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Abstract

We evaluate the width of the ω meson in nuclear matter. We consider the free decay mode of the ω
into three pions, which is dominated by ρπ decay, and replace the ρ and π propagators by their medium
modified ones. We also take into account the quasielastic and inelastic processes induced by a vector-baryon
interaction dominated by vector meson exchange, as well as the contributions coming from the ω → KK̄
mechanism with medium modified K, K̄ propagators. We obtain a substantial increase of the ω width in the
medium, reaching a value of 129 ± 10 MeV at normal nuclear matter density for an ω at rest, which comes
mainly from ωN → ππN, ωNN → πNN processes associated to the dominant ω → ρπ decay mode. The
value of the width increases moderately with momentum, reaching values of around 200 MeV at 600 MeV/c.
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I. INTRODUCTION

The interaction of vector mesons with nuclei is a subject that has attracted much attention.
The large amount of work, experimental and theoretical, has been reviewed extensively in [1] and
more recently in [2, 3]. Another recent review [4], reporting on progress done using the local hidden
gauge theory for the interaction of vectors [5–8], has brought a new perspective into this topic.

Although originally there were some hopes that the mass of the vector mesons would be drasti-
cally reduced in the nuclear medium, devoted studies concluded that this was not the case [9–15]
and recent experiments have confirmed the results of these calculations [2, 3, 16, 17].

In addition to the emblematic ρ meson, one of the vector mesons which has been more thoroughly
investigated experimentally is the ω meson. Apart from investigations using heavy ions, other
reactions, easier to interpret, have been carried out using proton beams on nuclei at KEK [18–20]
or photonuclear reactions looking for dileptons in the final state [17, 21]. However, one of the
most detailed experiments on the ω properties in the nucleus has been done at ELSA (Bonn),
using photoproduction on nuclei and detecting the ω through its π0γ decay mode [22]. Originally,
the analysis of the experimental results led the authors of [22] to claim the first observation of
the in-medium modifications of the ω meson mass, with a reduction of about 100 MeV at normal
nuclear matter density. Yet, it was shown in [23] that the results of [22] were tied to a particular
choice of background. A thorough study of the background processes in a revised analysis of the
experiment [24] concluded that the experiment was not sensitive enough to possible changes of the
in-medium ω mass. Preliminary results from the momentum distribution appear to exclude shifts
of the mass by 16 % [25].

Simultaneously, the possibility that some signal reported in [26, 27] could indicate the forma-
tion of a ω meson bound state in nuclei was ruled out, showing that the double hump structure
observed in the experiment was due to uncorrelated π0γ production events together with the ω
production and subsequent π0γ decay, which scaled differently with growing nuclear mass [28]. The
expectations that the use of the mixed events method to separate the background from the signal
could solve the problem [29] were also shown unproductive in [30], due to the fast exponential fall
of the mass distribution which made inapplicable this otherwise successful tool.

In summary, the thorough experimental and theoretical work along these reactions led to clarify
the issue and set warnings for the analysis of similar reactions used to extract medium modifications
of vector meson properties.

Yet, there is some physical information that survived the close scrutiny of the former works,
and this is the large width of the ω in the medium found in [31] and also studied in [23]. The
CBELSA/TAPS collaboration reported a width of 130-150 MeV at normal nuclear matter density
[31], while the analysis based on a Monte Carlo simulation taking into account the possible reactions
in the experimental set-up in the vicinity of the ω meson produced a distribution compatible with a
width of the order of 100 MeV [23]. The theoretical understanding of this large width is a challenge
that we take in the present work.

The theoretical determination of the ω properties in the medium has been addressed in numerous
studies [32–53] where the attention was centered, mostly, in the change of mass. The obtained mass
shifts split nearly equally into attractive and repulsive ones, and range from an attraction of the
order of 100-200 MeV [35, 37], through no changes in the mass [47, 48], to a net repulsion of the
order of 50 MeV[43]. As for the in-medium width of a ω meson at rest, in [33], where the three pion
decay mode is explicitly considered, it is found to increase by an order of magnitude at normal
nuclear saturation density as compared to the free width, while in a subsequent revision of the
model [37] a value of about 40 MeV is reported. A similar result was also reported in [38], while
the width was found to be around 60 MeV in [46] and [49]. All these studies point to a considerable
increase of the ω width in the medium with respect to its free width.
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Recently, the use of the hidden gauge theory to deal with the interaction of vector mesons with
baryons, using a unitary approach with coupled channels, has brought new light into the subject
since it interprets some baryonic resonances as being dynamically generated by this interaction
[54, 55]. This opens a new framework to study the interaction of vector mesons with nuclei, as
done recently for the K̄∗ [56], where a spectacular increase of the width of the K̄∗ in nuclei, of
around 250 MeV at nuclear saturation density, was found. With this perspective, we evaluate in
this work the ω width in nuclear matter, exploiting the analogies with the K̄∗ meson and addressing
other decay channels specific to the ω meson tied to its decay into three pions.

The paper is organized as follows. The formalism employed is described in Sect. II, where the
Lagrangians needed for the study of the ω properties in the medium are presented. In the next
subsections, the expressions for the ω self-energy in nuclear matter corresponding to the different
decay channels explored in this work are derived. Our results are discussed in Section III and some
concluding remarks are given in Sect. IV.

II. FORMALISM FOR VECTOR MESON INTERACTIONS

A free ω meson decays predominantly into three pions, most of the strength being associated to
the process ω → ρπ with the subsequent decay of the ρ meson into two pions. Since mω < mρ +mπ,
the mechanism proceeds through the tail of the ρ-meson distribution, as a result of which the ω

width is relatively small, Γ
(0)
ω = 8.49 ± 0.08 MeV, with 89.2% of this value corresponding to the

3π decay channel [57]. The situation may change drastically in the nuclear medium, since any
of the decay pions can be absorbed by a nucleon, exciting a so-called particle-hole excitation
and opening the allowed phase-space considerably. In addition, other mechanisms not forbidden
by QCD symmetries but energetically closed in free space, such as ω → KK̄, may also contribute
when the medium modifications of the K̄ and K mesons are incorporated. One should also consider
the modification of the ω properties associated to its quasielastic collisions with the nucleons in
the medium or other inelastic processes not incorporated by the previously mentioned absorption
mechanisms.

In this section we describe how the different contributions to the ω self-energy explored in this
work are obtained. We start presenting the Lagrangians describing the interaction of the ω meson
with other mesons (vectors and pseudoscalars) and with baryons of the ground-state octet. The
transition ω → ρπ, depicted generically in Fig. 1(a), is obtained from the vector meson dominance
(VMD) Lagrangians involving the anomalous V V P term described in [58]

LV V P =
G√

2
ǫµναβ〈∂µVν∂αVβP 〉 , (1)

where P is the matrix of pseudoscalar fields

P =









1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8









, (2)

Vµ is the matrix of vector mesons of the nonet of the ρ

Vµ =









ρ0

√
2

+ ω√
2

ρ+ K∗+

ρ− − ρ0

√
2

+ ω√
2

K∗0

K∗− K̄∗0 φ









µ

, (3)
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FIG. 1: Diagrams depicting the vertices needed in the evaluation of the ω meson self-energy: the anomalous
V V P term (a), the V P P term (b), and the V B → V ′B′ amplitude mediated by t-channel vector-meson
exchange.

and the 〈〉 symbol represents the trace in SU(3) space. The coupling constant of the V V P La-

grangian is G =
3g′2

4π2f
, where g′ = −GV MV√

2f2
[58], with f = fπ = 93 MeV and MV an appropriate

vector meson mass, which can be taken equal to the mass of the ρ meson. The value of GV can
be adjusted to ρ → ππ decay (GV = 69 MeV), to the pion charged radius (GV = 55 MeV) or can
be fixed invoking consistency with QCD asymptotic behavior (GV = f/

