
 1

  

Reduced graphite oxide in supercapacitor electrodes 
 
Belén Lobato a, Viliam Vretenár b,c, Peter Kotrusz b, Martin Hulman b,d, Teresa 

A. Centeno a*                                             

 
a Instituto Nacional del Carbón-CSIC, Apartado 73, 33080 Oviedo, Spain 
b Danubia NanoTech, s.r.o., Ilkovicova 3, 841 04 Bratislava, Slovakia 
c STU Centre for Nanodiagnostics, Vazovova 5,812 43 Bratislava, Slovakia 
d Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava, 

Slovakia 

 
Graphical abstract 
 

 

 

 

 

 

 

 

 

 

 

                                                 
* Corresponding author. Tel.: +34 985119090; Fax: +34 985297662. 

   E-mail address: teresa@incar.csic.es   (T.A. Centeno) 

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1
p/po

Va
ds

 (c
m

3  S
TP

/g
)

Powder

617 m2/g

516 m2/g

279 m2/g

272m2/g

In the Electrode
0

10

20

30

40

50

0.0001 0.01 1 100

freq (Hz) 

C
´ (

F/
g)

Higher power for SC based on rGO
from smaller graphite particles 

rGO-75
rGO-150

Drop in the surface area of rGO 
in the electrode



 2

Abstract 
The current energy needs have put the focus on highly efficient energy storage 

systems such as supercapacitors.  At present, much attention focuses on 

graphene-like materials as promising supercapacitor electrodes. 

Here we show that reduced graphite oxide offers a very interesting potential. 

Materials obtained by oxidation of natural graphite and subsequent sonication 

and reduction by hydrazine achieve specific capacitances as high as 170 F/g in 

H2SO4 and 84 F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the 

raw graphite has no significant effect on the physico-chemical characteristics of 

the reduced materials, that exfoliated from smaller particles (<75 µm) result 

more advantageous for the release of the stored electrical energy. This effect is 

particularly evident in the aqueous electrolyte.  

Graphene-like materials may suffer from a drop in their specific surface area 

upon fabrication of electrodes with features of the existing commercial devices. 

This should be taken into account for a reliable interpretation of their 

performance in supercapacitors.  
 

Keywords: supercapacitor, reduced graphite oxide, graphene material, 

electrode surface 
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1. Introduction  
Among the wide variety of carbon materials that are being studied for 

supercapacitor electrodes, graphene has recently emerged as the best 

candidate due to its outstanding specific surface area and electrical conductivity 

[1, 2]. Undoubtedly, it has great potential but its actual application still has many 

challenges. One of the most important is the industrial production of 

homogeneous graphene in a reproducible manner. It has been illustrated that 

the structural, chemical, textural and electrical properties are highly dependant 

on the synthesis method. Thus, the graphene materials obtained at large scale 

present much lower electrical conductivity and specific surface area than 

graphene monolayer [3-5]. Moreover, the preparation procedures have dramatic 

influence upon the specific capacitance [6]. From the economical point of view, 

graphene materials offer good performance but at high cost [7] and the 

supercapacitor market is much more sensitive to price than to an extraordinary 

behaviour [8]. In this context, activated carbons still remain much more 

competitive for commercial SC [7, 8]. 

At the present, much basic research is focused on the study of the influence of 

the synthesis parameters on the final characteristics of the graphene materials. 

The ultimate goal is to determine the key factors that lead to materials with 

optimal performance by easily scalable and inexpensive methods [3-5]. 

Graphite oxide (GO) is attracting great attention because it offers a promising 

route to large quantities of graphene [4,5]. The graphite intercalation with 

oxygen-containing groups [4,9] increases the interlayer spacing and the 

oxidized graphite easily exfoliates into individual graphene oxide flakes. The 

oxygen-functionalities cause strong electron localization shutting down the 

charge transport in graphene oxide [10] but its reduction by chemical or thermal 

processes leads to a structure close to graphene with high electrical 

conductivity [4]. 

The structural integrity of graphene may not be a priority for supercapacitor 

electrodes and reduced graphite oxides (rGO) obtained by oxidation of natural 

graphite and subsequent sonication and reduction by hydrazine offer a very 

interesting potential. 

It is shown that the particle size of the raw graphite has a limited effect on the 

structural, textural and chemical features of the reduced graphite oxides. As a 
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consequence, rGOs from particles below 75 and 150 µm display very similar 

specific capacitances around 170 F/g in H2SO4 and 84 F/g in 

(C2H5)4NBF4/acetonitrile at low current density. 

On the contrary, the particle size of the graphite has an impact on the behavior 

at high frequency and particles smaller than 75 µm result more efficient for high 

power. 

