente descritas dentro del marco de oscilación

de tres neutrinos. Desde el punto de vista teórico, la importancia de la oscilación de neutrinos

radica en la existencia de neutrinos masivos no considerada en primera instancia en el modelo

estándar de part́ıculas (SM). Por lo tanto la oscilación de neutrinos es una de la evidencias

experimentales de f́ısica más allá del SM.

El mecanismo de oscilación, puede ser descrito por seis parámetros: tres ángulos de mez-

cla, una fase de violación CP y dos escalas de masa definidas por la diferencia de masas de

neutrinos al cuadrado. Uno de los objetivos de esta tesis es determinar los valores de los

seis parámetros en mención, usando la información disponible de los eventos de neutrinos de

las diferentes fuentes reportados por las colaboraciones experimentales. A lo largo del primer

caṕıtulo de la tesis explicamos en qué consiste el mecanismo de oscilación, las relaciones

funcionales entre los parámetros de oscilación y cómo obtener los valores de los parámetros

dando ejemplos del análisis de datos experimentales en ciertos canales de oscilación. Final-

mente, mostramos los valores de los seis parámetros de oscilación como resultado del análisis

7
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global de los experimentos de neutrinos.

El sector leptónico del SM por lo tanto, debe ser extendido para incluir neutrinos masivos,

lo cual lleva a una mayor brecha entre las masas de las part́ıculas de las diferentes familias

del SM. Adicionalmente, dos de los ángulos de mezcla, atmosférico y solar, son mucho más

grandes que el ángulo de Cabbibo (que caracteriza la mezcla en el sector de quarks). En

particular, el ángulo de mezcla atmosférico es compatible con el valor máximo de mezcla. Si

asumimos que el ángulo de mezcla medido recientemente en experimentos de reactor es cero,

como era el caso antes de 2012, podŕıamos asumir que la estructura de la mezcla de neutrinos

tiene un patrón que puede ser consecuencia de imponer una simetŕıa de sabor. Éste ha sido el

punto de partida hacia una formulación basada en simetŕıas de sabor para explicar el patrón

de mezcla en el sector leptónico, en algunos casos incluyendo también el sector de quarks. Sin

embargo, el valor del ángulo de mezcla de reactores no es compatible con cero lo cual no es

simple de obtener a través de simetŕıas de sabor. En particular, la estructura conocida como

tri-bi-maximal, la cual es obtenida en modelos con la simetŕıa de sabor A4, está excluida. En

el segundo caṕıtulo de esta tesis mostramos cómo a partir de un modelo basado en la simetŕıa

de sabor A4 conseguimos explicar la matriz de mezcla actual en el sector leptónico a través

de correcciones al sector cargado.

Está claro que debemos incluir neutrinos masivos en el SM. Sabemos que las masas de los

neutrinos pueden ser generadas efectivamente a través de un operador de dimensión cinco pero,

sin embargo, no sabemos la naturaleza de dicho operador. Varias formas de generar el operador

de dimensión cinco son posibles, algunas implicando una alta escala (del orden de la escala

GUT) mientras que otras realizaciones pueden estar a una baja escala (del orden del TeV).

Aśı, los esquemas de baja escala, como el seesaw inverso y lineal, son fenomenológicamente

interesantes porque no solo explican la pequeñez de la masa del neutrino sino que también

contribuyen a procesos que violan el sabor leptónico (LFV), saturando los limites actuales.

Como la escala seesaw es baja en estos modelos, la matriz leptónica de mezcla efectiva no es

unitaria lo que produce efectos no estándar (no incluida en el caṕıtulo 1) en la propagación

de los neutrinos. En el caṕıtulo 3 estudiamos la desviación de la unitariedad de la matriz

de mezcla de los neutrinos usando los ĺımites de procesos que violan el sabor leptónico con

leptones cargados. Encontramos que la desviación de la unitariedad, en estos modelos, pude

ser hasta del uno por ciento.
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Motivados por los efectos no estándar en los modelos de baja escala, como los seesaw tipo

inverso y lineal, en el último caṕıtulo estudiamos, de una manera independiente del modelo, las

llamadas interacciones no estándar de los neutrinos (NSI). Tras introducir la parametrización

de las NSI como operadores de cuatro fermiones con acoplamientos generales proporcionales a

la constante de Fermi, determinamos los parámetros espećıficos que afectan la producción y la

detección de neutrinos generados en reactores. Notamos que las NSI afectan la determinación

del ángulo de mezcla θ13 dependiendo también de los valores de las fases no estándar y de

la fase de violación CP. Acotamos los acoplamientos adimensionales de las NSI usando los

datos de la colaboración Daya Bay, que son los datos que han determinado mejor el ángulo de

mezcla θ13. Encontramos que los limites dependen de los valores de las las fases no estándar

y especialmente del tratamiento del error en la determinación de la normalización del flujo de

antineutrinos que viene de los reactores.
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CHAPTER 1

Neutrino oscillations

Neutrino flavor transitions have been observed from different neutrino sources. Historically,

less solar and atmospheric neutrinos were measured compared to the theoretical expectations.

In the case of the solar neutrino deficit, the SNO measurement of the NC and CC solar neutrino

interactions established the electron neutrino flavor conversion into muon or tau neutrinos. In

the case of atmospheric neutrinos, the SK measurements showed a zenith angle dependence of

the muon neutrino fluxes implying a different number of muon neutrinos observed depending

on their arrival direction. The neutrino oscillation mechanism explained the neutrino deficit

of both solar and atmospheric neutrinos. Currently, the three neutrino oscillation mechanism

successfully explains neutrino flavor transitions in solar, atmospheric, reactor and accelerator

experiments. From the theoretical point of view, the importance of neutrino oscillations is that

they imply the existence of neutrino masses, not included the SM. Therefore, they are one of

the strongest experimental evidences for physics Beyond the SM (BSM).

Neutrino oscillations are probed at different experiments and the relevant parameters have

been measured with good precision thanks to the interplay between different sets of neutrino

experiments. The goal of this chapter is to establish the six oscillation parameters (three

mixing angles, a Dirac CP phase and two mass splittings) from the neutrino experiments. We

specifically show the parameters involved and the statistical analysis in the particular cases of

11
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T2K and Daya Bay.

In what follows we describe the basics of the neutrino oscillation mechanism in sections 1.1

to 1.3. Then, we review the main aspects of solar and atmospheric neutrino experiments in

section 1.4. The main part of this chapter is devoted to the phenomenological study of reactor

and accelerator neutrino experiments with the specific examples of the experiments Daya Bay

and T2K in section 1.5 and 1.6, respectively. Finally, we describe the main work that comes

out from this phenomenological study, the global fit analysis [1, 2].

1.1 Neutrino and antineutrino oscillation formalism

A neutrino of defined flavor α created in a charged current process at time t = 0, is represented

by a quantum state |να〉. Since flavor eigenstates are superpositions of mass eigenstates, it

is possible to define the flavor eigenstates in terms of mass eigenstates through the following

transformation:

|να〉 =
∑
k

V ∗αk|νk〉, (1.1)

where latin indices represent the neutrino mass eigenstates and V is the mixing matrix. Notice

that the number of mass eigenstates has not been specified yet.

Massive neutrinos propagate in vacuum (and in matter). Their propagation is represented in

the quantum mechanical description by [3]:

|να(xµ)〉 = exp
(
−iP 0t+ i ~P · ~x

)
|να〉, (1.2)

where P µ is the energy-momentum operator. Now we can calculate the conversion probability

from one defined flavor state |να〉 to another |νβ〉 in a simple way. First, we define the transition

amplitude as:

Aα→β(xµ) ≡ 〈νβ| exp (−iP µxµ)|να〉 . (1.3)

In the plane wave approximation, the mass states |νk〉 are eigenstates of the energy-momentum

operator with the energy eigenvalues:

p0
k = Ek =

√
m2
k + |~pk|2 , (1.4)



Neutrino and antineutrino oscillation formalism 13

where ~pk is the neutrino momentum. The transition amplitude in Eq. (1.3) can then be written

as:

Aα→β(xµ) =
∑
k

V ∗αk exp (−i Ek t+ i ~pk · ~x)Vβk . (1.5)

One can assume all massive neutrino momenta ~pk are aligned along ~x and then, the propagation

process occurs in one dimension. Within this approximation, the phase in the transition

amplitude in Eq. (1.5) is given by:

− Ek t+ ~pk · ~x = −Ek t+ pkL , (1.6)

where we have |~x| ≡ L.

Finally, in order to obtain the transition probability, an additional assumption is made:

• Neutrinos are ultra-relativistic particles, therefore pk � mk and we can consider L ≈ t.

The phase in Eq. (1.6) can now be written as:

− Ek t+ pkL = −(Ek − pk)L = − m2
k

Ek + pk
L ≈ −m

2
k

2E
L , (1.7)

where E is the neutrino energy neglecting mass contributions [3].

Notice that to obtain the final expression in Eq. (1.7) we have not made any assumption neither

on the values of the neutrino energies nor on the neutrino momentum pk. In principle energies

and momentum have different values for each of the massive neutrinos considered. However,

in order to properly include the neutrino momentum distribution in the neutrino propagation,

a wave-packet treatment should be used. Here we used the plane wave treatment since for

the neutrino experiments we consider it is equivalent to the wave-packet treatment. We refer

the interested reader to the books in Refs [3] and [4] and the references therein.

The probability expression is obtained from the transition amplitude in Eq. (1.5) with the

phase given in Eq. (1.7):

Pνα→νβ(L) =
∑
j,k

V ∗αjVβjVαk V
∗
βk exp

(
−i

m2
j −m2

k

2E
L

)

≡
∑
j,k

Y j
αβY

k∗
αβ exp

(
−i

∆m2
jk

2E
L

)
,

(1.8)

with the definition of the squared mass difference:

∆m2
jk ≡ m2

j −m2
k
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and the two products of the mixing matrix expressed as:

Y j
αβ ≡ V ∗αjVβj. (1.9)

Here the conjugation of the V matrix will be tagged to the α index in Y . Therefore a flip in

the flavor index is equivalent to conjugate Y .

Some general remarks about Eq. (1.8) can be done at this point:

• A non-zero neutrino mass is required in order to have neutrino oscillations. The mixing

in the lepton sector then will appear.

• In the three neutrino framework, the dependence with the mass squared difference im-

plies at least two different massive neutrinos since there are two different mass squared

splittings, the atmospheric and the solar and the absolute mass scale has not been

determined. Thus, one of the three massive neutrinos can remain massless.

• A rephasing in the V matrix columns does not change the probability. This fact will

have phenomenological consequences when we will discuss Dirac and Majorana phases.

The neutrino oscillation probability in Eq. (1.8) can be expressed in terms of the real and

imaginary parts of quartic products of V (two products of Y ), subdividing the sum in three

parts:

Pνα→νβ(L) =
∑
j

Y j
αβY

j∗
αβ +

∑
j>k

Y j
αβY

k∗
αβ exp

(
−i

∆m2
jk

2E
L

)

+
∑
k>j

Y k∗
αβY

j
αβ exp

(
i

∆m2
kj

2E
L

)

=
∑
j

Y j
αβY

j∗
αβ + 2

∑
j>k

<
{
Y j
αβY

k∗
αβ exp

(
−i

∆m2
jk

2E
L

)}

=
∑
j

Y j
αβY

j∗
αβ + 2

∑
j>k

<{Y j
αβY

k∗
αβ} cos

(
∆m2

jk L

2E

)

+ 2
∑
j>k

={Y j
αβY

k∗
αβ} sin

(
∆m2

jk L

2E

)

=
∑
j

Y j
αβY

j∗
αβ + 2

∑
j>k

<{Y j
αβY

k∗
αβ} − 4

∑
j>k

<{Y j
αβY

k∗
αβ} sin2

(
∆m2

jk L

4E

)

+ 2
∑
j>k

={Y j
αβY

k∗
αβ} sin

(
∆m2

jk L

2E

)
.
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Finally, we obtain:

Pνα→νβ =
∑
j,k

Y j
αβY

k∗
αβ − 4

∑
j>k

<{Y j
αβY

k∗
αβ} sin2

(
∆m2

jk L

4E

)

+ 2
∑
j>k

={Y j
αβY

k∗
αβ} sin

(
∆m2

jk L

2E

)
.

(1.10)

The general probability expression in Eq. (1.10) has been calculated without any assumption

about the mixing matrix V , which can be in general non unitary.

Anti-neutrino oscillations

In analogy with the neutrino state definition in Eq. (1.1), we can define the anti-neutrino states

in terms of flavor eigenstates as:

|ν̄α〉 =
∑
k

Vαk|ν̄k〉, (1.11)

and we end up with the same relations we have for neutrinos in Eq. (1.8) and Eq. (1.10) with

a re-definition of the coefficient Y j
αβ:

Ỹ j
αβ ≡ Vαj V

∗
βj. (1.12)

Coefficients in Eq. (1.12) are not independent of the coefficients for neutrinos in Eq. (1.9),

they are related by:

Ỹ j
αβ =

(
Y j
αβ

)∗
where

(
Y j
αβ

)∗
= Y j

βα. (1.13)

We can write the anti-neutrino oscillation probability in terms of neutrino coefficients using
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the first equality in Eq. (1.13):

Pν̄α→ν̄β =
∑
j,k

Ỹ j
αβỸ

k∗
αβ − 4

∑
j>k

<{Ỹ j
αβỸ

k∗
αβ} sin2

(
∆m2

jk L

4E

)

+ 2
∑
j>k

={Ỹ j
αβỸ

k∗
αβ} sin

(
∆m2

jk L

2E

)

=
∑
j,k

Y ∗jαβY
k
αβ − 4

∑
j>k

<{Y j∗
αβY

k
αβ} sin2

(
∆m2

jk L

4E

)

+ 2
∑
j>k

={Y ∗jαβY
k
αβ} sin

(
∆m2

jk L

2E

)

=
∑
j,k

Y j
αβY

k∗
αβ − 4

∑
j>k

<{Y j
αβY

k∗
αβ} sin2

(
∆m2

jk L

4E

)

− 2
∑
j>k

={Y j
αβY

k∗
αβ} sin

(
∆m2

jk L

2E

)
,

(1.14)

where in the last line we have kept the order between the flavor indexes. In this case, we

can calculate the anti-neutrino probability from the expression for neutrinos in Eq. (1.10) just

flipping the sign in the imaginary part. We have found a relation between neutrino and anti-

neutrino oscillation probabilities. This relation can be understood as a CP transformation

because it relates properties of neutrinos (particles) with their antiparticles. Formally, it is

equivalent to:

ν̄α → ν̄β
CP⇐⇒ να → νβ

On the other side, a time reversal transformation T consists of the interchange of initial

and final (anti) neutrino states:

ν̄α → ν̄β
T⇐⇒ ν̄β → ν̄α

να → νβ
T⇐⇒ νβ → να

Finally, if we apply both transformations CP and T transformations to the (anti) neutrino

probabilities we find, assuming CPT conservation:

Pν̄α→ν̄β = Pνβ→να , (1.15)

which is expected from Eq. (1.13) since the antineutrino coefficients are related to ones for

neutrinos through a conjugation and finally the conjugation is equivalent to the α-β inter-

change.

We summarize this section with some remarks:
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• It is well known that CPT is conserved in field theories in which the Standard Model

of particle physics is based on. Therefore, the relation in Eq. (1.15) is a consequence of

CPT conservation.

• If CPT is conserved, a violation of CP implies a violation of T . Additionally, from

Eq. (1.15) neutrinos and antineutrinos must be sensitive to the same oscillation param-

eters. Later we will see this is the case for accelerator neutrino experiments that run

independently in both modes, neutrino and antineutrino.

• Neutrinos can probe whether CP is conserved or not. Following the last lines of

Eqs. (1.14) and Eq. (1.10) we see that the effect of the CP transformation is en-

coded in the imaginary products of the mixing matrix V . Later, in specific framework,

we will see that is the case, and the effect can be parametrized as a CP phase(s).

1.2 Three neutrino framework in vacuum

Here we will introduce the standard oscillation mechanism for three generations of neutrinos.

This corresponds to the number of active neutrinos in the SM after the measurement of the

invisible Z-boson decay width [5]. Within this framework in vacuum it is possible to calculate

all neutrino conversion probabilities in an exact way. All that we need are the expressions we

have developed in the last two sections.

To this purpose, we should explicitly provide a parametrization for the lepton mixing matrix

V . A general parametrization is given in Ref. [6] for any number of flavor states. In general

the lepton mixing matrix is not unitary, but here we will assume there are no extra fermion

states. In this case, V is unitary. We can write V as a product of three complex rotations:

V = ω23(θ23;φ23)ω13(θ13;φ13)ω12(θ12;φ12) ,

or, explicitly:

V =


1 0 0

0 c23 e−iφ23s23

0 −eiφ23s23 c23




c13 0 e−iφ13s13

0 1 0

−eiφ13s13 0 c13




c12 e−iφ12s12 0

−eiφ12s12 c12 0

0 0 1


(1.16)
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Before going ahead we want to check the rephase-invariant property of the lepton mixing

matrix V . Even if V in Eq. (1.16) has been written in terms of all physical phases φij, only

one combination of them is rephase-invariant and can not be factorized as a diagonal matrix.

Therefore, this combination will appear in the neutrino probabilities and it could be observed

in neutrino oscillation experiments. In order to find the conditions to obtain the same mixing

matrix V after the rephasing by P matrix, the phase shift can be written as:

P−1 V P = P−1ω23(θ23;φ23)P P−1ω13(θ13;φ13)P P−1ω12(θ12;φ12)P ,

Where P = diag
(
eiα, eiβ, eiγ

)
. The left product by P−1 redefines the ωij rows while the right

side product by P modifies the columns; therefore only the ωij off-diagonal elements will be

modified by the rephasing. For simplicity we can modify just the ωij elements for j > i. To see

how to absorb the P phases ei(pj−pi) in the off-diagonal ωij entries, for j > i, ωij = sij e
−(iφij),

one should redefine φij ≡ φ′ij + pj − pi what results in the following expression for P−1 V P :

P−1 V P = ω23(θ23;φ′23 + γ − β)ω13(θ13;φ′13 − γ − α)ω12(θ12;φ′12 + β − α),

where it is possible to find one combination that does not depend on the P matrix elements

[6–8]:

I = φ′13 − φ′12 − φ′23 = φ13 − φ12 − φ23. (1.17)

The invariant I implies that we can not redefine the three physical phases in order to obtain a

unitary real matrix times a diagonal matrix of phases. With three active neutrinos and three

mass eigenstates we have one invariant phase that can be observed in neutrino oscillations.

In other words we can not solve φ′ij in terms of pij. In the standard parametrization [5], the

phase invariant is assigned to the matrix rotation ω13 and the other two phases are factorized

out as a diagonal matrix of phases. This assignment is clearly a convention since the order

in the product of the rotations is not fixed and then, we can assign the invariant to any of

the ωij. Additionally, we can factorize out as a diagonal matrix of phases only two phases. In

Ref. [5], the authors have defined α = 0, then the mixing matrix can also be written as:

V PDG = ω23(θ23; 0)ω13(θ13; δ)ω12(θ12; 0) diag
(
1, eiβ, eiγ

)
. (1.18)
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Here we can map the PDG parametrization to the ‘symmetric’ parametrization in Eq. (1.16)

through the following rephasing relations:

δ ≡ I = φ13 − φ12 − φ23,

β = φ12,

γ = φ12 + φ23.

As we already mentioned, from Eq. (1.8) the neutrino oscillation probabilities are given by

quartic products of the lepton mixing matrix in such a way that they are invariant after row

or column rephasing. Therefore, the phases β and γ in Eq. (1.18) can not be observed in

neutrino oscillations, unlike what happens with the invariant phase δ. In this case, keeping only

the invariant phase, the PDG parametrization is convenient for studying neutrino oscillations.

Unless explicitly quoted we will use the following parametrization for the neutrino mixing

matrix:

V = ω23(θ23; 0)ω13(θ13; δ)ω12(θ12; 0)

≡ R23(θ23)ω13(θ13; δ)R12(θ12).
(1.19)

Here Rij correspond to real rotations. After evaluating the products in Eq. (1.19) we get:

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 . (1.20)

To close the discussion about the CP phase that we have explained as the rephasing invariant,

let us introduce another way to see the same quantity. An appropriate way to quantify the

amount of CP violation is the Jarlskog invariant, defined as:

JCP = =
{
Y 1
µeY

3∗
µe

}
= V ∗µ1Ve1Vµ3V

∗
e3 (1.21)

that except for a sign, is equal to the imaginary term in Eq. (1.10).

Mass hierarchy

As we have mentioned before, neutrino oscillations are sensitive to the squared mass differences

but not to the absolute neutrino mass scale. Given that the Sun produces electron neutrinos

and not antineutrinos and as we will see later, from the observation of matter effects in solar
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neutrino oscillations, we know ∆m2
21 > 0. On the other hand, the non-observation of matter

effects associated to atmospheric or accelerator neutrinos so far leaves the sign of the second

mass splitting ∆m2
31 undetermined. Therefore, with three massive neutrinos and ∆m2

21 > 0,

two orderings are possible: normal and inverted.

The normal hierarchy (NH) scheme is defined by the relation m1 < m2 < m3. Then, the

absolute neutrino masses can be written as:

m1 = m0,

m2 =
√
m2

0 + ∆m2
21,

m3 =
√
m2

0 + ∆m2
31,

(1.22)

where m0 defines the absolute neutrino mass scale.

The inverted hierarchy (IH) scheme is defined by the relation m3 < m1 < m2. Analogous

relations for the absolute neutrino masses for the IH case are given by the following expressions:

m1 =
√
m2

0 + |∆m2
31|,

m2 =
√
m2

0 + ∆m2
21 + |∆m2

31|,

m3 = m0

(1.23)

Since the neutrino mass hierarchy is still unknown, all our results will be given in terms of each

mass ordering.

Constraints on the absolute mass scale can be obtained by measuring the spectrum of

electrons near the end point of the single β decay spectrum. The following combination of

neutrino parameters is constrained from the measurements:

m2
β =

∑
k

m2
k|Vek|2 . (1.24)

The most stringent upper bounds on mβ were obtained in the Troitzk and Mainz experiments

[5]:

mβ < 2.05 eV (95% C.L) .

From the non-observation of the neutrinoless double beta decay process (0νββ) it is also

possible to constrain the absolute neutrino mass scale, but with a different combination of



Neutrino oscillations with matter effects 21

parameters:

mββ =
∑
k

|mk V
2
ek| .

This quantity is sensitive to the CP violating phases. This process is of particular interest

since the observation of a 0νββ event will imply that neutrinos are Majorana particles. The

most stringent upper bound on mββ comes from 136Xe half-life bound obtained at the EXO

experiment: T 0νββ
1/2 ≥ 1.6× 1025 years [9]:

mββ . (0.2− 0.4) eV (90% C.L) ,

where the range comes from uncertainties in the nuclear matrix elements.

Finally, the sum of the three neutrino masses is constrained by cosmological data. The

current bound reported by the Planck collaboration is [10]:

3∑
i

mi < (0.23− 1.08) eV, (1.25)

at 95% of C.L, where the range of values relies on the data set used in the bound derivation.

1.3 Neutrino oscillations with matter effects

Neutrino propagation in matter differs from vacuum propagation due to neutrino interactions

with fermions in the medium. Neutrinos suffer forward scattering while traveling in matter.

Even though neutrinos interact weakly, and therefore the neutrino cross section is small, neutri-

nos can ‘feel’ the matter potential of the medium depending on the density of fermions in the

medium. The neutrino interactions with matter can be encoded as an effective matter poten-

tial, as we will show later. Under some special conditions, flavor conversion of (anti)neutrinos

propagating in matter can be enhanced by the medium. This effect was first used to explain

the deficit of solar neutrinos due to their resonant matter interaction inside the Sun, or MSW,

effect that we will introduce later. The resonance condition depends not only on the fermion

density but also on the neutrino energy. Thus, atmospheric neutrinos (more energetic than

solar) are expected to be modified by Earth matter effects (less dense than the Sun). Even

in the case where the resonance condition in not fulfilled, interaction with matter will affect

neutrino propagation if neutrinos propagate long enough inside the medium.
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1.3.1 Effective potential

Assuming an effective interaction of neutrinos with electrons in the medium (four fermion or

Fermi interaction), its charged current (CC) part can be written as:

HCC
eff =

GF√
2

(jW )†µj
µ
W =

GF√
2

[ν̄eγ
µ(1− γ5)e][ēγµ(1− γ5)νe] ,

where GF is the Fermi constant. After a Fierz transformation we get:

HCC
eff (x) =

GF√
2

[ν̄e(x)γµ(1− γ5)νe(x)][ē(x)γµ(1− γ5)e(x)] . (1.26)

A general form of the effective Hamiltonian in Eq. (1.26) is given by:

HCC
eff =

GF√
2
ν̄γµ(1− γ5)νēγµ(gV + gAγ5)e , (1.27)

where gV and gA are the vector an axial-vector coupling constants of the SM, respectively.

The effect of the interaction of neutrinos with the medium can be parametrized as an effective

potential:

V = 〈Ψ|HCC
eff |Ψ〉 , (1.28)

where Ψ is the wave function of the system neutrino-medium. The medium may consist of

normal matter: electrons and nucleons (fermions of the first generation of the SM) or in the

case of the interstellar medium, (anti)fermions and electromagnetic fields. With the definition

in Eq. (1.28), and considering the propagation of ultra-relativistic neutrinos with helicity −1

in a medium with free electrons, the potential is in general given by [11]:

V V (~pe) =
√

2GF gV
fe(~pe)

(2π)3

(
1− ~pe · k̂ν

Ee

)
,

V A(~λe, ~pe) =
√

2GF gA
f(~λe, ~pe)

(2π)3

[
(~pe · ~λe)
Ee

− me

Ee
(k̂ν · ~λe)−

(~pe · ~λe)(~pe · k̂ν)
Ee(Ee +me)

]
,

(1.29)

where k̂ν ≡ ~pν/|~pν |, with ~pν being the neutrino momentum and Ee the electron energy. The

electron distribution function f(~λe, ~pe) depends on the electron vector polarization ~λe and the

electron momentum ~pe. First and second lines in Eq. (1.29) correspond to the vector and

axial-vector interaction contributions, respectively.