√
2) [59, 60]. In the latter

case one obtains G =
3mρ

2

16π2f3
= 14 GeV−1. Alternatively, one can also use the local hidden gauge

approach, which in its version of full vector meson dominance also leads to the same result [8, 61].
The formalism of the hidden gauge interaction for vector mesons, which we take from [5, 6] (see

also [62] for a practical set of Feynman rules), provides the interaction of vector mesons amongst
themselves

LIII = −1

4
〈VµνV µν〉 , (4)

where Vµν is given by

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] , (5)

with the coupling of the theory given by g = MV /2f . This Lagrangian gives rise to a three vector
vertex

L(3V )
III = ig〈(∂µVν − ∂νVµ)V µV ν〉 = ig〈(V µ∂νVµ − ∂νVµV µ)V ν〉 , (6)

needed for the evaluation of the V B → V ′B′ interacting terms mediated by t-channel vector
meson exchange, as seen in Fig. 1(c), which will describe, after unitarization, the elastic ωN → ωN
interaction and the inelastic transitions to the related coupled channels. The Lagrangian describing
the baryon-baryon-vector vertex involved in the V B → V ′B′ amplitudes is given by [33, 63]

LBBV = g
(

〈B̄γµ[V µ, B]〉 + 〈B̄γµB〉〈V µ〉
)

, (7)
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FIG. 2: Diagrammatic representation of the ω meson self-energy coming from its decay into the ρπ mode (a),
where the ρ meson decays into two pions (b) and the π propagator is dressed by its coupling to particle-hole
and ∆-hole excitations including short-range correlation effects (c).

where B stands for the matrix of the baryon octet [64, 65].
Finally, the coupling of the vector to pseudoscalar mesons depicted in Fig. 1(b), needed for

evaluating the ω → K̄K transition, is also provided by the hidden gauge Lagrangian as

LV P P = −ig 〈[P, ∂µP ]V µ〉 . (8)

A. ω self-energy from ρπ and uncorrelated πππ

Let us consider first the contributions to the ω width coming from its decay into the ρπ mode
in the nuclear medium. The self-energy for this process is depicted diagrammatically in Fig. 2(a),
where the ρ- and π-meson lines correspond to their medium propagators shown in Figs. 2(b) and
(c), respectively.

From the V V P Lagrangian, 1, we obtain the following ωρπ interaction vertex:

− iT = iLωρπ = iG ǫµναβ ∂µων∂αρβ π = iG ǫµναβ Pµǫνkαǫ′
β , (9)

where P and k are the four-momenta of the ω and ρ mesons, respectively. The contribution to the
ω self-energy coming from the diagram of Fig. 2(a) can then be written as:

− iΠω→ρπ(ρ, P ) =

∫

d4k

(2π)4
iG ǫµναβPµǫνkαǫ′

β iG ǫµ′ν′α′β′

Pµ′ǫν′kα′ǫ′
β′

× iDρ(ρ, k0, ~k ) iDπ(ρ, P 0 − k0, ~P − ~k ) , (10)

where Dρ and Dπ stand, respectively, for the ρ and π propagators. Working out the index con-
tractions and using the spectral decomposition of the meson propagators,

Dx(ρ, q0, ~q ) =

∫ ∞

0

dω

π
(−2ω)

Im Dx(ρ, ω, ~q )

(q0)2 − ω2 + iε
with x = ρ, π , (11)

Eq. (10) reduces to

Πω→ρπ(ρ, P ) =

∫

d3k

(2π)3

∫ ∞

0

dω

π

∫ ∞

0

dω′

π

[

2G2{(kP )2 − P 2k2}
P 0 − ω − ω′ + iε

− 2G2{(k′P )2 − P 2k′ 2}
P 0 + ω + ω′ − iε

]

× Im Dρ(ρ, ω,~k ) Im Dπ(ρ, ω′, ~P − ~k ) , (12)
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with P = (P 0, ~P ), k = (ω,~k ), k′ = (−ω,~k ), after integrating appropriately over k0 and omitting
the polarization dependence ~ǫ~ǫ ′. For practical purposes, one can take k′ ≃ k in the last term of
Eq. (12), which contributes very little due to the much larger denominator, and then the expression
can be written more compactly as

Πω→ρπ(ρ, P ) =

∫

d3k

(2π)3

∫ ∞

0

dω

π

∫ ∞

0

dω′

π
2G2{(kP )2 − P 2k2} 2(ω + ω′)

(P 0)2 − (ω + ω′)2 + iε

× Im Dρ(ρ, ω,~k ) Im Dπ(ρ, ω′, ~P − ~k ) . (13)

Note that Eqs. (12) and (13) contain a factor of 3 accounting for the three different charged
channels, ρ+π− , ρ0π0 and ρ−π+, an aspect that will be discussed later. The in-medium π and ρ
propagators are obtained from their corresponding self-energy through the Dyson equation:

Dx(ρ, q0, ~q ) =
1

(q0)2 − ~q 2 − m2
x − Πx(ρ, q0, ~q )

with x = ρ, π . (14)

The pion self-energy, Ππ(ρ, q0, ~q ), is strongly dominated by the p-wave coupling to particle-hole
(ph) and ∆-hole (∆h) components, displayed in Fig. 2(c), and also contains a small repulsive s-wave
contribution that takes over at small momenta, as well as contributions from 2p-2h excitations,
which account for two-nucleon pion absorption processes. The pion self-energy also accounts for the
effect of repulsive, spin-isospin NN and N∆ short range correlations [66], which are incorporated
through a RPA summed Landau-Migdal type interaction, and implements the usual monopole
form factor at each πNN and πN∆ vertex, namely Fπ(~q 2) = (Λ2

π − m2
π)/[Λ2

π − q0 2 + ~q 2], with
Λπ = 1200 MeV, as needed in the empirical study of NN interactions [67]. The details of the pion
self-energy employed in this work can be found in Refs. [68, 69].

This pion self-energy is employed in Ref. [13] to obtain, via the diagrams of Fig. 2(b), the in-
medium ρ self-energy and the corresponding in-medium propagator. The model also implements
vertex corrections and the effect of resonance-hole excitations, finding that, at normal nuclear
matter density ρ0 = 0.17 fm−3, the ρ meson mass does not change and its width is increased
by one third with respect to its free value, Γfree

ρ = 149.4 MeV. To simplify our calculations, we
parametrize the results of Ref. [13] in terms of a simple width function that depends on the nuclear
density and is corrected by the kinematical factors associated to the fact that we are dealing with
an off-shell ρ meson with invariant mass squared s = ω2 − ~k 2. Thus,

Γρ(ρ, s) = Γ(0)
ρ (s) + ∆Γρ(ρ, s) , (15)

where

Γ(0)
ρ (s) = Γfree

ρ

m2
ρ

s

k̄3(s)

k̄3
on

, (16)

and

∆Γρ(ρ, s) = 0.33 Γfree
ρ

ρ

ρ0

m2
ρ

s

k′3(s)

k′3
on

. (17)

The momenta appearing in the former equations are given by

k̄(s) =
λ1/2(s, m2

π, m2
π)

2
√

s
θ(

√
s − 2mπ) , k̄on = k̄(m2

ρ) ,

k′(s) =
λ1/2(s, m2

π, 0)

2
√

s
θ(

√
s − mπ) , k′

on = k′(m2
ρ) ,
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where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källen function. Note that the expression
for k′ reflects the fact that the in-medium ρ meson decays, in first approximation, into a π meson
and a ph excitation of essentially zero energy. The ρ meson self-energy needed for the evaluation
of the in-medium ρ propagator in Eq. (13) is then given by

Πρ(ρ, k) = −i mρ Γρ(ρ, ω2 − ~k 2) . (18)

This approach of parametrizing the ρ spectral function in terms of simply increasing the ρ width
has been employed in some experimental analyses. However, it misses the bump in the ρ spectral
function at low invariant masses due to the N∗(1520)h excitation [10, 13], a region of the ρ spectral
function that plays a relevant role in the ω self-energy as shown recently in [70]. On the other
hand, recent developments on the vector-baryon interaction using unitarity in coupled channels
and input from the local hidden gauge approach [55, 71, 72] are able to provide the ρN scattering
amplitude, while generating dynamically some resonances at the same time, such as the N∗(1520)
and the N∗(1700) with JP = 3/2− [72] and one related to the N∗(1650) with JP = 1/2− [55, 71].
The isospin I = 3/2 amplitudes are also evaluated in [55], although they do not present resonant
structures (some resonances are generated from the interaction of vector mesons with the decuplet
of baryons [54] but they do not apply here).