This work also illustrates a loss of 50% in the specific surface area of rGO when 

processed in electrodes with features of commercial devices. As comparison, 

an activated carbon used in commercial supercapacitors reduces its surface by 

only 6% in the electrode. This should be taken into account to evaluate how far 

the correlations between the textural properties and the SC performance found 

for carbons [11-13] can be applied to graphene-like materials. 

 
2. Experimental  
2.1. Materials preparation  
Samples of natural graphite (Alfa Aesar) with particle sizes below 75 and 150 

μm (Alfa Aesar) were subjected to chemical oxidation by the modified 

Hummer’s method by Jeong [14]. Sulphuric acid (350 ml) was mixed with the 

graphite powder (2 g) at 0-5°C for 15 minutes. Potassium permanganate (8 g) 

and sodium nitrate (1 g) were added portion-wise at 0°C and stirred for 30 

minutes and then at 35°C (30 min). Water (250 ml) was added via dropping 

funnel and the mixture was heated to 98°C for 3 hours. The reaction was 

terminated by adding 500 ml of deionized water and 40 ml of 30% H2O2. The 

dispersion was filtered off through nylon filter, washed with diluted HCl (10 

wt.%) to remove metal ions and then with water until pH of filtrate is about 7. 

The oxidized samples, GO-75 and GO-150, were further sonicated and treated 

with hydrazine to get the reduced graphene-like materials rGO-75 and rGO-150, 

respectively. Deionized water (150 ml) was added to GO (1 g) and vigorously 

stirred for 24 hours at room temperature. The suspension was subsequently 

sonicated in a bath sonicator (Kraintek, 70 W, 38 kHz) for 3 hours, in a tip-probe 

sonicator (Hielscher UP200S, 200 W, 24 kHz) for 30 minutes and, finally, for 1 

hour in the bath sonicator. The mixture was treated with ammonia (1.5 ml) and 

hydrazine monohydrate (3 ml) and stirred vigorously at 85°C for 24 hours under 

reflux condenser. After cooling, the suspension was filtered off through nylon 



 5

filter, washed with deionized water (500 ml) and with methanol (50 ml). The 

cake was dried at 75°C for 24 hours. 

Buglione et al. [6] and Park et al. [15] have schematically illustrated the 

chemical transformations that occur in similar processes. 

 
2.2 Materials characterization  
The chemical characterization of the samples involved the determination of the 

total oxygen content and the surface functionalities by XPS whereas the 

structural features were studied by XRD. The textural properties were estimated 

from the analysis of N2 isotherms at 77K by different methods [13]. The 

electrical conductivity was measured by the four-probe method using rGO 

compact films.  

The rGO particles were processed into electrodes by rolling a mixture with 5 

%wt PTFE and 5 %wt carbon black into 250 µm thick films. Discs of 8 mm in 

diameter and carbon loading ~ 15 mg/cm2 were punched out. The 

electrochemical performance was tested in a two-electrode cell with a glassy 

fibrous paper as separator. Cyclic voltammetry tests at various scan rates (1-50 

mV/s) as well as charge-discharge cycles at different current densities (1-70 

mA/cm2) were performed in 2M aqueous H2SO4 (0-0.8 V) and 1M (C2H5)4NBF4 

in acetonitrile (TEABF4/AN, 0-2 V). Electrochemical impedance spectroscopy 

(EIS) measurements were performed by applying a sinusoidal signal of ± 15 mV 

from 2 10-4 Hz to 60 kHz. 

Experimental details regarding preparation and characterization of the samples 

are summarized in the Supporting Information (SI). 

 
3. Results and discussion 
It appears that the particle size of the raw graphite has no significant influence 

on the chemical composition of the materials obtained through Hummer-Jeong 

oxidation. Both GO-75 and GO-150 display total oxygen content of around 51% 

and similar surface groups (Figs. 1a and S1). The major difference is a 

somewhat higher presence of C-O functionalities in the material derived from 

smaller particles. 

On the contrary, the structural expansion induced by the oxygen-functionalities 

and water intercalated between the graphitic layers is notably affected by the 
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size of the raw particles (Fig. 1b). The XRD spectrum of GO-75 displays an 

intense peak (001) at 10.7º indicating the increase in the interlayer spacing by a 

factor of 2.5 (0.83 nm) compared to that of the starting graphite (0.335 nm). The 

less intense and broader signal at 20.7º suggests that the intercalation is not 

homogeneous since GO-75 also contains disordered regions with a wide range 

of spacing (centered at ~ 0.43 nm). 