Depending on the medium properties, a simple expression for the matter potential can be

obtained. For the specific case of the Sun and the Earth, the medium can be considered as

isotropic and unpolarized, therefore we have:
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• For isotropic medium the average over ~pe cancels out the second term in Eq. (1.29) for

V V (~pe).

• For unpolarized medium ~λe = 0 and therefore V A vanishes.

These two assumptions imply that only the first term from the vectorial part in Eq. (1.29)

contributes to the effective neutrino potential:

V CC(x) =
√

2GF gV ne(x), (1.30)

where ne(x) is the number of electrons in the medium:

ne =
∑
~λ

∫
d3pe
(2π)3

f( ~λe, ~pe). (1.31)

Neutrinos also interact via Neutral Current (NC) process with the fermions in the medium.

The effective NC Hamiltonian is given by:

HNC
eff =

GF√
2

(jZ)†µj
µ
Z

=
GF√

2

∑
α=e,µ,τ

[
ν̄(x)γµ

(
1− γ5

)
ν(x)

]∑
f

[
f̄(x)γµ

(
gfV + gfAγ

5
)
f(x)

]
.

(1.32)

All the active neutrinos interact with the fermions in the medium through the effective potential

VNC which, under the same assumptions of isotropy and polarization, is given by:

VNC(x) =
√

2GF

∑
f

gfV Nf (x). (1.33)

If the medium is neutral, only the neutrons in the medium contribute to VNC in Eq. (1.33) as a

consequence of geV = −gpV . Now we can explicitly write the total effective potential summing

up the CC and the NC contributions as:

Vα = VCCδαe + VNC =
√

2GF

(
Neδαe −

1

2
Nn

)
, (1.34)

where we used the SM values for the vectorial couplings.

Because all the active neutrinos feel the NC interaction with the same strength, the effective

potential coming from the NC effective interaction can be extracted from the Hamiltonian as

a rephasing of the neutrino wave function. If there are extra fermions that do not interact

with the SM via CC and NC (for example sterile neutrinos), after the rephasing a (−VNC)

potential will appear in the corresponding entries in the Hamiltonian. For active neutrinos,

however, only the CC contribution to the potential will affect neutrino propagation in matter.
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1.3.2 Hamiltonian in matter

From the effective potential in Eq. (1.34) we can write the total Hamiltonian as the vacuum

part H0 plus the interaction contribution HI :

H = H0 +HI =
1

2E
V diag{0,∆m2

21,∆m
2
31, . . . }V † + diag{VCC + VNC , VNC , VNC , 0, . . . } ,

(1.35)

which is all that we need to study the neutrino propagation in matter for media like the Sun

or the Earth.

Along this work we will consider only three active neutrinos, thus the Hamiltonian in matter

is given by:

H =
1

2E
V diag{0,∆m2

21,∆m
2
31}V † + diag{VCC , 0, 0, } . (1.36)

The Hamiltonian in Eq. (1.36) is written in the interaction basis and, after its diagonalization,

neutrino oscillation probabilities can be computed using the expression for the amplitude in

Eq. (1.5). Formally we have found the probability expression in matter, but it implies the

diagonalization of Eq. (1.36) which is not always possible in an exact way. In particular, we

should remember that the potential VCC is proportional to the density of electrons in the

medium, ne, and it may have a functional dependence with the distance. For instance, in the

case of the Sun, the density is nearly a decreasing exponential function of the radius.

In order to develop some concepts and has a theoretical approach to the neutrino propagation

in matter, the case of the two neutrinos will be introduced. The two neutrino framework in

matter is not only a pure academic case but it can be used to describe how neutrinos propagate

in the Sun when oscillations are driven mainly by the mass squared splitting ∆m2
21.

1.3.3 Two neutrino framework

In order to discuss some neutrino oscillation properties in matter it is useful to rewrite the

Hamiltonian in Eq. (1.36) for the two neutrino case where only one mass splitting appears.

Keeping all the terms in Eq (1.36) for the two neutrino case we have:

H′ = 1

2

 ∆m2
21/2E + VCC 0

0 ∆m2
21/2E + VCC


+

1

2

 −∆m2
21

2E
cos 2θ + VCC

∆m2
21

2E
sin 2θ

∆m2
21

2E
sin 2θ

∆m2
21

2E
cos 2θ − VCC

 .
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Absorbing the first line as a global phase in the neutrino wave function, we have:

H =
1

2

 −∆m2

2E
cos 2θ +

√
2GF ne(x) ∆m2

2E
sin 2θ

∆m2

2E
sin 2θ ∆m2

2E
cos 2θ −

√
2GF ne(x)

 , (1.37)

where for simplicity we have dropped out the 21 subindex. Also, the matter potential has been

written explicitly. Even if Eq. (1.37) looks simple, still some specification (and approximations)

on the matter density profile ne(x) should be made in order to understand the physical con-

sequences of the matter potential in the neutrino propagation. The eigenvalues of Eq. (1.37)

are easily calculable as:

λ = ±
√[

∆m2 cos (2θ)− 2
√

2E GF ne(x)
]2

+ [∆m2 sin (2θ)]2.

The neutrino mixing angle in matter can be obtained from the diagonalization condition:

U †MHUM =
1

2
diag(λ−/2E, λ+/2E) , (1.38)

solving one of the off-diagonal entries, and it is given by:

sin [2θM(x)] =
∆m2 sin (2θ)

|λ|
=

∆m2 sin (2θ)√[
∆m2 cos (2θ)− 2

√
2E GF ne(x)

]2
+ [∆m2 sin (2θ)]2

.

(1.39)

Finally, to see the complexity and phenomenological richness implied by the Hamiltonian in

Eq. (1.37) it is enough to write the expression that defines the neutrino propagation in the

mass basis [3]:

i
d

dx
[UMΦ(x)] = HF [UMΦ(x)]

UM i
d

dx
Φ(x) + i

[
d

dx
UM

]
Φ(x) = UM

(
U †MHUM

)
Φ(x)

i
d

dx
Φ(x) =

1

2
diag{−|λ|/2E, |λ|/2E}Φ(x)− iU †M

[
d

dx
UM

]
Φ(x),

where UM depends on the mixing angles in matter as it appears in Eq. (1.39). Specifically we

have:

i
d

dx
Φ(x) =

1

2

 − |λ|
2E

−i2dθM
dx

i2dθM
dx

|λ|
2E

Φ(x) . (1.40)

Then, one sees that the Hamiltonian is not diagonal if the matter potential varies with the

distance. When the off-diagonal entries are important, and under some conditions, additional
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transitions can occur when neutrinos are crossing the resonance region. At this point it is

useful to define a parameter that will help us to identify when this level crossing probabilities

have to be taken into account. The adiabatic parameter is defined as the diagonal over the

off-diagonal entry in the Hamiltonian in the mass basis in Eq. (1.40):

γ ≡ |λ(x)|
4E |dθM/dx|

, (1.41)

and it allows us to introduce two different regimes. In the adiabatic regime, characterized by

γ � 1, the off-diagonal entries can be neglected. The mixing angle variation |dθM/dx|, due

to a smooth change in the matter potential, is in this case less important than the magnitude

of the wave vector in matter |λ(x)|/4E. In the non-adiabatic regimen, as we will explain later,

additional transitions between neutrino mass eigenstates during the resonance can occur.

To solve the amplitude in Eq. (1.40), an initial condition is needed. Assuming that at x = 0

only electron neutrinos are produced, which is the case of solar neutrinos, then the probability

to detect an arbitrary state is given by:

Ae α = 〈νfα| exp (−iHx)|νie〉 ,

where the indices i and f indicate mixing angles in matter for initial (production point xi)

and final states (detection point xf ), respectively. After a straightforward calculation, the

transition probability in the adiabatic regime is expressed as:

P (γ�1)
νe→να(x) = |Ae α|2

=
1

2
− 1

2
cos(2θiM) cos(2θfM)− 1

2
sin(2θiM) sin(2θfM) cos

[∫ x

0

dy
|λ(y)|

2E

]
.

(1.42)

The simplest case of constant matter potential is included in Eq.(1.42) as a limiting case. For

constant matter potential, θiM = θfM = θM , the transition probability is given by:

PMat
νe→να(x) = sin2 (2θM) sin2

(
|λ|
4E

x

)
,

which, after averaging over the distance, can be written as:

〈PMat
νe→να〉x =

(∆m2)2〈P V ac
νe→νa〉x[

∆m2 cos (2θ)− 2
√

2EGFne(x)
]2

+ [∆m2 sin (2θ)]2
, (1.43)

where Eq. (1.39) has also been used. The average probability in constant matter in Eq. (1.43),

in terms of the vacuum probability P V ac, explicitly shows the resonance enhancement of neu-

trinos when they propagate in matter. This effect is known as MSW effect due to Wolfen-

stein [12], Mikheyev and Smirnov [13, 14] who first discussed it. This effect is relevant when



Neutrino oscillations with matter effects 27

neutrinos pass through the resonance region. In this region, when the resonance condition:

nRe =
∆m2 cos 2θ

2
√

2E GF

. (1.44)

is fulfilled, the mixing angle in matter is maximal (complete νe conversion into να) even though

the mixing angle in vacuum is small.

In the case of the Sun, the matter potential is approximately exponentially decaying with

the distance from a dense region in the center to the surface. We can estimate the survival

probability (disappearance of electron neutrinos) using Eq. (1.42) as:

P (γ�1)
νe→νe (x) = 1− P (γ�1)

νe→να(x). (1.45)

Given the large distance between neutrino production and detection, last oscillatory term

averages to zero:

〈P (γ�1)
νe→νe (x)〉x =

1

2
+

1

2
cos(2θiM) cos(2θ), (1.46)

where the mixing angle θfM ≡ θ is the vacuum mixing angle for neutrinos that are out of

the Sun. The probability expression in Eq. (1.46) depends on the matter potential at the

production point through θiM .

When the resonance region is long enough, additional transitions between mass eigenstates in

matter can occur. These non-adiabatic transitions modify the survival probability in Eq. (1.46).

First, we can estimate the change of the electron density during the resonance, δne, assuming

the condition in Eq. (1.44) is satisfied within the half-width ∆m2 sin 2θ as [15]:

δne ≈
∆m2 sin (2θ)

2
√

2GF E

which allows us to estimate the resonance range, δx, using δne = |dne/dx|Rdx:

δx ≈ ∆m2 sin (2θ)

|dne/dx|R 2
√

2GF E
=

sin (2θ)

cos (2θ)|d log ne/dx|R
. (1.47)

Finally, when δx in Eq. (1.47) is comparable to the oscillation distance, there is a non-zero

transition probability between mass eigenstates (level crossing transitions). The expression

that takes into account non-adiabatic level crossing transitions during the resonance is the

Parke formula [16]:

〈P (γ�1)
νe→νe (x)〉x =

1

2
+

(
1

2
− Pc

)
cos(2θiM) cos(2θ), (1.48)
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where Pc is the level crossing (transition between adiabatic states) probability. In the linear

expansion of the potential around the resonance point, Pc can be calculated using the Landau

and Zenner formalism [16], and can be written as a function of the adiabatic parameter in the

resonance γR:

Pc = exp [−(π γR)/2] .

We note that the probability in Eq. (1.46) is recovered from Eq. (1.48) for the case of no level

crossing transitions, i.e, Pc = 0.

1.3.4 Three neutrino framework

As mentioned before, it is not always possible to analytically diagonalize the Hamiltonian in

Eq. (1.36). Only in the case of constant matter potential it is possible to approximately

calculate the oscillation probabilities. This result is useful for neutrinos propagating through

the Earth because in some approximation the Earth matter profile can be considered as two

slabs of constant density: the mantle and the crust (the core density can not be considered as

constant). When the neutrino propagation longitude (baseline) is short enough to cross only

the crust, the matter potential can be considered as constant.

Here we present the main results for the oscillation probability functions for the muon appear-

ance and electron disappearance channels. We refer to the interested reader to Ref. [17] for the

results for other channels as well as for the detailed technique used to determine these proba-

bilities. The calculation is based on the expansion of the Hamiltonian in matter in Eq. (1.36)

around small parameters until some order and its subsequent diagonalization. Here we quote

some of the results for the expansion until second order in the small parameters:

α ≡ ∆m2
21

∆m2
31

s13 ≡ sin θ13 .

(1.49)

Later we will see why the parameters in Eq. (1.49) are considered as small quantities.

For later reference, we are particularly interested in the conversion probability for the channel

νµ → νe and the survival one for the channel νµ → νµ. These specific channels correspond to

the ones explored at current accelerator based experiments. The expression for νe appearance
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channel can be obtained from [18]:

Peµ ≈ α2 sin2 (2θ12) c2
23

sin2 (A∆)

A2
+ 4 s2

13 s
2
23

sin2 [(A− 1)∆]

(A− 1)2

+ 2α s13 sin (2θ12) sin (2θ23) cos(∆− δCP)
sin (A∆)

A

sin [(A− 1)∆]

A− 1
.

(1.50)

for the νµ disappearance channel we have:

Pµµ ≈ 1− sin2(2θ23) sin2 ∆ + α c2
12 sin2(2θ23) ∆ sin(2∆)

− α2 sin2(2θ12) c2
23

sin2(A∆)

A2
− α2 c4

12 sin2(2θ23) ∆2 cos(2∆)

+
1

2A
α2 sin2(2θ12) sin2(2θ23)

(
sin ∆

sin(A∆)

A
cos[(A− 1)∆]− ∆

2
sin(2∆)

)
− 4 s2

13 s
2
23

sin2[(A− 1)∆]

(A− 1)2

− 2

A− 1
s2

13 sin2(2θ23)

(
sin ∆ cos(A∆)

sin[(A− 1)∆]

A− 1
− A

2
∆ sin(2∆)

)
− 2α s13 sin(2θ12) sin(2θ23) cos δCP cos ∆

sin(A∆)

A

sin[(A− 1)∆]

A− 1

+
2

A− 1
α s13 sin(2θ12) sin(2θ23) cos(2θ23) cos δCP sin ∆

×
(
A sin ∆− sin(A∆)

A
cos[(A− 1)∆]

)
,

(1.51)

where we have defined:

∆ ≡ ∆m2
31L

4E
,

A ≡ 2EV

∆m2
31

=
V L

2∆
.

(1.52)

To close this subsection we want to make a comment, on the limit for neutrino oscillations in

vacuum and on the validity of the approximations considered. The equivalent expressions in

vacuum can be obtained from Eq. (1.50) and Eq. (1.51) in the limit V → 0. The authors in

Ref. [17] stressed on this point because the eigenvalues are not finite in this limit, although the

combination in the amplitude that produces the probabilities ends in well behaved expressions

in the vacuum limit. The accuracy of the expressions is also discussed on the original reference

comparing with the numerical exact solution of the Hamiltonian. Basically, since we are working

in the limit when α� 1 this is also valid for:

∆m2
21L

4E
� ∆m2

31L

4E
,

which implies that oscillations driven by ∆m2
21 should not be relevant.
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Figure 1.1: Calculated neutrino fluxes from BPS08 standard solar model (SSM). Figure taken

from http://www.mpa-garching.mpg.de/~aldos/.

1.4 Solar and atmospheric neutrinos

1.4.1 Solar neutrinos

Neutrinos coming from the Sun are generated as a product of several thermonuclear processes

mainly through the proton-proton (pp) chain and the CNO cycle. In terms of the source

reaction, the pp chain processes are: pp, pep, hep, 7Be and 8B while in the CNO cycle the

three relevant processes are known as: 13N, 15O and 17F. For a better understanding of the

sources and number of neutrinos generated in the Sun, Fig. 1.1 shows the predicted neutrino

fluxes from the processes we have mentioned so far. The final result is the fusion of four

protons into one nucleus of 4He:

4p→4 He + 2e+ + 2νe + γ

releasing an energy of Q = 4mp −m4He − 2me ' 26 MeV, mainly radiated through photons

and a small fraction by neutrinos 〈E2νe〉 = 0.59 MeV [19].

Historically, the interest to detect solar neutrinos started in the sixties with experiments using

specific chemical reactions known as radiochemical neutrino experiments. Another kind of

neutrino detector technology is based on the detection of the Cherenkov light emitted by a

http://www.mpa-garching.mpg.de/~aldos/
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Experiment Detection process E-Threshold. Sensitivity to

Homestake (Chlorine) νe +37 Cl→37 Ar + e− (CC) 814 keV all but pp and one 7Be line

GALLEX, GNO νe +71 Ga→71 Ge + e− (CC) 233 keV all

SAGE νe +71 Ga→71 Ge + e− (CC) 233 keV all

(Super)Kamiokande νe + e− → νe + e− (ES) (3.5) 5.0 MeV 8B+hep

νe + d → p+ p+ e− (CC) 5 MeV 8B+hep

SNO νx + d → p+ n+ νx (NC) 5 MeV 8B+hep

νx + e− → νx + e− (ES) 5 MeV 8B+hep

Borexino νe + e− → νe + e− (ES) 250 keV 7Be and pep

3 MeV 8B

Table 1.1: Solar neutrino experiments with the corresponding detection process, detection

energy threshold and the part of neutrino flux they can observe.

charged particle traveling faster than light in a medium, which gave origin to the Cherenkov

neutrino experiments. The leaders of the two pioneer neutrino experiments using these tech-

niques, Raymond Davis and Masatoshi Koshiba were awarded with the 2002 Nobel Prize in

Physics.

The energy threshold of a given detection process defines the portion of solar neutrino fluxes

that can be observed. Table 1.1 provides a list of all solar neutrino experiments together

with the detection process used, the corresponding energy threshold and the respective flux

that can be detected. Cherenkov experiments such as Super Kamiokande (SK) and SNO

are real-time experiments, meaning that they can determine the neutrino energy, direction and

detection time event by event. This allows a more complete evidence about the origin and time

variation of neutrino events, such as the day and night variation in the solar neutrino fluxes.

They provide spectral and zenith angle information, richer than the total rate given by the

radiochemical experiments. Up to date SK and SNO have reported several results in different

phases. In particular the three phases of SNO, according to the detection techniques used for

NC events, are known as: heavy water, salt and 3He, respectively. Since we cannot describe

all experiments and measurements exhaustively, here we will describe just the results from the

391 live days salt phase of the SNO experiment [20] that allow us to determine the neutrino

flavor conversion. For a general review of solar neutrino experiments and measurements see
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Refs. [5, 19] and references therein. The SNO measured fluxes, in units of 106 cm−2s−1, are [20]

φCC = 1.68+0.06
−0.06(stat)+0.08

−0.09(syst) ,

φES = 2.35+0.22
−0.22(stat)+0.15

−0.15(syst) ,

φNC = 4.94+0.21
−0.21(stat)+0.38

−0.34(syst) ,

(1.53)

and the ratios of the CC flux to NC and ES respectively are

φCC

φNC
= 0.340± 0.023 (stat) +0.029

−0.031 (syst) ,

φCC

φES
= 0.712± 0.075 (stat) +0.045

−0.044 (syst).

(1.54)

Taking into account the processes in table 1.1, the neutrino flavor content detected at SNO is

given by:

φCC = φe ,

φES = φe + r φµ,τ ,

φNC = φe + φµ,τ ,

(1.55)

where r is the ES cross section rate σµ/σe = 0.1553 [19, 20]. From the first and last relation

in Eq. (1.55) the flux φµ,τ is determined to be [20]:

φNC
µτ = 3.26± 0.25 (stat) +0.40

−0.35 (syst) , (1.56)

which in the SSM is expected to be equal to zero (only electron neutrinos are produced in the

Sun), implying the evidence of a neutrino flavor transition. The plot in Fig. 1.2 represents the

measured fluxes in Eq. (1.53) as a function of the flavor content in Eq. (1.55). The measure-

ment of the NC flux, that is equally sensitive to all active neutrinos, allowed SNO to determine

the electron neutrino deficit through the ratio ΦCC/ΦNC in Eq. (1.54) independently of the

SSM. The dashed lines in Fig. 1.2 also show the prediction for total neutrino flux from the SSM

and we see it is compatible with the φµ,τ measurement implying that the SSM prediction for

the φe in the production is correct. However, in the detection, the electron neutrinos appeared

redistributed in the three flavors as indicated by the first relation in Eq. (1.54).

Nowadays we know neutrino oscillation is the dominant mechanism to explain the flavor con-

version of solar neutrinos. In this context, when solar neutrinos arrive at the Earth, before

being detected, they can additionally interact with the terrestrial matter in a resonant way, as
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Figure 1.2: SNO measured fluxes for each of the processes CC, NC and ES, represented

as bands. Dashed lines represent the SSM [21] expectation. The point corresponds to the

observed value (φe, φµτ ). Figure taken from [20].

explained in Sec. 1.3.3. This effect is called νe regeneration inside the Earth. If it is the case,

this effect can be noticed by a difference between the neutrino fluxes measured in the night

compared to the ones measured during the day, due to the Earth matter effect. The day-night

asymmetry (A) is defined as:

A ≡ 2(φN − φD)/(φN + φD) , (1.57)

where the day and night fluxes φD and φN are measured for each reaction. This is one of the

advantages of real-time experiments. The last experimental value for the asymmetry has been

measured by the SK collaboration [22]:

A = −3.2± 1.1(stat.)± 0.5(sys.),

showing a 2.7σ deviation from zero. This result implies a regeneration of electron neutrinos

as a result of interactions between neutrinos and terrestrial matter.

Going back to SNO results, assuming neutrino oscillations, the allowed region for the mixing

angle and the solar splitting, are determined from the fit to the observables: CC spectra,

NC and ES integrated fluxes, separately for day and night allowing to include the day-night

asymmetry information [20]. The parameter region allowed only by SNO data spans three orders
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Figure 1.3: Allowed region of oscillation parameters from the SNO collaboration in the two

neutrino framework, see the original Ref. [23] for details of the analysis.
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of magnitude in the solar mass splitting, as it is shown in Fig. 1.3. After the combination with

other solar neutrino experiments, and specially with the KamLAND reactor experiment, the solar

neutrino parameters are well determined and the unique valid solution is the region known as

Large Mixing Angle (LMA).

1.4.2 Atmospheric neutrinos

When cosmic rays interact in the Earth atmosphere, mesons are produced, mainly pions and

some kaons, which will decay into neutrinos. Atmospheric neutrinos are then mainly produced

by the chain:

π+(π−)→µ+(µ−) + νµ(ν̄µ)

µ+(µ−)→ e+(e−) + νe(ν̄e) + ν̄µ(νµ) .
(1.58)

If all the muons decay, we can expect twice more muon neutrinos plus antineutrinos than

electron neutrinos plus antineutrinos. In terms of flux it means:

φ(νµ + ν̄µ) ≈ 2φ(νe + ν̄e). (1.59)

The flux from the muons that do not decay (for energies above a few GeV neutrino energy),

before reaching the Earth surface, can also be estimated and the rate φ(νµ + ν̄µ)/φ(νe + ν̄e)

can be calculated accurately [24], however, Eq. (1.59) in not valid in this case.

Another relation between the neutrino fluxes is provided by the decay chain in Eq. (1.58), in

particular:

φ(νµ) ≈ φ(ν̄µ),

and also the same relation is expected for electron neutrinos, due to correlations between

µ+/µ− that can also be measured. The key point is that ratios of neutrino fluxes can be

calculated within some accuracy depending on the energy range. In the energy region below

10 GeV, muon neutrinos are produced by pion decays and their ratio of fluxes from Eq. (1.59)

has an uncertainty of less than 4% [24]. The comparison between different flux calculations is

shown in Fig. 1.4.

Assuming the cosmic ray flux is isotropic and the Earth is spherically symmetric, it is expected

that, without oscillations, the neutrino fluxes are approximately up-down symmetric [24]:

φνα(E, cos Θ) ≈ φνα(E,− cos Θ) , (1.60)
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Figure 1.4: Calculated neutrino flux rates. Comparison between different flux calculations

[25].

where Θ is the zenith angle of the neutrino direction. This relation however, is not exact due

to geo-magnetic effects that affect low energy neutrinos (Eν < 1 GeV) [24]. In Fig. 1.5 it

is shown the zenith angle dependence of the atmospheric neutrino flux for different neutrino

energies. We can see the up-down symmetry is fulfilled for neutrino energies above 1 GeV.

Historically, the Kamiokande experiment played a big role in the understanding of the at-

mospheric neutrino deficit discussed below (see Fig. 1.6). It measured atmospheric neutrinos

through the light ring produced by the Cherenkov radiation of the charged particle in the water

detector, to tag the charged leptons generated in the neutrino interaction with the nucleons

in the detector. In the late eighties the Kamiokande collaboration found a deficit of muon

neutrinos while a compatible number of electron neutrinos, compared to the theoretical ex-

pectations. Without any confirmation from other experiments, the absence of neutrinos was

known as the atmospheric neutrino problem.

Concerning the flux property described in Eq. (1.60) and Fig. 1.5, also non conclusive studies

of the up-down symmetry were carried out in the nineties due to the few statistics.

An experimental upgrade of Kamiokande, increasing the detector size from 3 kton to 50 kton,



Solar and atmospheric neutrinos 37

νe

cos  θ

φ ν
−1

−1
−2

(m
  s

  s
r 

 G
eV

  )−1

νµ

νµ

4x

4x

0.32 GeV

νe

−1.0 −0.50 0 0.50 1.0

10 3

10 3

10 3

10 2

cos  θ

φ ν
−1

−1
−2

(m
  s

  s
r 

 G
eV

  )−1

νe

νe

νµ

νµ

3x

3x

1.0 GeV

−1.0 −0.50 0 0.50 1.0

10 210 2

10 2

10 1

cos  θ

φ ν
−1

−1
−2

(m
  s

  s
r 

 G
eV

  )−1

νe

νe5x

2x

νµ

νµ

3.2 GeV

10 1

10 0

 010

−1.0 −0.50 0 0.50 1.0

10 1

Figure 1.5: Zenith angle dependence of the atmospheric neutrino fluxes averaged over all

azimuthal angles calculated for the Kamioka site [25].

gave birth to SK, still running. Because atmospheric neutrino spectrum spans five decades in

energy, the observed atmospheric neutrinos in SK are classified as [26]:

• Fully/partially contained: At low energies (100 MeV − 102 GeV) neutrinos interact

via Charged Current (CC) with the inner detector (ID) nucleons. These interactions are

fully-contained (FC) or partially contained (PC) if the muon deposits all the energy in

the ID or if the muon deposits the energy in the Outer Detector (or Veto), respectively.