In view of this, we will also perform calculations dressing the ρ with its low-density self-energy

Πρ = tρN→ρN ρ , (19)

where tρN→ρN is the ρN amplitude calculated in [55, 71, 72] averaged over total isospin I and
angular momentum J ,

tρN→ρN =

∑

I,J

(2I + 1)(2J + 1)tI J
ρN→ρN

∑

I,J

(2I + 1)(2J + 1)
, (20)

with I = 1/2, 3/2 and J = 1/2, 3/2.
In Fig. 3 we show results for the ρ spectral function obtained from three prescriptions for the ρ

self-energy:
(a) dash-dotted line: the phenomenological width given by Eqs. (15)-(17) ,
(b) dashed line: employing the amplitude tρN→ρN obtained in Refs. [55, 71, 72] from a coupled
channel unitary approach with input from the local hidden gauge lagrangians, but replacing the
I = 1/2, JP = 3/2− contribution by the N∗(1520)N−1 term of Ref. [13] that is parametrized as

t1/2,3/2−

=
g̃2

N∗Nρ√
s′ − MR + iΓ/2

, (21)

where MR=1520 MeV, Γ = 150 MeV and g̃N∗Nρ = 7.73, a value rather similar to the one obtained

in [72], |g̃N∗Nρ| = 6.39. The argument
√

s′ of t1/2,3/2−

is determined from the four-momentum of

the ρ, pρ = (ω,~k ), and that of a nucleon at rest in the nucleus, s′ = (pρ + pN )2 = (ω + mN )2 −~k 2,
and
(c) solid line: taking the complete tρN→ρN from the model of Refs. [55, 71, 72]

We can see in Fig. 3 that the ρ width is quite similar in all cases, but the bump from the N∗(1520)
excitation is missing in the pure phenomenological model based on Eqs. (15)-(17). This excitation
has a larger strength in the N∗N−1 resonance pole approach of [13] than in the microscopical
model of [72], a difference that will have repercussions on the value of the ω width in the medium
as will see.
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FIG. 3: The spectral function of a ρ-meson of zero momentum in nuclear matter at saturation density for
the three prescriptions employed in this paper. Dash-dotted line: the phenomenological width given by
Eqs. (15)-(17); dashed-line: employing the tρN→ρN model from the coupled channel unitary model with
local hidden gauge lagrangians of Refs. [55, 71, 72] but replacing the I = 1/2, JP = 3/2− amplitude by the
N∗(1520)N−1 contribution of Ref. [13]; solid line: taking the complete tρN→ρN amplitude from the model
of Refs. [55, 71, 72].

Finally, the in-medium ω width coming from the ω → ρπ channel is obtained from

Γω→ρπ(ρ, P ) = − Im Πω→ρπ(ρ, P )

P 0
, (22)

and the corresponding in-medium width correction is

∆Γω→ρπ(ρ, P ) = Γω→ρπ(ρ, P ) − Γ(0)
ω→ρπ(P ) , (23)

where the free ω → ρπ decay width can be obtained from the ω self-energy of Eq. (13) by replacing

Im Dπ(ρ, ω′, ~P − ~k ) → −πδ(ω′ − ωπ(~P − ~k ))
1

2ωπ(~P − ~k )
, (24)

Im Dρ(ρ, ω,~k ) → Im
1

ω2 − ~k2 − m2
ρ + imρΓ

(0)
ρ (ω2 − ~k2)

. (25)

with ωπ(~P − ~k ) =
√

(~P − ~k )2 + m2
π. After performing the integration over ~k, an appropriate

change of variable allows one to write the free ω → ρπ width as:

Γ(0)
ω→ρπ(P ) = − Im Π

(0)
ω→ρπ(P )

P 0
= − G2

4π2

∫

dm̃2
ρ Im

k3(m̃2
ρ)

m̃2
ρ − m2

ρ + imρΓ
(0)
ρ (m̃2

ρ)
, (26)

where k(m̃2
ρ) = λ1/2(m2

ω, m̃2
ρ, m2

π)θ(mω − m̃ρ − mπ)/(2mω).
Note that the factor of 3 in Eqs. (12)-(13) would account appropriately for the three different

isospin channels, ρ+π− , ρ0π0 and ρ−π+, if the ρ meson was a stable particle, since in this case the
three channels would correspond to different final states that would not interfere. However, the
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FIG. 4: Contributions to the ω → ρπ → π+π0π+ decay process, coming from three different intermediate
charged channels: ρ+π−, ρ0π0 and ρ−π+.
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FIG. 5: Diagrammatic representation of direct and interference contributions to the ω meson self-energy
coming from its decay into the ρπ mode. Top row: free space contributions. Bottom row: in-medium
contributions.

final ρ meson decays into two pions, as depicted by the first three diagrams of Fig. 4. One then
has identical final states coming from the three different channels that may give rise to important
interference effects. This is more clearly visualized from the contributions to the ω width in free
space displayed in the top row of Fig. 5, where the direct contribution of the ρ+π− channel is
shown in diagram (a), while the interference between the ρ+π− and ρ0π0 channels is shown in
diagram (b). There are a total of 9 contributions of the type shown in the top row of Fig. 5, but
in our calculation we are only considering the three direct terms of type (a) and, consequently, we
will miss part of the free ω width, as we will see. Since the interference terms vanish when the
ρ width is zero, a rough guess of their relevance can be given by Γρ/mρ. However, when these
processes occur in the medium, the situation is quite different, as can be easily understood from
the diagrams displayed in the bottom row of Fig. 5. We see there that the pion emitted in the
ω decay converts into a ph excitation, which costs very little energy. In this case, the virtual
ρ meson can be left practically on-shell, enhancing the size of its propagator. For this reason,
the direct diagram represented in Fig. 5(a′), where the two ρ propagators can be practically put
on-shell simultaneously, is much larger than any of the other interference diagrams, such as that
in Fig. 5(b′), because in this case when the ρ propagator on the left carries practically the full
incoming energy mω, being then almost on-shell, the ρ propagator on the right only carries an
energy of about mω/2, being far off-shell. Therefore, the contribution of the interference terms to
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the in-medium corrections of the ω meson self-energy is essentially negligible. A more quantitative
estimate can be done knowing that the average π− momentum in diagrams (a′) and (b′) carries
around 300 MeV/c. One finds that the ph excitation takes about 50 MeV of energy and then the
ρ+ has an invariant mass of about 665 MeV in diagrams (a′) and (b′), while the ρ0 in diagram
(b′) has an invariant mass around 387 MeV. The combination of the reduced ρ0 propagator and its
smaller ππ vertex renders the diagram (b′) much less relevant compared to (a′) than diagram (b)
is with respect to (a), since in this latter case the invariant masses of the propagators are much
closer, as one finds, analogously, taking an estimated average π− momentum of 200 MeV/c.