The expansion by oxidation is more limited when larger graphite particles are 

used; the XRD peak observed for GO-150 at 12.4º corresponds to a smaller 

interlayer distance (0.72 nm) than that in the GO-75 sample whereas the very 

broad signal around 23º reveals some amount of a highly disordered carbon 

structure.  

The treatment with hydrazine reduces both oxidized samples quite efficiently 

and the structural differences observed for GOs are not significantly reflected in 

the reduced materials. The oxygen content drops to 17-18 % for rGO-75 and 

rGO-150 although XPS analysis suggests that the reduction is somewhat more 

effective for the latter. Its spectrum displays only one asymmetric peak due to 

sp2 hybridized carbon whereas that for rGO-75 still shows a weak signal 

associated to oxygen groups (Figs. 1a and S1). 

The successful reduction is confirmed by the disappearance of the (001) peak 

in the XRD patterns of rGOs (Fig. 1b). The partial reappearance of signals at 

around 24.4º and 43º indicates, respectively, that agglomeration and re-staking 

of graphene oxide items occur to some extent during filtering/drying processes, 

being favored by smaller particles. 

The entanglement and overlap of the rGO flakes lead to a notable porosity and 

specific surface areas as high as 617 m2 g-1 for rGO-75 and 516 m2 g-1 for rGO-

150 are achieved. The shape of the N2 isotherms (Fig. 2a) is typical type IV and 

reflects the mesoporous character of both rGOs. The well-defined capillary 

condensation step at p/po ~ 0.4-0.8 observed for rGO-75 reveals an 

interconnected network of mesopores of different shape and size below 20 nm. 

In the case of the material with larger particles rGO-150, the hysteresis loop is 

given by slit-type pores smaller than 10 nm. The analysis by the Dubinin-

Radushkevich equation reports that 40 % of the total pore volume of rGOs 

corresponds to wide micropores with an average size of 1.5-1.6 nm.  
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Despite the large concentration of structural defects [16] introduced by the 

hydrazine treatment, the electrical conductivity of our chemically reduced 

samples is recovered sufficiently up to around 1 S/cm.  Figs. 3 and 4 illustrate 

that reduced graphite oxide is a material indeed adequate for the energy 

storage in SC. The charge-discharge curves at different current densities show 

good symmetry and linear slopes, which is indicative of efficient electrochemical 

double layer formation in both aqueous H2SO4 (Fig. 3a) and TEABF4 in 

acetonitrile (Fig. 4a) electrolytes. The rectangular shape of the cyclic 

voltammograms (Fig. 3b and 4b) confirms a near-ideal capacitive behaviour 

with good rate performance. 

The potential of the reduced graphite oxides in SC is suggested by their specific 

capacitance at 1 mA/cm2, around 170 F/g in the H2SO4 and 84 F/g in the 

organic medium (Table 1), which is comparable with those of highly porous 

activated carbons [11-13] and materials obtained by standard chemical 

reductions of graphene oxide [3, 4]. 

It is worth noting that both samples reach similar limiting capacitance although 

their specific surface is quite different. N2 adsorption isotherms performed on 

the rGO-electrodes (Fig. 2a) reveal the existence of further agglomeration and 

re-stacking of the powdered materials upon electrode processing and their 

surface area drops to only 270 m2/g, regardless of the particle size. Therefore, 

the specific surface area determined for the graphene materials in powder may 

be misleading as it does not correspond to the effective surface available in the 

electrode. Moreover, this should be also considered for the interpretation of the 

performance of graphene materials within the general patterns reported for 

standard carbons [11-13]. As illustrated by Fig. 2b, the biomass-based activated 

carbon Picactif SC, developed by PICA (France) for supercapacitor electrodes, 

decreases its surface area by only 6% in the electrode. As previously reported 

[13], in the case of Picactif SC which displays large micropores above 1 nm, the 

BET equation overrates the real surface area.  Its specific surface was obtained 

from the average of the values obtained by Dubinin´s theory, DFT approach and 

comparison plot. 

While the particle size does not affect the SC behavior at low intensities, it has 

an impact on the high power performance. Table 1 shows that the change of 

current density from 1 to 70 mA/cm2 reduces the specific capacitance of rGO-75 
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in 29% in H2SO4 and 20% in TEABF4/AN. For rGO-150, the capacitance 

decrease is 75% and 51%, respectively. 

The better capacitance retention observed for the reduced graphite oxide from 

smaller particles correlates with its faster performance observed by EIS. Figs. 

3c and 4c illustrate that the device based on rGO-75 displays a nearly ideal 

capacitive behavior with a marked vertical slope at the low-frequency region.  