• Upward going/stopping: More energetic muons (E ≥ 2 GeV) interact via CC with

the rock surrounding the detector. Muons traveling in the upward direction (cos θ < 0)

are a clear signal of νµ’s. If the muons (cross) stop in the detector those events are

classified as (upward through-going) upward stopping events.

Back into the discussion of the muon neutrino deficit, a sample of the latest results of atmo-

spheric neutrino events is shown in Fig. 1.6. When comparing with what is expected from

Eq. (1.59) and Eq. (1.60), it is clear that muon neutrinos are disappearing. The disappearance

effect strongly depends on the zenith angle and it is more evident for the upward going neu-

trinos (cos Θ < 0), since it is correlated with the neutrino flight distance. Data show a zenith

asymmetry contrary to the theoretical expectations without oscillations in the gray dashed line

in Fig. 1.6. Also in the left panel of Fig. 1.6 the electron neutrino events are shown. These
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events for data (line with error bar) and MC assuming no oscillation (gray dashed line), best

fit results at normal hierarchy (red solid line) and best fit results at inverted hierarchy (blue

dashed line). Left panel e-like events. Right panel µ-like events. [27].
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Figure 1.7: Allowed parameter region from the analysis of SK data. Other experiments are

included for comparison. Left(Right) panel corresponds to the NH (IH). Figure taken from

Ref. [27].

events, however, are symmetric and compatible with the theoretical expectations. Thus, we

can conclude that the muon neutrinos are not converting into electron neutrinos.

Neutrino oscillations successfully explain the muon neutrino deficit. The dependence with

the zenith angle is related with the neutrino baseline: downward going muon neutrinos travel

∼ 20 km while upward going muon neutrinos travel ∼ 13000 km (nearly the Earth diameter).

In order to estimate the neutrino oscillation parameters from the current data, many exper-

imental details have to be taken into account, as for instance, systematic errors. There are

several sources of systematic errors. Just to mention a few: the uncertainty on the flux de-

termination, at least 5% error in the low energy part as deviation among several calculations.

Detector systematic errors include the interaction model as well. Due to the wide energy

range, several non-quasielastic processes contribute to the number of events but their cross

sections are known only in an approximate way. Another set of systematic uncertainties comes

from the event reconstruction and event selection. For a detailed description see Ref. [27].

After the inclusion of the systematic errors and fitting the latest data [27] to the model with

oscillations, Fig. 1.7 shows the allowed region in the ∆m2
32 − sin2 2θ plane. Finally, to show

that neutrino oscillations νµ → ντ indeed describe the data, SK has measured the neutrino os-

cillation pattern. In Fig. 1.8 the ratio of the observed over expected events without oscillations

as a function of the neutrino baseline and energy, L/E, is shown. Thanks to the observation



40 Reactor experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 10 10
2

10
3

10
4

L/E (km/GeV)

D
at

a/
P

re
di

ct
io

n 
(n

ul
l o

sc
.)

Figure 1.8: Ratio of the data to the MC events without neutrino oscillation (points) as a

function of the reconstructed L/E together with the best-fit expectation for 2-flavor νµ → ντ

oscillations (solid line). The error bars are statistical only. The best-fit expectation for neutrino

decay (dashed line) and neutrino decoherence (dotted line) are also shown [28].

of the oscillation dip, the measurement of the oscillation parameters is accurate, especially for

the mass splitting ∆m2
32 [24].

1.5 Reactor experiments

1.5.1 Reactor event calculation

Reactor antineutrinos are produced by the fission of the isotopes 235U, 239Pu, 241Pu and 238U.

Each fissile isotope contributes to the total reactor neutrino flux and fuel content with a certain

fission fraction fk that can be calculated through a detailed simulation of the core evolution.

Reactor antineutrinos are detected via inverse β-decay process (IBD), ν̄e + p→ e+ + n. The

experimental technique used is a delay coincidence between two signals: one coming from

the positron annihilation (prompt signal) and other coming from the neutron capture in the

innermost part of the antineutrino detector (AD), containing gadolinium-doped liquid scintil-

lator. The light created is collected by the photo-multipliers (PMTs) located in the outermost

mineral oil-region. The anti-neutrino energy Eν̄ is reconstructed from the positron prompt
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energy Eprompt following the relation: Eν̄ = Eprompt + Ēn + 0.78 MeV, where the Ēn is the

average neutron recoil energy.

For a general reactor experiment, with arbitrary number of detectors and reactors, the ex-

pected number of IBD events at the d-th detector coming from a given reactor r-th, without

oscillations, can be estimated from:

Nrd = εd
Np

4πL2
rd

P r
th∑

k fk〈Ek〉
∑
k

fk

∫ ∞
0

dE Φk(E)σIBD(E) , (1.61)

where Np is the number of protons in the target volume, P r
th is the reactor thermal power,

εd denotes the efficiency of the detector and 〈Ek〉 is the energy release per fission for a given

isotope k, taken from Ref. [29]. Lrd is the distance from reactor r-th to detector d-th. For the

antineutrino flux prediction Φk(E) the more recent parametrizations available in the literature

are in Ref. [30] and Ref. [31]. We used the second one as well as the new normalization for

reactor antineutrino fluxes updated in Ref. [32]. The inverse beta decay cross section σIBD(Eν)

is taken from Ref. [33]. To account for the deficit of antineutrinos at the far detector and

the distortion of the reactor ν̄e spectrum, the oscillation probability P (Eν , Lrd) is included in

the theoretical estimate of the number of events. In order to minimize the dependence upon

the predicted normalization of the antineutrino spectrum, we take the ratio of far oscillating

events Trd over the total far expected events
∑

rNrd. Thus, we have:

Trd∑
rNrd

= ωdr

∑
k fk

∫∞
0
dEν Φk(Eν)σIBD(Eν)P (Eν , Lrd)∑

k fk
∫∞

0
dEν Φk(Eν)σIBD(Eν)

≡ ωdr 〈P (Eν , Lrd)〉 , (1.62)

where ωdr is the fraction of IBD contribution of the r-th reactor to the d-th AD determined

from the baselines and reactor thermal powers:

ωdr ≡
wr/L

2
rd∑

r wr/L
2
rd

with wr = P r
th/
∑
r

P r
th . (1.63)

Finally, we can estimate the observed number of events in the d-th detector from the expected

events using Eq. (1.62) in a straightforward way [34]:

Td = Nd

∑
r

ωdr 〈P (Eν , Lrd)〉 . (1.64)

This way, our statistical analysis is free of correlations among the different reactor data samples,

since the relative measurements do not rely on reactor flux predictions.
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1.5.2 Daya Bay as an example

Daya Bay is a reactor neutrino experiment with six ADs, arranged in three experimental halls

(EHs). Two ADs are located in EH1, one in EH2 and three in EH3. EH1 and EH2 are

considered as near halls while EH3 is the far hall. Electron antineutrinos are generated in six

reactor cores, distributed in pairs, with equal thermal power (P r
th = 2.9GWth) and detected

in the EHs. The effective baselines are 512 m and 561 m for the near halls and 1579 m

for the far one [35]. At those distances (∼ km), Daya Bay is sensitive to the first dip in

the ν̄e disappearance probability. With this near-far technology Daya Bay has minimized the

systematic errors coming from the ADs providing the most precise determination of the reactor

mixing angle so far.

In their last article in Ref. [35], Daya Bay analyzed 217 days of data represented by the

observed rates and energy spectra in each AD. Compared to the previous analysis in Ref. [36],

there has been an improvement in the statistical errors (due to the increase of data) but not

in the systematical uncertainties (already very good in their first analysis). The new analysis is

independent of the previous one and the data set used in the determination of the oscillation

parameters now includes the spectral information. Basically, three analyses were done: rate

only, spectral only and the combination.

We will follow the analysis of the previous Daya Bay paper in Ref. [36] with the latest data

in Ref. [35]. Our analysis is based on nuisance-parameter χ2, with the definition:

χ2 =
6∑
d=1

[
Md − Td

(
1 + a+

∑
r ω

d
rαr + ξd

)
+ βd

]2
Md +Bd

+
6∑
r=1

α2
r

σ2
r

+
6∑
d=1

(
ξ2
d

σ2
d

+
β2
d

σ2
B

)
, (1.65)

where Td is the theoretical prediction for the expected events in Eq. (1.64) and Md are the

measured events at the d-th AD with its backgrounds (Bd) subtracted. The pull parameters,

used to include the systematical errors in the analysis, are given by the set (αr, ξd, βd) rep-

resenting the reactor, detector and background uncertainties with their corresponding set of

errors (σr, σd, σB). Uncertainties in the reactor related quantities are included in σr (0.8%)

while the uncorrelated combined uncertainties in the ADs are included in σd (0.2%). σB is

the quadratic sum of the background uncertainties taken from Ref. [36]. Finally, the absolute

normalization factor a is left free to be fitted by the data.
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Figure 1.9: Daya Bay allowed regions at 90% of C.L from the rate-only analysis. Not shown

parameters are kept fixed to their best fit values from [1]. We have constrained the atmospheric

splitting to be within its 1σ error, obtaining a best fit value of sin2 θ13 = 0.0226. A ‘free’

variation of the atmospheric splitting is shown in blue (dot dashed line).

Using the χ2 in Eq. (1.65), we obtained the allowed parameter region in Fig. 1.9. The Daya

Bay collaboration has performed an spectral data analysis determining the atmospheric mass

splitting [35], which is compatible with the MINOS result. In Fig. 1.9 we constrained the at-

mospheric splitting to be within the 1σ error δ(∆m2
31) = 0.075 × 10−3 eV2 obtaining a best

fit value of sin2 θ13 = 0.0226. A ‘free’ variation of the atmospheric mass splitting produces

a value sin2 θ13 = 0.0227, showing the stability over the mass splitting variation. Fixing all

neutrino oscillation parameters to their best fit values in Ref. [1], we found the best fit value

for the reactor mixing angle in this rate-only analysis:

sin2 θ13 = 0.0226+0.0041
−0.0039 . (1.66)

1.6 Accelerator experiments

All neutrino experiments can be considered as a three stage process: production, propagation

and detection. Neutrino production in these experiments consists of an accelerator complex

that provides the neutrinos as decay products of pions and kaons generated from the collision

of high-energy protons on a nucleus target. In the first beam line, where pions and kaons are
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produced, magnetic horns are used to focus the beam. In the second phase, pions and kaons

decay in a volume sometimes filled with gas. Finally, hadrons are stopped or absorbed leaving

only neutrinos and sometimes muons that are monitored. A muon (anti) neutrino beam is

selected by focusing (negative) positive pions and kaons.

At this point, neutrinos are produced in the same way as atmospheric neutrinos, with the

advantage that the neutrino spectrum can be controlled by varying the distance between the

target and the focusing horns. Before finishing the production stage, in the near detector

complex the neutrino beam is characterized. At this phase various measurements are done in

order to fit several parameters related to the neutrino flux and cross section. Together with

external measurements in the case of the cross section, systematic errors in the far detector

measurements will be reduced by the use of the near detector information.

In the second stage, neutrinos propagate several hundreds of kilometers from the source to

the far detector. Given the distance traveled by the neutrino, neutrino interactions with the

Earth matter should be taken into account. A good approximation, the matter potential can

be considered constant with the electron density in the Earth crust.

In the last stage, neutrinos are detected in the far detector (FD). The far detector is composed

of at least an inner (ID) and an outer detector (OD), which is helpful to reject background

events. The neutrino flux is measured in the far detector in order to quantify spectral differ-

ences in the FD due to neutrino flavor transformation compared with the expected spectrum

via Montecarlo (MC) simulation of the experiment tuned with the near detector information

and calibration measurements. When the FD is not a copy of the near detector, new systematic

errors will appear that will not totally cancel with the use of the near detector information.

As we mentioned before, the analysis of this kind of experiments consists of a comparison

between the far spectrum measurements and the expected spectrum by MC simulation. In

order to reconcile the data with the expectations in the FD, the flavor transitions are explained

by neutrino oscillations and the parameters in the oscillation mechanism are constrained by the

data. Due to the energies involved, in the range of few GeV, and for baselines of a hundred

kilometers, accelerator neutrino experiments are sensitive to the atmospheric neutrino oscil-

lation parameters. In fact, accelerator-based neutrino neutrino experiments were designed to

be complementary to the atmospheric experiments. Currently, the atmospheric mass splitting

and mixing angle are well measured by MINOS and T2K, respectively. Accelerator-based exper-
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T2K MINOS ν(ν̄)-mode

Beam source J-PARC FERMILAB

POT 6.57 × 1020 10.6 × 1020(3.3 × 1020)

ND technology Grid detector+magnetized+TPC+Ecal Magnetized tracker calorimeters

Peak energy 0.6 GeV 3 GeV

FD location Kamioka Soudan Mine (Minessota)

Baseline 295 km 735 km

FD technology water Cherenkov Magnetized tracker calorimeters

Fiducial Volume 22.5 ktons 3.8 ktons

Events νe app. 28 152(20)

MC Expected 21.6 33.7± 1.9(3.9± 0.2)

With osc. sin2 2θ13 = 0.1, δCP = 0 and θ23 = π/4

best fit value sin2 2θ13 2 sin2(2θ13) sin2(θ23)

NH [IH] 0.140+0.038
−0.032[0.170+0.045

−0.037] 0.051+0.038
−0.030[0.093+0.054

−0.049]

Events νµ disapp. 120 2579(312)

MC Expected 446.0± 22.5(sys.) 3201(363)

No osc.

best fit value sin2 θ23 sin2 2θ ‘2ν’

NH [IH] 0.514+0.055
−0.056[0.511± 0.055] 0.950+0.035

−0.036(0.97+0.03
−0.08)

best fit value ∆m2
32[∆m2

13]×10−3 eV 2 |∆m2| ‘2ν’

NH [IH] 2.51± 0.10[2.48± 0.10] 2.41+0.09
−0.10 (2.50+0.23

−0.25)

Table 1.2: Comparison of the general aspects of T2K [37, 38] and MINOS [39, 40].

iments are not only expected to be complementary to atmospheric experiments but also to

provide information about the unknown CP phase and the neutrino mass hierarchy.

angle.

In order to introduce the details on the current accelerator neutrino experiments, in table 1.2

we present some generalities about T2K and MINOS.

1.6.1 T2K as an example

Before the measurement of the reactor mixing angle, the first indication for a non-zero θ13 was

provided by T2K. This experiment is sensitive not only to the reactor mixing angle but also to

the CP phase δCP through the νe appearance channel. The other channel, νµ disappearance,
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Figure 1.10: Energy spectrum for νe events in T2K. Best fit histogram for sin2 2θ13 = 0.144

and NH [37].

as we said before, is sensitive to the atmospheric parameters. Here as an example we will show

how to fit the last T2K results for the νe appearance [37].

The neutrino energy, reconstructed from the observed electron energy, for the νe events (or the

event spectrum) is shown in Fig. 1.10. We calibrate our simulation to the best fit histogram

and finally we fit the data allowing a variation of the relevant neutrino oscillation parameters.

In order to include information about the systematic errors, we use the pull method and the

following definition of the χ2 function:

χ2(~λ) = min{a}

{
nbins∑
i=1

2

[
Oi − Ti(1 + a) +Oi log

Oi

Ti(1 + a)

]
+

(
a

σa

)2
}

, (1.67)

where Oi and Ti are the measured and the theoretical expected events for the i-th bin, re-

spectively. The parameter a accounts for the systematic error in the flux normalization and

also other systematic errors that affect the global normalization in the event calculation. After

the minimization over the nuisance parameters (in our case only the a parameter) we end up

with a χ2 function that depends on the vector of the oscillation parameters ~λ. In order to

calculate the theoretical events Ti we need additional information from table 1.2 as well as the

flux, cross section and probability expression for the channel of interest. We take the fluxes

from the T2K collaboration paper [38] and use the GLoBES package [41, 42] with its cross

section values for the simulation. The probability expression encoded in GLoBES is the exact



Accelerator experiments 47

-1

-0.5

 0

 0.5

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

δ
/π

sin2 2 θ13

 

NH

GLoBES 3.0

90% C.L
68% C.L

Figure 1.11: Allowed parameter region for the shown oscillation parameters. Not shown

oscillation parameters have been fixed to their best fit values from [1].

numerical version of Eq. (1.50), which is calculated for oscillations in constant matter with a

density value of 2.6 g/cm3. Using the value for the normalization error σa = 8.8% [37] and

minimizing the χ2 function in Eq. (1.67), we can estimate the allowed parameter region as it

is shown in Fig. 1.11. All not shown parameters are fixed to their best fit values from Ref. [1].

We find a best fit point (bfp) sin2(2θ13) = 0.113 for NH and δCP = 0. The value reported by

the T2K collaboration is sin2(2θ13) = 0.144 [37].

We make a final comment about the detector energy resolution function. A common way to

include the smearing due to the difference between the true energy E ′ and the neutrino recon-

structed energy is assuming a Gaussian distribution function centered in the true energy with

a standard deviation that is a function of the reconstructed energy. The standard deviation,

in GLoBES, is parametrized as:

σ(E) = αE + β
√
E + γ , (1.68)

where the coefficients α, β and γ are measured by the experimental collaboration as an en-

ergy calibration error. Unfortunately, sometimes the experimental collaboration does not make

public the values for the coefficients in Eq. (1.68), as it is the case for T2K. We then use one ob-



48 Global analysis

servable, for instance the total expected events with no oscillations (or a MC expectation with

a given set of parameters), to fit the coefficients. At the end we have to agree not only in that

number but also in the spectral shape. In Fig. 1.11 we have used (α, β, γ) = (0.20, 0.10, 0.05).

1.7 Global analysis

Updated solar neutrino analysis

As in our previous global fit to neutrino oscillations [1], here we consider the most recent results

from the solar experiments Homestake [43], Gallex/GNO [44], SAGE [45], Borexino [46],

SNO [23, 47] and the first three solar phases of Super-Kamiokande [48–50]. Here we have

included the revised results from the third solar phase of Super-Kamiokande, published in

December 2012 in the arXiv version of Ref. [50]. This revision corrects the estimated systematic

error on the total flux observed in Super-Kamiokande as well as the total 8B flux calculation.

We find that the changes are very small and their impact on the determination of solar

oscillation parameters is hardly noticeable. We also include the results from the fourth solar

phase of Super-Kamiokande, SK-IV [51]. This data release corresponds to 1306.3 live-days

and is presented in the form of 23 day and night energy bins. Thanks to several improvements

in the hardware and software of Super-Kamiokande, an improved systematic uncertainty as

well as a very low energy threshold of 3.5 MeV have been achieved. As we will discuss later,

these new data consolidate the previous Super-Kamiokande solar data releases, with a minor

impact in the global fit to neutrino oscillations. More detailed information on our simulation

and analysis of solar neutrino data can be found in Refs. [1, 52, 53].

New reactor data

For the statistical analysis of reactor data we follow the same strategy explained in section 1.5.1.

We define a χ2 that compares the observed and measured event rates at each anti-neutrino

detector. Several pull parameters are introduced in order to account for the different system-

atical errors associated to the reactor, detector and background uncertainties. An absolute

normalization factor is left free in the fit, to be determined from the experimental data. This
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technique is also used in the official analyses performed by the Daya Bay and RENO Collabo-

rations [36, 54]. For the analysis of reactor data we take into account the total rate analysis

of the latest Double Chooz data in Ref.[55], already discussed in our previous fit, as well as

the new reactor data released by Daya Bay and RENO and described below.

RENO

The Reactor Experiment for Neutrino Oscillations (RENO) is a short-baseline reactor neutrino

oscillation experiment located in South Korea. RENO consists of six reactor cores with maximum

powers ranging from 2.66 GWth to 2.8 GWth and two identical anti-neutrino detectors located

at 294 and 1383 m from the center of the reactor array. With both near and far detectors,

RENO provided an important confirmation of the first Daya Bay measurement of θ13 [54].

We use their updated results presented at the TAUP 2013 conference [56], consisting of 403

days of data-taking, with improved systematic uncertainties, background estimates and energy

calibration.

New long–baseline neutrino data

Over the last two years new data on νµ disappearance and νe appearance have been released

by the long-baseline accelerator experiments MINOS and T2K. Below we summarize the most

recent data from both experiments included in our global fit. As in our previous analysis, we

use the GLoBES software package [42] for the simulation and statistical analysis of accelerator

neutrino oscillation data from MINOS and T2K. The expected event numbers for a given channel

in a particular detector are determined using the full three-neutrino survival probability with

the relevant matter effects. As we will see, these data will play an important role in the global

fit, since they provide key contributions to the determination of the atmospheric oscillation

parameters and the CP violation phase. We now discuss them separately.

Disappearance channel in MINOS

The latest measurements of the νµ disappearance channel in MINOS have been published in

Ref. [39]. These results come from the full MINOS data set, collected over a period of nine years

and correspond to exposures of 10.71 × 1020 protons on target (POT) in the νµ-dominated
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beam and 3.36× 1020 POT in the ν̄µ-enhanced beam. One of the key features of these data

sample is the preference for a non-maximal value of the atmospheric mixing angle θ23. In fact,

from the official MINOS analysis, one obtains that maximal mixing is disfavored at the 86%

C.L.

Appearance channel in MINOS

The most recent results for the searches of νe appearance in MINOS have been reported in

Ref. [40]. These data correspond to exposures of 10.6 × 1020 POT in the neutrino channel

and 3.3× 1020 POT in the anti-neutrino channel. The neutrino sample is the same as in the

preliminary results presented in the Neutrino 2012 conference, used in our previous analysis.

However, there are some differences in the reconstructed energy distributions. We are now

using the full update from Ref. [40].

Disappearance channel in T2K

The latest results for the νµ disappearance channel in T2K have been collected from January

2010 to May 2013, during the four runs of the experiment and correspond to a total exposure

of 6.57× 1020 POT [57]. In comparison with the previous T2K results in Ref. [58], sensitivities

have been improved thanks to new event selection and reconstruction techniques, as well as

higher statistics at the near off-axis detector. A total number of 120 muon neutrino event

candidates have been observed at the far detector while 446.0±22.5(sys.) events were expected

in absence of oscillations. As we will see in the next section, the T2K disappearance data

now provides the most precise measurement of the atmospheric mixing angle θ23 with better

sensitivity than all other experiments. Moreover, in contrast to the MINOS νµ disappearance

data, they prefer a best fit θ23 value very close to maximal. This point will be crucial for the

θ23 octant (in)determination from the global neutrino oscillation analysis.

Appearance channel in T2K

As for the disappearance channel, the latest available T2K appearance data correspond to a

total exposure of 6.57 × 1020 POT, collected from run 1 to run 4 in the experiment [37]. A

total of 4.92 ± 0.55 background events were expected in the absence of oscillations, while a
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sample of 28 electron neutrino events have been detected. The observed event distribution is

consistent with an appearance signal at 7.3σ.

1.8 Results

In addition to the solar, reactor and long-baseline accelerator neutrino data described in the

previous section, in our global fit to neutrino oscillations we also include the last results from

the KamLAND reactor experiment presented in Ref. [59] as well as the atmospheric neutrino

analysis provided by the Super-Kamiokande Collaboration in Ref. [60].

1.8.1 The role of long–baseline neutrino data in atmospheric param-

eter determination

Long-baseline neutrino data have by now achieved very good precision. In fact, the determina-

tion of the atmospheric oscillation parameters has become fully dominated by the combination

of T2K and MINOS data. This can be appreciated from Fig. 1.12, where one sees how the

latest T2K data places the best constraint on the atmospheric angle θ23, while MINOS still pro-

vides the best determination for the atmospheric mass splitting ∆m2
31. Atmospheric neutrino

data from Super-Kamiokande are in full agreement with the parameter regions determined by

long-baseline results, though with less sensitivity. In this figure we confirm the result obtained

by the experimental collaborations about the maximality of the atmospheric angle. MINOS

data have a mild preference for non maximal θ23, although θ23 = π/4 is inside the 90% CL

region for 2 d.o.f. The absolute best fit point from the analysis of MINOS lies in the first

octant, θ23 < π/4, although values in the second octant are allowed with very small ∆χ2.

Concerning T2K data, one sees that both for normal (left panel) and inverted mass hierarchy

(right panel) the best fit value is very close to maximal: sin2 θ23 = 0.52 in both cases, max-

imal mixing being allowed with very small ∆χ2 with respect to the absolute minimum: 0.03

(0.02) for normal (inverted) mass ordering. The global fit preference for values of θ23 in the

second octant emerges after the combination with reactor data, as we will discuss in the next
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Figure 1.12: 90 and 99% C.L. regions in the sin2 θ23 - ∆m2
31 plane from separate analysis of

MINOS (black lines), T2K (blue lines) and from the global analysis of all data samples (colored

regions). The left (right) panel corresponds to normal (inverted) mass ordering.

subsection. We find the best fit points:

sin2 θ23 = 0.567+0.032
−0.128 ∆m2

31 = (2.48+0.05
−0.07)× 10−3eV2 (normal hierarchy) ,(1.69)

sin2 θ23 = 0.573+0.025
−0.043 ∆m2

31 = (2.38+0.05
−0.06)× 10−3eV2 (inverted hierarchy) .(1.70)

Note that for normal hierarchy a local minimum appears in the first octant (sin2 θ23 = 0.467)

with ∆χ2 = 0.28 with respect to the global minimum. For the case of inverted hierarchy,

solutions with sin2 θ23 ≤ 0.5 appear only with ∆χ2 > 1.7. Comparing with our previous

global fit, we see that best fit values for the atmospheric mixing angle are slightly shifted

towards maximal values thanks to the latest T2K data. Likewise, ∆m2
31 values are also shifted

towards lower values due to T2K data, which now prefer smaller values of the atmospheric

mass splitting.