In order to obtain the ω width, we need to take a value for the coupling constant G. Following
the arguments given in the recent work of Ref. [73], this coupling can be determined from different
sources. Their fit to vector meson radiative decays considering that the photon emission is mediated
by neutral vector mesons favors a value G = 11.9±0.2 GeV−1, which is supported by the agreement
between V MD and low energy theorems for π0 → γγ decay. Using this value for the coupling

constant G, a free ω width of Γ
(0)
ω→ρπ = 4.4 MeV is reported in [73]. In the present work we obtain,

from equation Eq. (26), a value of 2.8 MeV, the difference coming precisely from the interference
terms not considered here. The lack of agreement with the experimental ω width from its three-
pion decay channel, Γexp

ω→3π = 7.57 ± 0.07 MeV [57], drove the authors of [73] to complement their
model with a contact term, as that of the diagram of Fig. 4(d), or with contributions from higher
mass meson resonances, like the ρ′(1450). The latter contributions can also be mimicked by a
contact term, especially because some of the ρ′ meson decay parameters are not sufficiently well
known. The coupling constant of the contact term can then be adjusted so as to reproduce the free
decay width of the ω into three pions. One may view the effect of the contact term as providing a
background that needs to be added to the ω → ρπ process. A different approach to this problem
is followed in [8, 61]. In these works the local hidden gauge approach is used to determine the
anomalous sector and, in addition to the ω → ρπ → πππ decay mode, one derives a contact term
given in terms of the parameters c1, c2 and c3, which one can determine under the assumption of
vector meson dominance. Here, we have chosen to follow the more phenomenological approach of
[73].

An straightforward implementation of the contact term is obtained by the following replacement

G2 Im Dρ(ρ, ω,~k ) → A Im

{

1

ω2 − ~k 2 − m2
ρ − m2

X − imρΓρ(ρ, s = ω2 − ~k 2)

}

, (27)

in Eq. (13), taking mX → ∞. This substitution implements a propagator having a practically
constant real part and an imaginary part that incorporates the correct two-pion phase-space in the
free case or the medium corrected phase-space at finite density.

The dynamical arguments for the negligible effect of in-medium interferences in the case of the
ω → ρπ process, based on the ρ propagator being practically on-shell, are no longer valid for the
terms involving the contact term (direct contact term contributions and their interference with the
ρπ terms). We then assume these contact-term interferences to have a similar size in free space
and in the medium. Therefore, interpreting the constant A as containing effectively the effect of
these interferences, we adjust its value so that our calculation reproduces the strength of the free

ω width not accounted for by the ω → ρπ terms, namely ∆Γcontact
ω→3π = Γexp

ω→3π − Γ
(0)
ω→ρπ = 7.57

MeV −4.4 MeV= 3.17 MeV, where we have taken the proper value for Γ
(0)
ω→ρπ that contains the

interference effects of the ρπ mechanism [73]. An alternative option is to adjust the size of G to
reproduce the complete free ω → πππ width directly from the ρπ mechanism. The required value
is then G = 15.7 GeV−1 [73]. We shall exploit both options in the results section.
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FIG. 6: The ω → K̄K channel renormalized in the nuclear medium.

B. ω self-energy from K̄K

Analogously to the study of the K̄∗ meson in the nuclear medium [56], where the decay of the
K̄∗ meson to K̄π is renormalized by the inclusion of the K̄ and π self-energies in the loop function,
we consider in this section the possible modifications of the KK̄ loop in the ω propagator in the
nuclear medium as depicted in Fig. 6. The difference respect to the case of the K̄∗ meson decaying
into K̄π is, though, that the ω → K̄K channel is energetically closed in free space. However, due
to the inclusion of the self-energy of the K̄ meson, some processes are possible in nuclear matter.

Let us consider first the diagrams in Fig. 6 in the free case, i.e. ignoring the self-energy
insertions. For the coupling of the ω meson to a K̄K pair, we take the Lagrangian given by
Eq. (8). Both channels depicted in Fig. 6, neutral and charged, are included in the evaluation of
this contribution to the ω self-energy that in the free space can be written as

− iΠ0
ω→KK̄(P ) = 4g2

∫

d4k

(2π)4

kµǫµkνǫν

k2 − m2
K̄

+ iǫ

1

(P − k)2 − m2
K + iǫ

. (28)

Making the substitution:

kµkνǫµǫν → 1

3P 2

{

P 2k2 − (kP )2
}

ǫ ǫ′ → 1

3P 2

{

(kP )2 − P 2k2
}

~ǫ~ǫ ′ , (29)

which for a ω meson of zero momentum equals ~k 2/3, and performing the integral in the k0 variable,
we obtain,

Π0
ω→KK̄

(P ) =
4g2

3P 2

∫

d3k

(2π)3

[

ωK(~P − ~k ) + ωK̄(~k )

2ωK(~P − ~k )ωK̄(~k )

]

(kP )2 − P 2k2

(P 0)2 −
[

ωK(~P − ~k ) + ωK̄(~k )
]2

+ iε
. (30)

In the medium, we include the self-energy of the antikaon, ΠK̄(ρ, k0, ~k ), and obtain the antikaon
propagator

DK̄(ρ, k0, ~k ) =
1

(k0)2 − ~k2 − m2
K̄

− ΠK̄(k0, ~k )
, (31)

that in the Lehmann representation reads

DK̄(ρ, k0, ~k ) =

∫ ∞

0

dω

π
(−)

{

ImDK̄(ρ, ω,~k )

k0 − ω + iη
− ImDK(ρ, ω,~k )

k0 + ω − iη

}

. (32)

For the details of the antikaon self-energy and, hence, its propagator, we refer to [68, 69, 74–83].
Essentially, the K̄ self-energy in symmetric nuclear matter is obtained from the antikaon-nucleon
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interaction within a chiral unitary approach. The model incorporates s- and p-wave contributions
in a self-consistent manner. The coupled-channel structure for the s-wave interaction includes the
following channels: K̄N , πΣ, ηΛ, KΞ for isospin I = 0, and K̄N , πΛ, πΣ, ηΣ, KΞ for isospin
I = 1. The p-wave contribution to the K̄ self-energy is built up from the coupling of the K̄ meson
to ΛN−1, ΣN−1 and Σ∗N−1 excitations.

For the kaon, due to the much weaker KN interaction, we use the low-density approximation
and replace m2

K → m2
K + tKN→KN ρ, with tKN→KN ρ = 0.13 m2

Kρ/ρ0 [84]. Thus, we can write the
self-energy of the ω meson as,

− iΠω→KK̄(ρ, P ) = − 4g2

3P 2

∫

d4k

(2π)4

(kP )2 − P 2k2

(P − k)2 − m2
K − tKN→KN ρ

×
∫ ∞

0

dω

π

{

ImDK̄(ω,~k )

k0 − ω + iη
− ImDK(ω,~k )

k0 + ω − iη

}

. (33)

As we take the physical mass of the ω meson, the real part of its in-medium self-energy must vanish

at ρ = 0. Therefore, the real part of the free ω self-energy, Π
(0)

ω→KK̄
(P ), must be subtracted to

Πω→KK̄(ρ, P ). The part of negative energy of the K̄ propagator, represented by the last term in
Eq. (32), is small. Its medium modifications are not relevant and to a very good approximation it
will be cancelled by the corresponding term of the free ω self-energy. Then, after integrating over
the k0 variable, and subtracting the real part of the free ω → KK̄ self-energy of Eq. (30), one gets
the following correction to the ω width:

