Production of $K_{S}^{0}, K^{* \pm}(892)$ and $\phi^{0}(1020)$ in minimum bias events and K_{S}^{0} and Λ^{0} in jets in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

T. Aaltonen, ${ }^{21}$ M. Albrow, ${ }^{15}$ S. Amerio, ${ }^{39 b, 39 \mathrm{a}} \mathrm{D}$. Amidei, ${ }^{31}$ A. Anastassov, ${ }^{15, w}$ A. Annovi, ${ }^{17}$ J. Antos, ${ }^{12}$ G. Apollinari, ${ }^{15}$ J. A. Appel, ${ }^{15}$ T. Arisawa, ${ }^{52}$ A. Artikov, ${ }^{13}$ J. Asaadi, ${ }^{47}$ W. Ashmanskas, ${ }^{15}$ B. Auerbach, ${ }^{2}$ A. Aurisano, ${ }^{47}$ F. Azfar, ${ }^{38}$ W. Badgett, ${ }^{15}$ T. Bae, ${ }^{25}$ A. Barbaro-Galtieri, ${ }^{26}$ V. E. Barnes, ${ }^{43}$ B. A. Barnett, ${ }^{23}$ P. Barria, ${ }^{41 \mathrm{c}, 41 \mathrm{a}}$ P. Bartos, ${ }^{12}$ M. Bauce, ${ }^{39 \mathrm{~b}, 39 \mathrm{a}}$ F. Bedeschi, ${ }^{41 \mathrm{a}}$ S. Behari, ${ }^{15}$ G. Bellettini, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ J. Bellinger, ${ }^{54}$ D. Benjamin,,${ }^{14}$ A. Beretvas, ${ }^{15}$ A. Bhatti, ${ }^{45}$ K. R. Bland, ${ }^{5}$ B. Blumenfeld, ${ }^{23}$ A. Bocci, ${ }^{14}$ A. Bodek, ${ }^{44}$ D. Bortoletto, ${ }^{43}$ J. Boudreau, ${ }^{42}$ A. Boveia, ${ }^{11}$ L. Brigliadori, ${ }^{6 b, 6 a}$ C. Bromberg, ${ }^{32}$ E. Brucken, ${ }^{21}$ J. Budagov, ${ }^{13}$ H. S. Budd, ${ }^{44}$ K. Burkett, ${ }^{15}$ G. Busetto, ${ }^{39 b, 39 \mathrm{a}}$ P. Bussey, ${ }^{19}$ P. Butti, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ A. Buzatu, ${ }^{19}$ A. Calamba, ${ }^{10}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{28}$ F. Canelli, ${ }^{11, \mathrm{dd}}$ B. Carls, ${ }^{22}$ D. Carlsmith ${ }^{54}$ R. Carosi, ${ }^{41 \mathrm{a}}$ S. Carrillo, ${ }^{16, \mathrm{~m}}$ B. Casal, ${ }^{9, k}$ M. Casarsa, ${ }^{48 \mathrm{a}}$ A. Castro, ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$ P. Catastini, ${ }^{20}$ D. Cauz, ${ }^{48 \mathrm{~b}, 48 \mathrm{c}, 48 \mathrm{a}}$ V. Cavaliere,,${ }^{22}$ M. Cavalli-Sforza, ${ }^{4}$ A. Cerri, ${ }^{26, f}$ L. Cerrito, ${ }^{28, r}$ Y. C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{41 \mathrm{a}}$ G. Chlachidze, ${ }^{15}$ K. Cho, ${ }^{25}$ D. Chokheli, ${ }^{13}$ A. Clark, ${ }^{18}$
C. Clarke, ${ }^{53}$ M. E. Convery, ${ }^{15}$ J. Conway, ${ }^{7}$ M. Corbo, ${ }^{15, z}$ M. Cordelli, ${ }^{17}$ C. A. Cox, ${ }^{7}$ D. J. Cox, ${ }^{7}$ M. Cremonesi, ${ }^{41 a}$ D. Cruz, ${ }^{47}$ J. Cuevas, ${ }^{9, y}$ R. Culbertson, ${ }^{15}$ N. d'Ascenzo, ${ }^{15, v}$ M. Datta, ${ }^{15, g g}$ P. de Barbaro, ${ }^{44}$ L. Demortier, ${ }^{45}$ M. Deninno, ${ }^{6 a}$ M. D'Errico, ${ }^{39 b, 39 a}$ F. Devoto, ${ }^{21}$ A. Di Canto, ${ }^{41 b, 41 a}$ B. Di Ruzza, ${ }^{15, q}$ J. R. Dittmann, ${ }^{5}$ S. Donati, ${ }^{41 b, 41 a}$ M. D'Onofrio, ${ }^{27}$ M. Dorigo, ${ }^{48 \mathrm{~d}, 48 \mathrm{a}}$ A. Driutti, ${ }^{48 \mathrm{~b}, 48 \mathrm{c}, 48 \mathrm{a}}$ K. Ebina, ${ }^{52}$ R. Edgar, ${ }^{31}$ A. Elagin, ${ }^{47}$ R. Erbacher, ${ }^{7}$ S. Errede, ${ }^{22}$ B. Esham, ${ }^{22}$ S. Farrington, ${ }^{38}$ J. P. Fernández Ramos, ${ }^{29}$ R. Field, ${ }^{16}$ G. Flanagan, ${ }^{15, t}$ R. Forrest, ${ }^{7}$ M. Franklin, ${ }^{20}$ J. C. Freeman, ${ }^{15}$ H. Frisch, ${ }^{11}$ Y. Funakoshi, ${ }^{52}$ C. Galloni, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ A. F. Garfinkel, ${ }^{43}$ P. Garosi, ${ }^{41 \mathrm{c}, 41 \mathrm{a}}$ H. Gerberich, ${ }^{22}$ E. Gerchtein, ${ }^{15}$ S. Giagu, ${ }^{46 a}$ V. Giakoumopoulou, ${ }^{3}$ K. Gibson, ${ }^{42}$ C. M. Ginsburg, ${ }^{15}$ N. Giokaris, ${ }^{3}$ P. Giromini, ${ }^{17}$ G. Giurgiu, ${ }^{23}$ V. Glagolev, ${ }^{13}$ D. Glenzinski, ${ }^{15}$ M. Gold, ${ }^{34}$ D. Goldin, ${ }^{47}$ A. Golossanov, ${ }^{15}$ G. Gomez, ${ }^{9}$ G. Gomez-Ceballos, ${ }^{30}$ M. Goncharov, ${ }^{30}$ O. González López, ${ }^{29}$ I. Gorelov, ${ }^{34}$ A. T. Goshaw, ${ }^{14}$ K. Goulianos, ${ }^{45}$ E. Gramellini, ${ }^{\text {aa }}$ S. Grinstein, ${ }^{4}$ C. Grosso-Pilcher, ${ }^{11}$ R. C. Group, ${ }^{51,15}$ J. Guimaraes da Costa, ${ }^{20}$ S. R. Hahn, ${ }^{15}$ J. Y. Han, ${ }^{44}$ F. Happacher, ${ }^{17}$ K. Hara, ${ }^{49}$ M. Hare, ${ }^{50}$ R. F. Harr, ${ }^{53}$ T. Harrington-Taber, ${ }^{15, n}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{38}$ J. Heinrich, ${ }^{40}$ M. Herndon, ${ }^{54}$ A. Hocker, ${ }^{15}$ Z. Hong, ${ }^{47}$ W. Hopkins, ${ }^{15, g}$ S. Hou, ${ }^{1}$ R. E. Hughes, ${ }^{35}$ U. Husemann, ${ }^{55}$ M. Hussein, ${ }^{32, b b}$ J. Huston, ${ }^{32}$ G. Introzzi, ${ }^{41 e, 41 f, 41 \mathrm{a}}$ M. Iori, ${ }^{46 b, 46 a}$ A. Ivanov, ${ }^{7, p}$ E. James, ${ }^{15}$ D. Jang, ${ }^{10}$ B. Jayatilaka, ${ }^{15}$ E. J. Jeon, ${ }^{25}$ S. Jindariani, ${ }^{15}$ M. Jones, ${ }^{43}$ K. K. Joo, ${ }^{25}$ S. Y. Jun, ${ }^{10}$ T. R. Junk, ${ }^{15}$ M. Kambeitz, ${ }^{24}$ T. Kamon, ${ }^{25,47}$ P. E. Karchin, ${ }^{53}$ A. Kasmi, ${ }^{5}$ Y. Kato, ${ }^{37, o}$ W. Ketchum, ${ }^{11, h h}$ J. Keung, ${ }^{40}$ B. Kilminster, ${ }^{15, \text { dd }}$ D. H. Kim, ${ }^{25}$ H. S. Kim, ${ }^{25}$ J. E. Kim, ${ }^{25}$ M. J. Kim, ${ }^{17}$ S. H. Kim, ${ }^{49}$ S. B. Kim, ${ }^{25}$ Y. J. Kim, ${ }^{25}$ Y. K. Kim, ${ }^{11}$ N. Kimura, ${ }^{52}$ M. Kirby, ${ }^{15}$ K. Knoepfel, ${ }^{15}$ K. Kondo, ${ }^{52}$ D. J. Kong, ${ }^{25}$ J. Konigsberg, ${ }^{16}$ A. V. Kotwal, ${ }^{14}$ M. Kreps, ${ }^{24}$ J. Kroll,,${ }^{40}$ M. Kruse, ${ }^{14}$ T. Kuhr, ${ }^{24}$ M. Kurata, ${ }^{49}$ A. T. Laasanen, ${ }^{43}$ S. Lammel, ${ }^{15}$ M. Lancaster, ${ }^{28}$ K. Lannon, ${ }^{35, x}$ G. Latino, ${ }^{41 \mathrm{c}, 41 \mathrm{a}}$ H. S. Lee, ${ }^{25}$ J. S. Lee, ${ }^{25}$ S. Leo, ${ }^{41 \mathrm{a}}$ S. Leone, ${ }^{41 \mathrm{a}}$ J. D. Lewis,,${ }^{15}$ A. Limosani, ${ }^{14, \mathrm{~s}}$ E. Lipeles, ${ }^{40}$ A. Lister, ${ }^{18, \mathrm{~b}}$ H. Liu, ${ }^{51}$ Q. Liu, ${ }^{43}$ T. Liu, ${ }^{15}$ S. Lockwitz, ${ }^{55}$ A. Loginov, ${ }^{55}$ D. Lucchesi, ${ }^{39 b, 39 a}$ A. Lucà, ${ }^{17}$ J. Lueck, ${ }^{24}$ P. Lujan, ${ }^{26}$ P. Lukens, ${ }^{15}$ G. Lungu, ${ }^{45}$ J. Lys, ${ }^{26}$ R. Lysak, ${ }^{12, \mathrm{e}}$ R. Madrak, ${ }^{15}$ P. Maestro, ${ }^{41 \mathrm{c}, 41 \mathrm{a}}$ S. Malik, ${ }^{45}$ G. Manca, ${ }^{27, \mathrm{c}}$ A. Manousakis-Katsikakis, ${ }^{3}$ L. Marchese, ${ }^{6 a, i i}$ F. Margaroli, ${ }^{46 \mathrm{a}}$ P. Marino, ${ }^{41 \mathrm{~d}, 41 \mathrm{a}}$ M. Martínez, ${ }^{4}$ K. Matera, ${ }^{22}$ M.E. Mattson, ${ }^{53}$ A. Mazzacane, ${ }^{15}$ P. Mazzanti, ${ }^{6 a}$ R. McNulty, ${ }^{27, j}$ A. Mehta, ${ }^{27}$ P. Mehtala, ${ }^{21}$ C. Mesropian, ${ }^{45}$ T. Miao, ${ }^{15}$ D. Mietlicki, ${ }^{31}$ A. Mitra, ${ }^{1}$ H. Miyake, ${ }^{49}$ S. Moed, ${ }^{15}$ N. Moggi, ${ }^{6 a}$ C. S. Moon, ${ }^{15, z}$ R. Moore, ${ }^{15, e e, f f ~ M . ~ J . ~ M o r e l l o, ~}{ }^{41 \mathrm{~d}, 41 \mathrm{a}}$ A. Mukherjee, ${ }^{15}$ Th. Muller, ${ }^{24}$ P. Murat, ${ }^{15}$ M. Mussini, ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$ J. Nachtman, ${ }^{15, \mathrm{n}}$ Y. Nagai, ${ }^{49}$ J. Naganoma, ${ }^{52}$ I. Nakano, ${ }^{36}$ A. Napier, ${ }^{50}$ J. Nett, ${ }^{47}$ C. Neu, ${ }^{51}$ T. Nigmanov, ${ }^{42}$ L. Nodulman, ${ }^{2}$ S. Y. Noh, ${ }^{25}$ O. Norniella, ${ }^{22}$ L. Oakes, ${ }^{38}$ S. H. Oh, ${ }^{14}$ Y. D. Oh, ${ }^{25}$ I. Oksuzian, ${ }^{51}$ T. Okusawa, ${ }^{37}$ R. Orava, ${ }^{21}$ L. Ortolan, ${ }^{4}$ C. Pagliarone, ${ }^{48 \mathrm{a}}$ E. Palencia,,${ }^{9, f}$ P. Palni, ${ }^{34}$ V. Papadimitriou, ${ }^{15}$ W. Parker, ${ }^{54}$ G. Pauletta, ${ }^{48 \mathrm{~b}, 48 \mathrm{c}, 48 \mathrm{a}}$ M. Paulini, ${ }^{10}$ C. Paus, ${ }^{30}$ T. J. Phillips, ${ }^{14}$ G. Piacentino, ${ }^{41 \mathrm{a}}$ E. Pianori, ${ }^{40}$ J. Pilot, ${ }^{7}$ K. Pitts, ${ }^{22}$ C. Plager, ${ }^{8}$ L. Pondrom, ${ }^{54}$ S. Poprocki,,${ }^{15, g}$ K. Potamianos,,${ }^{26}$ A. Pranko, ${ }^{26}$ F. Prokoshin, ${ }^{13, \mathrm{aa}}$ F. Ptohos, ${ }^{17, \mathrm{~h}}$ G. Punzi, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ N. Ranjan, ${ }^{43}$ I. Redondo Fernández, ${ }^{29}$ P. Renton, ${ }^{38}$ M. Rescigno, ${ }^{46 \mathrm{a}}$ F. Rimondi, ${ }^{6 \mathrm{a}, \mathrm{a}}$ L. Ristori, ${ }^{41 \mathrm{a}, 15}$ A. Robson, ${ }^{19}$ T. Rodriguez, ${ }^{40}$ S. Rolli, ${ }^{50, \mathrm{i}}$ M. Ronzani, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ R. Roser, ${ }^{15}$ J. L. Rosner, ${ }^{11}$
 V. Saveliev, ${ }^{15, v}$ A. Savoy-Navarro, ${ }^{15, z}$ P. Schlabach, ${ }^{15}$ E. E. Schmidt, ${ }^{15}$ T. Schwarz, ${ }^{31}$ L. Scodellaro, ${ }^{9}$ F. Scuri, ${ }^{41 a}$ S. Seidel, ${ }^{34}$ Y. Seiya, ${ }^{37}$ A. Semenov, ${ }^{13}$ F. Sforza, ${ }^{41 \mathrm{~b}, 41 \mathrm{a}}$ S. Z. Shalhout, ${ }^{7}$ T. Shears, ${ }^{27}$ P. F. Shepard, ${ }^{42}$ M. Shimojima, ${ }^{49, u}$ M. Shochet, ${ }^{11}$ I. Shreyber-Tecker, ${ }^{33}$ A. Simonenko, ${ }^{13}$ K. Sliwa, ${ }^{50}$ J. R. Smith, ${ }^{7}$ F. D. Snider, ${ }^{15}$ H. Song, ${ }^{42}$ V. Sorin, ${ }^{4}$ R. St. Denis, ${ }^{19}$ M. Stancari, ${ }^{15}$ D. Stentz, ${ }^{15, w}$ J. Strologas, ${ }^{34}$ Y. Sudo, ${ }^{49}$ A. Sukhanov, ${ }^{15}$ I. Suslov, ${ }^{13}$ K. Takemasa, ${ }^{49}$ Y. Takeuchi, ${ }^{49}$ J. Tang, ${ }^{11}$ M. Tecchio, ${ }^{31}$ P. K. Teng, ${ }^{1}$ J. Thom, ${ }^{15, g}$ E. Thomson, ${ }^{40}$ V. Thukral, ${ }^{47}$ D. Toback, ${ }^{47}$ S. Tokar, ${ }^{12}$ K. Tollefson, ${ }^{32}$ T. Tomura, ${ }^{49}$ S. Torre, ${ }^{17}$ D. Torretta, ${ }^{15}$ P. Totaro, ${ }^{39 \mathrm{a}}$ M. Trovato, ${ }^{41 \mathrm{~d}, 41 \mathrm{a}} \mathrm{F}$. Ukegawa, ${ }^{49}$ S. Uozumi, ${ }^{25}$ F. Vázquez, ${ }^{16, \mathrm{~m}}$ G. Velev, ${ }^{15}$ C. Vellidis, ${ }^{15}$ C. Vernieri, ${ }^{41 \mathrm{~d}, 41 \mathrm{a}}$ M. Vidal, ${ }^{43}$ R. Vilar, ${ }^{9}$ J. Vizán, ${ }^{9, c c}$ M. Vogel, ${ }^{34}$ G. Volpi, ${ }^{17}$ P. Wagner, ${ }^{40}$ R. Wallny, ${ }^{15, k}$ C. Wang, ${ }^{14}$ S. M. Wang, ${ }^{1}$ D. Waters, ${ }^{28}$ W. C. Wester III, ${ }^{15}$ D. Whiteson, ${ }^{40, \mathrm{~d}}$ A. B. Wicklund, ${ }^{2}$
S. Wilbur, ${ }^{7}$ H. H. Williams, ${ }^{40}$ J.S. Wilson, ${ }^{31}$ P. Wilson, ${ }^{15}$ B. L. Winer, ${ }^{35}$ P. Wittich, ${ }^{15, g}$ S. Wolbers, ${ }^{15}$ H. Wolfe, ${ }^{35}$ T. Wright, ${ }^{31} \mathrm{X}$. Wu, ${ }^{18} \mathrm{Z}$. Wu, ${ }^{5} \mathrm{~K}$. Yamamoto, ${ }^{37}$ D. Yamato, ${ }^{37}$ T. Yang, ${ }^{15}$ U. K. Yang, ${ }^{25}$ Y. C. Yang, ${ }^{25}$ W.-M. Yao, ${ }^{26}$ G. P. Yeh, ${ }^{15} \mathrm{~K}$. Yi, ${ }^{15, n}$ J. Yoh, ${ }^{15}$ K. Yorita, ${ }^{52}$ T. Yoshida, ${ }^{37,1}$ G. B. Yu, ${ }^{14}$ I. Yu, ${ }^{25}$ A. M. Zanetti, ${ }^{48 \mathrm{a}}$ Y. Zeng, ${ }^{14}$ C. Zhou, ${ }^{14}$ and S. Zucchelli ${ }^{6 \mathrm{~b}, 6 \mathrm{a}}$