1.8.2 The θ23 octant and the CP violation phase δ

In this section we will discuss the complementarity between long–baseline accelerator and

reactor neutrino data in the determination of the θ23 octant as well as the CP phase δ. We

will quantify the new sensitivity to the CP violation phase δ as well as the octant of the
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Figure 1.13: Upper panels: contour regions with ∆χ2 = 1, 4, 9 in the sin2 θ23 - sin2 θ13

plane from the analysis of long–baseline (MINOS and T2K) + solar + KamLAND data (left panel),

long-baseline + solar + KamLAND + new Double Chooz, Daya Bay and RENO reactor data

(middle panel) and the global combination (right panel) for normal hierarchy. Lower panels,

the same but for inverted neutrino mass hierarchy.

atmospheric mixing angle θ23. This emerges by combining the latest accelerator with the

latest reactor data.

We start by discussing the effect of the different data samples upon the possible preference

for a given octant of θ23. Our results are shown in Fig. 1.13. There we display the allowed

regions at ∆χ2 = 1, 4, 9 in the sin2 θ23 - sin2 θ13 plane for normal (upper panels) and inverted

(lower panels) neutrino mass hierarchy. In order to appreciate the effect of the individual

data sample combinations on the parameter determinations we have prepared three different

panels in this plane. The left panel is obtained by the combination of the long-baseline
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data from MINOS and T2K and the results of all solar neutrino experiments plus KamLAND. The

accelerator MINOS and T2K data already produce a rather restricted allowed region in parameter

space, showing an anti-correlation between θ23 and θ13 coming essentially from the oscillation

probability in the νe appearance channel. In this panel solar and KamLAND impose only minor

constraints on the reactor mixing angle θ13. In the middle panel of Fig. 1.13, the data samples

from Double Chooz, Daya Bay and RENO have been included in the analysis. Here one can

see how the very precise determination of θ13 at reactor experiments, particularly Daya Bay,

considerably reduces the allowed region. On the other hand, the Daya Bay preference for

values of sin2 θ13 around 0.023-0.024 moves the best fit value of θ23 to the second octant.

This effect is particularly important for the case of inverted hierarchy, because of the slightly

larger values of θ13 preferred for θ23 < π/4. As a result, the first octant region is more

strongly disfavored so that values of sin2 θ23 < π/4 are allowed only with ∆χ2 > 1.5. Finally,

the right-most panel shows the allowed regions after the inclusion of the Super-Kamiokande

atmospheric data [60]. One can see that there is basically no change between middle and

right panel. This follows from the fact that the analysis of atmospheric data we adopt does

not show a particular preference for any octant of θ23, both of which are allowed at 1σ. This

behavior is also confirmed in the preliminary versions of updated Super-Kamiokande analysis

in Refs. [61, 62].

Now we turn to the discussion of the sensitivity to the CP violation phase, δ. Our previous

global analysis in Ref. [1] showed essentially no dependence on this phase. However the new

results on νe appearance at long-baseline experiments in combination with the very precise

measurement of θ13 at reactor experiments provides, for the first time, a substantial sensitivity

to the CP phase δ. This new effect is illustrated in Fig. 1.14. Here, left panels show the

allowed regions with ∆χ2 = 1, 4, 9 in the sin2 θ13-δ plane from the analysis of long-baseline

accelerator data from MINOS and T2K, in both appearance as well as disappearance channels.

This is indicated by three different line styles used in the left panels. On the other hand,

the colored regions correspond to the results obtained from the global oscillation analysis. As

expected the combination with reactor data results in narrower regions for θ13. One can also

notice that there is a mismatch between the region of θ13 preferred by accelerator data for

values of the CP phase δ around 0.5π and the measured value of this mixing angle at reactor

experiments such as Daya Bay, which dominates the best fit determination. As a result of
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Figure 1.14: Left panels: contour regions with ∆χ2 = 1, 4, 9 in the θ13-δ plane from the

analysis of LBL data alone (lines) and from the combined global analysis (colored regions).

Right panels: ∆χ2 as a function of the CP-violating phase δ from the analysis of LBL data

(dashed line) as well as from the global analysis (solid line). Upper (lower) figures correspond

to NH (IH).

this mismatch one obtains in the global analysis a significant rejection for values of δ phase

around 0.5π. This can be seen in the right panels of Fig. 1.14. Here one notices that for

normal hierarchy values of δ ' π/2 are disfavored with ∆χ2 = 3.4 (1.8σ), while for inverted

hierarchy they are disfavored with ∆χ2 = 6.2 (2.5σ). In both cases the preferred δ value is

located close to 1.5π. The best fit points and 1σ errors on δ are given by:

δ = (1.34+0.64
−0.38)π (normal hierarchy) , (1.71)

δ = (1.48+0.34
−0.32)π (inverted hierarchy) . (1.72)

Comparing now with other global neutrino oscillation analyses in the literature we find
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that our results on the CP phase qualitatively agree with the ones in the updated version of

[63] available in [64]. The agreement holds for their global analysis without atmospheric data.

Note, however, that these authors have also included the effect of the δ in the atmospheric

data sample, not included in the official Super-Kamiokande analysis we adopt here. As a

result, their global fit results show a somewhat stronger rejection against δ ' π/2 than we

find, as expected. Turning now to the results of the analysis given in Ref. [65] we find, in

contrast, that their agreement with our results is worse.

1.8.3 Summary of global fit

In this section we summarize the results obtained in our global analysis to neutrino oscillations.

In Fig. 1.15 we present the ∆χ2 profiles as a function of all neutrino oscillation parameters.

In the panels with two lines, the solid one corresponds to normal hierarchy while the dashed

one gives the result for inverted mass hierarchy. Best fit values as well as 1, 2 and 3σ allowed

ranges for all the neutrino oscillation parameters are reported in Table 1.3.

First we note that solar neutrino parameter determination is basically unchanged with

respect to our previous global fit in [1]. We find that the inclusion of the new SK-IV solar data

sample leads only to minor modifications in the sin2 θ12 and ∆m2
21 best fit values. As we already

discussed in the previous section, the atmospheric neutrino parameters are now determined

mainly by the new long-baseline data. With the new T2K data, the preferred value for the mass

splitting ∆m2
31 is now somewhat smaller, while the best fit value for the atmospheric angle θ23

has been shifted towards values closer to maximal. The status of maximal θ23 mixing angles

has also been improved thanks to the latest T2K disappearance data. Regarding the reactor

mixing angle sin2 θ13, the more precise reactor data from Daya Bay and RENO have reduced

the allowed 1σ range from ∼11% to ∼8%. The preferred value of θ13 has also been shifted

to somewhat smaller values. Finally, thanks to the combination of the latest accelerator and

reactor neutrino data, we have obtained an enhanced sensitivity to the CP violation phase. We

find preferred values for δ around 1.5π for both mass hierarchies. On the other hand, values

close to 0.5π are disfavored at 1.8σ (2.5σ) for normal (inverted) mass ordering.
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Figure 1.15: ∆χ2 profiles as a function of all the neutrino oscillation parameters sin2 θ12,

sin2 θ23, sin2 θ13, ∆m2
21, ∆m2

31 and the CP phase δ. For the central and right panels the solid

lines correspond to the case of normal mass hierarchy while the dashed ones correspond to

inverted mass hierarchy.
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parameter best fit 1σ range 2σ range 3σ range

∆m2
21 [10−5eV2] 7.60 7.42–7.79 7.26–7.99 7.11–8.18

|∆m2
31| [10−3eV2] (NH) 2.48 2.41–2.53 2.35–2.59 2.30–2.65

|∆m2
31| [10−3eV2] (IH) 2.38 2.32–2.43 2.26–2.48 2.20-2.54

sin2 θ12/10−1 3.23 3.07–3.39 2.92–3.57 2.78–3.75

sin2 θ23/10−1 (NH) 5.67 (4.67)1 4.39–5.99 4.13–6.23 3.92 – 6.43

sin2 θ23/10−1 (IH) 5.73 5.30–5.98 4.32–6.21 4.03–6.40

sin2 θ13/10−2 (NH) 2.34 2.14–2.54 1.95–2.74 1.77–2.94

sin2 θ13/10−2 (IH) 2.40 2.21–2.59 2.02–2.78 1.83–2.97

δ/π (NH) 1.34 0.96–1.98 0.0–2.0 0.0–2.0

δ/π (IH) 1.48 1.16–1.82 0.0–0.14 & 0.81-2.0 0.0–2.0

Table 1.3: Neutrino oscillation parameters summary. For ∆m2
31, sin2 θ23, sin2 θ13, and δ the

upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy.

1This is a local minimum in the first octant of θ23 with ∆χ2 = 0.28 with respect to the global minimum



CHAPTER 2

Neutrino mass model with a flavor symmetry

The large mass difference between the SM particles that belong to different families and the

number of families itself are not explained in the SM. After the confirmation of the neutrino

oscillation mechanism as the explanation for the flavor neutrino transitions, the lepton sector

has to be enlarged with neutrino masses and mixing angles in analogy to with the sector of

quarks. However, explaining both sectors with a common origin from a unified theory of flavor

is challenging due to the different mixing pattern observed for quarks and leptons.

In the case of the lepton sector, two of the mixing angles, atmospheric and solar, are

‘large’ (compared with the Cabbibo angle) with the former one being compatible with maximal

mixing. Assuming the reactor mixing angle is compatible with zero, as it was the case before

2012, and also assuming the mixing pattern is not accidental, one can expect the lepton

mixing might come as a consequence of a given flavor symmetry. This has motivated a strong

effort towards the formulation of symmetry-based approaches to address the flavor problem, in

terms of an underlying flavor symmetry of leptons and/or quarks, separately or jointly. Indeed,

these earlier observations were successfully accounted for in terms of an underlying A4 flavor

symmetry [66, 67].

However, as explained in chapter 1, accelerator and especially reactor data excluded a zero

59
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value for the reactor mixing angle. These results open the possibility to explore leptonic CP

violation [7, 68] which is one of the ingredients required to explain the baryonic asymmetry in

the universe through the leptogenesis mechanism. This finding provides a challenge for many

A4-based schemes [66, 67], specially those leading to the so–called tri-bimaximal (TBM)

mixing ansatz proposed by Harrison, Perkins and Scott [69]. This scheme is now ruled out

mainly by the Daya Bay measurement of the reactor mixing angle.

In this chapter we focus on the model proposed by Babu, Ma and Valle [66], studied in

detail in Ref. [70]. We present a simple extension of this model that introduces an extra scalar

singlet flavon field ζ transforming as a 1′ of A4 to the Yukawa sector of the model. We show

explicitly how this breaks the remnant symmetry present in the charged-lepton sector, so as to

induce a nonzero θ13 value, hence making the model fully realistic and opening the possibility

of CP violation in neutrino oscillations. Both θ13 and the CP-violating invariant JCP correlate

with the new term added to the model superpotential.

This chapter is based on the work done in Ref. [71], an is organized as follows: in section 2.1

we review the basic A4 group properties. Then we introduce a non supersymmetric model in

section 2.2 that will help us to introduce the model proposed by Babu, Ma and Valle [66]

(BMV) in section 2.3. After that, we present a simple extension of the BMV model in

section 2.4 that successfully accommodates the current neutrino mixing angles. We close with

an analytical discussion of the results, in a specific limit where the neutrino mixing angles can

be solved perturbatively, in section 2.5.

2.1 The A4 group

In this section we introduce the non-abelian discrete group A4, following the appendix of

Ref [72]. All finite groups are completely characterized by means of a set of elements called

generators of the group and a set of relations, so that all the elements of the group are

given as products of the generators. The group A4 consists of the even permutations of four

objects and contains 4!/2 = 12 elements. The generators are S and T with the relations

S2 = T 3 = (ST )3 = I, and then, the elements of the group are:

1, S, T, ST, TS, T 2, ST 2, STS, TST, T 2S, TST 2, T 2ST .
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C1 = {I} C2 = {T} C3 = {T 2} C4 = {S}

1 1 1 1 1

1′ 1 ω ω2 1

1′′ 1 ω2 ω 1

3 3 0 0 −1

Table 2.1: Character table of A4 where Ci are the different classes and ω3 ≡ 1.

A4 has four irreducible representations (see table 2.1), three singlets 1, 1′ and 1′′ and one

triplet. One of the main features of A4 is that it is the smallest discrete group with a triplet

representation.

The one-dimensional unitary representations are obtained by:

1 S = 1 T = 1

1′ S = 1 T = ω

1′′ S = 1 T = ω2

(2.1)

where ω3 = 1. The product rules for the singlets are:

1× 1 = 1′ × 1′′ = 1

1′ × 1′ = 1′′

1′′ × 1′′ = 1′

(2.2)

In the basis where S is real and diagonal, the group generators can be expressed as:

S =


1 0 0

0 −1 0

0 0 −1

 ; T =


0 1 0

0 0 1

1 0 0

 ; (2.3)

one has the following triplet multiplication rules,

(ab)1 = a1b1 + a2b2 + a3b3 ;

(ab)1′ = a1b1 + ωa2b2 + ω2a3b3 ;

(ab)1′′ = a1b1 + ω2a2b2 + ωa3b3 ;

(ab)31 = (a2b3, a3b1, a1b2) ;

(ab)32 = (a3b2, a1b3, a2b1) ,

(2.4)
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(νi, li)L l1R l2R l3R NiR Φi = (φ+
i , φ

0
i ) η = (η+, η0)

A4 3 1 1′ 1′′ 3 3 1

LN 1 1 1 1 0 0 -1

Table 2.2: Flavor assignments of the particle content of the model. The second row labeled

as LN corresponds to the lepton number.

where a = (a1, a2, a3) and b = (b1, b2, b3).

The decomposition property of the product is given by:

3× 3 = 1 + 1′ + 1′′ + 3 + 3 . (2.5)

The relations in Eqs. (2.2) and (2.4) are often used to write the A4 invariants terms in the

Lagrangian in matrix form in a specific basis.

2.2 A model with degenerate neutrino masses

As starting point we will review a previous A4 model without supersymmetry, from Ref [73],

with the particle content in table 2.2.

The SM leptons, SU(2) singlets and doublets, have been assigned to the three A4 singlets

and triplet representations. As we will see later on, this will provide a particular structure

for the charged leptons. From table 2.2 we can see that, in addition to the SM leptons,

three right-handed singlet fermions NiR and four Higgs doublets, Φi and η, were added, with

i = 1, 2, 3.

With the field assignments in table 2.2, the Lagrangian with the invariant terms is given

by [73]:
1

2
MN2

iR + fN̄iR(νiLη
0 − liLη+) + hijk(νi, li)LljRΦk + h.c., (2.6)

where the first term is a Majorana fermion mass while the second one, after η takes a vev, is

a Dirac neutrino mass term. The third term in Eq. (2.6), after Higgs vevs, will produce the

charged lepton masses.
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The structure for the charged-lepton mass matrix is dictated by the A4 symmetry due to

the assignment in table 2.2, which then will fix the structure of the diagonalization matrix

and finally the neutrino mixing matrix structure. In order to elucidate these structures, first

for charged leptons, we notice that the right-handed leptons are singlets of A4. Then from

Eq. (2.2), in order to have an invariant term under A4, the product of triplet should produce

the corresponding singlet using Eq. (2.4). The charged-lepton mass term can be written

symbolically as:

h̃1 (3× 3)1 × 1 + h̃2 (3× 3)1′ × 1′ + h̃3 (3× 3)1′′ × 1′′

Since in the triplet products in Eq. (2.4) are not mixing terms of the form aibj = 0, then

it is useful to define the following diagonal matrices [73]:

hi1k = h1


1 0 0

0 1 0

0 0 1

 , hi2k = h2


1 0 0

0 ω 0

0 0 ω2

 , hi3k = h3


1 0 0

0 ω2 0

0 0 ω

 . (2.7)

We can rearrange the charged lepton mass matrix as :

liL(hijkvk)ljR = liL(hijivi)ljR = liL (Ml)ij ljR (2.8)

where 〈Φk〉 ≡ vk. Finally, the charged-lepton mass matrix is given by:

Ml =


h1v1 h2v1 h3v1

h1v2 h2ωv2 h3ω
2v2

h1v3 h2ω
2v3 h3ωv3

 . (2.9)

The minimization of the Higgs potential requires the condition:

v1 = v2 = v3 ≡ v .

The charged lepton mass matrix in Eq. (2.9) can be written as:

Ml = UL · diag{
√

3hiv} , (2.10)

and the matrices that diagonalize the charged-lepton matrix U †LMl UR = diag{mi} are, by

inspection, given by:
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UL =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 , UR =


1 0 0

0 1 0

0 0 1

 . (2.11)

We can then rotate the left-handed fields in the Lagrangian in Eq. (2.6) by UL, leading to

the basis were charged-leptons are diagonal, and where the Majorana mass matrix in the basis

(ν,N) is then given by [73]:

M(ν,N) =

 0 U †Lfu

U∗Lfu M

 . (2.12)

Finally, from block diagonalization, the effective 3× 3 mass matrix for neutrinos has the form

[73]:

Mν =
f 2u2

M
UT
LUL =

f 2u2

M


1 0 0

0 0 1

0 1 0

 . (2.13)

This matrix has degenerate eigenvalues, and therefore it does not properly describe the current

neutrino phenomenology, where we have two squared mass differences, solar and atmospheric.

In addition, the matrix has a µ − τ symmetry what will produce a zero value for the reactor

mixing angle, in disagreement with current data.

In the next section we will introduce a model that preserves some features of the model

explained in this section, but solves the problem of the degenerate neutrino masses. Finally

we will confront the second problem of generating a non-zero reactor mixing angle.

2.3 Babu Ma and Valle (BMV) Model

The BMV model [66] is the improved version of the model described in section 2.2. The main

changes with respect to the previous model are the following:

• A4 is broken at very high scale.

• Supersymmetry is added with explicit soft-breaking terms which also break A4. At the

electroweak scale the model is then a specific version of the Minimal Supersymmetric

SM (MSSM).
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Q̂ L̂ ûc1, d̂
c
1, ê

c
1 ûc2, d̂

c
2, ê

c
2 ûc3, d̂

c
3, ê

c
3 φ̂1,2

A4 3 3 1 1′ 1′′ 1

Z3 1 1 ω2 ω2 ω2 1

Table 2.3: Flavor assignments of the MSSM fields, with ω = exp i2π/3.

Û Û c D̂ D̂c Ê Êc N̂ c χ̂

A4 3 3 3 3 3 3 3 3

Z3 1 1 1 1 1 1 1 ω

Table 2.4: Mirror quark, lepton and Higgs superfield assignments, with ω = exp i2π/3.

The particle content of the model is collected in Tables 2.3 and 2.4. The model implements

an A4 flavor symmetry within a supersymmetric context. The usual quark Q̂i = (ûi, d̂i), lepton

L̂i = (ν̂i, êi), and Higgs φ̂i fields transform under A4 as given in table 2.3. In addition, the

heavy quark, lepton, and Higgs superfields indicated in table 2.4 are added. These are all

SU(2) singlets. The superpotential of the BMV model is then given by:

Ŵ = MU ÛiÛ
c
i + fuQ̂iÛ

c
i φ̂2 + huijkÛiû

c
i χ̂k

+MDD̂iD̂
c
i + fdQ̂iD̂

c
i φ̂2 + hdijkD̂id̂

c
i χ̂k

+MEÊiÊ
c
i + feL̂iÊ

c
i φ̂1 + heijkÊiê

c
jχ̂k

+
1

2
MN N̂

c
i N̂

c
i + fN L̂iN̂

c
i φ̂2 + µφ̂1φ̂2

+
1

2
Mχχ̂iχ̂i + hχχ̂1χ̂2χ̂3 .

(2.14)

The scalar potential involving χi is given by:

V = |Mχχ1 + hχχ2χ3|2 + |Mχχ2 + hχχ3χ1|2 + |Mχχ3 + hχχ1χ2|2, (2.15)

which has the supersymmetric solution (V = 0)

〈χ1〉 = 〈χ2〉 = 〈χ3〉 = u . (2.16)

We assume that the A4 flavor symmetry is broken softly at some high scale [66].
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The Dirac mass matrix linking (ei, Ei) to (ecj, E
c
j ) can be written as:

MeE =



0 0 0 fev1 0 0

0 0 0 0 fev1 0

0 0 0 0 0 fev1

he1 u he2 u he3 u ME 0 0

he1 u he2 uω he3 uω
2 0 ME 0

he1 u he2 uω
2 he3 uω 0 0 ME


≡

 0 XI
1

X2 Y I

 , (2.17)

where v1 = 〈φ0
1〉 1, with similar forms also for the corresponding quark mass matrices. Notice

that the structure of the lower left block of matrix in Eq. (2.17) is the same that the one for

the charged leptons in the non supersymmetric model (see Eq. (2.10)).

In order to find the charged-lepton left mixing matrix we have to diagonalize the following

matrix:

MeE(MeE)† =

XI
1 (XI

1 )† XI
1 (Y I)†

Y I (XI
1 )† X2X2 + Y I (Y I)†


=

 (fev1)2 I ME fev1 I

ME fev1 I Uω(diag{3(heiu)2})U †ω +M2
E I

 .

(2.18)

Using the procedure described in the appendix C, one finds (using Eq. (C.10)) the reduced

3× 3 Dirac mass matrix for the charged leptons is diagonalized by the magic matrix Uω:

Uω =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 , (2.19)

which is exactly the UL matrix in Eq. (2.11). For future reference, the S matrix is given by:

i S ≈ −XI
1 (Y I)†

(
XI

1 (XI
1 )† −X2X2 − Y I (Y I)†

)−1

= Uω diag{−ME fev1[(fev1)2 − 3(heiu)2 −M2
E]−1}U †ω .

(2.20)

For fev1 � hi u�ME the charged lepton masses are given by:

m̃2
i '

3f 2
e v

2
1

M2
E

he 2
i u

2

1 + 3(heiu)2/M2
E

. (2.21)

1Here φ1,2 are the usual two Higgs fields of supersymmetry.
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Turning to the neutral sector, the Majorana mass matrix in the basis (νi, N
c
i ) and in the

basis where charged leptons are diagonal, is given by:

MνN =

 0 fNv2 Uω

fNv2 U
T
ω MN

 , (2.22)

where v2 = 〈φ0
2〉. Hence, the reduced light neutrino mass matrix after the seesaw becomes:

Mν =
f 2
N v

2
2

MN

UT
ω Uω = m0


1 0 0

0 0 1

0 1 0

 = m0 λ
0 , (2.23)

leading to degenerate neutrino masses at this stage, as it was the case in the non-supersymmet-

ric model (see Eq. (2.13)). However, because the BMV model is supersymmetric, Eq. (2.23)

is corrected by the wave function renormalizations of νi, as well as the corresponding vertex

renormalizations [66].

The structure of the one-loop corrections to the Majorana neutrino mass matrix can be

written as [70]:

λ = λ0 δ̃ + (δ̃)T λ0 , (2.24)

where the matrix with the one-loop corrections δ̃ is a general hermitian matrix.

Given the structure of the λij elements at high scale (Eq. (2.23)), their expressions at low

scale is fixed to first order as:

λ =


1 + 2δee δeµ + δeτ δeµ + δeτ

δeµ + δeτ 2δµτ 1 + δµµ + δττ

δeµ + δeτ 1 + δµµ + δττ 2δµτ

 , (2.25)

where all parameters are assumed to be real [66]. Rewriting Eq. (2.23) with δ0 ≡ δµµ + δττ −

2δµτ , δ ≡ 2δµτ , δ′ ≡ δee − δµµ/2− δττ/2 and δ′′ ≡ δeµ + δeτ one has
1 + δ0 + 2δ + 2δ′ δ′′ δ′′

δ′′ δ 1 + δ0 + δ

δ′′ 1 + δ0 + δ δ

 , (2.26)
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so that the eigenvectors and eigenvalues can be determined exactly. The effective neutrino

mixing matrix is given by

Uν(θ) =


cos θ − sin θ 0

sin θ/
√

2 cos θ/
√

2 −1/
√

2

sin θ/
√

2 cos θ/
√

2 1/
√

2

 , (2.27)

while the three light neutrino mass eigenvalues are:

λ1 = 1 + δ0 + 2δ + δ′ −
√
δ′ 2 + 2δ′′ 2 ,

λ2 = 1 + δ0 + 2δ + δ′ +
√
δ′ 2 + 2δ′′ 2 ,

λ3 = −1− δ0 ,

(2.28)

so that one finds the BMV model predictions for the neutrino mixing angles, given by:

tan2 θ12 =
δ′′ 2

δ′′ 2 + δ′ 2 − δ′
√
δ′ 2 + 2δ′′ 2

,

sin2 θ13 = 0 ,

tan2 θ23 = 1⇒ maximal .

(2.29)

For the remaining oscillation parameters, namely the mass squared differences, assuming

δ′, δ′′ � δ, one has

∆m2
21 ' 4

√
δ′ 2 + 2δ′′ 2m2

0 ,

∆m2
31 ' ∆m2

32 ' 4δ m2
0 .

(2.30)

One sees that the mixing matrix in the neutrino sector in Eq. (2.29) has just one free parameter,

θ, which corresponds to the unpredicted solar mixing angle, θ12. The plot in Fig. 2.1 shows

the solar mixing angle as a function of the loop corrections given by Eq. (2.29). The measured

range for the solar mixing angle constrains the rate δ′′/δ′.