∆Πω→KK̄(ρ, P ) = − 4g2

3P 2

∫

d3k

(2π)3

{

(kP )2 − P 2k2
}

[

∫ ∞

0

dω

π

ImDK̄(ρ, ω, k)

2ω̃K(~P − ~k )

1

P 0 − ω̃K(~P − ~k ) − ω + iη

+
1

2ωK(~P − ~k )2ωK̄(~k )

1

P 0 − ωK(~P − ~k ) − ωK̄(~k ) + iη

]

. (34)

where ω̃K(~P − ~k) =
√

(~P − ~k)2 + m2
K + tKN→KN ρ. Because of gauge invariance of the model, it

+

K̄

K

ω

+ +

FIG. 7: Self-energy diagrams at first order in the nuclear density contributing to the decay of the ω meson
in the medium.

is necessary to include vertex corrections [85, 86] associated to the last three diagrams of Fig. 7.
Here we only consider vertex corrections for the antikaon. As described in Ref. [84], the vertex
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corrections are easily implemented by evaluating the diagram of Fig. 7 with the p-wave antikaon
self-energy replaced by

Πp−wave

K̄
(ρ, k) →

Πp−wave

K̄
(ρ, k)

~k 2







~k 2 +
[

D0
K̄(k)

]−1
+

3

4

[

D0
K̄

(k)
]−2

~k 2






, (35)

where D0
K̄

(k) is the free K̄ meson propagator.

C. ω self-energy from the s-wave ωN interaction with vector mesons and baryons

For completeness we also explore the contribution to the ω self-energy coming from the s-wave
ωN interaction with vector mesons and baryons. The ωN interaction can be constructed within
the hidden gauge formalism in coupled channels, as done in Ref. [55]. We proceed as in this latter
reference by constructing the Feynman diagrams that lead to the vector-baryon (V B) transitions
V B → V ′B′ via the exchange of a vector meson, as seen in Fig. 1(c). We thus make use of
the three-vector vertex Lagrangian, given by Eq. (6), as well as the Lagrangian for the coupling
of vector mesons to the baryon octet given in Eq. (7). Since we are interested in studying the
interaction of the ω meson in nuclear matter, we concentrate in the isospin I = 1/2 sector, where
we find five vector meson-baryon channels that couple to the ωN system: ρN , ωN , φN , K∗Λ and
K∗Σ.

As discussed in Ref. [55], one can proceed by neglecting the three momentum of the external
vectors versus the vector mass, in a similar way as done for chiral Lagrangians under the low-
momentum approximation, and one obtains the V B → V ′B′ transition potential:

Vij = −Cij
1

4f2

(

k0
i + k0

j

)

~ǫi ~ǫj, (36)

where k0
i , k0

j are the energies of the incoming and outgoing vector mesons, respectively, ~ǫi ~ǫj is the
product of their polarization vectors, and Cij are the symmetry coefficients [55].

The meson-baryon scattering amplitude is then obtained from the coupled-channel on-shell
Bethe-Salpeter equation [74, 77]

T = [I − V GV B ]−1 V , (37)

with GV B being the diagonal matrix of the loop functions for the meson-baryon intermediate states.
We note that the iteration of diagrams implicit in the Bethe-Salpeter equation for the scattering
of vector mesons with baryons implies a sum over the polarizations of the internal vector mesons
which, because they are tied to the external ones through the ~ǫi ~ǫj factor, leads to a correction
in the GV B function of ~q 2/3M2

V [87], which can be safely neglected in consonance with the low-
momentum approximation done in [55]. This leads to the factorization of the factor ~ǫi ~ǫj for the
external vector mesons also in the T matrix. As a consequence, the JP = 1/2−, 3/2− vector-baryon
scattering amplitudes are degenerate.

The loop function of a vector meson of mass m and a baryon of mass M with total four-
momentum P (s = P 2) reads:

GV B(s, m2, M2) = i 2M

∫

d4q

(2π)4

1

(P − q)2 − M2 + iǫ

1

q2 − m2 + iǫ
, (38)

which is evaluated using dimensional regularization and taking a natural value of −2 for the
subtraction constants at a regularization scale µ = 630 MeV [77]. However, the relatively large
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decay width of the ρ vector meson into ππ pairs is incorporated in the loop function via the
convolution [88]:

G̃(s) =
1

N

∫ (m+∆r)2

(m−∆l)2

dm̃2
(

− 1

π

)

Im
1

m̃2 − m2 + imΓ(0)(m̃2)
GV B(s, m̃2, M2) , (39)

with

N =

∫ (m+∆r)2

(m−∆l)2

dm̃2
(

− 1

π

)

Im
1

m̃2 − m2 + imΓ(0)(m̃2)
(40)

being the normalization factor. The integration range around the ρ mass is established by the left
and right parameters ∆l, ∆r, taken to be a few times the free ρ width, Γfree

ρ . The energy dependent

width Γ(0)(m̃2) is given in Eq. (16).
In nuclear matter we should consider the contributions to the ω self-energy coming from its

interactions with the nucleons in the Fermi sea. The weak interaction of ω mesons with the nucleons,
as seen in Ref. [55], suggests the possibililty of extending the validity of the low-density theorem
to normal nuclear matter density or beyond. Thus, we obtain the ω self-energy, depicted in Fig. 8,
by summing the tωN→ωN amplitude in free space over the nucleon Fermi sea, n(~k ) = θ(kF − |~k|),

Πω→V BN−1(ρ, P ) =

∫

d3k

(2π)3
n(~k ) 4 tωN→ωN (P 0 + EN (~k ), ~P + ~k ) , (41)

where P 0, ~P stand for the energy and momentum of the ω in the nuclear matter rest frame, and

EN (~k) =
√

~k 2 + M2
N is the nucleon energy.

ω V

B

N

FIG. 8: Self-energy diagram coming from the s-wave ωN interaction with vector mesons and baryons

D. General remarks

As one can see, we have followed here a relatively unconventional approach. Some groups study
the γN → ωN , πN → ωN , ωN → ππN reactions incorporating a set of resonances, their properties
and couplings to γN or meson-baryon components being fitted to data, using also constraints from
better known reactions, such as γN → πN , γN → ππN , πN → ππN , etc. However, there are
still large ambiguities, as reflected from the different results obtained by different groups or even
within the same group [3, 47, 49] . Other works like that of Ref. [43] generate the resonances
dynamically assuming that all baryons other than N and ∆(1232) are composite meson-baryon
states. The work has the advantatge of providing not only the resonances but also the couplings,
thus reducing uncertainties. Yet, it also has its limitations, since not all resonances are dynamically

14



generated, or at least some of them do not qualify as meson-baryon quasibound states but rather
as states made out of two mesons and one baryon [89, 90]. Some also demand a subtle mixture of
pseudoscalar-baryon and vector-baryon components [71, 72].

Arguments for a limited value of explicit analogies in related reactions can be found in the
γN → ππN process. A successful model for this reaction was developed in [94, 95] where the ∆
resonance played a dominant role in a diagram as that of Fig. 9(a), which in the local hidden gauge
approach is interpreted as the diagram of Fig. 9(b) plus its associated Kroll Ruderman term [72].
Note however that, while V in diagram Fig. 9(b) stands in principle for the neutral vector mesons
ρ, ω, φ, the ω meson does not contribute because of the G-parity forbidden ω → ππ decay, thus
the link between the γN → ππN and ωN → ππN reactions is lost.

Our approach has looked in detail into the decay channels of the ω in the medium, including
some which are overlooked in other works, as those studied in the two former subsections. The
most important contribution, coming from ω → ρπ decay, relies on an explicit calculation of the
ρN scattering matrix which generates dynamically some resonances, as studied in [55, 71, 72].