(CDF Collaboration)

${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, People's Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 15771 Athens, Greece
${ }^{4}$ Institut de Fisica d'Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6}$ Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
${ }^{6 b}$ University of Bologna, I-40127 Bologna, Italy
${ }^{7}$ University of California, Davis, Davis, California 95616, USA
${ }^{8}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{9}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{10}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{11}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{12}$ Comenius University, 84248 Bratislava, Slovakia and Institute of Experimental Physics, 04001 Kosice, Slovakia
${ }^{13}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{14}$ Duke University, Durham, North Carolina 27708, USA
${ }^{15}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{16}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{17}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{18}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{19}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{20}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{21}$ Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014 Helsinki, Finland and Helsinki Institute of Physics, FIN-00014 Helsinki, Finland
${ }^{22}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{23}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{24}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{25}$ Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University,
Gwangju 500-757, Korea; Chonbuk National University,
Jeonju 561-756, Korea; and Ewha Womans University, Seoul 120-750, Korea
${ }^{26}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{27}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{28}$ University College London, London WC1E 6BT, United Kingdom
${ }^{29}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
${ }^{30}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{31}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{32}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{33}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{34}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{35}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{36}$ Okayama University, Okayama 700-8530, Japan
${ }^{37}$ Osaka City University, Osaka 558-8585, Japan
${ }^{38}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{39 a}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
${ }^{39 b}$ University of Padova, I-35131 Padova, Italy
${ }^{40}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{41 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
${ }^{41 \mathrm{~b}}$ University of Pisa, I-56127 Pisa, Italy
${ }^{41 \mathrm{c}}$ University of Siena, 53100 Siena, Italy
${ }^{41 \mathrm{~d}}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{41 \mathrm{e}}$ INFN Pavia, I-27100 Pavia, Italy

${ }^{41 f}$ University of Pavia, I-27100 Pavia, Italy
${ }^{42}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{43}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{44}$ University of Rochester, Rochester, New York 14627, USA
${ }^{45}$ The Rockefeller University, New York, New York 10065, USA
${ }^{46 a}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy ${ }^{46 \mathrm{~b}}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{47}$ Mitchell Institute for Fundamental Physics and Astronomy, Texas A\&M University, College Station, Texas 77843, USA
${ }^{48 \mathrm{a}}$ Istituto Nazionale di Fisica Nucleare Trieste, I-34127 Trieste, Italy
${ }^{48 \mathrm{~b}}$ Gruppo Collegato di Udine, I- 33100 Udine, Italy
${ }^{48 \mathrm{c}}$ University of Udine, I-33100 Udine, Italy
${ }^{48 \mathrm{~d}}$ University of Trieste, I-34127 Trieste, Italy
${ }^{49}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{50}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{51}$ University of Virginia, Charlottesville, Virginia 22906, USA
${ }^{52}$ Waseda University, Tokyo 169, Japan
${ }^{53}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{54}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{55}$ Yale University, New Haven, Connecticut 06520, USA
(Received 21 August 2013; published 26 November 2013)
We report measurements of the inclusive transverse momentum $\left(p_{T}\right)$ distribution of centrally produced $K_{S}^{0}, K^{\star \pm}(892)$, and $\phi^{0}(1020)$ mesons up to $p_{T}=10 \mathrm{GeV} / c$ in minimum bias events, and K_{S}^{0} and Λ^{0} particles up to $p_{T}=20 \mathrm{GeV} / c$ in jets with transverse energy between 25 and 160 GeV in $p \bar{p}$ collisions. The data were taken with the CDF II detector at the Fermilab Tevatron at $\sqrt{s}=1.96 \mathrm{TeV}$. We find that as p_{T} increases, the p_{T} slopes of the three mesons ($K_{S}^{0}, K^{\star \pm}$, and ϕ) are similar. And using our previous Λ^{0} results from minimum bias events, we show that the ratio of Λ^{0} to K_{S}^{0} as a function of p_{T} in minimum bias

[^0]events becomes similar to the fairly constant ratio in jets at $p_{T} \sim 5 \mathrm{GeV} / c$. This suggests that the particles with $p_{T} \gtrsim 5 \mathrm{GeV} / c$ in minimum bias events are from "soft" jets, and that the p_{T} slope of particles in jets is insensitive to light quark flavor $(u, d$, or $s)$ and to the number of valence quarks. We also find that for $p_{T} \lesssim 4 \mathrm{GeV}$ relatively more Λ^{0} baryons are produced in minimum bias events than in jets.