We now assume that radiative corrections lift the neutrino mass degeneracy, as required by

the solar neutrino oscillation data. Using the solar angle in Eq. (2.29) and the squared mass

differences in Eq. (2.30), one can estimate the size of some of the wave function and vertex

corrections required in order to fit the observed oscillation parameters. One finds the following

relations

δ

|δ′|
= ξ

∆m2
31

∆m2
21

(
1

2 sin2 θ − 1

)
≈ 92.96 ξ,

|δ′ ′|
|δ′|

=

√√√√1

2

[(
1

2 sin2 θ − 1

)2

− 1

]
≈ 1.83,

(2.31)
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Figure 2.1: Solar mixing angle in the BMV model from Eq. (2.29). The horizontal band

represents the solar mixing angle range at 3σ of C.L.

where ξ = 1(−1) corresponds to the case of δ′ > 0 (δ′ < 0). In order to fit the neutrino

oscillation data, the threshold parameter δ′ must be of the same order as δ′ ′ and also δ′, δ′ ′ � δ.

With δ′ < 0 and |δ′′/δ′| = 1.8, the predicted neutrino mixing pattern is indeed consistent with

the oscillation data before the latest T2K, Daya Bay and RENO results for θ13.

2.4 Modifying the BMV model

The main goal of this work is to accommodate the current neutrino data [1] within a minimally

extended A4-based BMV scenario. In general, the effective mixing in the leptonic sector is

given by:

K = Uν(θ), (2.32)

where we have gone to the basis where the charged leptons are diagonal, by rotating with the

magic matrix Uω. The idea is now to generate modifications of the mixing in the leptonic

sector, U ′ω = Uω Uδ, in such a way that the modified lepton mixing matrix is given by

K ′ = U †δ Uν(θ) . (2.33)

Here Uδ denotes a correction which may yield a nonvanishing θ13 while keeping good predictions

for the other neutrino oscillation parameters, in particular, the atmospheric mixing angle θ23.
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2.4.1 Charged lepton corrections to lepton mixing

As a first attempt we relax the condition we used to obtain the charged-lepton masses in

Eq. (2.21), by allowing the scale ME (see Eq. (2.17)) to lie at the TeV scale 2. This results in

unitarity violation corrections to the lepton mixing matrix. With ME in Eq. (2.17) at the TeV

scale, one must take into account not only the first order terms in the block diagonalization

of the charged lepton mass matrix as in Eq. (2.21) but also the next-to-leading (NLO) order

effects.

In order to calculate the NLO terms, one expands the exponential, as in Eq. (C.5) in the

appendix, in a power series in S. The NLO terms are combinations of the identity and

products of S S† and S (see appendix C). Given the structure of the S matrix in Eq. (2.20) it

is clear that even if we go to higher orders in the expansion, the effective charged lepton mass

will always be diagonalized by the magic matrix Uω. In other words: Uδ ≡ 1.

The origin of the structure of the S matrix in Eq. (2.20) comes from the fact that in the

BMV model, the matrices in the upper right corner and the lower right corner in Eq. (2.17)

are proportional to the identity:

i S ≈ −XI
1 (Y I)†

(
XI

1 (XI
1 )† −X2X2 − Y I (Y I)†

)−1 ≈ −XI
1 (Y I)†

(
−X2X2 − Y I (Y I)†

)−1
,

(2.34)

as defined with the superindex in Eq. (2.17). In particular, in the perturbative regime, the

charged-lepton mixing matrix conserves its structure because the Y I ∼ I. This fact suggests

that an additional term in the superpotential in Eq. (2.14) proportional to ÊiÊ
c
i might modify

the charged-lepton mixing matrix. The net effect is that, even allowing for unitarity violation

in the charged sector, the structure of the lepton mixing matrix is unchanged. Somehow, a

remnant symmetry of A4 leads to θ13 = 0.

2.4.2 Minimal flavon extension of the original A4 model

In order to break the unwanted remnant symmetry present in the charged-lepton sector of

the model, we now add a scalar singlet flavon field ζ to the superpotential in Eq. (2.14).

The flavon scalar field ζ transforms as 1′ under the A4 flavor symmetry, leading to a new

2This would lead to the existence of flavor-changing neutral currents at the tree level. These would induce

sizeable lepton flavor violating processes.
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superpotential term of the form:

ζ(E Ec)1′′ (2.35)

where we will parametrize the flavon scale as 〈ζ〉 = βME. This results in a new mass matrix

for the lower right corner of Eq. (2.17) that now has the structure:

Y I → YD = ME × I + βME × diag{1, ω, ω2}, (2.36)

modifying the S matrix in Eq. (2.34). The corresponding charged lepton matrix in Eq. (2.18)

is now given by

MeE(MeE)† =

(fev1)2 I fev1 Y
†
D

fev1 YD Uω(Diag{3(heiu)2})U †ω + YDY
†
D

 , (2.37)

where YD is no longer diagonalized by the magic matrix. This changes the structure of the S

matrix in Eq. (2.20) and breaks the unwanted remnant symmetry which leads to θ13 ≡ 0. As

a consequence, one obtains a corrected matrix U c
ω that leads to a Uδ matrix of the form

U ′ω = Uω Uδ, (2.38)

from which the effective lepton mixing matrix in Eq. (2.32) can be calculated. The modified

lepton mixing K ′ is a complex non-unitary 3x3 matrix from which one must extract the three

angles and three CP phases that characterize the simplest neutrino mixing parameter set.

One finds that, indeed, the proposed flavon extension of the original A4 model scheme can

engender a nonzero value for the reactor mixing angle, as required by the recent neutrino

oscillation data.

2.4.3 Neutrino predictions

Using the modifications to the BMV model explained above (e.g. Eq. (2.37)), we have obtained

quantitative results by the numerical diagonalization of the charged-lepton mixing matrix in

Eq. (2.17) with the modification in Eq. (2.37). The three mixing angles are obtained directly

as:

tan θ12 = |K ′1,2(θ)|/|K ′1,1(θ)|,

sin θ13 = |K ′1,3(θ)|,

tan θ23 = |K ′2,3(θ)|/|K ′3,3(θ)|,

(2.39)
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Figure 2.2: (Left) Correlation between the reactor angle sin2 θ13 and the magnitude of the

flavon coupling parameter |β|. (Right) Correlation between atmospheric and reactor angles for

different β parameter choices. The broad vertical (horizontal) bands are the current allowed

values for sin2 θ13 (sin2 θ23) at 3σ. In both panels the flavon phase φβ has been varied

continuously in the range −π/2 ≤ φβ ≤ π/2. All points in the “triangle” are allowed by the

solar mixing angle θ12 at 3σ range, but only the green (dark) points are consistent with θ13

as well. Finally the two thin horizontal bands correspond to the 1σ preferred regions in the

global oscillation fit of Ref. [1].

where the θ parameter has been varied randomly in the range 0 ≤ sin2 θ ≤ 1. The scales

fev1 and ME have also been varied randomly in the range 1 ≤ fev1 ≤ 102 GeV and 104 ≤

ME ≤ 105 GeV, leading to the results presented in Fig. 2.2. As we will see, for such values,

the mixing matrix K ′ is well described by a unitary approximation.

As one can see from the left plot of Fig. 2.2, in order to generate a non vanishing reactor

angle θ13, the magnitude of the flavon coupling |β| must be nonzero. In principle this result

is independent of the phase φβ. On the other hand, from the right panel of Fig. 2.2, one sees

how the new coupling engenders not only a nonzero θ13 value, but also a restricted range for

the atmospheric angle θ23. If one takes at face value the hints for non-maximal θ23 at 1σ

which follow from global oscillation fits [1] then one finds that the allowed regions for θ23 in

each octant would be very narrow indeed. However, currently maximal atmospheric mixing

remains perfectly consistent [38]. As one sees in Fig. 2.3, for maximal atmospheric mixing,
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Figure 2.3: Correlation between the magnitude of the CP violation invariant JCP and the

two mixing angles, θ13 and θ23, in left and right panels, respectively. Discrete set of phase

values have been used in the range −π/2 ≤ φβ ≤ π/2 in steps of π/6. Random points in pink

are compatible with the current 3σ range of the solar angle θ12, but only the green points are

compatible with the θ13 and θ23 range at 3σ.

the flavon phase must have a non zero value, as seen in the right panel of Fig. 2.3. Note that

the allowed region is modulated by the value of the β phase, φβ. In other words, as one varies

the value of the phase in −π/2 ≤ φβ ≤ π/2, one sweeps the triangle–shaped region indicated

in the right panel of Fig. 2.2. One finds a linear correlation between the“opening angle”of the

triangle and the magnitude of the continuous phase angle φβ. Intermediate φβ values cover

the indicated shaded sub-region of the vertical strip. While all current neutrino mixing angles,

including the reactor angle θ13, are consistent with a real flavon coupling, allowing the latter

to be complex results in a determination of the octant for θ23 as shown in the right panel

of Fig. 2.3. A measurement of the CP violating phase would imply a determination of the

octant, or vice versa. Again, continuous phase values in between the extremes lead to the

half-moon-like region indicated in the right panel in Fig. 2.3.

In other to further clarify the issue of leptonic CP violation within this model, we now turn

to the Dirac phase δCP associated to CP violation in neutrino oscillations. Rather than trying

to extract this phase directly, we have calculated the associated Jarlskog parameter JCP

JCP = I{K∗e1K∗µ3Ke3Kµ1}, (2.40)
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which is invariant under any conceivable phase redefinitions. Our numerical result is shown in

Fig. 2.3, in which we have evaluated Eq. (2.40) for discrete values of the phase in −π/2 ≤

φβ ≤ π/2 in steps of π/6. One can see that, for |β| > 0, the invariant JCP is non zero

in correlation with the non zero value of the phase φβ. By allowing the flavon coupling β

to be complex one not only introduces CP violation in neutrino oscillations, but also selects

the allowed octant of the atmospheric mixing angle θ23 in correspondence with the assumed

values of the phase φβ, which is clearly seen from right panel of Fig. 2.3. This constitutes

an important prediction of the model which may be tested in the future neutrino oscillation

experiments. In contrast, the Majorana phases can hardly be probed within this model since

the mass spectrum is almost degenerate, so that there can never be an important destructive

interference between different 0νββ amplitudes. As a result, the 0νββ decay rate is expected

to be large and should be probed in current and future experiments.

2.5 Analytical understanding

In order to gain a better understanding of the proposed scheme, we now turn to an analytic

approach. We have fixed the ME scale to be 102 times bigger than the TeV scale and we

have obtained the correlations already displayed in Fig. 2.2. The result in the left panel

suggests a simple theoretical relation. Indeed, assuming K ′ to be nearly unitary, we are within

a perturbative limit where we can solve the problem analytically, by diagonalizing the effective

charged lepton mass matrix at the leading order and keeping only the terms until second order

in |β|. This way we find a simple approximate result for the reactor angle given as

sin2 θ13 = |β|2h
8
1 − 2h6

1 h
2
3 + 2h4

1 h
4
3 − 2h2

1 h
2
2 h

4
3 + h4

2 h
4
3 − 2h2

1 h
2
3(h2

1 − h2
2)(h2

1 − h2
3) cos 2φβ

2[(h2
1 − h2

2)(h2
1 − h2

3)]2

(2.41)

in terms of the Yukawa parameters hi that determine the charged lepton masses through

Eq. (2.21). In this way one can explain analytically the right panel of Fig. 2.2 and conclude

that sin θ13 can be non vanishing even if the value of the β phase is zero. In a completely



Analytical understanding 75

Figure 2.4: Numerical predictions for the reactor and atmospheric mixing parameters θ13

and θ23 in terms of β and its phase φβ varied in steps of π/6. Approximate results are also

given. Numerical results are in pink while analytical ones are in black. There is rather good

agreement within the currently allowed 3σ range of the neutrino mixing angles: θ12, θ13 and θ23

indicated by the blue bands. Notice that the negative values of the flavon phase corresponds

to the same correlation, which is more clear from Eqs. (2.41),(2.42).

analogous procedure, we have also obtained an approximate relation for the atmospheric angle:

sin2 θ23 =
1

2
+ |β| h2

2

h2
2 − h2

3

cosφβ

+ |β|2 (−h8
1 + 2h6

1 h
2
3 + h4

2 h
4
3)(h2

2 − h2
3) + 2h2

1(h2
2 h

6
3 − h4

2 h
4
3)

4[(h2
1 − h2

2)(h2
1 − h2

3)]2(h2
2 − h2

3)

+ |β|2 2h2
3(h2

1 − h2
2)(h2

1 − h2
3)[h2

1(h2
2 + h2

3)− 2h2
2 h

2
3] cos 2φβ

4[(h2
1 − h2

2)(h2
1 − h2

3)]2(h2
2 − h2

3)
.

(2.42)

Numerically we have checked that the expansions in |β| leading to the expressions in Eq. (2.41)

and Eq. (2.42) reproduce very well the numerical results for the correlations such as, for in-

stance, those given by the curve in the left panel of Fig. 2.2 within the current allowed range

indicated by global neutrino oscillation fits and summarized by the blue bands displayed in

Fig. 2.4. As we have already noted, for special values of φβ the octant of θ23 gets determined

as shown in Fig. 2.2 and Fig. 2.4.

Before concluding let us make one last comment on the size of the corrections in the

neutrino sector. Within the revamped BMV model we have now introduced, the mixing
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predictions have been recalculated while the squared mass splittings are given by Eq. (2.30).

As we have already mentioned, the free parameter θ in the mixing corresponds to the solar

angle θ12 for a given value of the underlying radiative corrections. In the modified BMV

model, the correspondence between the free parameter and the solar angle, as a function of

the radiative corrections from the soft symmetry breaking sector, is no longer the same as in

the original flavon-less BMV model in Eq. (2.29). In any case, we can use the freedom in the

radiative corrections to fit the solar mixing angle value within the current allowed range.



CHAPTER 3

Neutrino mass and low energy observables

One of the biggest challenges in particle physics is to unravel the nature of the dimension five

operator [74]:

Odim=5 =
λ

Λ
LLHH , (3.1)

which is responsible for generating the observed pattern of neutrino masses. Within the see-

saw mechanism [75–78] this operator arises from the tree-level exchange of heavy messenger

particles. For example, in the so-called type-I see-saw these messengers are three SU(3)c ⊗

SU(2)L ⊗ U(1)Y singlet right-handed neutrinos, which must be heavy in order to account

for the observed smallness of neutrino masses. Since singlets carry no gauge-anomaly, their

number is theoretically unrestricted. The inverse [79] and the linear [80] see-saw schemes are

both capable of realize the type-I see-saw mechanism at the TeV scale and, as a result, these

schemes open the possibility for novel phenomena such as

1. lepton flavor and/or CP violating processes unsuppressed by neutrino masses [81–84],

2. effectively non-unitary lepton mixing matrix [85–87] leading to non-standard effects in

neutrino propagation [88–90].

77
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Both features arise from the non-trivial structure of the electroweak currents in see-saw

schemes 1 [6, 92]. While their expected magnitude is negligible within the standard type-I

see-saw, it can be sizeable in low-scale see-saw mechanisms.

In this chapter we analyze quantitatively the interplay between these two classes of pro-

cesses. More precisely, we define reference parameters describing the typical magnitude of

non-standard neutrino propagation effects and compare them with the constraints which arise

from the searches for lepton flavor violating (LFV) processes [93–95]. For definiteness we fo-

cus on two simple realizations of the low-scale see-saw, namely the inverse and linear see-saw

schemes. Non-unitarity effects may also arise from the charged lepton sector [96], leading also

to lepton flavor violation. We find that unitarity violation effects in neutrino propagation at

the percent level are consistent with the current bounds from lepton flavor violation searches.

Therefore, their search at upcoming neutrino oscillation facilities [97] opens a window of op-

portunity to probe for new effects beyond the standard model.

This chapter is based on Ref. [98], and it is organized as follows: first we introduce some

basic concepts in section 3.1, then we review the type-I see-saw mechanism in section 3.2.1.

The low-scale inverse and linear see-saw realizations are introduced in section 3.3. General

expressions for the lepton mixing unitarity violating parameters in the context of the inverse

and linear see-saw schemes are defined in section 3.4. The link with the analytical expressions

relating LFV decay branching ratios with the non-standard pieces of the general see-saw lepton

mixing matrix is given in section 3.5. In section 3.6 we describe the parameters used in our

numerical analysis, and finally in section 3.7 we present our numerical results, both for normal

and inverse neutrino mass hierarchies.

3.1 Preliminaries

Based on the property that the Lorentz group, SO(3, 1), is locally isomorphic to SU(2) ×

SU(2), each representation of SU(2) can be labeled by ‘spin’. Thus, the Lorentz group can be

labeled by (a, b), where a, b = 1/2, 1, 3/2, . . . [99, 100]. The simplest fermion representation,

(1/2, 0) corresponds to a Weyl spinor χ. We can construct a Lorentz invariant mass term for

1They are generic in electroweak gauge models that mix fermions of different isospin in the weak cur-

rents [91].
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the Weyl spinor:

L =
1

2
M(χT iσ2 χ+ h.c.) (3.2)

with the Pauli matrices σi. To show the invariance of the mass term in Eq. (3.2), we apply a

Lorentz transformation T = e−
i
2
σ·θ over the spinor χ and recalculate the mass term:

χT iσ2 χ→ χTT T iσ2 T χ ,

Expanding the indexes in the last expression we can show that:

T T iσ2 T = iσ2

where detT = 1 has been used. Therefore, the mass term in Eq. (3.2) is Lorentz invariant.

Finally, we want to apply a unitary transformation U over the Weyl spinor. This transformation

represents another symmetry different from Lorentz, under which the mass term in Eq. (3.2)

will transform as:

χT iσ2 χ→ χTUT iσ2 Uχ = χT iσ2 U
TUχ . (3.3)

This term is invariant provided that UTU = 1, which implies that U is real. Then we have

shown that χ cannot carry a global or local U(1) charge (it cannot transform under a complex

or pseudoreal representation [99, 100]). Therefore, the χ spinor can not represent an electri-

cally charged fermion. In the case of neutrinos, the Majorana mass term in Eq. (3.2) is allowed

but it necessarily violates lepton number.

In the case of the Dirac mass term:

L = −mψ̄ψ , (3.4)

where ψ corresponds to the Dirac spinor, we can write the four-component Dirac spinor in

terms of two Weyl spinors χ, ξ as [6]:

ψ =

 χ

iσ2ξ
∗

 . (3.5)

Defining the Dirac gamma matrices in the Weyl basis:

γ0 =

 0 1

1 0

 γi =

 0 σi

−σi 0

 γ5 =

 −1 0

0 1

 , (3.6)
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we can write the Dirac mass term as:

L = m(ξT iσ2 χ− χ† iσ2 ξ
∗), (3.7)

where the definition ψ̄ = ψ†γ0 was used.

Using a single Weyl spinor, we can write the Majorana four-component spinor as:

ψM =

 χ

εχ∗

 , (3.8)

implying somehow that Weyl spinors are the most economical way to describe the neutrino

masses.

The charged conjugation operator in the Weyl representation of the Dirac matrices is given

by:

C =

 − iσ2 0

0 iσ2

 , (3.9)

what allows us to define the conjugate Dirac spinor as:

ψc ≡ Cγ0ψ∗ =

 ξ

εχ∗

 . (3.10)

Comparing the right hand side of Eq. (3.10) with Eq. (3.5) we can notice that the charged

conjugation operator interchanges the two Weyl components. In the case of the Majorana

four-component spinor in Eq. (3.8) we can notice that ψcM = ψM , what is known as the

Majorana condition [100].

For future reference, it is useful to write the Majorana mass term in Eq. (3.2) in terms of

the usual Dirac spinor ψ. To obtain the two separate Weyl spinor components we can use the

chiral projection operators PL,R = (1∓ γ5)/2 such that:

PLψ ≡ ψL =

 χ

0

 . (3.11)

Thus we can finally write:

L = −1

2
m(ψTLCψL + h.c.) . (3.12)
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It is also useful to write the Dirac Lagrangian for a free-particle:

L = ψ̄(iγµ∂µ −m)ψ , (3.13)

using the two component spinors. Because the mass term was already introduced in Eq. (3.7),

we can write the kinetic part as:

(
χ† 0

)iσ̄µ∂µ 0

0 iσµ∂µ

χ
0

+
(

0 −ξT iσ2

)iσ̄µ∂µ 0

0 iσµ∂µ

 0

iσ2ξ
∗


= χ†iσ̄µ∂µχ− ξT (iσ2)(iσµ)(iσ2)∂µξ

∗

= χ†iσ̄µ∂µχ+ ξ†iσ̄µ∂µξ .

Here we used the Peskin notation: σµ = (1, ~σ), σ̄µ = (1,−~σ). In the last expression, the

properties of the σi matrices and some spinor algebra [101] were used. Finally, the Dirac

free-particle Lagrangian in two component notation is given by:

L = χ†iσ̄µ∂µχ+ ξ†iσ̄µ∂µξ −m(χ† iσ2ξ
∗ + h.c) . (3.14)

After a unitary change of variables [6]:

χ =
1√
2

(ρ2 + iρ1),

ξ =
1√
2

(ρ2 − iρ1),

the Dirac Lagrangian gets separated in two pieces:

L =
2∑
a

[
ρ†aiσ̄

µ∂µρa −
(m

2
ρTa iσ2ρa + h.c

)]
, (3.15)

what allow us to identify a Dirac particle as a sum of two Majorana particles with the same

mass.

3.2 Neutrino mass in the Electroweak theory

In order to generate neutrino masses, a summary of possible modifications of the SM are

[6, 102]:

• Higgs sector extension.
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• lepton sector extension.

• both Higgs and lepton sector extensions.

Nowadays, extensions with singlet fermions under the SM gauge group are known as type-I

see-saw, while extensions with a Higgs triplet are known as type-II see-saw. Another popular

extension with lepton triplets is possible and it is known as type-III see-saw [103] (see below).

Here we will mainly focus on the popular type-I see-saw and, as mentioned before we are

mainly interested in the low-scale see-saw mechanism as a generalization of this scheme. This

will require a SM extension adding extra singlet fermions. With the addition of SU(2)L-singlet

left-handed 2 spinor fields ρLa with hypercharge Y = 0, it is possible to write a Majorana mass

term as:

−
∑
a,b

g′ab ρ
T
LaC ρLb + h.c . (3.16)

Together with the component of the SM field l, a Dirac mass term can be written through

the Yukawa term [6]: ∑
a,b

g̃abl̄a iσ2φ
∗C ρ̄TLb + h.c. (3.17)

Here, φ corresponds to the SM Higgs field. A general theory of massive neutrinos should

consider the presence of both terms in Eq. (3.16) and Eq. (3.17). In this case the resulting

neutrino mass matrix in general is a N × N matrix with N > 3. In the next sections we

analyze the structure of this matrix in the high and low-scale type-I see-saw schemes.

In the case of the type-II see-saw, it is necessary to add a complex Higgs triplet h with

hypercharge Y = 2. The triplet can be written as:

h =

 h(+)
√

2h(++)

√
2h(0) −h(+)

 , (3.18)

and the Yukawa terms in the weak Lagrangian are given by [6]:

− 1

2

∑
a,b

gab l
T
aC iσ2 h lb + h.c , (3.19)

2It is equivalent to add new right handed singlet neutrinos that will generate a Dirac mass term as the

other fermions of the SM and also a Majorana mass term −M/2(ψTRCψR) that is exactly the one in Eq. (3.2)

but with the ξ Weyl spinor.
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where l corresponds to the SM lepton doublet. After the triplet gets a vev, it will generate

a Majorana mass term of the same kind as in Eq. (3.12). The new triplet h will modify the

SM gauge boson masses and therefore the ρ parameter. Some conditions should be fulfilled

by the Higgs triplet, in particular:

〈h(0)〉 = −µh
〈φ(0)〉2

M2
h

(3.20)

that comes from the minimization of the scalar potential [104]. Thus, neutrino masses are

proportional to the Higgs triplet vev 〈h(0)〉 and are small if the Higgs triplet mass is high

enough, which implies a new large scale in the scalar sector [104].

Finally, in the type-III see-saw a SU(2) triplet fermion TF with hypercharge Y = 0 is

introduced. We can write the Yukawa interaction as [105]:

∆L(TF ) = yT l
T Cσ2 ~σ · ~TFφ+MT

~TF C ~TF , (3.21)

where the first term is a Dirac mass term, equivalent to the one in Eq. (3.17). For simplicity,

Eq. (3.21) has neither family indexes nor index counting the number of triplets [105]. After

the Electroweak Symmetry Breaking (EWSB) the neutrino masses are given by:

mν ≈ −yTT
1

MT

yT v
2. (3.22)

As we will see for the type-I see-saw case, here the neutrino masses are also small due to the

large MT .

Along this chapter we will focus on the Type-I see-saw and its generalized low scale versions

such as the inverse [79] and linear see-saw [80, 106].

3.2.1 The standard type-I see-saw

In general see-saw schemes the neutrino mass matrix Mν can be decomposed in sub-blocks

involving the standard as well as singlet neutrinos as follows [6]:

Mν =

 M1 MD

MT
D M2

 , (3.23)
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in the basis ν, νc, where the blocks M1 ≡ ML and M2 ≡ MR are symmetric matrices. The

M1 block corresponds to the Majorana mass from the Yukawa term in the Lagrangian that

describes the Higgs triplet interaction with the SM neutrinos in Eq. (3.19). The M2 block

corresponds to the Majorana mass in Eq. (3.16) while the MD block is the Dirac mass from

the usual Yukawa interaction between the SM Higgs and the extra states in Eq. (3.17).

Though the number of singlets is arbitrary, here we take an equal number of SU(2) doublets

and singlets, and consider the simplest type-I see-saw, where no Higgs triplet is present, so the

upper left sub-matrix is M1 = 0 in Eq. (3.23) [6] 3. Neutrino masses arise by diagonalizing

the matrix of Eq. (3.23),

diag{m̃i} = UT Mν U = real, diagonal , (3.24)

through the transformation U connecting the weak states to the light and heavy mass eigen-

states. We adopt a polar decomposition for U as it is shown in appendix C. In the diagonal-

ization of the neutrino mass matrix in Eq. (3.23) we find that the S matrix in Eq. (C.7) is

given by:

i S∗ = −MDM
−1
R . (3.25)

so that, we determine U in Eq. (C.4) as:

U =

 (
I − 1

2
M∗

D(M∗
R)−1M−1

R MT
D

)
V1 M∗

D(M∗
R)−1 V2

−M−1
R MT

D V1

(
I − 1

2
M−1

R MT
DM

∗
D (M∗

R)−1
)
V2

+O(ε3),

(3.26)

leading to the effective light neutrino mass matrix in Eq. (C.9), here given by:

mν ≈ −MDM
−1
R MT

D . (3.27)

This is the so called type-I see-saw mechanism. The smallness of neutrino masses follows

naturally from the heaviness of the SU(2)L singlet neutrino states νci .