γ

∆

π

N
π

N N

N
π

∆

π

π

γ

V

(a) (b)

FIG. 9: Most relevant mechanism for the γN → ππN reaction (a), and its interpretation within the local
hidden gauge approach (b).

III. RESULTS

We start this section by showing our results for the contributions to the in-medium ω width
coming from the ω → 3π process. We recall that, due to the coupling of the pion to ph excitations in
the medium, this channel would mainly correspond to absorption processes of the type ωN → ππN ,
together with higher order contributions in density of the type ωNN → πNN .

In Table I we give the in-medium width correction ∆Γω→ρπ for a ω meson at rest in nuclear
matter at normal saturation density employing two different models for the ω → ρπ interaction
and dressing the ρ with the phenomenological parametrization of the width given by Eq. (17). The
first model takes a ω → ρπ coupling value of G = 11.9 GeV−1, obtained from a fit to vector meson
radiative decays [73]. Since this value of G does not give the full 3π width of a free ω, the model
must be complemented by a contact term, as already explained in Sect. II A. The contribution of
these two terms to the in-medium ω width correction are shown in Table I, together with their
sum. The ρπ mechanism represents about 60% of the 3π strength. The second model corresponds
to a totally different strategy, which consists of adjusting the the ωρπ coupling to a value G = 15.7
GeV−1, which reproduces the full ω → 3π free width. Interestingly, the results obtained by the two
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models are quite similar. This is a welcome feature since any other model employing a different
value of G, when complemented by the appropriate contact-term, should produce values of the
in-medium ω width correction in between the ones obtained for the two extreme models considered
in this work.

G = 11.9 GeV−1 G = 15.7 GeV−1

ω → ρπ 54.5 94.9

contact 36.9 –

total ∆Γω→3π 91.4 94.9

TABLE I: Contributions to the in-medium correction of the ω width ∆Γω→3π at P 0 = mω and ~P = 0
in nuclear matter at normal saturation density, for two different ω → ρπ coupling models, in the case of
dressing the ρ with the phenomenological parametrization of Eq. (17) and taking a pion form-factor cut-off
of Λπ = 1200 MeV.

Unless it is explicitly mentioned, the results shown in this section will be calculated using
the effective coupling of G = 15.7 GeV−1. The results of Table II intend to estimate how the
in-medium ω width correction coming from the ω → ρπ mechanism depends on the particular
in-medium properties of the π and ρ mesons. We present results for three different values of the
pion form-factor cut-off, Λπ = 1000, 1200, and 1400 MeV, which are the appropriate ones for
monopole type form factors employed in studies of the nucleon-nucleon interaction [67]. The first
row gives the results obtained when only the π meson is dressed, while the results of the next
rows incorporate the additional dressing of the ρ meson according to the three different approaches
considered in this work: a) a simple parametrization consisting in an increase of the ρ width by
33% at ρ = ρ0 (second row), b) the approach that mimicks the results of Ref. [13] by implementing
the coupling to an explicit N∗(1520) resonance (third row) and, finally, c) a ρ self-energy obtained
from a tρN→ρN amplitude derived entirely from the hidden gauge formalism that generates the
N∗(1520) dynamically (fourth row). We observe that the in-medium pion self-energy represents

Λπ = 1000 MeV Λπ = 1200 MeV Λπ = 1400 MeV

only π 69.0 76.5 79.2

π + ρ(param) 85.1 94.9 98.9

π + ρ(N∗N−1) 128.7 144.5 153.5

π + ρ(tρN→ρN ) 91.1 101.2 106.4

TABLE II: Contributions to the in-medium correction of the ω width ∆Γω→3π at P 0 = mω and ~P = 0 in
nuclear matter at normal saturation density, for three different values of the pion form-factor cut-off and
three different models for the ρ-meson self-energy.

the most important contribution to the ω width, as already noted in [46]. Dressing the ρ also adds
a substantial contribution, more moderate in the case of the phenomenological model for the ρ
self-energy because the low-energy components of the ρ spectral function play a significant role,
as stressed recently in [70], where they are referred to as ”space-like” contributions. This also
explains that the approach using an explicit N∗ component, with more strength at low energy,
gives a larger value for the in-medium ω width correction, in qualitative agreement with what
is found in [70]. We have checked that, for a given model of the ρ self-energy, changes in other
components of the pion self-energy besides the form-factor cut-off, such as employing a constant
Landau-Migdal parameter g′ = 0.6, or implementing relativistic corrections at the πNN and πN∆
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vertices, or using a static version of the pion form factor, do not alter the results beyond the range
of values shown in Table II.

Adding the free decay width of the ω → ρπ channel, 7.57 MeV, and dessing the ρ meson with
the tρN→ρN amplitude derived entirely from the hidden gauge lagrangians in a unitary coupled
channel model, we obtain Γω = 109 ± 10 MeV, the error being associated to variations in the
parameters of the π meson self-energy within reasonable limits.

We would like to comment on the fact that Eq. (13) also provides a real part of the ω self-energy
in the medium, Re Πω→ρπ(ρ, P ). When subtracting the free space contribution, Re Πω→ρπ(ρ =
0, P ), one could obtain an estimate of the ω mass shift. However, the calculation requires to
perform integrals over high momentum and energy components of the π and ρ propagators, on
which one does not have a good knowledge. We have explored various strategies and have obtained
ω mass shifts ranging from −100 to 100 MeV, meaning that it is not possible to obtain a sensible
stable result. Therefore we focus only on discussing the medium modifications of the ω width.
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FIG. 10: Width of the ω meson at normal nuclear matter density and ~P = 0 as a function of its energy P 0.
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FIG. 11: Width of the omega meson at P 0 = mω and ~P = 0 as a function of the nuclear matter density.
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In Fig. 10 we show the width of a ω meson at rest in nuclear matter at normal density as a
function of the ω energy P 0, for the three prescriptions of the ρ-meson self-energy employed in
this work and using the model with G = 15.7 GeV−1. The in-medium ω width increases smoothly
with energy for all the ρ-dressing models employed, the phenomenological one (thick dash-dotted
line) presenting a stronger dependence due to the p-wave nature of the employed parametrization,
Eq. (17). In this case, results are also shown for the model that uses G = 11.9 GeV−1 plus a contact
ω → 3π term (thin dash-dotted line). We observe that, up to the free ω mass, mω = 783 MeV,
both models present a similar behavior but beyond this energy the width of the model employing
G = 11.9 GeV−1 and a contact-term contribution evolves more slowly, an effect tied to the weaker
energy dependence of the contact term.

The dependence of the ω width on the nuclear matter density is shown in Fig. 11, for the three
prescriptions of the ρ-meson self-energy and employing the model with G = 15.7 GeV−1. We
observe a smooth increase of the ω width with density. The different non-linear density effects
observed in the ω width are tied to the particular way the ρ-meson is dressed. In general, the
models that have a larger ρ-meson strength at low energies also leave a stronger imprint on the ω
self-energy, thus making the non-linear density effects to be more emphasized. An exception occurs
for the phenomenological parametrization of Eq. (17). In this case, the p-wave nature of the ρ width
makes it to increase more rapidly with density, hence magnifying the non-linear density effects of
the ω width. For this approach to the ρ self-energy, we also present in Fig. 11 a calculation for the
model that uses G = 11.9 GeV−1 and a contact-term, obtaining essentially the same behavior with
density as that for the G = 15.7 GeV−1 model.