DOI: 10.1103/PhysRevD.88.092005

I. INTRODUCTION

The study of particles with low p_{T} (transverse momentum with respect to the beam direction) from hadronhadron interactions is as old as high energy physics itself. Nevertheless, attempts to understand the physics of particle production have had limited success. As the center-ofmass energy increases, the number of produced particles increases and events get more complex. Although the discovery of high transverse energy, E_{T}, jets in hadron collisions at the CERN ISR [1] and $S p \bar{p} S$ Collider [2] supported the theory of strongly interacting quarks and gluons (QCD), low- p_{T} hadron production is still not well understood despite additional data from $p \bar{p}$ and $p p$ colliders including RHIC [3] because the strong coupling is large, and perturbative QCD calculations do not apply. Phenomenological models, such as PYTHIA [4], have been developed and tuned to data. New data, such as that presented here on strange particle production, can further refine the models.

Hadron-hadron collisions are classified into two types, elastic and inelastic collisions. Inelastic hadron-hadron collisions are generally further classified as diffractive and nondiffractive. The diffractive events have a large rapidity gap (>3) with no hadrons. The distinction is not absolute, and experiments (and theorists) should make their definitions explicit.

Inelastic collisions can have a hard parton-parton interaction resulting in high- E_{T} jets, and we select events with jets with E_{T} from 25 to 160 GeV and measure the production of hadrons with strange quarks in the jets. In this paper, we present the invariant differential cross section, $E d^{3} \sigma / d p^{3}$, of $K_{S}^{0}, K^{\star \pm}$, and ϕ particles up to $p_{T}=10 \mathrm{GeV} / c$ in typical nondiffractive events, and the p_{T} distributions of K_{S}^{0} and Λ^{0} in jets up to $p_{T}=20 \mathrm{GeV} / c$ and jet $E_{T}=160 \mathrm{GeV}$. This is the first time that the p_{T} distributions of identified particles in high- E_{T} jets from hadron-hadron collisions have been measured. These spectra extend down to $p_{T} \sim 1 \mathrm{GeV} / c$ where perturbative calculations cannot be used. The various phenomenological approaches in this region (some inspired by QCD) benefit from such data.

One goal of this analysis is to compare particle production from minimum bias (MB) and jet events to see if there is a transition at some p_{T}, above which the particles from jet fragmentation tend to dominate. Another goal is to test the fragmentation process of quarks and gluons to jets in the PYTHIA event generator tuned to $e^{+} e^{-}$[5] and $e^{-} p$ [6] data. Because the particles are identified, the comparison can be more sensitive to details, e.g., s-quark creation.

A third goal is to provide information on particles produced with p_{T} less than $\sim 3 \mathrm{GeV} / c$ in MB events. Apart from their intrinsic interest, such data are useful in searches for quark-gluon plasma signatures in heavy-ion collisions.

II. EVENT AND JET SELECTION

The data in this analysis are from the CDF II detector at the Tevatron Collider operating at a center-of-mass energy $\sqrt{s}=1.96 \mathrm{TeV}$. The CDF II detector was described in detail elsewhere [7]. The components most relevant to this analysis are the tracking system and the calorimeters. The tracking system was in a uniform axial magnetic field of 1.4 T. The inner tracker had seven to eight layers of silicon microstrip detectors ranging in radius from 1.5 to 28.0 cm [8] in the pseudorapidity region $|\eta|<2$ [9]. Outside this was the central outer tracker (COT) a cylindrical drift chamber with 96 sense-wire layers grouped in eight superlayers of axial and stereo wires [10]. Its active volume covered 40 to 140 cm in radius and $|z|<155 \mathrm{~cm}$, where z is the coordinate along the beam direction centered in the middle of the detector.

Surrounding the tracking system were the pointing-tower-geometry electromagnetic (EM) and hadronic calorimeters [11], divided into central $(|\eta|<1.1)$ and plug $(1.1<|\eta|<3.6)$ regions. The calorimeters were made of lead (EM) and iron (hadronic) absorbers sandwiched between plastic scintillators that provided measurements of shower energies. At a depth approximately corresponding to the maximum development of the typical electromagnetic shower, the EM calorimeters contained proportional chambers [12] to measure shower positions and profiles.

MB events were collected with a trigger selecting beambunch crossings with at least one inelastic $p \bar{p}$ interaction. We required a time coincidence between signals in both forward and backward gas Cherenkov counters [13] covering the regions $3.7<|\eta|<4.7$. In these events we study $K_{S}^{0}, K^{\star \pm}$, and ϕ production in the central region, $|\eta|<1.0$.

The high- E_{T} jet events were collected with four jet transverse-energy trigger thresholds: 20, 50, 70, and 100 GeV , and the lower E_{T} threshold events were randomly accepted at a fixed fraction in order to reduce the trigger rate. Jets are constructed using a fixed-cone algorithm with radius $\Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}=0.4$, and their energies are corrected for detector effects [14]. Jets with $|\eta|<1.0$ are used and these jets are divided into five E_{T} ranges: $25-40 \mathrm{GeV}, 40-60 \mathrm{GeV}, 60-80 \mathrm{GeV}, 80-120 \mathrm{GeV}$ and $120-160 \mathrm{GeV}$. We study the production properties of K_{S}^{0} and Λ^{0} for each range.

We require a reconstructed event vertex in the fiducial region $\left|z_{\text {VTX }}\right| \leq 60 \mathrm{~cm}$. Tracks are required to have a high track-fit quality, with χ^{2} per degree of freedom ($\chi^{2} /$ d.o.f. $)$ ≤ 2.5, with more than five hits in at least two axial and two stereo COT track segments reconstructed in superlayers. It is further required that tracks have $|\eta|<1$ and $p_{T}>p_{T}^{\min }$, where $p_{T}^{\min }=0.325 \mathrm{GeV} / c$ and $0.5 \mathrm{GeV} / c$ for MB events and jet events respectively.

III. $K_{S}^{\mathbf{0}}$ AND $\Lambda^{\mathbf{0}}$ RECONSTRUCTION

The K_{S}^{0} and Λ^{0} reconstruction procedures are similar. Since the Λ^{0} reconstruction is well described in a previous publication [15], a summary for K_{S}^{0} reconstruction is presented here. We search for K_{S}^{0} to $\pi^{+} \pi^{-}$decays using tracks with opposite charge and $p_{T}>p_{T}^{\min }$ that satisfy the $\chi^{2} /$ d.o.f. and COT segment requirements.

For each track pair we calculate the position of their intersection in the transverse ($r-\phi$) plane. Once this intersection point, referred to as the secondary vertex, is found, the z coordinate of each track $\left(z_{1}\right.$ and $\left.z_{2}\right)$ is calculated at that point. If the distance $\left|z_{1}-z_{2}\right|$ is less than 1.5 cm , the tracks are considered to originate from a K_{S}^{0} candidate decay. The pair is traced back to the primary event vertex and we require δz_{0} to be less than 2 cm , and d_{0} to be less than 0.25 cm . The quantities δz_{0} and d_{0} are the distances between the event vertex and the track position at the point of closest approach to the event vertex in the z axis and in the $r-\phi$ plane respectively. To further reduce the background, we require the K_{S}^{0} transverse-decay length $L_{K_{S}^{0}}$, the distance in the $r-\phi$ plane between the primary and secondary vertices, to be $2.5<L_{K_{S}^{0}}<50 \mathrm{~cm}$. The Λ^{0} selection criteria are the same as K_{S}^{0} except for the lower limit of the decay length requirement, which is 5 cm . The invariant mass of the two-track system is calculated by attributing the charged-pion mass to both tracks. The left plot in Fig. 1 shows the $\pi^{+} \pi^{-}$invariant mass ($M_{\pi^{+}} \pi^{-}$) for K_{S}^{0} candidates with $|\eta|<1$ in MB events. For the Λ^{0}
reconstruction, the track with the higher momentum is assigned the proton mass. Any reference to Λ^{0} implies $\bar{\Lambda}^{0}$ as well. The invariant mass distributions are modeled with either a Gaussian or Breit-Wigner function for the signal and a third-degree polynomial function for the background. As the widths of particles are small, the thirddegree polynomial is adequate to model the background shape within the fit range.

IV. $K^{\star \pm}$ AND ϕ RECONSTRUCTION

$K^{\star \pm}$ and ϕ particles are only reconstructed in MB events. We reconstruct $K^{\star \pm}$ decaying into K_{S}^{0} and $\pi^{ \pm}$. Since the lifetime of $K^{\star \pm}$ is very short, the reconstructed K_{S}^{0} candidates from the previous section with their mass $0.47<M_{\pi^{+} \pi^{-}}<0.53 \mathrm{GeV} / c^{2}$ and a track with $p_{T}>0.325 \mathrm{GeV} / c$ are combined at the event vertex. For both the K_{S}^{0} candidate and the track, we require that the impact parameter d_{0} to be less than 0.25 cm , and δz_{0} to be less than 2 cm . The charged-pion mass is assigned to the track. The center plot in Fig. 1 shows the invariant mass of a K_{S}^{0} and a charged-pion combinations ($M_{K_{S}^{0} \pi^{ \pm}}$), and there is a distinct $K^{\star \pm}$ signal.

