Heterolytic H₂ activation on a carbene-ligated rhodathiaborane promoted by *isonido-nido* cage opening

Beatriz Calvo,ª Ramón Macías,ª Víctor Polo,ª María José Artigas,ª Fernando J. Lahoz,ª and Luis A. Oro *ªab

ªISQCH, Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;

ªKing Fahd University of Petroleum and Minerals, KFUPM, Visting professor, Dhahran, 31261, Saudi Arabia.

ªDepartamento de Química Física-BIFI, Universidad de Zaragoza, 50009-Zaragoza, Spain.

E-mail: rmacias@unizar.es; oro@unizar.es

28 August 2013
A new mechanism of H₂ activation is reported to occur on a carbene-ligated rhodatiaborane that features metal / thiaborane bifunctional synergistic effects. The key is the creation of vacant coordination sites by an isonido-nido structural transformation leading to the heterolytic H–H bond splitting.

MAIN TEXT

The activation of dihydrogen has attracted considerable interest over the years since it is a key step in many catalytic reactions,¹ and it is well established that this is the result of synergistic electron transfer of the σ-bonding orbital of H₂ into a vacant orbital at the metal and from a filled d orbital to the antibonding orbital of H₂.² The perturbation brought about by this M–(η²-H₂) bond can lead to the homolytic cleavage with formation of M–(H₂) dihydride species, or, alternatively, the activated H₂ can transfer a proton to another metal-bound ligand.³ This latter process is referred to as heterolytic rupture and it is often found to occur in systems that combine the reactivity of the ligands and the metals.⁴ Thus, the proliferation of complexes that feature metal / ligand bifunctional synergistic effects has given rise to range of new mechanisms, showing that the pathways to the heterolytic splitting of dihydrogen are diverse.⁵
A good number of metallaheteroboranes have been found to catalyze hydrogenation reactions; however, there are not mechanistic studies which can prove that a bifunctional metal-heteroborane synergistic effect driven by classical closo-isonido-nido structural transformations (Scheme 1) can result in the heterolytic splitting of dihydrogen.

We report here experimental and theoretical evidence of a new mechanism of dihydrogen activation on a carbene-ligated metallaheteroborane cluster. The key is the structural lability of an 11-vertex rhodathiaborane that opens vacant coordination sites by an isonido-to-nido structural change, allowing the heterolytic H–H bond cleavage by metal-thiaborane cooperation.
Scheme 2 Preparation of carbene-ligated rhodathiaboranes, 2-4

Reaction of $[8,8-(\text{PPh}_3)_2\text{-nido}-8,7-\text{RhSB}_9\text{H}_{10}]$ (1) with the N-heterocyclic carbene (NHC), 1,3-dimethylimidazol-2-ylidene (IMe) yields the rhodathiaboranes, $[8,8-(\text{IMe})(\text{PPh}_3)\text{-nido}-8,7-\text{RhSB}_9\text{H}_{10}]$ (2) and $[8,8-(\text{IMe})_2\text{-nido}-8,7-\text{RhSB}_9\text{H}_{10}]$ (3), which are formed by ligand substitution of Rh-bound PPh$_3$ ligands. The treatment of 2 with pyridine (Py) affords the pyridine adduct $[1,1-(\text{IMe})(\text{PPh}_3)\text{-3-(Py)-1,2-}\text{RhSB}_9\text{H}_8]$ (4) (Scheme 2) with loss of H$_2$. Compounds 2-4, and 5 (vide infra) represent the first documented examples of carbene-ligated metallathiaboranes.

Carbene-ligated clusters, 2 and 3, are isoelectronic with 1, having 12 skeletal-electron pairs. This number suggests a closo-structure based on an octadecahedron. Therefore, these 11-vertex rhodathiaboranes are formally “unsaturated”, with the “unsaturation” arising from the tendencies of rhodium to adopt square-planar 16-electron metal configuration. And, a priori, these clusters are expected to exhibit reactivity with Lewis bases; thus, 2 reacts with pyridine (Py) to afford 4, resulting from the linkage of the N-heterocyclic ligand and release
of dihydrogen (Scheme 2). In surprising contrast, the bis-IMe-ligated cluster, 3, does not react with pyridine.