By contrast, larger particles lead to a higher electrode resistance as well as to 

the enhancement of diffusional restrictions for ions adsorption. 

Interestingly, the influence of the particle size on the ability to operate at high 

frequency is more evident in the aqueous electrolyte despite having smaller 

ions. As shown by Fig. 3d, the material with smaller particles achieves 

capacitance saturation at higher frequency and its response is much faster. The 

maximum operating frequency fmax (at which the capacitance drops to 50% of its 

maximum value) of rGO-75 is 2.9 higher than that of rGO-150. With H2SO4 as 

electrolyte, the ions mobility is also hindered by slow redox reactions involving 

oxygen functionalities on the carbon surface [17] and its effect is more marked 

in larger particles. 

In TEABF4/AN, the interactions with the surface groups are less relevant and 

rGO-75 demonstrates somewhat better frequency response than rGO-150 due 

to shorter paths lengths in smaller particles. 

 

4. Conclusions 
Reduced graphite oxide is an interesting candidate for SC electrodes, achieving 

specific capacitances as high as 170 F/g in aqueous H2SO4 and 84 F/g in 

(C2H5)4NBF4/acetonitrile. 

The specific surface area determined for graphene-like materials in powder may 

be misleading as it does not reflect the available surface in the electrode. The 

problem arises during the fabrication of electrodes matching the thickness and 

the carbon loading of commercial devices where rGOs experience a drop in 

their surface area of around 50%. On the other hand, this reduction is only 6% 

in the case of the activated carbon Picactif SC used in commercial devices. This 

should be addressed for a coherent interpretation of the performance of 

graphene materials within the general behavior reported for carbon-based SC.  
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The size of the raw graphite has no relevant effect on the physico-chemical 

characteristics of the reduced graphite oxides. As a consequence, rGOs from 

particles below 75 and 150 µm in size display very similar supercapacitor 

performance at low current density. On the contrary, the material exfoliated from 

smaller particles results more advantageous for the release of the stored 

electric energy. This effect is particularly noticeable in the aqueous electrolyte. 
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Table 1. Specific capacitance (F/g) of the reduced graphite oxides at different 

current densities (mA/cm2). The values are relative to the rGO mass in a single 

electrode. 

 

 

 

 

 

H2SO4  TEABF4/AN Reduced 
graphite 

oxide 1 10 30 70  1 10 30 70 

rGO-75 170 155 143 121  86 81 75 69 
rGO-150 168 143 96 41  82 74 62 40 
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Fig. 1. XPS (a) and XRD (b) spectra for the graphite oxides (GO) and the 

reduced graphite oxides (rGO). 
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Fig. 2. N2 isotherm of rGOs and the activated carbon Picactif SC in powder and 

in the electrode (the adsorbed volume is referred to carbon mass in the 

samples). As BET equation overrates the real surface area of Picactif [13], the 

values for this material correspond to the average of the other more reliable 

determinations. 
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Fig. 3. Electrochemical performance of the reduced graphite oxides in 2M 

H2SO4.  a) Galvanostatic charge-discharge cycles at 5 mA/cm2, b) Cyclic 

voltammograms at 1 and 10 mV/s, c) EIS Nyquist plot (high-frequency range), 

d) Evolution of the normalized capacitance C/Cmax with the frequency.  
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Fig. 4. Electrochemical performance of the reduced graphite oxides in 1M 

TEABF4/AN. a) Galvanostatic charge-discharge cycles at 5 mA/cm2, b) Cyclic 

voltammograms at 1 and 10 mV/s, c) EIS Nyquist plot (high-frequency range), 

d) Evolution of the normalized capacitance C/Cmax with the frequency.  
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Supporting information 
 
 
 
Characterization of the materials  
The O content in the samples was determined by a LECO-TF-900 furnace 

coupled to a LECO-CHNS-932 microanalyzer. The surface functionalities of the 

GO samples were detected by X-ray photoelectron spectroscopy (XPS) using 

fully automated Thermo Scientific K-Alpha XPS system. The spectra have been 

decomposed into four peaks centered at 284.3, 284.9, 286.7 and 288.5 eV, 

corresponding to carbon sp2, carbon sp3, C-O-C and COOH functional groups, 

respectively [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Deconvolution of the XPS spectrum of the materials 
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distributions (PSD) were obtained by applying the Kruk-Jaroniec-Sayari (KJS) 

method to the adsorption branch of the N2 isotherm [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Pore size distribution of the reduced graphite oxides 
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PGSTAT 30 (Autolab B.V., Metrohm) potentiostat equipped with a FRA32M 

module. 
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