The final state for ϕ reconstruction is K^{+}and K^{-}. Since the lifetime of ϕ is also very short, two oppositely charged tracks, assumed to be kaons, with $p_{T}>0.325 \mathrm{GeV} / c$, are combined at the event vertex after requiring $d_{0}<0.25 \mathrm{~cm}$ and $\delta z_{0}<2 \mathrm{~cm}$ for both tracks. The right plot in Fig. 1 shows the two-kaon invariant mass ($M_{K^{+} K^{-}}$) after the same sign $K K$ invariant mass distribution is subtracted. There is a mismatch between the data and the fitted curve near $M_{K^{+} K^{-}} \sim 1.03 \mathrm{GeV} / c^{2}$ at the level of a few percentage of the signal events, much less than the systematic uncertainty due to the fitting procedure as discussed later.

To measure the p_{T} cross-section distribution of a resonance, the data in the invariant mass distribution are divided into many p_{T} intervals and the number of resonances is calculated for each p_{T} interval from a fit to the invariant mass distribution. The numbers as a function of p_{T} are

FIG. 1 (color online). Reconstructed invariant mass distributions for charged-pion pairs ($M_{\pi^{+}} \pi^{-}$), K_{S}^{0} and pion pairs ($M_{K_{S}^{0} \pi^{ \pm}}$) and charged-kaon pairs ($M_{K^{+} K^{-}}$) from MB events. The solid line is the fitted curve, a third-degree polynomial for the background and a double Gaussian (K_{S}^{0}) or Breit-Wigner ($K^{\star \pm}$ and ϕ) function to model the signal. The widths are consistent with the mass resolution from the Monte Carlo simulation.
acceptance corrected to produce the p_{T} distribution. In this paper, the word resonance is loosely used for both short-lived and long-lived particles.

The p_{T} resolution of reconstructed resonances depends on the particle types. But in general, the resolution $\left(\sigma_{p_{T}} / p_{T}\right)$ is about 1% at $p_{T}=10 \mathrm{GeV} / c$ and about 1.5% at $p_{T}=20 \mathrm{GeV} / c$. Because of the excellent resolution, the effect of the p_{T} resolution on the p_{T} distributions is negligible.

V. p_{T} DISTRIBUTIONS OF $K_{S}^{\mathbf{0}}, K^{\star \pm}$ AND ϕ MESONS IN MB EVENTS

A. Acceptance calculation and systematic uncertainties

The geometric and kinematic acceptance is estimated with Monte Carlo (MC) simulations. Each resonance state is generated with ~ 14 fixed p_{T} values ranging from 0.5 to $10 \mathrm{GeV} / c$ and uniform in rapidity for $|y|<2$. A generated resonance is combined with either one or four nondiffractive inelastic MB events generated with the PYTHIA low- p_{T} production process generator. Although the average number of interactions in our data sample is a little less than two, the default acceptance is calculated from the MC sample with four MB events and the difference of the acceptance values between the two samples is taken as a systematic uncertainty. This is because PYTHIA underestimates the average event multiplicity and the detector simulation program underestimates the material effect in the tracking volume.

The detector response to particles produced in the event generator is modeled with the CDF II detector simulation based on the GEANT-3 MC program [16]. Simulated events are processed and selected with the same analysis code as that used for the data. The acceptance is defined as the ratio of the number of reconstructed resonances with the input p_{T} divided by the generated number, including the branching ratio. Acceptance values are calculated separately for the particles and their corresponding antiparticles and the

FIG. 2. Acceptance as a function of p_{T} for $K_{S}^{0}, K^{\star \pm}$ and ϕ mesons in MB events. The values include the branching ratios to the final states detected. The uncertainties are statistical uncertainties only.

TABLE I. The mass intervals used to select the signal events. The polynomial fit to the background is subtracted bin by bin from the data in the mass interval to obtain the number of signal events. The unit is GeV / c^{2}.

Particle type	MB events	Jet events
Λ^{0}	\ldots	$1.105-1.132$
K_{S}^{0}	$0.48-0.516$	$0.465-0.535$
$K^{\star \pm}$	$0.841-0.943$	\cdots
ϕ	$1.01-1.03$	\cdots

average of the two is used as the default value, since the acceptances for the two states are similar. Figure 2 shows the acceptances including the relevant branching ratios for the three particles.

The acceptance values as a function of p_{T} are fitted with a fourth-degree polynomial function and the fitted curve is used to correct the numbers of each resonance state in the data. The modeling of the MB events overlapping with the resonance, and the selection criteria applied, contribute to the systematic uncertainty on the acceptance calculation. Acceptance uncertainties due to the selection criteria are studied by changing the selection values of the variables used to reconstruct the resonances. The variables examined are $p_{T},\left|z_{1}-z_{2}\right|, \delta z_{0}, d_{0}$, and the decay lengths. For each variable other than p_{T}, two values around the default value are typically chosen. One value is such that it has little effect on the signal, and the other reduces the signal by

FIG. 3 (color online). The inclusive invariant p_{T} differential cross-section distributions $\left(E d^{3} \sigma / d p^{3}\right)$ for $K_{S}^{0}, K^{* \pm}$, and ϕ within $|\eta|<1$. The K_{S}^{0} cross section is multiplied by two to take K_{L}^{0} production into account. The solid curves are from fits to a power law function, with the fitted parameters given in Table III. The J / Ψ [24] and Y [25] data are shown for comparison.
approximately 20% to 30%. The default minimum p_{T} selection value is $0.325 \mathrm{GeV} / c$, which is changed to $0.3 \mathrm{GeV} / c$ and to $0.35 \mathrm{GeV} / c$.

For each considered variation, a new acceptance curve and number of resonances as a function of p_{T} are obtained, and the percentage change between the new p_{T} distribution and that with the default selection requirements is taken as the uncertainty in the acceptance for the specific p_{T} interval. The sum in quadrature of all variations is taken as the total uncertainty on the acceptance in a given p_{T} bin. For the K_{S}^{0} case, the acceptance uncertainty decreases from about 15% at $p_{T} \sim 1 \mathrm{GeV} / c$ to 4% at $p_{T} \sim 5 \mathrm{GeV} / c$ and then rises again to 10% at $p_{T}=10 \mathrm{GeV} / c$. This acceptance uncertainty is added quadratically to the systematic uncertainty due to the fitting procedure, described later, to give the total systematic uncertainty.

For $K^{\star \pm}$ and ϕ mesons the examined variables are p_{T}, δz_{0} and d_{0} as they decay at the event vertex. The acceptance uncertainty for the $K^{\star \pm}$ case decreases from about 25% at $p_{T} \sim 1.5 \mathrm{GeV} / c$ to 10% at $p_{T} \sim 5 \mathrm{GeV} / c$ and
then rises to $\sim 15 \%$ at $10 \mathrm{GeV} / c$. For the ϕ meson, the uncertainty decreases from about 15% at $p_{T} \sim 1 \mathrm{GeV} / c$ to 10% at $p_{T} \sim 2 \mathrm{GeV} / c$, decreases to 6% at $p_{T} \sim 5 \mathrm{GeV} / c$ and is then constant.

B. p_{T} distributions

The first step to get the p_{T} distribution is to calculate the number of resonances as a function of p_{T} from the invariant mass plots. The data in the invariant mass plot for each resonance are divided into many p_{T} intervals. The number of p_{T} intervals depends on the resonance type and is dictated by statistics such that the fits to the invariant mass distributions are stable. The number of resonances in each p_{T} interval is determined by fitting the invariant mass distributions using a Gaussian (K_{S}^{0}) or nonrelativistic Breit-Wigner ($K^{\star \pm}$ and ϕ) function with three parameters for the signal, and a third-degree polynomial for the underlying background. The measured mass distributions of the $K^{\star \pm}$ and ϕ are not exactly a Breit-Wigner shape because of the detector resolution. The detector effect on the mass

TABLE II. The inclusive invariant differential cross-section values for K_{S}^{0}, ϕ, and $K^{\star \pm}$ mesons in Fig. 3. The uncertainties include both the statistical and systematic uncertainties added in quadrature but do not include σ_{mb} uncertainty.

$p_{T}(\mathrm{GeV} / c)$	$2 K_{S}^{0}\left(m b \mathrm{GeV}^{-2} \mathrm{c}^{3}\right)$	p_{T}	ϕ	p_{T}	$K^{\star \pm}$
0.645	2.94 ± 0.66	1.24	$(8.25 \pm 2.48) \times 10^{-2}$	1.29	$(1.87 \pm 0.74) \times 10^{-1}$
0.745	2.05 ± 0.43	1.34	$(6.17 \pm 1.80) \times 10^{-2}$	1.49	$(1.39 \pm 0.51) \times 10^{-1}$
0.845	1.58 ± 0.30	1.44	$(4.75 \pm 1.34) \times 10^{-2}$	1.69	$(7.56 \pm 2.63) \times 10^{-2}$
0.945	1.19 ± 0.22	1.59	$(3.45 \pm 0.91) \times 10^{-2}$	1.90	$(4.72 \pm 1.60) \times 10^{-2}$
1.04	$(9.09 \pm 1.58) \times 10^{-1}$	1.79	$(2.36 \pm 0.58) \times 10^{-2}$	2.13	$(3.21 \pm 1.02) \times 10^{-2}$
1.15	$(6.88 \pm 1.15) \times 10^{-1}$	1.99	$(1.41 \pm 0.29) \times 10^{-2}$	2.44	$(1.98 \pm 0.60) \times 10^{-2}$
1.24	$(5.25 \pm 0.84) \times 10^{-1}$	2.19	$(1.01 \pm 0.20) \times 10^{-2}$	2.77	$(1.06 \pm 0.29) \times 10^{-2}$
1.34	$(4.06 \pm 0.63) \times 10^{-1}$	2.40	$(6.61 \pm 1.23) \times 10^{-3}$	3.21	$(5.06 \pm 1.07) \times 10^{-3}$
1.44	$(3.13 \pm 0.48) \times 10^{-1}$	2.63	$(4.03 \pm 0.72) \times 10^{-3}$	3.73	$(2.25 \pm 0.44) \times 10^{-3}$
1.59	$(2.17 \pm 0.32) \times 10^{-1}$	2.94	$(2.40 \pm 0.41) \times 10^{-3}$	4.22	$(1.13 \pm 0.22) \times 10^{-3}$
1.79	$(1.35 \pm 0.19) \times 10^{-1}$	3.23	$(1.51 \pm 0.26) \times 10^{-3}$	4.72	$(5.80 \pm 1.13) \times 10^{-4}$
1.99	$(8.37 \pm 1.14) \times 10^{-2}$	3.54	$(8.73 \pm 1.49) \times 10^{-4}$	5.22	$(2.90 \pm 0.56) \times 10^{-4}$
2.19	$(5.32 \pm 0.71) \times 10^{-2}$	3.84	$(5.67 \pm 0.97) \times 10^{-4}$	5.72	$(1.60 \pm 0.31) \times 10^{-4}$
2.40	$(3.53 \pm 0.46) \times 10^{-2}$	4.22	$(3.26 \pm 0.56) \times 10^{-4}$	6.42	$(7.16 \pm 1.51) \times 10^{-5}$
2.63	$(2.17 \pm 0.28) \times 10^{-2}$	4.72	$(1.57 \pm 0.27) \times 10^{-4}$	7.61	$(3.21 \pm 0.73) \times 10^{-5}$
2.94	$(1.24 \pm 0.16) \times 10^{-2}$	5.22	$(8.69 \pm 1.55) \times 10^{-5}$	9.13	$(7.70 \pm 1.76) \times 10^{-6}$
3.23	$(7.33 \pm 0.96) \times 10^{-3}$	5.72	$(5.25 \pm 0.94) \times 10^{-5}$
3.54	$(4.50 \pm 0.59) \times 10^{-3}$	6.24	$(2.84 \pm 0.53) \times 10^{-5}$	\ldots	\ldots
3.84	$(2.78 \pm 0.36) \times 10^{-3}$	6.83	$(1.56 \pm 0.29) \times 10^{-5}$	\ldots	\ldots
4.22	$(1.57 \pm 0.20) \times 10^{-3}$	7.68	$(6.01 \pm 1.17) \times 10^{-6}$	\ldots	\ldots
4.72	$(7.91 \pm 1.03) \times 10^{-4}$	8.96	$(2.18 \pm 0.42) \times 10^{-6}$	\ldots	\ldots
5.22	$(4.22 \pm 0.55) \times 10^{-4}$...	\ldots	\ldots
5.72	$(2.38 \pm 0.31) \times 10^{-4}$	\ldots	\ldots	\ldots	\ldots
6.24	$(1.39 \pm 0.18) \times 10^{-4}$	\ldots	\ldots	\ldots	\ldots
6.74	$(8.46 \pm 1.10) \times 10^{-5}$	\ldots	\ldots	\ldots	\ldots
7.24	$(5.70 \pm 0.74) \times 10^{-5}$	\ldots	\ldots	\ldots	\ldots
7.74	$(3.57 \pm 0.47) \times 10^{-5}$	\ldots	\ldots	\ldots	\ldots
8.24	$(2.43 \pm 0.32) \times 10^{-5}$	\ldots	\ldots	\ldots	\ldots
8.74	$(1.75 \pm 0.23) \times 10^{-5}$	\ldots	\ldots	\ldots	\ldots
9.24	$(1.28 \pm 0.17) \times 10^{-5}$	\ldots	\ldots	\ldots	\ldots
9.74	$(9.42 \pm 1.23) \times 10^{-6}$. .	\ldots	\ldots	\ldots