The exposure of 4 to a dihydrogen atmosphere results in the formation of an equilibrium between this cluster and a new labile hydridorhodathiaborane, [8,8,8-(H)(IMe)(PPh₃)-9-(Py)-nido-8,7-RhSB₉H₉] (5) (Scheme 3). Under an atmosphere of 6 bar of dihydrogen, the \(^{31}\)P-\(^{1}\)H NMR spectrum at room temperature shows a doublet at \(\delta_P +35.6\) attributable to the \(isonido\)-rhodathiaborane, 4, which disappears as the temperature decreases to give two doublets at \(\delta_P +40.6\) and 31.7 with relative intensities in the ratio 1:8 (ESI, Figure S3). These variable temperature (VT) NMR changes are reflected in the corresponding \(^1\)H-\(^{11}\)B NMR spectra (Figures S4, in ESI). Thus, at low temperatures the spectra show the development of two new hydride resonances at \(\delta_H -12.26\) (t, minor) and -12.67 (dd, major). These data and the commented \(^{31}\)P-\(^{1}\)H spectra suggest strongly the presence of two \{Rh(IMe)(PPh₃)\}−{SB₉H₉(Py)} conformers in solution, labelled as 5a (major) and 5b (minor) in Figure S3.

Scheme 3 Dihydrogen-assisted nido→isonido opening: a true reversible activation of H₂ by a rhodathiaborane system

The \(exo\)-polyhedral carbene ligand of the hydride-ligated cluster is characterized by the appearance of two methyl and two imidazolic peaks in the \(^1\)H NMR spectrum (see ESI).
Diagnostic of the nido-structure of the new species (Scheme 3) are the proton resonances at δ_H -0.11 (5a) and -1.75 (5b) due to the B-H-B bridging hydrogen atoms along the B(9)-B(10) edge on the pentagonal face (Scheme 3, Figure S4).

The release of the dihydrogen atmosphere, by simple opening of the quick pressure valve NMR tube, regenerates the isonido-cluster 4 quantitatively, demonstrating the full reversibility of the system and the lability of the hydridorhodathiaborane 5 (mixture of conformers 5a and 5b) towards dehydrogenation.

The number of transition metal complexes capable of adding dihydrogen is certainly large.2b In contrast, to our knowledge, reversible addition of H$_2$ to a polyhedral boron-containing compound has been reported only once before.10 This reaction involves [1,1-(PPh$_3$)$_2$-3-(Py)-isonido-1,2-RhSB$_9$H$_8$] (6) that reacts slowly with H$_2$ to afford [8,8,8-(H)(PPh$_3$)$_2$-9-(Py)-nido-8,7-RhSB$_9$H$_9$] (7). Compound 7 is stable at room temperature in solution, but it undergoes dehydrogenation at higher temperatures to give 6.

In the context of this communication, it is important to stress that 6 and 7 do not form an equilibrium sustained by dihydrogen. Therefore, compound 4 may be regarded as the polyhedral boron-containing compound that splits H$_2$ most readily in a reversible manner.

Given this unusual reactivity by a metallasbicerborane, and with an interest in the H$_2$-activation mechanism, DFT was used to calculate intermediates, transition states and energies along the reaction pathway for H$_2$ addition to the carbene-ligated cluster 4. Scheme 4 depicts the results of this theoretical analysis.