From the low density behavior of the ω width, we can derive the imaginary part of the scattering
length. This is done via the low-density theorem

Πω(ρ → 0) = tωN→ωNρ . (42)

Knowing

aωN = − 1

4π

MN

MN + mω
tωN→ωN , (43)

with tωN→ωN being the amplitude at threshold, and

Γω = − Im Πω

ωω
, (44)

we find

Im aωN =
1

4π

MN

MN + mω

mωΓω

ρ
. (45)

Taking our results for the ω width at ρ = 0.1ρ0, in the case the ρ meson is dressed from the
unitarized tρN→ρN amplitude, we obtain

Im aωN ≈ 0.39 fm (46)

which compares favourably with the values Im aωN ≈ 0.31 fm from [49], Im aωN ≈ 0.30 fm from
[37] and Im aωN ≈ 0.20 fm from [43]. Not surprisingly our value is somewhat bigger since our
approach incorporates more decay channels.

We now present in Fig. 12 the in-medium ω width correction coming from its coupling to KK̄
states and their in-medium excitations. We observe that this contribution is very small compared
with the values for the ω width coming from the anomalous decay ω → ρπ in nuclear matter.
At normal nuclear matter saturation density and energies around the free ω mass, the in-medium
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FIG. 12: In-medium ω width coming from its coupling to KK̄, at ρ0 = 0.17 fm−3 and as a function of the
ω energy P 0.

700 750 800 850 900 950 1000

P
0
  [MeV]

0

1

2

3

4

5

Γ ω
−−

>V
B

N
-1

 (ρ
0,P

0 ) 
 [

M
eV

]

FIG. 13: Width of a zero momentum ω meson due to the s-wave ωN → V B interaction, at normal nuclear
matter density ρ0 = 0.17 fm−3 and as a function of the ω energy P 0.

width correction associated to the ω → KK̄ transition for a ω meson at rest is ∆Γω→KK̄(ρ0, mω) =
−Im Πω→KK̄(ρ0, mω)/mω = 2.9 MeV. This width is mainly coming from the p-wave coupling of the
antikaon to Y h components, since these are the lowest possible K̄ excitations in the medium. This
ω → KK̄ in-medium width correction is therefore associated to processes such as ωN → KΣ and
KΛ, which are above their thresholds by 36 MeV and 110 MeV, respectively. The antikaon-nucleon
s-wave driven interaction terms, such as K̄N → πΛ, πΣ, which are significantly dominant over the
p-wave K̄N → Y ones, do not contribute to the related ωN → KK̄N → KπΛ, KπΣ processes,
since their corresponding thresholds are closed by 28 MeV and 102 MeV, respectively.

We finally present in Fig. 13 the ω width correction associated to the elastic an inelastic pro-
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cesses implemented by the s-wave interaction of ωN with vector mesons and baryons as a function
of the ω energy. We observe that this contribution produces a very small ω width correction,
∆Γω→V BN−1(ρ0, mω) ∼ 0.5 MeV for energies around the free ω mass and at normal nuclear sat-
uration density ρ0. This result would not change if a self-consistent calculation of the in-medium
tωN→ωN amplitude, implementing the full width of the ω meson in the loop function of the ωN
channel, was attempted. The same applies to a possible incorporation of the in-medium width
of the ρ meson. This is due to the fact that the diagonal ωN − ωN and non-diagonal ωN − ρN
couplings are zero [55] and any change in the ω or ρ widths will only affect the ωN − ωN am-
plitude via the indirect coupling to K∗Y (Y = Λ, Σ) states, lying about 300 MeV above the ωN
threshold, in higher order scattering processes. The small ω width correction obtained from the
s-wave interaction of the vector mesons and baryons should be associated to the elastic ωN → ωN
and the inelastic ωN → ρN processes, which are the only possible decay channels allowed in the
employed vector-baryon interaction model [55].

The implementation of pseudoscalar mesons into the scheme, hence opening vector-baryon to
pseudoscalar-baryon transitions such as ωN → πN , does not seem to change the tωN→ωN ampli-
tude significantly [71]. We note that the coupling between the vector-baryon and the pseudoscalar-
baryon channels implemented by the box-diagrams built up in [71] is done through t-channel
pseudoscalar meson exchange, while the anomalous t-channel vector-exchange terms are not con-
sidered. Actually, a proper implementation in the ω → ρπ decay channel of the low energy branch
of the ρ-meson self-energy, associated to ph excitations via a ρNN -type coupling, would provide
these type of terms, giving rise to an additional contribution to the ω width coming from the
ωN → πN transition. However, our simple parametrization of the ρ-meson self-energy, given in
Eq. (17), or the other two prescriptions miss this source of low energy strength of the ρ spectral
function. For this reason, we adopt the pragmatic, safe and model independent point of view
discussed by Friman in [91], where the contribution of the πN channel to the width of the ω meson
was obtained from the use of detailed balance (to relate the measured π−p → ωn cross section to
the one of the reversed process ωn → π−p) and unitarity (to connect the value of this cross section
with the π−p contribution to the ωn forward scattering amplitude). A fit to the π−p → ωn data
provided a πN channel contribution to the width of the ω meson of about 9 MeV [91].

Joining all the contributions together, we conclude that the width of the ω meson at rest in
nuclear matter at normal saturation density is Γω(ρ0, mω) = 7.6 MeV (free width)+108.7 MeV
(ωN → ππN, ωNN → πNN)+2.9 MeV (ωN → KY )+0.5 MeV (ωN → K∗Y → ρN)+9 MeV
(ωN → πN)= 129±10 MeV, where the 10 MeV error is associated to uncertainties of the theoretical
model. We note that one could add one more MeV to account for the other free decay channels of
the ω meson, ω → π0γ and ω → π+π−.

Our calculated value of the width of the ω meson at rest in nuclear matter is larger than that
found by other works in the literature. A few models derive the ω width from the elastic ωN
amplitude by means of the low-density theorem, finding ω width values of the order of 40−60 MeV
[37, 43, 49] up to 75 MeV [52]. The works of Refs. [43, 49] employ amplitudes that have been
fitted to a variety of elastic and inelastic γN and πN data, implementing resonance contributions
and rescattering effects in unitary models. The self-consistent approach of Ref. [46], studying the
influence of the in-matter spectral function of the pion in the vector-meson self-energies, is the
one closer to the methodology employed in the present work for the contribution to the ω width
from the ρπ mechanism. Yet, a value of about 60 MeV is quoted in Ref. [46] while our result
from this ω → ρπ channel is of the order of 100 MeV. We have traced back the differences to the
much softer form-factor of gaussian type, F g(~q ) = exp(−~q 2/Λ2) with Λ = 440 MeV, employed in
Ref. [46], compared with the monopole form-factor, F m(~q 2) = (Λ2

π − m2
π)/[Λ2

π − q0 2 + ~q 2] with
Λπ = 1200 MeV, employed in the present work and taken from NN interaction studies [67]. The
ratio (F m/F g)2 depends on the loop momentum over which one must integrate to obtain the ω
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width but, for a characteristic value of ~q = 250 MeV/c and setting q0 = 0 MeV, it amounts to 1.7,
explaining the larger size of the ω width obtained in the present work. Large values of the width
are also reported in [70], associated to the large modification of the ρ spectral function at low
invariant masses. We showed before that, when a microscopical model for the tρN→ρN amplitudes
is used to evaluate the ρ self-energy, this contribution is more moderate.