TABLE III. The results of power law function fits to the inclusive invariant p_{T} differential cross sections shown in Fig. 3 for $p_{T}>2 \mathrm{GeV} / c$. The parameter p_{0} is fixed to $1.3 \mathrm{GeV} / c$ in all fits. K_{S}^{0} results are without the scale factor two which takes into account the K_{L}^{0} meson. The K_{S}^{0} values in the second column are from $\sqrt{s}=1.8 \mathrm{TeV}$ [20]. The uncertainties do not include σ_{mb} uncertainty. The last line of the table gives the χ^{2} per degree of freedom of the fit to data.

Fit parameter (units)	$K_{S}^{0}[$ Run I]	K_{S}^{0}	$K^{* \pm}$	ϕ
$A\left(m b \mathrm{GeV}^{-2} c^{3}\right)$	45 ± 9	50.2 ± 6.1	60.4 ± 13.5	23.5 ± 2.55
$p_{0}(\mathrm{GeV} / c)$	1.3	1.3	1.3	1.3
n	7.7 ± 0.2	7.65 ± 0.08	7.60 ± 0.19	7.80 ± 0.80
$\chi^{2} /$ d.o.f.	$8.1 / 11$	$6.0 / 17$	$3.9 / 10$	$14.0 / 13$

shape is treated as one of the systematic uncertainties. The polynomial fit to the background is subtracted bin by bin from the data in the mass interval to obtain the number of resonances. This number is divided by the acceptance to obtain the p_{T} cross-section distributions. Table I shows the mass intervals for each resonance.

The fitting procedure is one source of systematic uncertainty. This uncertainty is estimated by separately varying the mass range of the fit, the functional form for the signal to a double Gaussian function $\left(K_{S}^{0}\right)$ or a Breit-Wigner function convoluted with a Gaussian ($K^{\star \pm}$ and ϕ), and the background modeling function to a second-order polynomial. The mass and width of the Breit-Wigner function are fixed to the values in the Review of Particle Properties [17]. The number of signal events is recalculated in all p_{T} intervals for each variation. The systematic uncertainty is determined as the sum in quadrature of the fractional change in the number of signal events from each modified fit. Because the K_{S}^{0} signals are clearly visible, the systematic uncertainty is low, less than 5% up to $p_{T}=10 \mathrm{GeV} / c$. For the $K^{\star \pm}$ case it decreases from about 25% at $p_{T} \sim$ $1 \mathrm{GeV} / c$ to 6% at $p_{T} \sim 4 \mathrm{GeV} / c$ and then rises to $\sim 10 \%$ at $10 \mathrm{GeV} / c$. For the ϕ meson, the uncertainty decreases from about 25% at $p_{T} \sim 1 \mathrm{GeV} / c$ to 8% for $p_{T}>$ $2 \mathrm{GeV} / c$ and remains fairly constant. The high uncertainty in the low- p_{T} region is due to a large combinatorial background. The total systematic uncertainty is the square root of the quadratic sum of the fitting uncertainty in this section and the uncertainty in the acceptance calculation.

The inclusive invariant differential cross section as a function of p_{T} for each particle within $|\eta|<1$ is calculated
as $\quad E d^{3} \sigma / d p^{3}=\left(\sigma_{\mathrm{mb}} / N_{\text {event }}\right) d^{3} N / A p_{T} d p_{T} d y d \phi=$ $\left(\sigma_{\mathrm{mb}} / 2 \pi N_{\text {event }}\right) \Delta N / A p_{T} \Delta p_{T} \Delta y$ where σ_{mb} is the MB cross section $45 \pm 8 \mathrm{mb}$ [18] passing our trigger requirement, $N_{\text {event }}$ is the number of events, ΔN is the number of resonances observed in each p_{T} interval $\left(\Delta p_{T}\right)$ after the background subtraction, A is the acceptance in the specific p_{T} interval, and Δy is the rapidity range used in the acceptance calculation $(-2<y<2)$.

Figure 3 shows the results for the differential cross sections as a function of p_{T} for the three resonances. The uncertainties shown for each data point include the statistical and all systematic uncertainties described above, except for that associated with σ_{mb} [18]. The systematic uncertainties of data points neighboring a p_{T} value are correlated because the decay kinematics of the daughter particles are similar. The cross sections in Fig. 3 are listed in Table II. The displayed p_{T} values are the weighted averages within the p_{T} intervals based on the cross section calculated from the fit parameters described below.

The p_{T} differential cross section is modeled by a power law function, $A\left(p_{0}\right)^{n} /\left(p_{T}+p_{0}\right)^{n}$, for $p_{T}>2 \mathrm{GeV} / c$. In order to compare with the previous publications on hyperons $\left(\Lambda, \Xi\right.$, and Ω) [15], p_{0} is fixed at $1.3 \mathrm{GeV} / c$, and the results are shown in Table III. Compared to hyperons, the values of the parameter n for mesons are lower by $\sim 10 \%$. The data below $p_{T} \sim 2 \mathrm{GeV} / c$ cannot be described well by the power law function even if p_{0} is allowed to float. For this region, the data are better described by an exponential function, $B e^{-b \cdot p_{T}}$. The p_{T} ranges and results of this fit are shown in Table IV, and the slope b of ϕ is consistent with a

TABLE IV. The results of exponential function fits to the inclusive invariant p_{T} differential cross sections shown in Fig. 3 for the p_{T} ranges given in the second row. The K_{S}^{0} results are without the scale factor two which takes into account the K_{L}^{0} meson. The uncertainties shown do not include σ_{mb} uncertainty. The last line of the table gives the χ^{2} per degree of freedom of the fit to data.

Fit parameter (units)	K_{S}^{0}	K_{S}^{0}	K_{S}^{0}	$K^{* \pm}$	ϕ
p_{T} range (GeV / c)	$[0.6,1.5]$	$[0.6,2.5]$	$[1.2,2.5]$	$[1.2,2.5]$	$[1.2,2.5]$
$B\left(m b \mathrm{GeV}^{-2} c^{3}\right)$	10.4 ± 2.4	6.55 ± 0.80	5.00 ± 0.92	1.79 ± 1.203	1.20 ± 0.40
$b\left(\mathrm{GeV}^{-1} c\right)$	3.02 ± 0.20	2.60 ± 0.08	2.41 ± 0.10	2.01 ± 0.35	2.20 ± 0.18
$\chi^{2} /$ d.o.f.	$1.0 / 9$	$7.2 / 12$	$0.7 / 6$	$0.8 / 4$	$0.3 / 7$

PRODUCTION OF K_{S}^{0}, $K^{* \pm}(892)$ AND \ldots

FIG. 4 (color online). The cross-section ratios as a function of p_{T} of $K^{* \pm}$ to K_{S}^{0} and ϕ to K_{S}^{0}. The K_{S}^{0} cross section is multiplied by 2 . There are two error bars for each data point. The inner (outer) one corresponds to the statistical (systematic) uncertainty.
previous measurement [21]. The b values depend on the range of the fit.

Figure 4 shows the p_{T} differential cross-section ratios of $K^{\star \pm}$ to K_{S}^{0} and ϕ to K_{S}^{0}. The K_{S}^{0} cross section is multiplied by two to account for the K_{L}^{0} production. The $K^{\star \pm}$ to K_{S}^{0} ratio increases as p_{T} increases, reaches a plateau at $\sim 5 \mathrm{GeV} / c p_{T}$ and stays flat. The rise in the ϕ to K_{S}^{0} ratio at low p_{T} is slower than the $K^{\star \pm}$ to K_{S}^{0} ratio and reaches the plateau at an earlier p_{T}. The two ratios as a function of p_{T} exhibit a similar behavior as $\Xi^{ \pm} /\left(\Lambda^{0}+\bar{\Lambda}^{0}\right)$ and $\Omega^{ \pm} /\left(\Lambda^{0}+\bar{\Lambda}^{0}\right)[15]$.

In Fig. 5, the differential cross sections of the three resonances are compared with PYTHIA events generated

FIG. 5 (color online). The inclusive invariant p_{T} differential cross-section distributions in Fig. 3 are compared with PYTHIA version 6 with default parameters. The $K^{\star \pm}(\phi)$ cross section is divided by 10 (100).
with default parameters. The ϕ cross section matches well while PYTHIA K_{S}^{0} ($K^{\star \pm}$) cross section is somewhat lower (higher) than the data. The PYTHIA parameters responsible for the strange meson production cross sections were varied [22] but it was not possible to produce a good match for all three resonances.