3.3 Low scale see-saw mechanism

Most see-saw descriptions assume equal number of doublets and singlets, n = m = 3. How-

ever, since singlets carry no gauge-anomaly, their number is arbitrary [6, 92]. In this chapter

3In this case light neutrinos get mass only as a result of the exchange of heavy gauge singlet fermions.
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we will consider not only the case (n,m) = (3, 3) just described, but also the inverse and

linear see-saw schemes, which belong to the (3,6) class, see below.

3.3.1 Lepton number conserving case

In order to present the link between neutrino masses and the lepton number symmetry, we

will introduce a toy model without reference to any gauge group [107]. It introduces three

left-handed neutral fermions νL, NL, SL (with their right handed antiparticles) and two scalars

φ and χ. The Yukawa couplings are given by:

L = a νLNRφ+ bNRSLχ+ h.c . (3.28)

Assuming that one of the three global U(1) symmetries, corresponding to the lepton number,

is unbroken after the two scalars develop a vev, the mass matrix can be written as [107]:
0 a〈φ〉 0

a〈φ〉 0 b〈χ〉

0 b〈χ〉 0

 , (3.29)

in the Majorana form. After the matrix diagonalization we get:

m1 = 0

m2,3 = ±
√
b2〈χ〉2 + a2〈φ〉2 .

(3.30)

In the left-right symmetric model SU(2)L× SU(2)R×U(1)B−L we can identify 〈χ〉 with the

breaking scale of SU(2)R, which is typically assumed to be 〈χ〉 ≥ 〈φ〉. In this toy model,

from Eq. (3.30), we have found that the left-handed neutrino is massless and we have two

Majorana states with a degenerate mass corresponding to one Dirac neutrino. Neutrinos are

massless because we have imposed the conservation of lepton number.

The scheme shown here can be realized within a SO(10) framework [107]. From the phe-

nomenological point view, for the neutrino masses we just need to replace a〈φ〉 by mD and

b〈χ〉 by M , representing mass matrices where the equivalent of Eq. (3.30) is given by:

m1 = 0

m2,3 = ±
{

1

2

[
mT
Dm

∗
D(M †)−1 + T.T

]
+

1

2

(
M +MT

)}
.

(3.31)
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Here we have three massless Weyl neutrinos while the other six neutral two component leptons

combine exactly into three heavy Dirac fermions [108]. The T.T notation in Eq. (3.31) means

transposed term. An interesting feature of this scheme is that neutrino masses are zero due to

a symmetry. In what follows we will exploit further this idea but within realistic models. We

will produce viable low–scale alternatives to the usual type–I see-saw mechanism by breaking

the lepton number symmetry conserved in the example above.

3.3.2 Inverse see-saw mechanism

As an alternative to the simplest SU(3)c⊗SU(2)L⊗U(1)Y type-I see-saw model, it has long

been proposed extending the see-saw lepton content from (3, 3) to (3, 6), by adding three

extra SU(2) singlets [79] 4, Si, charged under the U(1)L global lepton number in the same

way as the doublet neutrinos νi, i.e. L = +1. After EWSB one gets the following neutrino

mass matrix

Mν =


0 MD 0

MT
D 0 M

0 MT µ

 , (3.32)

in the basis (ν, νc, S), where the three νci have L = −1. Note that U(1)L is broken only by

the nonzero µijSiSj mass terms. Generalizing the perturbative expansion method in Ref. [92],

already used in section 3.2.1, one finds that the mass matrix in Eq. (3.32) can be block

diagonalized as

UT ·Mν · U = block diag (3.33)

4For simplicity we add the isosinglet pairs sequentially, though two pairs would suffice to account for

neutrino oscillations.
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with

U ≈


I 0 0

0 1√
2
I − 1√

2
I

0 1√
2
I 1√

2
I

×


I − 1
2
S1 S

†
1 0 iS1

0 I 0

iS†1 0 I − 1
2
S†1 S1



×


I − 1

2
S2 S

†
2 iS2 0

iS2† I − 1
2
S†2 S2 0

0 0 I

 ,

≈


I iS2 iS1

−i 1√
2

(
S†1 − S

†
2

)
1√
2
I − 1√

2
I

i 1√
2

(
S†1 + S†2

)
1√
2
I 1√

2
I

+O(ε2) ,

(3.34)

where S1 and S2 are 3× 3 matrices. In the limit µ→ 0 we have S1 = S2 = S with

iS∗ = − 1√
2
mD (MT )−1 ∼ ε. (3.35)

With this diagonalization matrix the light neutrino mass obtained from type-I see-saw is

mν ≈MDM
T−1

µM−1MT
D. (3.36)

Note that, in the limit µ → 0, the lepton number symmetry is recovered, making the three

light neutrinos strictly massless. Thus, the smallness of neutrino masses follows in a natural

way, in the ’t Hooft sense [109], as it is protected by U(1)L. For completeness, the heavy

masses are given by:

m2,3 =
1

2
µ±

{
1

2

[
mT
Dm

∗
D(M †)−1 + T.T

]
+

1

2

(
M +MT

)}
, (3.37)

where we have neglected terms proportional to mν . Notice that we recover the expression

in Eq. (3.31) when µ → 0. One sees also that U consists of a maximal block rotation,

corresponding to the Dirac nature of the three heavy leptons made-up of νc and S in the limit

as µ→ 0, and two rotations similar to Eq. (C.4) for the minimal type-I see-saw case considered

in the previous section. Note also that the idea behind the so-called inverse see-saw model

can also be realized for other extended gauge groups see for instance Refs. [106, 107, 110].

Moreover, in specific models, the smallness of µ may be dynamically generated [111].



88 Unitarity deviation of the lepton mixing matrix

3.3.3 Linear see-saw mechanism

An alternative see-saw scheme that can also be realized at low-scale is called linear see-saw,

and it has been suggested as arising from a particular SO(10) unified model [80] (for other

possible constructions see [106, 112]). Once the extended gauge structure breaks down to the

standard SU(3)c ⊗ SU(2)L ⊗ U(1)Y one gets a mass matrix of the type

Mν =


0 MD ML

MT
D 0 M

MT
L MT 0

 , (3.38)

in the same basis (ν, νc, S) used in Sec. 3.3.2. Although theoretical consistency of the model

requires extra ingredients, such as Higgs scalars to generate the ML and M ≡ MR entries,

here we consider just the simplest phenomenological scheme defined by the effective mass

matrix in Eq. (3.38), as it suffices to describe the processes we are interested in.

The block-diagonalization proceeds in a similar way as to the inverse see-saw case, in fact,

for sufficiently small values of MLM
−1, the relations in Eq. (3.34) and Eq. (3.35) are the

same in both schemes. One finds that the effective light neutrino mass is now given by

mν ≈MD(MLM
−1)T + (MLM

−1)MT
D. (3.39)

One sees that, in contrast to the“usual”see-saw relations for the effective light neutrino mass,

Eqs. (3.27) and (3.36), the previous expression is linear in the Dirac neutrino Yukawa couplings,

hence the name linear see-saw. Notice also that lepton number, defined as in the previous

model, is broken only by the terms ML ν S. As a result one sees that, in the limit ML → 0,

the lepton number symmetry is recovered, making the three light neutrinos strictly massless.

Again, as in the previous case, the smallness of neutrino masses follows in a natural way [109],

as it is protected by U(1)L.

3.4 Unitarity deviation of the lepton mixing matrix

The effective lepton mixing matrix Kiα characterizing the charged current weak interaction of

mass-eigenstate neutrinos in any type of see-saw model has been fully characterized in Ref. [6].

It can be expressed in rectangular form as:

L ⊃ i
g√
2
WνlbKbαγµναL + h.c. , (3.40)
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where

Kbα =
n∑
c=1

Ω∗cbUcα . (3.41)

Here, Ω is the 3 by 3 unitary matrix that diagonalizes the charged-lepton mass matrix, while

U is the unitary matrix that diagonalizes the (higher-dimensional) neutrino mass matrix char-

acterizing the type-I see-saw mechanism of interest. We may write the K matrix as follows

K = (KL, KH) , (3.42)

where KL is a 3 by 3 matrix and KH is a 3 by 6 matrix. While the rows of the K matrix

are unit vectors, since K ·K† = I, the blocks KL and KH are not unitary. For our purposes

we can take the charged lepton mass matrix in its diagonal form 5 so that Ω→ 1. From Eq.

(3.26) we obtain:

KL =

(
I − 1

2
M∗

D(M∗)−1(M)−1MT
D

)
V1 ,

KH =
(
M∗

D(M∗)−1
)
V2.

(3.43)

In order to establish a simple comparison with recent literature we parametrize the deviation

from unitarity as [114]

KL ≡ (1− η)V1. (3.44)

Then for the simplest high-scale type-I see-saw, the deviation from unitarity characterizing the

mixing of light neutrinos, is given by:

η ∼ 1

2
ε∗εT ≈ 1

2
M∗

D(M∗)−1(M)−1MT
D. (3.45)

Barring ad hoc fine-tuning, it follows that for this case one expects negligible deviation from

unitarity, namely ε ≈ 10−10 and so η ≈ 10−20.

From now on we will focus on the low-scale type-I see-saw schemes discussed in Secs 3.3.2

and 3.3.3, inverse and linear see-saw, respectively. Generalizing the above discussion to these

cases one finds

KL =

[
I − 1

2

(
M∗

D((MT )∗)−1(M)−1MT
D

)]
V1 . (3.46)

Hence the parameters characterizing the deviation from unitarity, analogous to Eq. (3.45) are

given by 6,

ηI,L ≈ 1

2

(
M∗

D((MT )∗)−1(M)−1MT
D

)
, (3.47)

5This may be automatic in the presence of suitable discrete flavor symmetries as in [113].
6For a recent study of unitarity violation in see-saw schemes see, for instance, Ref. [114].
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mode upper limit (90% C.L.) year Exp./Lab. Ref.

µ+ → e+γ 5.7× 10−13 2013 MEG / PSI [116]

µ+ → e+e+e− 1.0× 10−12 1988 SINDRUM I / PSI [117]

µ− Ti→ e− Ti 6.1× 10−13 1998 SINDRUM II / PSI [118]

µ− Au→ e− Au 7× 10−13 2006 SINDRUM II / PSI [119]

τ → eγ 3.3× 10−8 2009 BABAR/SLAC [120]

τ → µγ 4.4× 10−8 2009 BABAR/SLAC [120]

τ → 3e 2.7× 10−8 2010 BELLE/KEK [121]

τ → 3µ 2.1× 10−8 2010 BELLE/KEK [121]

Table 3.1: Present limits on rare µ and τ decays. Summary from Ref. [115] and [122].

which holds for both the type-I inverse and linear see-saw mechanisms. These parameters

characterize the corresponding unitarity deviations in the light-active 3 × 3 sub-block of the

lepton mixing matrix.

3.5 Lepton flavor violation

LFV has already been observed in neutrino oscillations but not in any process involving charged

leptons so far. In the SM, family flavor is conserved, and therefore an observation of any

charged LFV process will be a discovery of new physics. The models we consider in this thesis

extend the SM predicting an important enhancement of LFV process and in many cases as

large as the current experimental bounds. There has been an experimental effort in measuring

these LFV processes, leading to a reduction of the allowed parameter space in many models.

The observation of charged LFV processes might also help to discriminate between several

extensions of the SM [115].

Charged LFV transitions between e, µ, and τ , can be observed in purely leptonic pro-

cesses, in nuclei transition processes and in the case of the τ also in semileptonic processes.

As shown in table 3.1, charged LFV processes involving muons have the highest experimental

sensitivities, although τ decay starts to become competitive as well [115]. From table 3.1
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we can see that the most restrictive processes are the ones from muon decay. Theoretical

calculations of these process are in general model dependent. In type-I see-saw models, the

li → ljγ process is radiatively induced by neutrino interchange as shown in Fig. 3.1. In the

case of µ− e conversion in nuclei, several diagrams contribute to the process and they can be

classified by photonic and non-photonic. In the context of the inverse see-saw model, LFV pro-

cesses get contributions from penguin photon, Z-exchange and box diagrams [123]. Recently

in the context of the type-I see-saw, µ − e conversion has been reviewed [124]. Depending

on the model, the µ → 3e process receives contributions only from tree level or from several

penguin contributions from the photon, Z, Higgs bosons and box diagrams. For instance, in

the context of a variation of the type-III see-saw, a variation of the inverse see-saw model has

been implemented in such a way that the LFV process µ → 3e occurs at tree level [96]. In

the context of supersymmetry with right-handed neutrinos, the charged LFV processes already

mentioned, have been studied in the seminal paper Ref. [125].

The fact that neutral current couplings of charged leptons are flavor diagonal implies that

the decay processes li → ljlklr are suppressed by a factor of αQED with respect to the

radiative processes, hence they are less restrictive. In the case of the µ − e conversion in

nuclei, explicit calculations [123] indicate that, given the nuclear form factors, current µ − e

conversion sensitivities are effectively lower than those of the µ → eγ decay. However the

upcoming generation of nuclear conversion experiments aims at a substantial improvement. In

this study of the low scale see-saw we will focus on the radiative leptonic decays.

3.5.1 Radiative leptonic decays

We now turn to the lepton flavor violating processes that would be induced at one loop in

type-I see-saw models, as a result of the mixing of SU(2) doublet neutrinos with singlet neutral

heavy leptons. The latter breaks the Glashow-Illiopoulos-Maiani cancellation mechanism [126],

enhancing the rates for the loop-induced lepton flavor violating process illustrated in Fig. 3.1.

The li → ljγ decay process is induced through the exchange of the nine neutral leptons coupled

to the charged leptons in the charged current, namely the three light neutrinos as well as the

six sub-dominantly coupled heavy states [81, 127–130]. The resulting decay branching ratio is
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Figure 3.1: Feynman diagram for µ→ eγ decay in see-saw models.

given by

Br(li → ljγ) =
α3
W s

2
W

256π2

m5
li

M4
W

1

Γli
|GW

ij |2 , (3.48)

where we use the explicit analytic form of the loop-functions [129],

GW
ij =

∑9
k=1K

∗
ikKjkG

W
γ

(
m2
Nk

M2
W

)
,

GW
γ (x) = 1

12(1−x)4
(10− 43x+ 78x2 − 49x3 + 18x3 lnx+ 4x4)

(3.49)

and it is presented in Fig. 3.2 for the inverse and linear see-saw. The difference between the

two models follows from the different dependence with the lepton number violating parameters

that characterize these two low-energy type-I see-saw realizations. One sees that the branching

ratios may easily exceed the current limits. This reflects an important feature of low-scale see-

saw models, namely, that lepton flavor violation as well as leptonic CP violation proceed even

in the limit of massless neutrinos [81–84] . Unsuppressed by the smallness of neutrino mass,

the expected rates are sizeable. The corresponding radiative LFV decays τ → eγ and τ → µγ

are not as constraining as µ→ eγ.

3.6 Numerical analysis

In order to perform our numerical calculations it is convenient to generalize the Casas-Ibarra

parametrization [131] to the inverse and linear type-I see-saw schemes. For simplicity we will

assume real lepton Yukawa couplings and mass entries.
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Figure 3.2: Br(µ→ eγ) versus the lepton number violation scale: vµ for the inverse see-saw

(left panel), and vL for the linear see-saw (right panel). In both cases one assumes normal

hierarchy and the parameters are varied as explained in Sec. 3.6. The red (dark) points are

excluded by the current limit from MEGA collaboration [116] while the green (light) points

are compatible with MEGA limit.

3.6.1 Inverse type-I Seesaw

First note that one has always the freedom to go to the basis where the 3 × 3 gauge-singlet

block M is taken diagonal. For real mD matrix elements, we have in total 18 parameters, nine

characterizing mD, three characterizing M , plus six from the µ matrix.

The Dirac neutrino mass matrix may be rewritten as

mD = V1 diag(
√
m̃i)R

T (
√
µ)−1 diag(MT

i ) (3.50)

where V1 is (approximately) the mixing matrix determined in oscillation experiments [52] and

m̃i are the three light neutrino masses. On the other hand, the arbitrary real orthogonal 3× 3

matrix R and the arbitrary 3×3 real matrix M are parameters characterizing the model. This

parametrization for the inverse type-I see-saw is similar to the one given in Ref. [128]. In

order to further reduce the number of degrees of freedom, we will make the “minimal flavor

violation hypothesis”7 which consists in assuming that flavor is violated only in the“standard”

7This simplifying assumption suffices to illustrate the points made in this chapter. For alternative minimal

flavor violation definitions see Refs. [132–134].
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Dirac Yukawa coupling. Under this simplification the 3 × 3 matrix µ must be also diagonal,

reducing the parameter count from a total of 18 down to 15. These include the three light

neutrino masses, and the three neutrino mixing angles contained in V1, together with the nine

model-defining parameters, that may be taken as three parameters from the R matrix, three

from the µ matrix, plus three parameters characterizing M .

We have performed a random scan over the 3σ allowed region for the lightest mass and

oscillation parameters, the three angles and the three masses in V1 and m̃i, respectively. For

the scan over oscillation parameters we have used the determinations given in [2], and for the

lightest mass parameter we took the cosmological bound on the sum of the neutrino masses

from [10]. We parametrize the real orthogonal matrix R as a product of three rotations,

marginalizing over the three angles from 0− 2π values. We have also fixed the upper value of

the Dirac mass matrix to (mD)ij < 175 GeV to be consistent with perturbativity of the theory.

The remaining six free parameters, from µ and M matrices, are scanned as a perturbation

from the identity matrix in the following way:

µii = vµ (1 + εii) ,

Mii = vM (1 + ε′ii) ,
(3.51)

where |ε| ∼ 5 × 10−1. The parameter vM setting the M -scale was fixed to 1 TeV, while the

vµ scale was scanned in the range (0.1− 10) eV. The two scales vµ,M are consistent with the

observed neutrino masses.

3.6.2 Linear type-I Seesaw

Similarly, for the linear see-saw case we can parametrize the Dirac neutrino mass matrix as

follows,

mD = V1diag{
√
mi}ATdiag{

√
mi}V T

1

(
MT

L

)−1
MT , (3.52)

where A has the following general form:
1
2

a b

−a 1
2

c

−b −c 1
2

 , (3.53)

with a, b, c real numbers. In this case ML and M ≡ MR are general real matrices. One can

always go to a basis where one of them is diagonal, for example ML, reducing the total number
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of model parameters to 21. In order to further reduce the number of degrees of freedom, we

make a similar“minimal flavor violation hypothesis”to this scheme too, namely, we choose the

M matrix also to be diagonal, reducing from 21 to 15 parameters. The most general Dirac

mass matrix is parametrized as in Eq. (3.52). Hence we have a model with 15 parameters that

may be taken as three parameters from the A matrix, three from the ML matrix, and three

from the matrix M , in addition to the three light neutrino masses and three mixing angles. As

for the inverse type-I see-saw case, we do the scan over the light neutrino mass and oscillation

parameters and the 9 additional free parameters. The main difference in this case with respect

to the inverse, is in the structure of the A matrix in Eq. (3.53). We scan over the A matrix

parameters in the form:

Aij ε (0− 10−2) . (3.54)

Now we define MLii in analogy to Mii in Eq. (3.51) and we vary vL in the range (0.01−10) eV.

3.7 Numerical results

Low-scale see-saw schemes lead to sizeable rates for lepton flavor violating processes as well

as to non-standard effects in neutrino propagation associated to non-unitary lepton mixing

matrix. In this section we will quantify the interplay between these, more precisely, between

the branching ratio of Eq. (3.48) in the low-scale type-I see-saw schemes considered here and

the magnitude of the unitarity deviation defined in Eq. (3.45), taking into account Eqs. (3.50)

and (3.52) and the requirement of acceptable light neutrino masses. For definiteness we

assume leptonic CP conservation so that all lepton Yukawa couplings and mass entries are

real.

We have computed the branching ratio (Br) for the charged lepton flavor violating radiative

processes using Eq. (3.48), accurate to order O(ε3) in the neutrino diagonalizing matrix, and we

have displayed the degree of correlation of these observables with the corresponding unitarity

violating parameters |ηij|. In Fig. 3.3 we show the results for the inverse type-I see-saw scheme

for NH and IH for the process µ → eγ, respectively. As explained in the previous section,

points result from a scan over the light neutrino mass and mixing parameters at 3σ, together

with the scan over the 9 free model parameters defined above.

In Fig. 3.4 we show the corresponding results for the τ → eγ branching ratio in the inverse
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type-I see-saw scheme for NH and IH, respectively. In Fig. 3.5 we show the corresponding

results for the process τ → µγ within the inverse type-I see-saw, for NH and IH neutrino

spectra, respectively.

Now we turn to the linear type-I see-saw scheme. In Fig. 3.6 we show our results for the

branching ratio for the process µ→ eγ in the linear see-saw for NH and IH, respectively. The

points are obtained through a scan over the neutrino oscillation parameters, as well as the free

model parameters, as already described.

In Fig. 3.7 we show our results for the τ → eγ branching ratio, for the NH and IH case,

respectively. Finally, in Fig. 3.8 we present the corresponding results for the τ → µγ process.

These results are summarized in table 3.2. One sees that the magnitude of the non-

unitarity effects in the lepton mixing matrix can reach up to the percent level without any

conflict with the constraints that follow from lepton flavor violation searches in the laboratory.

Given the large - TeV scale - assumed masses of the singlet“right-handed”neutrinos, there are

no direct search constraints [108, 135, 136] on heavy active mixing that can be translated as

a constraints in η matrix through the row unitarity of the K matrix. The main factor limiting

the magnitude of non-unitarity effects then comes from the weak universality constraints. As

expected, there is stronger degree of correlation between µ → eγ and η12 than other η’s, or

between τ → eγ and η13 than others, etc. As a result, in these cases one obtains the strongest

restriction on unitarity violation.

Before closing let us comment on the robustness of our results with respect to the assump-

tions made in Sec. 3.6. As far as the regions obtained in Figs. (3.3)-(3.8) are concerned, we

can state that they remain “allowed” once one departs from our simplifying assumptions. As

expected, we have verified that the regions obtained away from the simplifying assumptions

may allow for somewhat larger values of the LFV parameters η affecting neutrino propaga-

tion. However, on account of weak universality constraints, we prefer to stick to the more

conservative values we have presented in Table 3.2.
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Process µ→ eγ τ → eγ τ → µγ

Hierarchy NH IH NH IH NH IH

|ηI12| < 1.44× 10−3 1.20× 10−3 2.20× 10−2 2.37× 10−2 2.20× 10−2 2.37× 10−2

|ηI13| < 1.13× 10−2 1.23× 10−2 1.02× 10−2 1.02× 10−2 2.18× 10−2 2.19× 10−2

|ηI23| < 2.02× 10−2 1.49× 10−2 4.83× 10−2 3.71× 10−2 1.17× 10−2 1.18× 10−2

|ηL12| < 9.52× 10−4 7.27× 10−4 4.28× 10−2 4.20× 10−2 3.86× 10−2 3.88× 10−2

|ηL13| < 3.17× 10−2 2.84× 10−2 1.05× 10−2 1.07× 10−2 4.74× 10−2 4.28× 10−2

|ηL23| < 2.10× 10−2 2.79× 10−2 3.90× 10−2 4.00× 10−2 1.14× 10−2 1.11× 10−2

Table 3.2: Limits on unitarity violation parameters from lepton flavor violation searches.

The numbers given in parenthesis correspond to the improvement obtained with the recent

MEG limit on µ → eγ. Other entries in the table are unchanged. These limits express the

correlation between lepton non-unitarity and LFV that holds in low-scale see-saw schemes

under a “minimal flavor violation hypothesis” defined in the text.
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Figure 3.3: Branching ratios for the process µ→ eγ in type-I inverse see-saw scheme with NH

and IH. We scan over the light neutrino mass and mixing parameters at 3 σ, and over the model

parameters, fixing vM at 1 TeV and varying the vµ scale from 1× 10−10 GeV to 1× 10−8 GeV.

The red (dark) points are excluded by the current limit from MEGA collaboration [116] while

the green (light) points are compatible with MEGA limit.
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Figure 3.4: τ → eγ branching ratio in the inverse type-I see-saw with NH and IH. The scan

is performed as in Fig. 3.3 and the indicated limit is from the PDG [5].
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Figure 3.5: τ → µγ branching ratio in the inverse type-I see-saw with NH and IH. The scan

is performed as in Fig. 3.3 and the indicated limit is from the PDG [5].
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Figure 3.6: Branching for the process µ→ eγ in type-I linear see-saw with NH and IH. We

scan over the parameters as in Fig. 3.3. The red (dark) points are excluded by the current

limit from MEGA collaboration [116] while the green (light) points are compatible with MEGA

limit.
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Figure 3.7: τ → eγ branching ratio, in Linear type-I see-saw for NH and IH. Parameters

scanned as in Fig. 3.3 and the indicated limit is from the PDG [5].
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Figure 3.8: τ → µγ branching ratio, in Linear type-I see-saw for NH and IH. Parameters

scanned as in Fig. 3.3 and the indicated limit is from the PDG [5].
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CHAPTER 4

Non–Standard Interactions at Daya Bay

Neutrino oscillation data imply the presence of at least two massive neutrinos to explain the

current values for the atmospheric and solar mass splittings [1]. From the theoretical point

of view, one appealing mechanism to explain the smallness of neutrino masses is the type-I

see-saw. Other realizations of the dimension five operator can produce values for the neutrino

masses consistent with the neutrino phenomenology, namely low scale realizations [79, 106].