In order to compare with the experimental determination of the ω width, we need to extend our
calculation to finite momentum. Although, in principle, the P 0 and ~P variables of the ω meson
are independent in nuclear matter, one must correlate them on-shell if one wishes to compare with
the results of the ω in-medium width of [31], since the ω detection is done imposing the invariant
mass of the π0γ system to match the ω mass. In Fig. 14 we show the momentum dependence of
the ω width coming from the ω → 3π channel in nuclear matter at saturation density, for the three
different prescriptions of the ρ-meson self-energy employed in this work. We observe that Γω→3π

rises smoothly with momentum, and it can reach values of about 200 MeV at P = 600 MeV/c.
We should keep in mind that we must add about 15 MeV to these numbers from the other sources
discussed above. The experimental width is quoted to be Γω ≈ 130 − 150 MeV for an average
3-momentum of 1.1 GeV/c [31]. Apart from this global average, which is in qualitative agreement
with what we obtain, the experimental analysis also reports values of Γω for different momentum
bins. One then sees that we obtain a good agreement within errors for the lower two momentum
values reported in Fig. 4 of Ref. [31], 400 MeV/c and 600 MeV/c, where our results should be
more accurate.
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FIG. 14: Contribution to the ω width coming from the ω → 3π channel in nuclear matter at saturation
density, as a function of momentum, for the three different prescriptions of the ρ-meson self-energy employed
in this work.

Before closing this section, we note that the theoretical study of [49] shows a somewhat stronger
momentum dependence of the transverse component of the ω self-energy and, consequently, the
width evolves from a value of 60 MeV at zero momentum to around 130 MeV at 600 MeV/c, a
value that is roughly consistent with the experimental results [31] . The new light brought into
this problem by the present work allows us to examine the results of [49] with a new perspective.
We recall that in that work the ω width is obtained in a tωN→ωNρ approximation from the elastic
ωN amplitude, which is found to be dominated by resonance hole components, the 1/2− S11(1535)
playing the most important role. In the present work, the main contribution to the ω width comes
from the ω → ρπ channel, when the π and ρ mesons are allowed to be dressed in the medium,
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which incorporates terms of higher orders in density. This ω → ρπ process would correspond to a
background type term in [49], claimed to be less important than the resonance hole contributions.
We believe that the combination of a varied number of resonances with a priori unknown couplings
that are fitted to inelastic πN → ωN and γN → ωN processes brings uncertainties to the elastic
ωN → ωN amplitudes, particularly when it comes to the coupling to ωN states of a resonance like
the S11(1535) which is quite below the ωN threshold. In our approach, the resonant contributions
to the ωN amplitude are generated from a unitary model in coupled channels, including also ρN ,
φN , K∗Λ and K∗Σ, and using the dynamics of the hidden gauge Lagrangians. The S11(1535)
is not obtained from the vector-baryon dynamics but it comes out from the interaction of the
pseudoscalar-baryon πN , ηN , KΛ and KΣ channels [76, 92]. One can consider vector-baryon and
pseudoscalar-baryon components together, as done in [71], but the mixing is small and the different
dynamically generated states basically keep their original identity. Yet, it is simple to determine
the coupling of one particular pseudoscalar-baryon resonance to a vector-baryon channel using
chiral unitary methods and vector meson dynamics, as done in [93]. Neglecting terms of order
O

(

(~q/2M)2
)

, the coupling of the N∗(1535) to ωN states was found to be given by

− i tN∗Nω = gN∗Nω ~σ~ǫ , (47)

where ~ǫ is the ω polarization (the zeroth component ǫ0 was neglected since small momenta of
the ω meson were being considered). The dynamical model of Ref. [93] determined the value
gN∗Nω = 0.02 + i 0.28. It is straightforward to show that, neglecting terms of O

(

(~q/2M)2
)

, the
Lagrangian employed in Ref. [49],

L1/2−Nω = iūRγ5

(

g1γµωµ − g2

2MN
σµν∂νωµ

)

uN , (48)

produces a term equivalent to that of Eq. (47), as long as one identifies

gN∗Nω = −g1 + g2
mω

2MN
. (49)

Taking the values g1 = 3.79 and g2 = 6.50 quoted in [49], one obtains gN∗Nω = 1.09. Despite
the considerable cancellation between the g1 and g2 terms, this value is still much larger than the
absolute value of the coupling derived in [93]. Consequently, the contribution of the S11(1535) to
the ω width turns out to be about 15 times larger in [49] than that one would obtain using the
coupling derived in [93]. This is just a simple example trying to show that the couplings of some
resonances to ωN states at threshold might not be very well constrained experimentally due to
interferences between various a priori unknown resonant terms and background contributions.

IV. CONCLUSIONS

We have evaluated the width of the ω meson in the nuclear medium, from a variety of processes.
We have first considered the free decay mode of the ω into three pions, which is dominated

by ρπ decay, and, by replacing the ρ and π propagators by their medium modified ones, we have
obtained the medium corrections to the ω width. In order to get a better feeling of uncertainties
and place the results in consistency with advances made recently on the theoretical description of
the ρN interaction, we have employed three different models for the ρ-meson propagator. We have
considered a phenomenological approach consisting in parameterizing the ρ spectral function by
simply increasing the ρ width by 33% at normal nuclear matter density. We have also taken a more
realistic approach that implements the coupling of the ρ to an explicit N∗(1520)h excitation, hence
increasing the ρ strength at low invariant masses. Finally, we have implemented a recently derived
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ρN scattering amplitude, based on coupled-channel unitarizing techniques using local hidden gauge
Lagrangians. The results of the three approaches are qualitatively similar, but our analysis is
useful to show the relevance of the role of the resonances like the N∗(1520), which are dynamically
generated in the latter approach. We establish the relevance of this resonance on the in-medium
width of the ω meson and shed light on results obtained with approaches that incorporate it
more phenomenologically. We have also taken two different prescriptions for the ωρπ coupling G,
a value adjusted to reproduce vector meson radiative decays, in which case the model must be
supplemented by the additional consideration of a contact term, or an effective coupling adjusted
to reproduce the free decay width of the ω meson into three pions. Both prescriptions give rise to
very similar results for the in-medium ω width.

We have also taken into account the contributions from the virtual ω → KK̄ decay channel,
which is open in the medium due to the excitation of Y h components with antikaon quantum
numbers. This ω decay channel has provided a very small contribution to the ω decay width, less
than 3 MeV, because the dominant s-wave components of the K̄N interaction, leading to ωN →
KY π transitions, are not energetically allowed. The only possible transitions are ωN → KY , which
are triggered by the much weaker p-wave component of the K̄N interaction at the low energies
explored by the processes studied here.

Finally, we have obtained the quasielastic and inelastic mechanisms induced by a tωN→ωNρ
term, where tωN→ωN is the ωN scattering matrix evaluated within a unitary scheme in coupled
channels of vector-baryon type. This gives rise to a practically negligible contribution, of 0.5 MeV,
due to the zero value of the tree-level ωN − ωN and ωN − ρN amplitudes of the employed model.
Unitarization through the coupling to K∗Y channels gives a non-zero but small value for these
amplitudes. The extension of the model to incorporate the pseudoscalar-baryon channels through
box diagrams employing normal V PP couplings does not change the situation significantly. We
have therefore added a 9 MeV contribution to the ω width from the ωN → πN processes, following
a model independent approach based on detailed balance and unitarity.

With all these contributions, we obtain a value of 129 ± 10 MeV for the width of the ω meson
at rest in nuclear matter at normal saturation density, which is a substantially larger width than
that quoted in previous theoretical works, many of them based on an indirect extraction of the ωN
scattering amplitude from fits to γN → ωN , πN → ωN , ωN → ππN data.

We have also evaluated the momentum dependence of the in-medium ω width and show that
it increases with momentum, being about 200 MeV at 600 MeV/c. The range of values that we
obtain up to 600 MeV/c are in line with the width of the order of 130-150 MeV obtained by the
CBELSA/TAPS collaboration in photoproduction reactions off nuclei for an average momentum
of around 1.1 GeV/c. More specifically, we obtain a very good agreement, within errors, with the
Γω results reported for the two lower momentum bins of 400 MeV/c and 600 MeV/c.
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