VI. p_{T} DISTRIBUTIONS OF K_{S}^{0} AND Λ^{0} HADRONS IN JETS

A. Acceptance calculation and systematic uncertainties

For jet events, K_{S}^{0} and Λ^{0} candidates reconstructed as previously discussed are divided into five jet- E_{T} ranges. A candidate is assigned to a jet if $\Delta R_{J}<0.5$, where ΔR_{J} is the distance between the resonance and jet in the $\eta-\phi$ plane. If the candidate belongs to more than one jet, it is associated to the nearest jet. The ΔR_{J} range 0.5 is slightly larger than the 0.4 used in the jet clustering to include low- p_{T} resonances. Figure 6 shows $M_{\pi^{+} \pi^{-}}$distributions from jets with $60<E_{T}<80 \mathrm{GeV}$ and Fig. 7 shows the same but for the $M_{p \pi^{-}}+M_{\bar{p} \pi^{+}}$distributions. Because at large p_{T} the Λ^{0} signal becomes unclear (bottom right plot in Fig. 7), the Λ^{0} data with $p_{T}>15 \mathrm{GeV} / c$ and jet $E_{T}>60 \mathrm{GeV}$ are not used.

The acceptance for K_{S}^{0} and Λ^{0} hadrons in jets as a function of p_{T} is calculated for each jet- E_{T} interval and defined as the ratio of the number of reconstructed resonances to the number of generated resonances in the jets. The acceptances in jets are calculated using the QCD jet events generated with PYTHIA, passed through the CDF II detector simulation, and reconstructed. A jet event is mixed with one or four PYTHIA inelastic MB events. The default acceptance is calculated with the sample mixed with four

FIG. 6. Invariant $\pi^{+} \pi^{-}$mass distributions for four p_{T} intervals from jets with E_{T} between 60 and 80 GeV . The numbers in the figures are the p_{T} intervals. The histograms are the background shapes called QCD-C and obtained from QCD jet simulation.

FIG. 7. Invariant $p \pi^{-}+\bar{p} \pi^{+}$mass distributions for four p_{T} intervals from jets with E_{T} between 60 and 80 GeV . The numbers in the figures are the p_{T} intervals. The histograms are the background shapes called QCD-C and obtained from QCD jet simulation. Because the Λ^{0} signal becomes unclear as p_{T} increases (bottom right plot), the data with p_{T} greater than $15 \mathrm{GeV} / c$ and jet E_{T} greater than 60 GeV are not used.

FIG. 8. $\quad K_{S}^{0}$ acceptance plots for the five jet- E_{T} intervals. The values include the branching ratio $K_{s}^{0} \rightarrow \pi^{+} \pi^{-}$. The uncertainties are statistical uncertainties only.

FIG. 9. $\quad \Lambda^{0}$ acceptance plot for the five jet- E_{T} intervals. The values include the branching ratio $\Lambda^{0} \rightarrow p \pi^{-}$. The uncertainties are statistical uncertainties only.

FIG. 10. Invariant $\pi^{+} \pi^{-}$mass distributions after subtracting the scaled QCD-C background histogram from data in Fig. 6. There are four p_{T} intervals and the E_{T} of jets is between 60 and 80 GeV . The solid lines are fitted curves, a third-degree polynomial for the background and a Gaussian function with three parameters to model the K_{S}^{0} signal.

MB events, and the difference of the acceptance values between the two samples is one of our systematic uncertainties, as in the case of MB events.

We select the generated resonances in the MC data with $\Delta R_{J}<0.5$ where ΔR_{J} is measured with respect to the reconstructed jet direction. We also select the reconstructed resonances within the same ΔR_{J} range, and mark the ones with matched generated resonances based on

FIG. 11. Invariant $p \pi^{-}+\bar{p} \pi^{+}$mass distributions after subtracting the scaled QCD-C background histogram from data in Fig. 7. There are three p_{T} intervals and E_{T} of jets is between 60 and 80 GeV . The solid lines are fitted curves, a third-degree polynomial for the background and a Gaussian function with three parameters to model the Λ^{0} signal.

TABLE V. The K_{S}^{0} cross-section values for the five jet- E_{T} intervals in Fig. 12.

$p_{T}(\mathrm{GeV} / \mathrm{c})$	$E_{T}: 25-40 \mathrm{GeV}$	$40-60 \mathrm{GeV}$	$1 / N_{\mathrm{jet}} d N /\left(p_{T} d p_{T}\right)\left(\mathrm{GeV}^{-2} c^{2}\right)$		
$60-80 \mathrm{GeV}$	$80-120 \mathrm{GeV}$	$120-160 \mathrm{GeV}$			
1.75	$(2.57 \pm 0.59) \times 10^{-2}$	$(2.67 \pm 0.61) \times 10^{-2}$	$(2.51 \pm 0.59) \times 10^{-2}$	$(2.47 \pm 0.58) \times 10^{-2}$	$(2.22 \pm 0.53) \times 10^{-2}$
2.25	$(1.86 \pm 0.43) \times 10^{-2}$	$(1.99 \pm 0.45) \times 10^{-2}$	$(2.02 \pm 0.46) \times 10^{-2}$	$(1.83 \pm 0.43) \times 10^{-2}$	$(1.51 \pm 0.37) \times 10^{-2}$
2.75	$(1.29 \pm 0.29) \times 10^{-2}$	$(1.39 \pm 0.32) \times 10^{-2}$	$(1.47 \pm 0.33) \times 10^{-2}$	$(1.37 \pm 0.31) \times 10^{-2}$	$(1.12 \pm 0.27) \times 10^{-2}$
3.25	$(9.62 \pm 0.22) \times 10^{-3}$	$(1.09 \pm 0.24) \times 10^{-2}$	$(1.08 \pm 0.24) \times 10^{-2}$	$(1.05 \pm 0.24) \times 10^{-2}$	$(8.48 \pm 2.03) \times 10^{-3}$
3.75	$(7.06 \pm 1.55) \times 10^{-3}$	$(8.05 \pm 1.80) \times 10^{-3}$	$(8.35 \pm 1.84) \times 10^{-3}$	$(8.52 \pm 1.88) \times 10^{-3}$	$(6.68 \pm 1.60) \times 10^{-3}$
4.50	$(4.70 \pm 1.02) \times 10^{-3}$	$(5.75 \pm 1.28) \times 10^{-3}$	$(6.02 \pm 1.33) \times 10^{-3}$	$(6.11 \pm 1.35) \times 10^{-3}$	$(5.10 \pm 1.20) \times 10^{-3}$
5.75	$(2.70 \pm 0.59) \times 10^{-3}$	$(3.56 \pm 0.79) \times 10^{-3}$	$(3.87 \pm 0.86) \times 10^{-3}$	$(3.99 \pm 0.88) \times 10^{-3}$	$(3.56 \pm 0.84) \times 10^{-3}$
7.25	$(1.45 \pm 0.32) \times 10^{-3}$	$(2.19 \pm 0.48) \times 10^{-3}$	$(2.36 \pm 0.52) \times 10^{-3}$	$(2.63 \pm 0.58) \times 10^{-3}$	$(2.36 \pm 0.56) \times 10^{-3}$
9.01	$(6.63 \pm 1.49) \times 10^{-4}$	$(1.01 \pm 0.23) \times 10^{-3}$	$(1.34 \pm 0.31) \times 10^{-3}$	$(1.32 \pm 0.30) \times 10^{-3}$	$(1.36 \pm 0.33) \times 10^{-3}$
11.2	$(2.68 \pm 0.64) \times 10^{-4}$	$(5.48 \pm 1.30) \times 10^{-4}$	$(6.78 \pm 1.65) \times 10^{-4}$	$(7.72 \pm 1.88) \times 10^{-4}$	$(7.65 \pm 1.98) \times 10^{-4}$
13.7	$(1.31 \pm 0.34) \times 10^{-4}$	$(3.29 \pm 0.85) \times 10^{-4}$	$(4.54 \pm 1.21) \times 10^{-4}$	$(5.61 \pm 1.49) \times 10^{-4}$	$(5.25 \pm 1.50) \times 10^{-4}$
16.2	$(6.73 \pm 1.79) \times 10^{-5}$	$(2.00 \pm 0.54) \times 10^{-4}$	$(3.10 \pm 0.86) \times 10^{-4}$	$(3.66 \pm 1.02) \times 10^{-4}$	$(2.83 \pm 0.95) \times 10^{-4}$
18.7	$(2.28 \pm 0.66) \times 10^{-5}$	$(9.85 \pm 2.95) \times 10^{-5}$	$(1.89 \pm 0.57) \times 10^{-4}$	$(2.12 \pm 0.66) \times 10^{-4}$	$(2.00 \pm 0.80) \times 10^{-4}$

$|\Delta \eta|<0.075$ and $|\Delta \phi|<0.075$, where $\Delta \phi(\Delta \eta)$ is the difference in $\phi(\eta)$ between the generated and reconstructed resonances. The acceptance as a function of p_{T} is the ratio of the p_{T} distribution of the marked reconstructed resonances to the generated resonances. Figure 8 shows the K_{S}^{0} acceptance for the five jet- E_{T} intervals and Fig. 9 shows the same for Λ^{0}. The acceptances include the branching ratio to our final states.

The sources of systematic uncertainty in the acceptance calculation are similar to those discussed for K_{S}^{0} in MB events, and they are calculated as functions of p_{T} and E_{T} except for one difference: The default minimum p_{T} selection $0.5 \mathrm{GeV} / c$ is changed to $0.45 \mathrm{GeV} / c$ and to $0.55 \mathrm{GeV} / c$. The dependence of the $K_{S}^{0}\left(\Lambda^{0}\right)$ acceptance

FIG. 12. The p_{T} distributions of K_{S}^{0} mesons in centrally produced jets $(|\eta|<1)$ for the five jet- E_{T} intervals. The uncertainties include both the statistical and systematic uncertainties added in quadrature.
uncertainty on p_{T} for different E_{T} ranges is quite similar. It starts at $\sim 10(15) \%$ at $2 \mathrm{GeV} / c$ and decreases to $\sim 5(7) \%$ at $5 \mathrm{GeV} / c$ and then increases approximately linearly to $\sim 12(20) \%$ at $20 \mathrm{GeV} / c$.

B. $\boldsymbol{p}_{\boldsymbol{T}}$ distributions

The measurement of the p_{T} distribution of particles in jets is different from that in MB events because there is more combinatorial background. We subtract the background obtained from the simulated QCD MC data sample before fitting the mass distribution. The background is called QCD combinatorial (QCD-C) background and it is the $M_{\pi \pi}$ (or $M_{p \pi}$) distribution without K_{S}^{0} (or Λ^{0}).

FIG. 13. The p_{T} distributions of $\Lambda^{0}+\bar{\Lambda}^{0}$ baryons in centrally produced jets $(|\eta|<1)$ for the five jet- E_{T} intervals. The uncertainties include both the statistical and systematic uncertainties added in quadrature.

TABLE VI. The $\Lambda^{0}+\bar{\Lambda}^{0}$ cross-section values for the five jet- E_{T} intervals in Fig. 13.

