The evolution of gene function is a central issue in molecular evolution and ancestral sequence reconstruction. It has the advantage of inferring ancient gene sequences that act as hypothesis that can be tested in laboratory by resurrection of those sequences. During the past years the resurrection of genes has help to prove several hypotheses about how was life on Earth, and how some enzymes had evolved and obtained the functions they have today. The basis of this technique is the use of extant proteins to infer the ancestral sequences of interest, which will be expressed and characterized in vitro. Resurrected proteins are of interest not only because the basic information about evolution that they give us, but also because these proteins have great biotechnological potential: the resurrected proteins catalyzed reactions in a planet where the conditions were very different from actual Earth, with different temperature, pH, oxidation conditions, etc. Recently, it has been published the Paleozoic origin of lignin degradation using 31 genomes, where six genomes of Polyporales were used, reconstructing the ancestral state of discrete characters in ligninolytic and generic peroxidases, such as the appearance or disappearance of the oxidizing sites that defines the catalytic activities of these peroxidases. This study has been amplified and concreted using 10 genomes of Polyporales. In this way, we propose the reconstruction not only of those discrete characters, but the whole protein by inferring the ancestral sequences using the information of extant basidiomycete peroxidases. Thereby, by resurrection and characterization of those sequences in the laboratory we will be able to determine the mechanisms that lead the ancient proteins to the functions and properties they have today including the ability to degrade the recalcitrant lignin polymer, a key issue for development of land ecosystems. Here we present the preliminary results based on in silico resurrection and modeling of the ancestral PODs, with special interest in the oxidizing sites and their modification through the evolution.

IVAN AYUSO, JAVIER RUIZ-DUEÑAS, ANGEL T. MARTÍNEZ
CIB-CSIC, SPAIN
12th European Conference on Fungal Genetics
Seville (Spain) March 23-27, 2014

Institutional sponsors

Private sponsors

Poster awards sponsors