New neutrino interactions (NSI) are expected in such SM extensions. The exchange of new

heavy particles could leave a low energy ‘fingerprint’ in the form of NSI.

These new interactions have been studied in the literature in connection with solar and

atmospheric neutrino oscillation. In fact, before the confirmation for the LMA solution for the

solar neutrino problem by SNO and Kamland, NC NSI were suggested as a possible explanation

of the deficit of electron neutrinos coming from the Sun due to an MSW–like effect with

massless neutrinos [88, 137, 138].

In order to study the phenomenological impact of NSI on the neutrino oscillation phe-

nomenology, we consider an effective formalism approach to parametrize the new neutrino

interactions.
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να lα

f ′

f

να να

f f

Figure 4.1: Effective four fermion interactions in the SM. Left diagram for the CC neutrino

interaction with fermions f . Right diagram for the NC interaction with fermions f . Notice

that the flavor is the same for both interactions.

NSI parametrization

Four–fermion neutrino interactions in the SM are given by the following Lagrangians:

LCC =
GF√

2

[
ν̄αγ

ρ(1− γ5)`α
] [
f̄ ′γρ(1− γ5)f

]
LNC =

GF√
2

[
ν̄αγ

ρ(1− γ5)να
] [
f̄γρ(1− γ5)f

]
,

(4.1)

where the first line accounts for the Charged Current (CC) interaction, while the second one

refers to the Neutral Current (NC) interaction. As we can see from Fig. 4.1, the NC interaction

is flavor diagonal and involves two neutrino fields.

We can generalize the SM Lagrangian in Eq. (4.1) by including new couplings that allow

for a large number of interactions, for instance flavor changing interactions in the NC part.

The following Lagrangian is a generalization of the SM effective Lagrangian where the strength

of the new physics is given by the Fermi constant GF times the new dimensionaless couplings

ε [139]:

LNSIV±A =
GF√

2

∑
f,f ′

ε̃
S(D),f,f ′,V±A
αβ

[
ν̄βγ

ρ(1− γ5)`α
][
f̄ ′γρ(1± γ5)f

]
+
GF√

2

∑
f

ε̃m,f,V±Aαβ

[
ν̄αγ

ρ(1− γ5)νβ
][
f̄γρ(1± γ5)f

]
+ h.c.,

(4.2)

Notice that in Eq. (4.2) we keep the vector and axial Lorentz structure of the SM. In

the NSI Lagrangian in Eq. (4.2) we have parametrized the CC part, in the first line, with the
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superscripts ‘S’ and ‘D’ corresponding to source and detection, respectively, indicating the NSI

origin. In the second line, corresponding to the NC part, we have used the superscript ‘m’

that refers to neutrino propagation in matter.

The Lagrangian in Eq. (4.2) has been the starting point for many phenomenological studies.

In particular, several constraints for the NC NSI-like have been studied in Refs. [140–145].

4.1 NSI at reactor experiments

NSI effects may appear at three different stages in a given neutrino experiment, namely neutrino

production, neutrino detection and neutrino propagation from the source to the detector.

In a short–baseline reactor experiment, such as Daya Bay, the NSI effects on the neutrino

propagation in matter will be negligible since it happens mainly in vacuum. Therefore, we

focus on the NSI effect in the production and detection of reactor antineutrinos.

The NSI couplings relevant for short-baseline reactor neutrino experiments are εudeα, since

they may have an effect over the production and detection processes of reactor neutrinos,

occurring through beta and inverse-beta decays. Therefore, neglecting the effect in neutrino

propagation, the general Lagrangian in Eq. (4.2) for NSI at 1 km baseline reactors is given by:

LV±A =
GF√

2

∑
f,f ′

ε̃
S(D),f,f ′,V±A
αβ

[
ν̄βγ

ρ(1− γ5)`α
][
f̄ ′γρ(1± γ5)f

]
. (4.3)

In order to simplify the notation, will be use the definition ε
S(D)
eβ ≡ ε̃

S(D),u,d,V±A
eβ all along this

chapter.

Definition of the neutrino states

Due to NSI at the neutrino source, in the production of a neutrino state |να〉 in a CC weak

process, a ‘new’ state |νγ〉 can appear together with the SM lepton lα. In this example, one

can consider the flavor state |να〉 has an ‘extra’ flavor component that we will incorporate into
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the neutrino flavor states, as follows 1:

|νsα〉 = |να〉+
∑
γ

εsαγ|νγ〉

〈νdβ| = 〈νβ|+
∑
η

εdηβ〈νη| .
(4.4)

Thus, there is a probability to detect a flavor conversion at zero distance, as we will discuss

later on, which comes from the fact that the new flavor basis, defined by Eq. (4.4) is no longer

complete [88]. For the SM flavor states we still have the usual relation for the neutrino mixing

in terms of mass eigenstates:

|να〉 =
∑
k

U∗αk|νk〉 . (4.5)

Analogous relations for antineutrinos can be established from the transposed conjugation of

Eq. (4.4):

|ν̄sα〉 = |ν̄α〉+
∑
γ

εs∗αγ|ν̄γ〉 ,

〈ν̄dβ| = 〈ν̄β|+
∑
η

εd∗ηβ〈ν̄η| .
(4.6)

Here again, the usual relation for the SM flavor states in terms of mass eigenstates is the

adjoint version of Eq. (4.5) :

|ν̄α〉 =
∑
k

Uαk|ν̄k〉 . (4.7)

Effective anti-neutrino survival probability

The anti-neutrino transition probability from flavor α to β after traveling a distance L from

the source to the detector is defined as:

Pν̄sα→ν̄dβ = |〈ν̄dβ| exp (−iH L)|ν̄sα〉|2. (4.8)

After computing the amplitude and writing the transition probability in the usual real and

imaginary parts of the mixing matrix products, one gets:

Pν̄sα→ν̄dβ =
∑
j,k

Y j
αβY

k∗
αβ − 4

∑
j>k

R{Y j
αβY

k∗
αβ} sin2

(
∆m2

jk L

4E

)

+ 2
∑
j>k

I{Y j
αβY

k∗
αβ} sin

(
∆m2

jk L

2E

) (4.9)

1Notice that this is an effective definition of the neutrino flavor states in presence of NSI since they are not

normalized states. For more details check the appendix B.3
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where Y j
αβ is defined as:

Y j
αβ ≡ U∗βjUαj +

∑
γ

εs∗αγU
∗
βjUγj +

∑
η

εd∗ηβU
∗
ηjUαj +

∑
γ,η

εs∗αγε
d∗
ηβU

∗
ηjUγj . (4.10)

To get the antineutrino survival probability one needs to expand the general transition proba-

bility and replace α and β by e. This probability may be decomposed in the following terms:

Pν̄se→ν̄de = P SM
ν̄e→ν̄e + PNSI

non-osc + PNSI
osc-atm + PNSI

osc-solar

+ O

[
ε3, s3

13, ε
2s13, εs13

(
∆m2

21 L

2E

)
, ε

(
∆m2

21 L

2E

)2

, s2
13

(
∆m2

21 L

2E

)]
,(4.11)

where the SM survival probability is given by:

P SM
ν̄e→ν̄e = 1− sin2(2θ13)

(
c2

12 sin2 ∆31 + s2
12 sin2 ∆32

)
− c4

13 sin2(2θ12) sin2 ∆21 , (4.12)

with sij = sin θij, cij = cos θij and ∆ij = ∆m2
ijL/4E. The NSI part of the survival probability

is given by 2:

PNSI
non-osc = 2

(
|εdee| cosφdee + |εsee| cosφsee

)
+ |εdee|2 + |εsee|2 + 2|εdee||εsee| cos(φdee − φsee) (4.13)

+ 2|εdee||εsee| cos(φdee + φsee) + 2|εseµ||εdµe| cos(φseµ + φdµe) + 2|εseτ ||εdτe| cos(φseτ + φdτe) ,

PNSI
osc-atm = 2

{
s13s23

[
|εseµ| sin(δ − φseµ)− |εdµe| sin(δ + φdµe)

]
+ s13c23

[
|εseτ | sin(δ − φseτ )− |εdτe| sin(δ + φdτe)

]
− s23c23

[
|εseµ||εdτe| sin(φseµ + φdτe) + |εseτ ||εdµe| sin(φseτ + φdµe)

]
− c2

23|εseτ ||εdτe| sin(φseτ + φdτe)− s2
23|εseµ||εdµe| sin(φseµ + φdµe)

}
sin (2∆31)

− 4
{
s13s23

[
|εseµ| cos(δ − φseµ) + |εdµe| cos(δ + φdµe)

]
+ s13c23

[
|εseτ | cos(δ − φseτ ) + |εdτe| cos(δ + φdτe)

]
+ s23c23

[
|εseµ||εdτe| cos(φseµ + φdτe) + |εseτ ||εdµe| cos(φseτ + φdµe)

]
+ c2

23|εseτ ||εdτe| cos(φseτ + φdτe) + s2
23|εseµ||εdµe| cos(φseµ + φdµe)

}
sin2 (∆31) ,(4.14)

PNSI
osc-solar = 2 sin 2θ12∆21

{
−c23(|εseµ| sinφseµ + |εdµe| sinφdµe)

+ s23(|εseτ | sinφseτ + |εdτe| sinφdτe)
}
. (4.15)

2Linear coefficients at order ε in Eqs. (4.13, 4.14, 4.15) are the same as in reference [139] and there is a

nice agreement between both probabilities.
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We have split the NSI terms, as given in Eq. (4.11), in ‘oscillating’ PNSI
osc and ‘non-oscillating’

PNSI
non-osc terms where the former terms depends on the oscillating phase ∆ij while the latter

are not. In the limit L → 0, the ‘non-oscillating’ term is the only NSI term that contributes

to the total probability in Eq. (4.11). It is worth noticing that since the ‘non-oscillating’

term in Eq. (4.13) might produce positive non-zero values for a given combination of the NSI

parameters, the total probability in Eq. (4.11) can be bigger than one. When the states are

properly normalized, the probability is less or equal to one. However, the normalization of the

states cancels out in the calculation of the number of events and therefore we do not consider

it here.

4.2 Specific settings

The coefficients representing the NSI couplings in Eq. (4.11) for detection (d) and production

(s) are general Hermitian matrices ε, that can be independent. Antineutrinos in reactors are

produced by beta decay processes and detected via the inverse process. In this case one would

expect the two matrices will satisfy εseα = εd∗αe. We define this as case I. Other possibilities

can also be phenomenologically rich although less motivated physically unless we want to

study some departures from the CPT theorem [146]. For instance we can have an asymmetry

between the detection and production processes, for example with only NSI at source or we can

have the same NSI strength at the source and detector with different phases. The probability

expressions for both cases were developed and we show them for completeness in appendices

B.1 and B.2, respectively.

Case I: εseα = εd∗αe

In this case we parametrize the NSI couplings in polar form, magnitude and phase, related by

the expressions:

εseα = |εα|eiφα and εdαe = |εα|e−iφα . (4.16)
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With these assumptions, Eq. (4.11) takes a simple form:

Pν̄se→ν̄de ' 1− sin2 2θ13

(
c2

12 sin2 ∆31 + s2
12 sin2 ∆32

)
− c4

13 sin2 2θ12 sin2 ∆21︸ ︷︷ ︸
Standard Model terms

+ 4|εe|cosφe + 4|εe|2 + 2|εe|2 cos 2φe + 2|εµ|2 + 2|ετ |2︸ ︷︷ ︸
non−oscillatory NSI terms

− 4{s2
23|εµ|2 + c2

23|ετ |2 + 2s23c23|εµ||ετ |cos(φµ − φτ )} sin2 ∆31︸ ︷︷ ︸
oscillatory NSI terms

− 4{2s13[s23|εµ| cos (δ − φµ) + c23|ετ | cos(δ − φτ )]} sin2 ∆31︸ ︷︷ ︸
oscillatory NSI terms

. (4.17)

We fix the atmospheric mass splitting ∆m2
31 as an external measurement and neglecting

the solar contribution: ∆m2
21 → 0, the NSI effect in Eq. (4.17) can be interpreted as a shift

in the total event normalization and in the reactor mixing angle [146] given by:

1→ 1 + 4|εe| cosφe + 4|εe|2 + 2|εe|2 cos 2φe + 2|εµ|2 + 2|ετ |2

s2
13 → s2

13 + s2
23|εµ|2 + c2

23|ετ |2 + 2s23c23|εµ||ετ | cos(φµ − φτ )

+ 2s13 [s23|εµ| cos(δ − φµ) + c23|ετ | cos(δ − φτ )] .

(4.18)

In addition to the usual oscillation parameters here we have six new degrees of freedom, one

magnitude and one phase for each neutrino family. In order to systematically extract some

information on the NSI parameters, in our analysis we will consider three main cases: i) NSI

only with νe, ii) NSI only with νµ or ντ (equivalent for maximal atmospheric mixing) and iii)

NSI with all neutrino flavors, with flavor-independent couplings, i.e. εe = εµ = ετ (flavor

universal case). Therefore, in each case we will have two NSI parameters, one absolute value

plus one phase, together with the SM oscillation ones, which are mainly the atmospheric mass

splitting, the reactor mixing angle and the Dirac CP phase.

Before statistical analysis of the Daya Bay data, we will study the impact of the NSI at

the probability level in the next section. This will be very useful in order to discover some

correlations between parameters. In all the plots in this section, wherever the values for the

standard oscillation parameters were fixed, we use sin2 θ13 = 0.023 (Daya Bay best fit value),

maximal mixing for the atmospheric angle θ23 = π/4 and the best fit values from Ref. [1] for

the solar oscillation parameters.
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4.3 NSI effect on the oscillation probability

As mentioned before, we will study the effect separating the parameter region in three parts:

• Only the electron flavor contributes: εe 6= 0 and εµ,τ = 0. In this case, Eq. (4.17) takes

the form:

PNSI-e
ν̄se→ν̄de ' P SM

ν̄e→ν̄e + 4|εe|cosφe + 4|εe|2 + 2|εe|2 cos 2φe , (4.19)

where we see that only the NSI ‘non-oscillating’ term contributes to the probability.

• Only the muon(or tau) flavor contributes: εµ,τ 6= 0 and εe = 0. In this case, Eq. (4.17)

is reduced to:

PNSI-µ
ν̄se→ν̄de

' P SM
ν̄e→ν̄e + 2|εµ|2 − 4{s2

23|εµ|2 + 2s13s23|εµ| cos(δ − φµ)} sin2 ∆31 . (4.20)

Here unlike in the electron case the NSI contribute with an extra oscillating term.

• Flavor Universal (FU) couplings: εe = εµ,τ ≡ ε. In this case, Eq. (4.17) is given by:

PNSI-α
ν̄se→ν̄de ' P SM

ν̄e→ν̄e + 4|ε|cosφ+ 2|ε|2 (4 + cos 2φ)

− 4{|ε|2 + 2s23c23|ε|2 + 2s13|ε| cos(δ − φ)(s23 + c23)} sin2 ∆31 .
(4.21)

This case is phenomenologically interesting because the NSI contributes with an oscil-

latory term and also with a ‘non-oscillatory’ term, which comes from the electron NSI

coupling contribution.

4.3.1 Effective probability in presence of NSI

In the left (right) panel of Fig. 4.2 we have plotted the probability in Eq. (4.19) (Eq. (4.20)),

which corresponds to the electron (muon/tau) case. In both cases we see that the NSI contri-

bution produces a shift in the minimum of the SM probability case (full line). This shift can

be constrained if the reactor angle is well measured. On the other hand, the NSI does not

produce any horizontal shift, showing that the new interactions do not induce a change in the

energy of the survival probability. Therefore, a rate analysis might be enough to constrain the

presence of NSI at reactors.
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Figure 4.2: Effective ν̄e → ν̄e survival probability as a function of neutrino energy in the

presence of NSI. Left panel shows the impact of |εe| and φe. Right panel shows the same for

|εµ|, φµ and δ = 0. In both the panels, the solid black lines correspond to the probability

without new physics involved (SM case).

The effect of the ‘non-oscillatory’ NSI term is also visible in both panels of Fig. 4.2. Notice

that, for some values of the NSI couplings, the effective probability is bigger than one, as it

was commented before. The effect is more prominent for the electron case in the left panel

than for the muon in the right panel. The origin of this difference is that ‘non-oscillatory’

contribution for the electron case is of first order in ε while for the muon/tau the NSI effect

comes at second order in the NSI coupling, as it can be seen in Eqs. 4.19 and 4.20, respectively.

Finally, it is clear from both panels of Fig. 4.2 that there is an important effect of the new

phases affecting the size of the shift in the reactor angle θ13.

The plot in Fig. 4.3 exhibits some features already commented before for the electron and

muon/tau case. This case correspond to the FU case where all the NSI couplings contribute

with the same strength to the probability in Eq. (4.21). The difference with the other cases is

the functional dependence with the Dirac and the new NSI phase. The new phase φ is present

in both terms, oscillatory and ‘non-oscillatory’ while the Dirac phase is only present in the

oscillatory term. For the electron case the Dirac phase is not present while for the muon/tau

case it is possible to redefine the phases as φ′ ≡ δ− φ. In the FU case in Eq. (4.21) however,

both phases contribute independently. Therefore, the FU case has more free parameters than
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Figure 4.3: Effective neutrino survival probability as a function of neutrino energy for the fla-

vor universal case. The region in red shows the combined effect of the new physics parameters

|ε| and φ, while the extended probability band after the variation of the δ phase as is shown

in gray.

the other two cases. The effect of a variation in the Dirac phase in the range [−π, π] is shown

as the gray band in Fig. 4.3.

4.3.2 Correlations between NSI parameters and θ13

Based on the probability plots showed in the last section, now we fix the energy to an average

value, which is close to a total rate analysis, in order to further explore the correlations between

parameters due to the NSI contribution to the probabilities.

We have first defined a standard probability value corresponding to the SM case with

Eν̄ = 4 MeV and L = 1579 m. We then consider the NSI probability in Eq. (4.19) to Eq. (4.21)

and calculate the iso-contours in the (sin2 θ13, ε) plane corresponding to this particular value

of the probability. These plots are very useful to see the correlations between sin2 θ13 and the

non-standard parameters. To illustrate the results in the plots of Fig. 4.4 and Fig. 4.5, it is

useful to consider the shift in the θ13 induced by NSI at first order in ε for each case, as follows

from Eq. (4.19) to Eq. (4.21) and given by:
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Figure 4.4: Iso-probability contours varying εe (left panel) and εµ,τ (right panel) for different

values of φe and (φµ,τ − δ) in degrees, respectively.

• electron flavor case

s̃2
13 ≈ s2

13 −
|εe|cosφe
sin2 ∆31

. (4.22)

• muon/tau flavor case

s̃2
13 ≈ s2

13 + 2s13s23|εµ,τ | cos (δ − φµ,τ ) . (4.23)

• flavor universal (FU) case

s̃2
13 ≈ s2

13 −
|ε|cosφ

sin2 ∆31

+ 4s13s23|ε| cos (δ − φ) . (4.24)

For the electron case in the left panel of Fig. 4.4 we find correlations (anti-correlations)

between the NSI magnitude and the reactor mixing depending if the cosine of the new phase

value is positive (negative). This behavior is clear from the shift function in Eq. (4.22). The

opposite behavior is shown in the right panel of the same figure. Notice the relative sign in the

NSI term in Eq. (4.23) with respect to the equivalent equation for the electron case. Finally,

we can see that the muon case allows large values of the NSI couplings compared with the

electron case, for the given set of standard oscillation parameters.

The flavor universal case is explored in Fig. 4.5 and can be described with the expression in

Eq. (4.24). As we mentioned before, in this case the two phases, δ and φ, affect the standard
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Figure 4.5: Iso-probability plot for the flavor universal case varying δ phase with φα = 0

(left panel) and varying φα with δ = 0 (right panel).

probability in a different way because both enter independently in the probability expression.

The effect of the Dirac (new NSI) phase is shown in the left (right) panel. In the left panel,

independently of the Dirac phase value, we obtain only positive correlations between the two

parameters, implying the relation:

1

sin2 ∆31

> 4s13s23 cos δ . (4.25)

Since there is no dependence on the NSI parameters, this relation is satisfied in all cases

for the given parameters, at least at first order in ε. Furthermore, this result is compatible

with the difference in tilts between iso–probability contours for the electron and the muon

case in Fig. 4.4. In the case of the right panel in Fig. 4.5, when δ = 0, we have correlation

(anti-correlations) when the cosine of the new phase is positive (negative), what is clear from

Eqs. 4.24 and 4.25.

In summary, we have obtained correlations between the reactor angle and the NSI couplings

in those cases where the ‘non-oscillating’ NSI term dominates, while anti-correlations were

obtained when the NSI oscillating term contributes to the total probability. Those terms were

defined in the general probability in Eq. (4.17). Notice that in the flavor universal case, which

receives both contributions, we always obtain correlations no matter the Dirac phase value, as

shown in the left panel of Fig. 4.5. On the other side, when varying the new phase, we have
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both behaviors, correlations and anti-correlations (see right panel of Fig. 4.5). This shows that

the results depend strongly on the new phase values, as it will be reflected in the analysis of

Daya Bay data.

4.4 Bounds on NSI from Daya Bay data

In this section we use the Daya Bay experiment data as explained in section 1.5.2 to test the

sensitivity to NSI at reactors. Initially we will use the χ2 function defined in Eq. (1.65), fixing

the total normalization uncertainty a to zero. In this approximation, we are then assuming

the reactor fluxes are known with infinite precision. Later in section 4.5 we will allow for a

constrained flux normalization, leading the a parameter to vary freely.

In all our calculation, we have assumed maximal 2-3 mixing. We have initially marginalized

over the atmospheric splitting by adding a penalty to the χ2 function accounting for the current

relative error on this parameter: ∆m2
31/δ (∆m2

31) = 3% where δ (∆m2
31) is the 1σ error in the

determination of ∆m2
31. We applied this analysis to the simplest case with the Dirac and new

phase fixed to zero. Since the atmospheric splitting showed no impact on the analysis, along

this chapter we have fixed its value to the best fit point in Ref. [1].

In this section we will present the bounds on the NSI couplings we have obtained using

current Daya Bay reactor data Ref. [35]. For definiteness, we will start considering only

the couplings relative to electron neutrinos: (|εe|,φe), fixing all the other NSI parameters to

zero. Next we will do the same for (|εµ|,φµ) and (|ετ |,φτ ), equivalent for a maximal θ23.

Finally, we will consider the possibility of having all NSI couplings simultaneously with the

same magnitude: εe = εµ = ετ . In all cases we will discuss the bounds arising from Daya

Bay data in comparison with existing bounds. We will also consider the robustness of the

θ13 measurement by Daya Bay in the presence of NSI. Finally we will discuss how the results

obtained in our analysis are strongly correlated with the treatment of the total normalization

of reactor neutrino events in the statistical analysis of Daya Bay data.

4.4.1 Constraints on electron-NSI couplings

Here we present the constraints on the electron NSI couplings allowed by Daya Bay data. We

compare our limits with the existing values in the literature.
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Figure 4.6: Allowed region in the sin2 θ13 - |εe| plane. Left panel is obtained with φe = 0,

while in the right panel φe is marginalized, varying freely between -π and π. The regions

correspond to 68% (black dashed line), 90% (green line) and 99% C.L. (red line) for 2 d.o.f.

As discussed before, in this case the value of the phase δ is irrelevant since it does not

enter in the probability expression. Then, we have three free parameters, the NSI magnitude

|εe| and phase φe and the reactor mixing angle θ13.

In the left panel of Fig. 4.6 we can see how current Daya Bay data constrain very strongly

the magnitude of the NSI coupling εe:

|εe| < 2.4× 10−3 (90% C.L. for 1 d.o.f) , (4.26)

improving the current bound [147]:

|εudVeα | < 0.041 (90% C.L.) (4.27)

in one order of magnitude.

However, as it can be seen in the right panel of Fig. 4.6, this strong bound disappears

once the phase φe is allowed to vary freely. This happens because for φe = π/2 and 3π/2,

the linear term in εe in the neutrino survival probability cancels out (see Eq. (4.19)). In this

case, the sensitivity to |εe| is drastically reduced and therefore no bound can be obtained from

reactor data.

The presence of this NSI coupling results in a slightly wider allowed range for the reactor
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Figure 4.7: Allowed region in the sin2 θ13 - |εx| plane, with x=µ, τ . Left panel is obtained switching the

relevant phase (δ - φx) to zero, while in the right panel (δ - φx) is marginalized, varying freely between -π

and π. The regions correspond to 68% (black dashed line), 90% C.L (green line) and 99% C.L (red line) for

2 d.o.f.

mixing angle:

0.019 ≤ sin2 θ13 ≤ 0.027 (90% C.L. for 1 d.o.f) , (4.28)

that is the same for both panels in Fig. 4.6. This range has to be compared with the allowed

range in absence of NSI:

0.019 ≤ sin2 θ13 ≤ 0.026 (90% C.L. for 1 d.o.f) . (4.29)

From the left panel in Fig. 4.6, we can confirm the behaviors shown by the iso-probability curves

in section 4.3.2. The larger inner band on θ13 appears because the presence of a non-zero εe

term has to be compensated with a larger value of θ13.

With respect to the iso-probabilities in Fig. 4.4, in the right panel of Fig. 4.6 we find

neither correlations nor anti-correlations when the new phase is varying. This is because in the

χ2 marginalization, the phase takes values to reduce the NSI contribution given only by the

‘non-oscillatory’ term.
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4.4.2 Constraints on muon/tau-NSI couplings

Here we present the constraints on the muon/tau NSI couplings allowed by Daya Bay data.

We compare our limits with the existing values in the literature.

In this case the phases δ and φx do not appear separately in the expression of the survival

probability in Eq. (4.20). Therefore, it is enough to consider the variation of the effective

phase (δ - φx).