		$1 / N_{\text {jet }} d N /\left(p_{T} d p_{T}\right)\left(\mathrm{GeV}^{-2} c^{2}\right)$			
$p_{T}(\mathrm{GeV} / \mathrm{c})$	$E_{T}: 25-40 \mathrm{GeV}$	$40-60 \mathrm{GeV}$	$60-80 \mathrm{GeV}$	$80-120 \mathrm{GeV}$	$120-160 \mathrm{GeV}$
2.75	$(8.03 \pm 2.15) \times 10^{-3}$	$(7.42 \pm 2.02) \times 10^{-3}$	$(8.24 \pm 2.35) \times 10^{-3}$	$(6.62 \pm 1.96) \times 10^{-3}$	$(6.27 \pm 1.87) \times 10^{-3}$
3.25	$(5.23 \pm 1.00) \times 10^{-3}$	$(5.92 \pm 1.15) \times 10^{-3}$	$(5.30 \pm 1.16) \times 10^{-3}$	$(5.20 \pm 1.13) \times 10^{-3}$	$(3.84 \pm 0.89) \times 10^{-3}$
3.75	$(4.13 \pm 0.78) \times 10^{-3}$	$(4.50 \pm 0.85) \times 10^{-3}$	$(4.36 \pm 0.91) \times 10^{-3}$	$(3.92 \pm 0.82) \times 10^{-3}$	$(3.32 \pm 0.73) \times 10^{-3}$
4.50	$(2.93 \pm 0.55) \times 10^{-3}$	$(3.30 \pm 0.62) \times 10^{-3}$	$(3.00 \pm 0.60) \times 10^{-3}$	$(2.97 \pm 0.59) \times 10^{-3}$	$(2.22 \pm 0.47) \times 10^{-3}$
5.75	$(1.61 \pm 0.30) \times 10^{-3}$	$(1.92 \pm 0.36) \times 10^{-3}$	$(1.94 \pm 0.38) \times 10^{-3}$	$(1.96 \pm 0.39) \times 10^{-3}$	$(1.66 \pm 0.36) \times 10^{-3}$
7.25	$(8.16 \pm 1.67) \times 10^{-4}$	$(1.14 \pm 0.23) \times 10^{-3}$	$(1.20 \pm 0.26) \times 10^{-3}$	$(1.21 \pm 0.26) \times 10^{-3}$	$(9.24 \pm 2.29) \times 10^{-4}$
9.01	$(4.02 \pm 0.88) \times 10^{-4}$	$(6.44 \pm 1.41) \times 10^{-4}$	$(7.03 \pm 1.61) \times 10^{-4}$	$(7.08 \pm 1.68) \times 10^{-4}$	$(6.70 \pm 1.78) \times 10^{-4}$
11.2	$(1.90 \pm 0.48) \times 10^{-4}$	$(3.35 \pm 0.83) \times 10^{-4}$	$(4.45 \pm 1.11) \times 10^{-4}$	$(4.60 \pm 1.23) \times 10^{-4}$	$(5.41 \pm 1.53) \times 10^{-4}$
13.7	$(5.74 \pm 1.58) \times 10^{-5}$	$(1.84 \pm 0.49) \times 10^{-4}$	$(2.06 \pm 0.57) \times 10^{-4}$	$(2.78 \pm 0.82) \times 10^{-4}$	$(2.47 \pm 0.82) \times 10^{-4}$
16.2	$(1.97 \pm 0.60) \times 10^{-5}$	$(9.92 \pm 2.79) \times 10^{-5}$	\cdots	\cdots	\cdots
18.7	$(5.50 \pm 2.27) \times 10^{-6}$	$(4.26 \pm 1.37) \times 10^{-5}$	\cdots	\cdots	\cdots

The QCD-C background shape is obtained as follows. After choosing two tracks that form a K_{S}^{0} (or Λ^{0}) candidate, we check if the candidate has a corresponding $K_{S}^{0}\left(\right.$ or $\left.\Lambda^{0}\right)$ at the MC particle generation level in the same event by comparing the kinematic variables (ϕ and η). If the candidate has a corresponding particle at the generation level, the candidate is not entered in the invariant mass distributions and the distributions are the QCD-C backgrounds shown in Figs. 6 and 7. Disagreement with the data outside the resonance mass regions is expected since the shape of the invariant mass distribution is sensitive to the particle multiplicity and kinematics from jets. Figures 10 and 11 show the invariant mass distributions after subtracting the QCD-C backgrounds, scaled such that the entries are
mostly positive after subtraction. The effect of the normalization is one of the systematic uncertainties.

The number of signal events in each p_{T} interval is determined by fitting the background-subtracted invariant mass distributions using a Gaussian function for the signal and a third-degree polynomial for the remaining background. The curves from the fits are displayed in the same figures. The polynomial function representing the background is subtracted bin by bin from the data in the mass interval to obtain the number of signal events. Table I shows the mass intervals. The mass intervals for jets are wider because the p_{T} range is extended to $20 \mathrm{GeV} / c$ and mass resolution gets worse (see Figs. 10 and 11) as p_{T} increases.

FIG. 14. The cross-section ratios of $\Lambda^{0}+\bar{\Lambda}^{0}$ to $2 K_{S}^{0}$ as a function of p_{T} for the five jet- E_{T} intervals. There are two error bars for each data point. The inner (outer) one corresponds to the statistical (systematic) uncertainty.

FIG. 15. The ratios of $K_{S}^{0} p_{T}$ distribution of data to that of PYTHIA (version 6) events generated with default parameters for the five jet- E_{T} intervals.

The QCD-C background subtraction and the fitting procedure are sources of systematic uncertainty. The estimation of the fitting procedure uncertainty is similar to that for K_{S}^{0} in MB events. The uncertainty from the QCD-C background subtraction is estimated by scaling the background by -25% from the default and recalculating the number of signal events. Similar to the K_{S}^{0} in the MB events, the K_{S}^{0} signal is clearly visible and the uncertainty is fairly constant at $\sim 12 \%$ for all p_{T} and E_{T} intervals. For the Λ^{0} baryon, the uncertainty increases by $\sim 2 \%$ at the high p_{T}
and E_{T} region, and we assign a conservative 17% for all p_{T} and E_{T} intervals. The total systematic uncertainty is the uncertainty discussed above and the uncertainty in the acceptance calculation added in quadrature.

The p_{T} distributions are calculated per jet, $\left.1 / N_{\mathrm{jet}} d N /\left(p_{T} d p_{T}\right)=1 / N_{\mathrm{jet}} \Delta N /\left(A p_{T} \Delta p_{T}\right)\right)$, and are shown in Fig. $12\left(K_{S}^{0}\right)$ and Fig. $13\left(\Lambda^{0}+\bar{\Lambda}^{0}\right)$ for the five jet- E_{T} intervals. N_{jet} is the number of jets in the E_{T} interval, ΔN is the number of signal events in the p_{T} interval $\left(\Delta p_{T}\right)$ and E_{T} interval, and A is the acceptance at the p_{T} and E_{T}

FIG. 16. The ratios of $\Lambda^{0} p_{T}$ distribution of data to that of PYTHIA (version 6) events generated with default parameters for the five jet- E_{T} intervals.

FIG. 17 (color online). The cross-section ratios of Λ^{0} baryon to strange meson as a function of p_{T}. The data from E735 is also from the central region. The statistical and systematic uncertainties are added in quadrature.
intervals (Figs. 8 and 9). The uncertainty is the statistical and systematic uncertainties added in quadrature. Tables V and VI have the numerical values of the distributions in Figs. 5 and 6 respectively. The average jet- E_{T} values for the five jet- E_{T} intervals are $31,50,70,99$ and 136 GeV . Figure 14 shows $\Lambda^{0}+\bar{\Lambda}^{0}$ to $2 K_{S}^{0}$ ratios as a function of p_{T} calculated from Figs. 12 and 13. The K_{S}^{0} cross section is multiplied by two to take into account the K_{L}^{0} production. The ratios are about 0.25 for all p_{T} and E_{T} intervals.

The differential p_{T} distributions of K_{S}^{0} and Λ^{0} hadrons in jets are compared with the PYTHIA events generated with default parameters. The events from PYTHIA simulation, processed through CDF II detector simulation and reconstruction programs, are analyzed as the real data. However rather than finding the reconstructed number of resonances from fitting, the resonances at the particle generation level are used after associating them with reconstructed jets $\left(\Delta R_{J}<0.5\right)$ for the five jet- E_{T} intervals. Figure 15 shows the ratios of the K_{S}^{0} of data to that of PYTHIA events as a function of p_{T}, and Fig. 16 shows the same for Λ^{0} baryons. The agreement for Λ^{0} baryons is adequate while PYTHIA generates too many K_{S}^{0} mesons in the low- p_{T} region.

Using the p_{T} distribution of Λ^{0} baryons from an earlier analysis [15], and K_{S}^{0} mesons from this analysis, the ratio of $\Lambda^{0}+\bar{\Lambda}^{0}$ to $2 K_{S}^{0}$ as a function of p_{T} in MB events is calculated and displayed in Fig. 17. In the same figure, the ratios from jets in Fig. 14 are also shown for a comparison. Also shown in the figure is the ratio from 1.8 TeV center-of-mass energy covering the very low- p_{T} region [23]. The figure shows that the ratio of Λ^{0} to K_{S}^{0} exhibits different behavior than the $K^{* \pm}$ to K_{S}^{0} and ϕ to K_{S}^{0} ratios. For the latter, the ratios increase as p_{T} increases and reaches a plateau at $p_{T}>4 \sim 5 \mathrm{GeV} / c$, while the former increases until p_{T} reaches $\sim 2 \mathrm{GeV} / c$ and then decreases as p_{T} increases. The ratio plot also
indicates that the process of producing Λ^{0} baryons compared to K_{S}^{0} mesons in MB events is significantly more efficient than the process in jets. The ratio from the MB events matches the ratios from jets at $p_{T} \sim 5 \mathrm{GeV} / c$ implying that QCD jet contribution is significant for $p_{T}>5 \mathrm{GeV} / c$.