The key step to the addition of dihydrogen appears to be the opening of the cluster from a quadrilateral faceted isonido-structure, 4, to a nido-cage, 4’, featuring a pentagonal face (Scheme 4). Thus, the calculations show that a nido-structure lies only 1.0 kcal/mol above an isonido-isomer that exhibits the configuration found in the solid state for compound 4. Both
isomers are available through a transition state TS1 that has a DFT-calculated free energy barrier, $\Delta G_{253}^{\ddagger}$, of 8.0 kcal/mol (ESI, Scheme S5). This possible pathway is supported by VT $^1\text{H}-\{^{11}\text{B}\}$ experiments, which demonstrate that compound 4 exhibits a fluxional behaviour in solution. Thus, Figure S6 shows that B–H terminal proton resonances of intensity two split in pairs as the temperature decreases to give a proton NMR spectrum with eight B–H terminal resonances. For an asymmetric cluster such as 4, the $^1\text{H}-\{^{11}\text{B}\}$ NMR spectrum is expected to exhibit eight cluster proton signals, which correspond to the eight different B–H chemical environments of the cluster; whereas the ^{11}B spectrum should exhibit nine peaks. The fact that at room temperature the ^{11}B and $^1\text{H}-\{^{11}\text{B}\}$ NMR spectra show symmetric patterns indicates that the carbene-ligated rhodathiaborane, 4, is non-rigid. A rapid deformaional rearrangement between a clearly asymmetric nido-cluster and a pseudo-C_s closo/isonido-structure, would explain the VT behaviour of this compound. The activation energy, $\Delta G_{253}^{\ddagger}$, involved in this fluxional behaviour is 10.5 kcal/mol, a value that approaches the DFT-calculated barrier for a isonido\leftrightarrownido transformation (Scheme S5).

Following this isonido\leftrightarrownido structural lability, the DFT-calculations predict that the nido-isomer is capable of forming a complex with an entering dihydrogen molecule. The transition state TS2 from the nido-cluster, 4', entails the perpendicular approach of H$_2$ to the rhodium centre and the subsequent rotation to form a side-on bonded intermediate, INT 1, and it has a free energy barrier of 19.4 kcal/mol (Scheme 4). This intermediate is comparable with well-characterized mononuclear dihydrogen complexes, and it exhibits an elongated H–H distance at 0.809 Å.

To our knowledge, there are no examples of dihydrogen-ligated polyhedral boron-containing compounds. Therefore, the DFT-calculated complex, INT 1, is a good theoretical model of a H$_2$ molecule in the coordination environment furnished by a metallaheteroborane.
From this unstable η^2-(H$_2$)-ligated rhodathiaborane, the H–H bond is heterolytically cleaved by proton transfer to the adjacent B(9)–B(10) edge, passing over the transition state TS3 to form a hydridorhodathiaborane, which should be one of the two conformers of compound 5 that have been identified in situ by NMR spectroscopy.

In a NMR tube at room temperature, the exposure of a CH$_2$Cl$_2$ solution of 4 and ethylene to a dihydrogen atmosphere affords ethane (Figure S7 in ESI). In catalytic conditions, the carbene-ligated rhodathiaborane exhibited activity in the hydrogenation and isomerisation of 1-hexene, reaching a conversion of 69 % in 5 hours (see Table S1 in ESI).

In summary, the carbene-ligated clusters 4 and 5 exhibit an unprecedented isonido↔nido equilibrium sustained by H$_2$. The response of 4 to the addition of dihydrogen can be regarded as a form of metal-ligand cooperation,4 which is triggered by a

\[
\begin{align*}
\text{Scheme 4} & \quad \text{Proposed reaction mechanism and relative free energies, } \Delta G_{298} \text{ (kcal/mol), for the activation of } H_2 \text{ by } [\text{(IMe)(PPh}_3\text{(Py)RhSB}_9\text{H}_8)] \ (4/4') \\
\text{structural change of the cluster, leading to vacant coordination sites at the metal centre. The subsequent binding of } H_2 \text{ results in the heterolytic splitting of the } H–H \text{ bond along the}
\end{align*}
\]
Rh(8)–B(9) edge to a hydride ligand and a proton that is transferred to the B(9)–B(10) edge. The system is active in the catalytic hydrogenation of ethylene and 1-hexene.

Given the tailorability of these 11-vertex clusters by alteration of their exo-polyhedral units, the use of strong trans-effect ligands such as carbenes may induce further examples of cage non-rigidity in metallaheteroboranes that can be reactive versus inactive bonds, resulting in abundant opportunities for research of new ways of bond activation.

We gratefully acknowledge the Spanish Ministry of Science and Innovation (CTQ2009-10132, CSD2009-00050, and CSD2006-0015, CTQ2012-35665) for financial support. B.C. thanks the “Diputación General de Aragón” for a pre-doctoral scholarship.

REFERENCES