After applying the same procedure as as for the electron case, here we get the bound on

the muon/tau NSI coupling fixing the phases to zero:

|εµ,τ | < 7.0× 10−2 (90% C.L. for 1 d.o.f) . (4.30)

In this case reactor data do not improve present constraints on the NSI couplings [147]:

|εudLeµ | < 0.026 , |εudReµ | < 0.037 (90% C.L.) (4.31)

However, either here as well as in the derivation of the existing bounds in Ref [148] some

assumptions have been done and then they can be regarded as complementary bounds coming

from different data sets.

From the left panel in figure 4.7, we can confirm the behaviors shown by the iso-probability

curves in section 4.3.2. The presence of a non-zero εµ term requires smaller values of θ13

(anti-correlations). The results in the right panel are also in agreement with the iso-probability

contours in the right panel of Fig. 4.4 where, due to the variation of the Dirac phase, we

find correlations and anti-correlations. From Eq. (4.20) we notice that there is a contribution

coming from the ‘non-oscillatory’ term that can not be canceled out with any value of the

phase since it does not depend on the phases. Therefore, we also expect the shown correlations

between the reactor angle and the NSI couplings that are usual when the ‘non-oscillatory’ term

is important. Notice that, differently to the electron case, here the variation of the phase δ

does not spoil the NSI constraint but instead it requires a larger range for the reactor angle,

as shown in table 4.1.

4.4.3 Constraints for the universal-NSI case

As mentioned in section 4.3.2, in the flavor universal case there is one extra free parameter

with respect to the electron and muon/tau case, Since in this case the NSI and the Dirac
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Figure 4.8: Allowed region in the sin2 θ13 - |ε| plane for different assumptions concerning

the phases δ and φ. Upper-left panel is obtained switching all phases to zero, whereas in the

upper-right panel φ = 0 and δ is left free. In the lower-left panel δ is taken equal to zero while

φ has been marginalized. Finally, in the lower-right panel the two phases have been allowed

to vary between -π and π. The convention for the lines is the same as in Fig. 4.6

phases are independent. The plots in Fig. 4.8 show the effect of the phases. In the upper

left panel we show the real case, which is strongly constrained, as in the case of varying the

Dirac phase in the upper right panel. However, when allowing for a variation of the new phase

(fixing the Dirac phase to zero), we found a less constrained region in the lower left panel.

Finally, when varying both phases, all the parameter region is allowed, and we can not find
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any constraint on the NSI coupling.

The upper left panel of Fig. 4.8 is equivalent to the electron case in the left panel of Fig. 4.6,

as it should be, because there the NSI effect comes from the ‘non-oscillatory’ term present in

the electron case (see Eq. (4.19)). In the case of the upper right panel, it corresponds to the

expected case in the iso-probability plot in the left panel of Fig. 4.5. As commented before, we

have only correlations because the main contribution comes from the ‘non-oscillatory’ term;

were the relation in Eq. (4.25) is still valid even in the rate analysis. noticed that here it is

even more evident than in the right panel of Fig. 4.7, the variation of the Dirac phase does

not spoil the constraint on the NSI coupling.

Keeping in mind that in the flavor universal case the NSI couplings contribute with both

terms, oscillatory and ‘non-oscillatory’, the lower right panel of Fig. 4.8 is not intuitively

expected. However, here we have enough freedom in the new phase φ to almost cancel out

the ‘non-oscillatory’ term, explaining the anti-correlations between θ13 and ε observed here.

This behavior is confirmed at the probability level in the right panel of Fig. 4.5 for the value

φ = 108◦ in the black curve.

In the table 4.1 we summarize the bounds on the NSI parameters for the three cases:

electron, muon/tau and flavor universal, discussed along this section. Also, we quoted the

reactor mixing angle variation due the NSI coupling values allowed by the Daya Bay data.

Before closing this section, we want to stress on the assumptions we have made so far regarding

the Daya Bay analysis of data. In particular, we have dropped out the pull parameter that

accounts for the free normalization variation in the standard Daya Bay analysis. However,

this assumption ignores all the possible sources of systematical errors that contribute to the

total normalization uncertainty in the event calculation, mainly the total normalization or the

reactor flux.

Reactor neutrino fluxes were recently recalculated [30, 31], obtaining an increase in the

average neutrino flux of about 3 percent compared to previous calculations [149]. Considering

the new predicted fluxes, there is a discrepancy between the events observed over expected in

very short baseline reactors when the rate is calculated with the new flux. This discrepancy is

known as the reactor neutrino anomaly [149]. However, large uncertainties in the conversion

from the fission beta spectra to the anti-neutrino neutrino spectra that lead to the reactor

anomaly might affect the accuracy to infer the anomaly [150]. As a result, the precision int the
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phases sin2 θ13 ε

electron-type NSI coupling

δ = φe = 0 0.019 ≤ sin2 θ13 ≤ 0.027 |εe| ≤ 0.0024

δ = 0, φe free 0.019 ≤ sin2 θ13 ≤ 0.027 |εe| unbound

muon-tau type NSI couplings

δ = φµ,τ = 0 0.011 ≤ sin2 θ13 ≤ 0.026 |εµ,τ | ≤ 0.070

(δ − φµ,τ ) free 0.011 ≤ sin2 θ13 ≤ 0.045 |εµ,τ | ≤ 0.069

universal NSI couplings

δ = φα = 0 0.019 ≤ sin2 θ13 ≤ 0.026 |ε| ≤ 0.0024

δ free, φα = 0 0.019 ≤ sin2 θ13 ≤ 0.028 |ε| ≤ 0.0023

δ = 0, φα free sin2 θ13 ≤ 0.026 |ε| ≤ 0.116

δ and φα free sin2 θ13 unbound |ε| unbound

Table 4.1: 90% C.L. bounds (1 d.o.f) on sin2 θ13 and the NSI couplings from Daya Bay data

taking fixed normalization in the statistical analysis (a = 0.)

anti-neutrino flux determination can not be better than 4%. The uncertainties in the absolute

normalization in reactor fluxes are then larger than 4% [149]. We will evaluate the impact of

having a total normalization error in the reactor fluxes in the constraints we have found for

the NSI.

4.5 Bounds on NSI from Daya Bay data with free nor-

malization

Up to here we have considered fixed normalization in the statistical analysis of Daya Bay reac-

tor data. However, most of the current analysis of reactor data consider a free-normalization

factor that may account for the uncertainties in the total event number normalization coming

from the reactor neutrino flux prediction, the detection cross section and other systematical

errors that contribute to the total event normalization errors.
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Figure 4.9: Same as Fig. 4.6, Fig. 4.7 and Fig. 4.8 for the three different cases analyzed in the

previous section with all phases equal to zero, and 5% uncertainty in the total normalization.

Here we used the following version of the χ2 function:

χ2 =
6∑
d=1

[
Md − Td

(
1 + a+

∑
r ω

d
rαr + ξd

)
+ βd

]2
Md +Bd

+
6∑
r=1

α2
r

σ2
r

+
6∑
d=1

(
ξ2
d

σ2
d

+
β2
d

σ2
B

)
+

(
a

σa

)2

,

where, differently to the free normalization analysis shown in section 1.5.2 we have added a

penalty in the χ2 in order to account for the already mentioned uncertainty in the absolute

normalization that we will conservatively assume of the order of 5%.

In order to see how the constraints we have found in the last section change when we
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Case sin2 θ13 ε

δ = φe = 0 0.019 ≤ sin2 θ13 ≤ 0.028 |εe| ≤ 0.022

δ = φµ,τ = 0 sin2 θ13 ≤ 0.027 |εµ,τ | ≤ 0.198

δ = φα = 0 0.015 ≤ sin2 θ13 ≤ 0.027 |ε| ≤ 0.022

Table 4.2: 90% C.L. bounds (1 d.o.f) on sin2 θ13 and the NSI couplings from Daya Bay

data assuming a 5% error in the normalization pull in the statistical analysis.

include the error in the absolute normalization, we repeated the data analysis for the three

considered cases with the phases set to zero, because these are the cases that produced the

tightest bounds. In Fig. 4.9 we show the three cases: electron, muon/tau and flavor universal

in the left, middle and right panels. We can see that the bounds are approximately one order

of magnitude less restrictive than the ones in the last section, comparing the bounds in table

4.2 with the ones in table 4.1. In summary, the constraints we have found so far highly depend

on the systematic errors over the total normalization, mainly the uncertainty on the total

normalization of the reactor neutrino fluxes. A better determination of this normalization will

improve the constraints quoted in table 4.2. Still, with the current data and 5% estimated

systematic error in the total normalization, we have found that the constraints for the case

of electron and FU are at the percent level, competitive with the constraints found in the

literature using other data sets [148].
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Conclusions

In the first part of the thesis, we have simulated individual short-baseline reactor and long-

baseline accelerator experiments in the context of the three neutrino oscillation framework.

Here we have updated the global fit of neutrino oscillations given in Ref. [1] by including the

recent measurements performed over the last two years. These include the updated measure-

ments of reactor anti-neutrino disappearance reported by Daya Bay and RENO, together with

the latest long–baseline appearance and disappearance data from T2K and MINOS. In addi-

tion, we have also included the revised data form the third solar phase of Super-Kamiokande,

(SK-III), as well as new solar results from the fourth phase of Super-Kamiokande, (SK-IV). We

find that for normal mass ordering the global best fit value of the atmospheric angle θ23 is con-

sistent with maximal mixing at 1σ, while for the inverted spectrum maximal mixing appears at

1.3σ. We note that the T2K disappearance data now provide the most sensitive measurement

of the atmospheric mixing angle θ23. Needless to say, the determination of a sizeable θ13 value

is crucial towards a new era of CP violation searches in neutrino oscillations [7, 97] and it

will also help determining the neutrino mass hierarchy. We also determined the impact of the

new data upon all the other neutrino oscillation parameters, with emphasis on the increasing

sensitivity to the CP violation phase δ. The latter follows from the complementarity between

accelerator and reactor data and leads to preferred values of the CP phase around 1.5π.

In the second chapter, we have proposed a minimal extension of the simplest A4 flavor

model originally presented by Babu, Ma and Valle. Our modified model can induce a nonzero
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θ13 value, as required by recent neutrino oscillation data coming from reactors and accelerators.

We have shown how the predicted correlation between the atmospheric mixing angle θ23 and

the magnitude of θ13 lead to an allowed region that is substantially smaller than indicated by

model-independent neutrino oscillation global fits. Moreover, our proposed scheme establishes

a correlation between CP violation in neutrino oscillations and the octant of the atmospheric

mixing parameter θ23. In particular one finds that, for maximal atmospheric mixing as well as for

θ23 in the first octant, one necessarily gets CP violation. Currently we find that both cases are

consistent at the 1σ level with the global neutrino oscillation analysis of Ref. [1]. We also stress

that ours is a quasi-degenerate neutrino scenario. Recent restrictions on the absolute neutrino

mass from cosmological measurements, in particular from the Planck collaboration [10] indicate

values for the parameter δ characterizing slepton radiative corrections for which lepton flavour

violation induced by supersymmetric particle exchanges is expected to lie at the limits. That

would provide another complementary way to probe this model.

The physics responsible for neutrino masses could lie at the TeV scale. In this case it is

very unlikely that neutrino masses are not accompanied by non-standard neutrino interactions

that could reveal novel features in neutrino propagation, production and detection. Similarly,

lepton flavor violation can also take place in processes involving the charged leptons. Within

low-scale seesaw scenarios, such as the inverse and linear type-I seesaw, we have found that

non-unitarity in the lepton mixing matrix up to the percent level in some cases, is consistent

with the constraints that follow from lepton flavor violation searches in the laboratory. This

conclusion holds even within the simple“minimal flavor violation”assumptions we have made.

As a result, the upcoming long–baseline neutrino experiments [97] do provide an important

window of opportunity to perform complementary tests of lepton flavor violation in neutrino

propagation and to probe the mass scale characterizing the seesaw mechanism.

Finally, in the last chapter, CC-like NSI have been introduced for the case of antineutrino

production and detection through normal and inverse β-decay. We used the Daya Bay reactor

data to constrain the NSI couplings affecting neutrino detection and production, as well as the

deviations in θ13 determination induced by the presence of NSI. We found that, for the case

of non-standard νe couplings, the bounds we obtain are stronger than previous ones in the

literature. For the νµ,τ NSI couplings, though, our limits are of the same order as the current
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bounds. In all cases, however, we noticed that the presence of the new NSI phases may

relax our constraints dramatically. We also showed that the constraints on the NSI couplings

strongly depend on the assumptions about the absolute normalization uncertainty adopted in

the statistical analysis of data. For a conservative error of 5%, the bounds could relax up to

an order of magnitude for the most constrained cases. In this case, we found that the allowed

magnitude of the NSI couplings can be as large as ∼ 10−2.
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APPENDIX A

µ→ eγ Branching ratio

Here we derive in detail the expression for the loop form factor that enters in the µ → eγ

branching ratio.

Assuming that the half-width of the generic process li → ljγ is given by [127]:

Γ(li → ljγ) =
α3
W s

2
W

256π2

m5
li

M4
W

|GW
ij |2 , (A.1)

then, we just rewrite the pre-factor:

α3
W s

2
W

256π2

1

M4
W

=
α3

(s2
W )3

s2
W

256π2

1

M4
W

=
α3

(s2
W )2

1

256π2

1

M4
W

=
α3

4 · 64π2

(
g2

e2

)2
1

M4
W

where we have used e = g sW . Now we used the known relation between the W boson mass

and the Fermi constant GF :
GF√

2
=

g2

8M2
W

and we get:

α3
W s

2
W

256π2

1

M4
W

=
α3

4π2

(
1

e2

)2
G2
F

2
=

α3

4π2

(
1

4π α

)2
G2
F

2
=

α

2 · 43 · π
G2
F

π3

=
3α

2π

G2
Fm

5
µ

3 · 43

1

m5
µ

=
3α

2π

Γ(µ→ eνν)

m5
µ

.
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Together with Eq. (A.1) we can write:

Br(µ→ eγ) =
Γ(µ→ eγ)

Γ(µ→ eνν)
=

3α

2π
|GW

21 |2. (A.2)

Until now we have just rewritten Eq. (A.1) for comparison with other results from the literature.

In order to determine the loop form factor encoded in GW
21 we follow the Cheng and Li solution

[151] for the branching ratio:

Br(µ→ eγ) =
Γ(µ→ eγ)

Γ(µ→ eνν)
=

3α

32π

∣∣∣∣∣2∑
i

U∗eiUµi g

(
m2
i

M2
W

)∣∣∣∣∣
2

, (A.3)

where the form factor g(x) is given by:

g(x) =

∫ 1

0

dα
(1− α)

(1− α) + αx
[2(1− α)(2− α) + α(1 + α)x]

=
1

6(1− x)4
(10− 43x+ 78x2 − 49x3 + 18x3 lnx+ 4x4) .

(A.4)

Note that the sign in front of the logarithmic term was incorrectly written in [151] as mentioned

by the authors in a later work [129]. Finally, comparing Eq. (A.2) with Eq. (A.3) we find:

GW
21 =

∑
i

U∗eiUµi

[
1

2
g

(
m2
i

M2
W

)]
≡
∑
i

U∗eiUµiG
W
γ

(
m2
i

M2
W

)
,

which allow us to define a form factor according to Eq. (A.2):

GW
γ (x) =

1

12(1− x)4
(10− 43x+ 78x2 − 49x3 + 18x3 lnx+ 4x4). (A.5)

The same form factor GW
γ (x) in Eq. (A.5) was found as a limiting case in a more general

study of the process f1 → f2γ by Lavoura [130]. We refer the reader to the right-hand-side

of Eq. (68) in the published version of this article. Still there might exist an ambiguity with

a global constant when computing the branching ratio, but this constant can be verified from

the result for SM neutrinos in Eq. (A.7).

A.1 Limiting cases

Comparing the neutrino masses with the W boson mass we can define three regimes:

• Low mass limit mi �MW . In this case the form factor is approximately given by

Gγ(x) ≈ 5

6
− x

4
(A.6)
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and in the case of the unitary mixing, the branching ratio is given by Eq. (A.2):

Br(µ→ eγ) ≈ 3α

2π

∣∣∣∣∣∑
i

U∗eiUµi

(
−x

4

)∣∣∣∣∣
2

=
3α

32π

∣∣∣∣∣∑
i

U∗eiUµi

(
mi

MW

)2
∣∣∣∣∣
2

(A.7)

which is a well known result [152, 153]. With only active neutrinos the branching ratio is

suppressed by the neutrino masses. In this case Br(µ → eγ) < 10−40 [102]. However,

in general the mixing is non unitary so the finite term in the form factor will contribute

to the branching ratio as much as the extra heavy neutrinos. In this case it is expected

a large lepton flavor violation that will saturate the current bound.

• Intermediate limit: mi ≈MW , the form factor is given by:

Gγ(x) ≈ 17

24
+

3(1− x)

40
(A.8)

• Large mass limit: mi �MW . In this case the form factor is approximately given by:

Gγ(x) ≈ 1

3
+

3 log(x)

2x
. (A.9)

and the branching ratio is given by Eq. (A.2):

Br(µ→ eγ) ≈ 3α

2π

∣∣∣∣∣∑
i

K∗eiKµi

(
1

3
+

3 log(x)

2x

)∣∣∣∣∣
2

≈ 3α

2π

∣∣∣∣∣∑
i

K∗eiKµi

[
1

3
+

3M2
W

2m2
i

log

(
mi

MW

)2
]∣∣∣∣∣

2

.

This limit is interesting for heavy neutrinos, because it allows us to estimate a constraint

on the active-heavy mixing. Assuming that for all neutrinos mi �MW then we have:∣∣∣∣∣∑
i

K∗eiKµi

∣∣∣∣∣ ≈
√

32 · 2π
3α

Br(µ→ eγ) . 4× 10−5, (A.10)

where we have used the latest limit for Br(µ → eγ) < 5.7 × 10−13 from the MEG

collaboration [116].

Note that the limit in Eq. (A.10) is just an estimation and, lower limits can be found in

low scale seesaw models as shown in section 3.7.
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APPENDIX B

Neutrino oscillation probabilities in presence of NSI for other

relevant cases

In this appendix we derive other probability expressions not considered in chapter 4. Two

additional cases are considered. The first one with only NSI at source and the second case

considering the same NSI strength at the source and detector with different phases.

B.1 Case 2 : non-standard interaction at production only

In this case, the effect of NSI is only considered at production what implies:

εdαe = 0 and εseα = |εα|eiφα (B.1)

Pν̄se→ν̄de ' P SM
ν̄se→ν̄de + |εe|2 + 2|εe| cosφe

+ 2s13 [s23|εµ| sin(δ − φµ) + c23|ετ | sin(δ − φτ )] sin (2∆31)

− 4s13 [s23|εµ| cos(δ − φµ) + c23|ετ | cos(δ − φτ )] sin2 (∆31)

+ sin 2θ12 [−c23|εµ| sinφµ + s23|ετ | sinφτ ] sin (2∆21) (B.2)
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B.2 Case 3: Same-size production and detector effect

with different phases

In this case, we consider the same NSI strength at the source and detector with different

phases, what implies:

εseα = |εα|eiφsα and εdαe = |εα|eiφdα (B.3)

Pν̄se→ν̄de ' P SM
ν̄e→ν̄e + PNSI-IIb

non-osc + PNSI-IIb
osc-atm + PNSI-IIb

osc-solar (B.4)

with:

PNSI-IIb
non-osc = 2

{
|εe|
(
cosφde + cosφse

)
+ |εe|2

[
1 + cos(φde − φse) + cos(φde + φse)

]
+ |εµ|2 cos(φsµ + φdµ) + |ετ |2 cos(φsτ + φdτ )

}
(B.5)

PNSI-IIb
osc-atm = 2

{
s13s23|εµ|

[
sin(δ − φsµ)− sin(δ + φdµ)

]
+ s13c23|ετ |

[
sin(δ − φsτ )− sin(δ + φdτ )

]
− s2

23|εµ|2 sin(φsµ + φdµ)− c2
23|ετ |2 sin(φsτ + φdτ )

− c23s23|εµ||ετ |
[
sin(φsτ + φdµ) + sin(φsµ + φdτ )

]}
sin (2∆31)

− 4
{
s13s23|εµ|

[
cos(δ − φsµ) + cos(δ + φdµ)

]
+ c23s13|ετ |

[
cos(δ − φsτ ) + cos(δ + φdτ )

]
+ s2

23|εµ|2 cos(φsµ + φdµ) + c2
23|ετ |2 cos(φsτ + φdτ )

+ c23s23|εµ||ετ |
[
cos(φsτ + φdµ) + cos(φsµ + φdτ )

]}
sin2 (∆31) (B.6)

PNSI-IIb
osc-solar = sin 2θ12

[
−c23|εµ|(sinφsµ + sinφdµ) + s23|ετ |(sinφsτ + sinφdτ )

]
sin (2∆21) (B.7)

B.3 Neutrino states with normalization

The new neutrino favor states, in presence of NSI are normalized as:

|νsα〉 =
1

N s
α

(
|να〉+

∑
γ

εsαγ|νγ〉

)
,

〈νdβ| =
1

Nd
β

(
〈νβ|+

∑
η

εdηβ〈νη|

)
,

(B.8)

where the normalization factors are given by:

N s
α =

√
[(1 + εs)(1 + εs†)]αα ,

Nd
β =

√
[(1 + εd†)(1 + εd)]ββ ,

(B.9)
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To see the normalization effect in the probability, we can compute the oscillation probability

at zero distance:

Pνsα→νdβ(L = 0) =
∣∣〈νdβ|νsα〉∣∣2 =

∣∣∣∣∣δαβ + εsαβ + εdαβ +
∑

γ ε
s
αγε

d
γβ

N s
αN

d
β

∣∣∣∣∣
2

. (B.10)

For the case I where εsαγ = εd∗γα = |εαγ| exp (iφαγ) we find the oscillation amplitude is given

by:

Aαβ(L = 0) =
δαβ + 2R(|εαβ| exp iφαβ) +

∑
γ |εαγ||εβγ| exp [i(φαγ − φβγ)]√

1 + 2R(|εαα| exp iφαα) +
∑

γ |εαγ|2
√

1 + 2R(|εββ| exp iφββ) +
∑

γ |εβγ|2

6= 0 .

(B.11)

In the case α = β = e, the probability is exactly one, which is the effect of normalizing the

states in Eq. (B.8).

Finally, we will explain what happens with the normalization terms in Eq. (B.9) that are in

the denominator of the probabilities. When dealing with a non-orthonormal neutrino basis, the

normalization of neutrino states affects non only the neutrino survival probability but also the

calculation of the neutrino fluxes and cross sections. In Ref. [154] it has been shown that when

computing the event number, in a convolution of cross section, reactor flux and oscillation

probability, the normalization factors in Eq. (B.9) and in the denominator of Eq. (B.10) cancel

out. Therefore, in our case one can make use of an effective survival probability given in

Eq. (4.17). This effective probability may take values larger than 1 even though the ‘true’

probability has been properly normalized. This however, does not affect our simulation since

the effect of normalization is cancelled with the neutrino fluxes and cross sections factors.
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APPENDIX C

Matrix block diagonalization

We want to diagonalize a general Hermitian matrix of the form

Z =

Z1 Z2

Z†2 Z3

 , (C.1)

where Z1 and Z3 are hermitian matrices. This hermitian matrix can be approximately block

diagonalized using the method of Ref [155]. To this end we introduce the matrices

U = eiH V, H =

 0 S

S† 0

 , V =

V1 0

0 V2

 , (C.2)

We then require that

U †ZU =

m1 0

0 m2

 , (C.3)

where m1,2 are real and diagonal.

We can explicitly expand U in terms of S:

U =

 (
I − 1

2
S S† + . . .

)
V1 i

(
S − 1

3!
S S†S + . . .

)
V2

i
(
S† − 1

3!
S†S S† + . . .

)
V1

(
I − 1

2
S† S + . . .

)
V2

 ≡
 Ua Ub

Uc Ud

 . (C.4)
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In general, replacing U from Eq. (C.4) in the diagonalization condition in Eq. (C.3),

produces the following system of equations:

m1 = U †aZ1Ua + U †cZ
†
2Ua + U †aZ2Uc + U †cZ3 Uc = U †aZ1Ua + (U †aZ2Uc + h.c) + U †cM Uc ,

0 = U †aZ1Ub + U †cZ
†
2Ub + U †aZ2Ud + U †cZ3 Ud = U †aZ1Ub + U †aZ2Ud + U †cZ3 Ud +O(S2) ,

m2 = U †bZ1Ub + U †dZ
†
2Ub + U †bZ2Ud + U †dZ3 Ud = U †bZ1Ub + (U †bZ2Ud + h.c) + U †dZ3 Ud ,

(C.5)

which are exact relations for m1 and m2. To determine S, from the requirement that the

off-diagonal sub-blocks vanish (second equation of the system in Eq. (C.5)), it is enough to

take the approximations until second order in S in Eq. (C.4). The result is:

0 = iZ1 S + Z2 − iS Z3, (C.6)

assuming [Z1, S] = 0 or [Z3, S] = 0, we find:

iS ≈ −Z2(Z1 − Z3)−1, iS† = (Z1 − Z3)−1Z†2 (C.7)

where we have used the fact that Z1,3 are hermitian matrices. Replacing Eq. (C.7) in the first

relation in Eq. (C.5), we get for the 3× 3 block:

m1 ≈ V †1

[
Z1 + 2Z2(Z1 − Z3)−1Z†2 + Z2(Z1 − Z3)−1Z3(Z1 − Z3)−1Z†2

]
V1 . (C.8)

Notice that this formula reduces in the limit where Z1 = 0 to the usual seesaw formula (for

neutrinos the matrix is symmetric and one should replace the hermitian conjugate with the

transpose operation),

m1 ≈ V †1

[
−Z2Z

−1
3 Z†2

]
V1, (C.9)

with Z3 = MR and Z2 = MD.

We finally define

meff
3×3 ≈ Z1 + 2Z2(Z1 − Z3)−1Z†2 + Z2(Z1 − Z3)−1Z3(Z1 − Z3)−1Z†2 . (C.10)
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