VII. SUMMARY

In inelastic $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$, we have studied the properties of three mesons, $K_{S}^{0}, K^{\star \pm}$, and ϕ, in MB events up to $p_{T}=10 \mathrm{GeV} / c$, and K_{S}^{0} and Λ^{0} hadrons in jets up to $20 \mathrm{GeV} / c p_{T}$ and 160 GeV jet E_{T}. The measurements were made with centrally produced $(|\eta|<1)$ particles and jets. We found in MB events:
(1) As p_{T} increases, the three mesons exhibit a similar p_{T} slope as the n values indicate, where n is the exponent in the power law function.
(2) The n values from the mesons are less than the values from hyperons ($\Lambda^{0}, \Xi^{ \pm}$, and $\Omega^{ \pm}$) by about 10%.
(3) The ratios, $K^{\star \pm} / 2 K_{S}^{0}$ and $\phi / 2 K_{S}^{0}$, as a function of p_{T} exhibit a similar behavior as $\Xi^{ \pm} /\left(\Lambda^{0}+\bar{\Lambda}^{0}\right)$ and $\Omega^{ \pm} /\left(\Lambda^{0}+\bar{\Lambda}^{0}\right)$ [15]. The ratios increase at low p_{T} and reach a plateau above $p_{T} \sim 5 \mathrm{GeV} / c$.
(4) Unlike the ratios among strange mesons or hyperons, the Λ^{0} to K_{S}^{0} ratio shows an enhancement around $2 \mathrm{GeV} / c p_{T}$.
(5) PYTHIA reproduces ϕp_{T} distribution quite well, but underestimates K_{S}^{0} production and overestimates $K^{\star \pm}$ production.
In jets:
(6) The p_{T} dependencies of the K_{S}^{0} and Λ^{0} cross sections in jets reduce as jet E_{T} increases. The ratio, $\left(\Lambda^{0}+\bar{\Lambda}^{0}\right) / 2 K_{S}^{0}$, is fairly constant at about 0.25 for p_{T} up to $20 \mathrm{GeV} / c$ and jet E_{T} up to 160 GeV . This ratio merges with the ratio from the MB events at $p_{T}>4 \sim 5 \mathrm{GeV} / c$.
(7) The process producing low $p_{T} \Lambda^{0}$ (compared to K_{S}^{0}) in MB events is significantly more efficient than the process in jets.
(8) PYTHIA reproduces the $\Lambda^{0} p_{T}$ distribution reasonably well, but overestimates K_{S}^{0} production in the low- p_{T} region.
The findings indicate that in MB events particles with p_{T} in excess of $5 \mathrm{GeV} / c$ are mostly from QCD jets, assuming that jets with $E_{T}<25 \mathrm{GeV}$ behave similarly to the higher E_{T} jets. The process of producing Λ^{0} compared to K_{S}^{0} around $2 \mathrm{GeV} / c$ is much more efficient than the process in jets. Moreover while the production cross section exhibits strong dependences on the quark flavors (u, d, and s) in particles, the p_{T} slope for $p_{T}>5 \mathrm{GeV} / c$ is fairly insensitive to the number of quarks and quark flavors in particles, resulting in constant particle ratios. This suggests that p_{T} dependences of particles
produced in jets are similar regardless of their quark and flavor content.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of

Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R\&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.
[1] T. Akesson et al. (AFS Collaboration) Phys. Lett. 118B, 185 (1982).
[2] M. Banner et al. (UA2 Collaboration) Phys. Lett. 118B, 203 (1982); G. Arnison et al. (UA1 Collaboration), Phys. Lett. 123B, 115 (1983).
[3] G. J. Alner et al. (UA5 Collaboration), Nucl. Phys. B258, 505 (1985); R.E. Ansorge et al. (UA5 Collaboration), Phys. Lett. B 199, 311 (1987); T. Alexopolos et al. (E735 Collaboration), Phys. Rev. Lett. 60, 1622 (1988); F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 61, 1819 (1988); R. Ansoge et al. (UA5 Collaboration), Nucl. Phys. B328, 36 (1989); G. Bocquet et al. (UA1 Collaboration), Phys. Lett. B 366, 441 (1996); S. Banerjee et al. (E735 Collaboration), Phys. Rev. Lett. 64, 991 (1990); D. Acosta et al. (CDF Collaboration), Phys. Rev. D 72, 052001 (2005); B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 75, 064901, (2007).
[4] T. Sjöstrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, Comput. Phys. Commun. 135, 238 (2001). The version used in this paper is 6.327 .
[5] W. Braunschweig et al. (TASSO Collaboration), Z. Phys. C 47, 167 (1990); H. Aihara et al. (TPC Collaboration), Phys. Rev. Lett. 54, 274 (1985); H. Schellman et al. (MARK-II Collaboration), Phys. Rev. D 31, 3013 (1985); M. Derrick et al. (HRS Collaboration), Phys. Rev. D 35, 2639 (1987); H. Behrend et al. (CELLO Collaboration), Z. Phys. C 46, 397 (1990); D. Buskulic et al. (ALEPH Collaboration), Z. Phys. C 64, 361 (1994); P. Abreu et al. (DELPHI Collaboration), Z. Phys. C 65, 587 (1995); M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 328, 223 (1994); P. Acton et al. (OPAL Collaboration), Phys. Lett. B 291, 503 (1992).
[6] M. Derrick et al. (ZEUS Collaboration), Z. Phys. C 68, 29 (1995); S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 51, 1 (2007); S. Aid et al. (H1 Collaboration), Nucl. Phys. B480, 3 (1996); C. Adloff et al. (H1 Collaboration), Z. Phys. C 76, 213 (1997).
[7] A. Abulencia et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007).
[8] A. Sill et al., Nucl. Instrum. Methods Phys. Res., Sect. A 447, 1 (2000).
[9] In the CDF coordinate system, θ and ϕ are the polar and azimuthal angles of a particle, respectively, defined with respect to the proton beam direction, z. The pseudorapidity η is defined as $-\ln [\tan (\theta / 2)]$. The transverse momentum of a particle is $p_{T}=p \sin \theta$. The rapidity is defined as $y=0.5 \ln \left[\left(E+p_{z}\right) /\left(E-p_{z}\right)\right]$, where E and p_{z} are the energy and longitudinal momentum of the particle.
[10] A. Affolder et al. (CDF Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 526, 249 (2004).
[11] L. Balka et al., Nucl. Instrum. Methods Phys. Res., Sect. A 267, 272 (1988); S. Bertolucci et al., Nucl. Instrum. Methods Phys. Res., Sect. A 267, 301 (1988); M. Albrow et al., Nucl. Instrum. Methods Phys. Res., Sect. A 480, 524 (2002).
[12] G. Apollinari, K. Goulianos, P. Melese, and M. Lindgren, Nucl. Instrum. Methods Phys. Res., Sect. A 412, 515 (1998).
[13] D. Acosta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 494, 57 (2002).
[14] A. Bhatti et al., Nucl. Instrum. Methods Phys. Res., Sect. A 566, 375 (2006).
[15] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 86, 012002 (2012). The n values are $8.81 \pm 0.08\left(\Lambda^{0}+\bar{\Lambda}^{0}\right)$, $8.26 \pm 0.12\left(\Xi^{ \pm}\right)$and $8.06 \pm 0.34\left(\Omega^{ \pm}\right)$.
[16] R. Brun, R. Hagelberg, M. Hansroul, and J. C. Lassalle, version 3.15, Report No. CERN-DD-78-2-REV.
[17] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
[18] The total cross section corresponding to the MB trigger is estimated to be $45 \pm 8 \mathrm{mb}$. The elastic ($17 \pm 4 \mathrm{mb}$ [17]), single diffractive (SD) (12 mb), and half of the double diffractive (DD) (4 mb) cross sections are subtracted from the total $p \bar{p}$ cross section ($78 \pm 6 \mathrm{mb}$ $[17,19])$ to give this estimate. The SD and DD cross sections are estimated using PYTHIA [4], and no uncertainties are assigned to SD and DD cross section. A simulation study shows that the MB trigger is sensitive to $\sim 100 \%$ of inelastic events which are not SD or DD and $\sim 50 \%$ of DD events. A 100% uncertainty
is assigned to the DD contribution due to the uncertainty in the event characteristics and detector simulation.
[19] J. R. Cudell, V. Ezhela, P. Gauron, K. Kang, Yu. Kuyanov, S. Lugovsky, E. Martynov, B. Nicolescu, E. Razuvaev, and N. Tkachenko (COMPETE Collaboration), Phys. Rev. Lett. 89, 201801 (2002).
[20] F. Abe et al. (CDF Collaboration), Phys. Rev. D 40, 3791 (1989).
[21] T. Alexopoulos et al. (E735 Collaboration), Z. Phys. C 67, 411 (1995).
[22] Private communication with one of PYTHIA authors. The parameters adjusted were parj(1-7) and parj(11-17). We also modified $\operatorname{parj}(41-42)$ and $\operatorname{parj}(51-55)$ based on the tunes from LEP experiments.
[23] S. Banerjee et al. (E735 Collaboration), Phys. Rev. Lett. 62, 12 (1989); T. Alexopoulos et al. (E735 Collaboration), Phys. Rev. D 46, 2773 (1992).
[24] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[25] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 75, 4358 (1995).

[^0]: ${ }^{\text {a }}$ Deceased.
 ${ }^{\mathrm{b}}$ Visitor from University of British Columbia, Vancouver BC V6T 1Z1, Canada.
 ${ }^{\mathrm{c}}$ Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
 ${ }^{\mathrm{d}}$ Visitor from University of California Irvine, Irvine, CA 92697, USA.
 ${ }^{\mathrm{e}}$ Visitor from Institute of Physics, Academy of Sciences of the Czech Republic, 182~21, Czech Republic.
 ${ }^{\mathrm{f}}$ Visitor from CERN, CH-1211 Geneva, Switzerland.
 ${ }^{\mathrm{g}}$ Visitor from Cornell University, Ithaca, NY 14853, USA.
 ${ }^{\mathrm{h}}$ Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.
 ${ }^{\mathrm{i}}$ Visitor from Office of Science, U.S. Department of Energy, Washington DC 20585, USA.
 ${ }^{\mathrm{j}}$ Visitor from University College Dublin, Dublin 4, Ireland.
 ${ }^{\mathrm{k}}$ Visitor from ETH, 8092 Zürich, Switzerland.
 ${ }^{1}$ Visitor from University of Fukui, Fukui City, Fukui Prefecture 910-0017, Japan.
 ${ }^{m}$ Visitor from Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal, Mexico.
 ${ }^{\mathrm{n}}$ Visitor from University of Iowa, Iowa City, IA 52242, USA.
 ${ }^{\circ}$ Visitor from Kinki University, Higashi-Osaka City 577-8502, Japan.
 ${ }^{\mathrm{p}}$ Visitor from Kansas State University, Manhattan KS 66506, USA.
 ${ }^{\text {q }}$ Visitor from Brookhaven National Laboratory, Upton, NY 11973, USA.
 ${ }^{\mathrm{r}}$ Visitor from Queen Mary, University of London, London E1 4NS, United Kingdom.
 ${ }^{5}$ Visitor from University of Melbourne, Victoria 3010, Australia.
 ${ }^{t}$ Visitor from Muons, Inc., Batavia, IL 60510, USA.
 ${ }^{\mathrm{u}}$ Visitor from Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan.
 ${ }^{\mathrm{v}}$ Visitor from National Research Nuclear University, Moscow 115409, Russia.
 ${ }^{\mathrm{w}}$ Visitor from Northwestern University, Evanston, IL 60208, USA.
 ${ }^{\mathrm{x}}$ Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.
 ${ }^{\mathrm{y}}$ Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.
 ${ }^{\text {z }}$ Visitor from CNRS-IN2P3, Paris F-75205, France.
 ${ }^{a}$ a Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
 ${ }^{\text {bb }}$ Visitor from The University of Jordan, Amman 11942, Jordan.
 ${ }^{\text {cc }}$ Visitor from Universite catholique de Louvain, 1348 Louvain-La-Neuve, Belgium.
 ${ }^{\text {dd }}$ Visitor from University of Zürich, 8006 Zürich, Switzerland.
 ${ }^{e e}$ Visitor from Massachusetts General Hospital, Boston, MA 02114, USA.
 ${ }^{\mathrm{ff}}$ Visitor from Harvard Medical School, Boston, MA 02114, USA.
 ${ }^{g 9}$ Visitor from Hampton University, Hampton, VA 23668, USA.
 ${ }^{\text {hh }}$ Visitor from Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
 ${ }^{\text {ii }}$ Visitor from Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.

