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Abstract 

The ecotoxicological importance of thallium stems from its acute toxicity, the effects of 

which are as harmful to living organisms as those of lead and mercury. The main 

anthropogenic sources of thallium are the emissions from coal combustion processes, 

underlining the need to control this element in coal and coal by-products. Despite the 

threat posed by thallium, very little information has been published on its behaviour in 

coal-fired power plants or on its modes of occurrence in coal, its mobilisation and its 

distribution. Although thallium is highly toxic, the environmental risk presented by this 

element in coal utilization have been studied to a much lesser degree than in the case of 

other toxic elements such as lead, cadmium or mercury. The present work addresses the 

issue of thallium in coal, focussing on its origin, modes of occurrence, the analytical 

methods commonly used for its determination and its behaviour during coal utilization 

for energy production.  
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Introduction: The importance of evaluating thallium behaviour in coal 

The toxic effects of thallium (Tl) have long been recognized and have been 

frequently observed in animals and humans. Although the precise mode of toxicity is 

unclear [1], it has been reported to be an element that is more acutely toxic than lead, 

mercury and cadmium [2-3]. It has been suggested that Tl may interfere with vital 

potassium-dependent processes, since thallium ions and potassium ions are similar in 

size [4]. Thallium remains in the air, water, and soil for a long time and does not 

decompose. Some Tl compounds are washed down by the rain and snow into the soil 

and plants. Eventually it enters the food chain and accumulates in fish and shellfish [5]. 

Thallium occurs in two oxidation states, Tl(I) and Tl(III), the latter being more toxic. 

The oxidation state of Tl affects its complexation and subsequent bioavailability and 

toxicity [6-7]. Early literature claims that Tl (I) is the most abundant species in nature 

and suggests that trivalent Tl(III) is unlikely [8]. Although the thermodynamic stability 

supports this claim, there is evidence that the most abundant Tl species in sea and lake 

waters is Tl(III) [9-11]. The oxidation of Tl(I) to Tl(III) in the environment has been 

reported to be due to the activity of bacteria [12]. In accordance with Twining et al [7], 

planktonic bacteria are responsible for oxidizing the thermodynamically stable Tl(I) to 

the more abundant Tl(III).  

Exposure to high levels of Tl can have harmful effects on the health [2, 13]. 

Some of the effects of Tl poisoning include: hair loss, the gradual development of mild 

gastrointestinal disturbances, encephalopathy, tachycardia degenerative changes in the 

heart, liver and kidney, alterations of the central nervous and cardiovascular systems 

and eventually death [14-18]. Thallium is considered a priority pollutant by the 

Environmental Protection Agency (EPA) of the United States (US), and has been 

classified as a dangerous substance by the European Union (Directive 67/548/EEC). 
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The industrial facilities that produce or use Tl and its compounds are not the major 

sources of Tl release to the environment. The main sources are industrial processes 

where Tl is present as an impurity in the raw materials. This is the case of coal-fired 

power plant, smelting operations (mainly lead and zinc) and the cement industry [19-

20]. It is estimated that about 2.000-5.000 tons per year of Tl are mobilised by these 

industrial processes, and in the US about 1000 tons of Tl are released annually into the 

environment, 350 tons of which are emitted in the form of vapours and dusts, 60 tons 

bound to non-ferrous metals and more than 500 tons in fluid and solid wastes. From the 

available data it can be inferred that power generating plants are the main sources of Tl 

emission into the atmosphere [21-23]. Thallium concentration in most coals ranges from 

0.5 to 3 mg kg-1 and it has been calculated that about half of this is emitted into the 

atmosphere [24]. Emissions of Tl in the flue gases of coal-fired power-generating plants 

may amount to 700 µg m-3, reaching up to 2500 µg m-3 in those from cement plants. In 

the case of cement plants, coal is not the main source of Tl. The raw materials used for 

cements such as ashes or certain additives may contain higher amounts of Tl than coal. 

Generally speaking in both coal combustion and cement production, Tl volatilizes at 

high temperatures and condenses on the surface of ash particles in the cooler parts of the 

system. As a result, Tl could be 2 to 10 times more concentrated in the fly ashes than it 

was in the coal before combustion [25-26]. The concentrations of Tl reported to be 

emitted on airborne fly ash from coal-burning power plants range from 29 to 76 μg g-1, 

and these increase with decreasing particle size. The highest concentrations have been 

found on particles with a size of less than 7.3 μm in diameter. Such particles are the 

most dangerous since they are able to pass through conventional particle retention 

devices in power-generating plants and remain suspended in the atmosphere. They may 

eventually be deposited in the lower respiratory tract [25, 27]. 
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 There are not regulations for the Tl content of ambient air. However, the EPA 

has established a maximum contaminant level (MCL) for Tl in drinking water and waste 

water (effluent) of 0.002 and 0.14 mg L-1, respectively. Moreover there is a threshold 

limit value (TLV) of 0.1 mg m-3 for Tl in the air of any work place. This standard has 

been adopted by the Occupational Safety and Health Administration (OSHA) and has 

been signed by the American Conference of Governmental Industrial Hygienists 

(ACGIH). In addition to these regulations, the EPA requires that discharges or 

accidental spills into the environment of 1.000 pounds or more of Tl be reported and the 

National Institute for Occupational Safety and Health (NIOSH) has recommended that 

15 mg m-3 of Tl be considered as an immediate threat to life and health [2, 22, 28-29]. 

 

Methods for analysis of thallium in coal and sub-products 

Several methods are available for determining of Tl, their effectiveness depending on 

the type and quantity of the sample to be analysed [25, 29]. Techniques such as 

inductively coupled mass atomic emission spectrometry (ICP-AES), graphite furnace 

atomic spectrometry (GF-AAS), radiochemical neutron activation analysis (NAA) or 

inductively coupled plasma mass spectrometry (ICP-MS) have been used to determine 

Tl in meat and food products, urine and blood, biological and environmental samples 

and water [19, 30-32]. These techniques have sufficient detection limits (0.1 µg kg-1) 

and are well-suited to applications where a high degree of sensitivity is required for 

small amounts of sample. For the analysis of Tl in coal and coal combustion by-

products several methods of analysis have been evaluated including some of the 

techniques mentioned above [33-35]. In all of them it is necessary to perform a very 

careful sample preparation procedure to avoid the loss of Tl or to get out of any 

contamination. The collection and treatment of the sample prior to analysis requires 
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special attention in the case of coal as there is a lack of certified reference materials 

(CRMs) for Tl in coal samples ([36]. Thallium is almost always determined as total 

metal for which, in most of the techniques already mentioned, the samples need to be in 

solution. In the case of coal samples the first step is to oxidize of the organic matter 

usually by combustion at low temperatures (300-500ºC), in order to obtain the ashes. 

These are then subjected to acid digestion by means of a mixture of concentrated 

hydrofluoric and nitric acids in order to extract the Tl. Digestion must be carried out in a 

closed vessel to avoid losses from volatilization. Nowadays digestion in Teflon high 

pressure digestion vessels in microwave ovens is the simplest and quickest option. 

Alkaline fusion with lithium metaborate followed by dissolution in acid is also a well-

known method to bring coal ashes into solution. However, this method entails the risk 

of losses of Tl due to volatilisation. When four methods for decomposing coal fly ash 

samples using only nitric acid or a mixture of nitric, hydrochloric and hydrofluoric acids 

were compared, the best results were obtained using a mixture of acids for digestion in a 

microwave oven [34-37]. The complete decomposition of the fly ashes was not 

achieved when only nitric acid was used and occasional losses of Tl occurred when a 

bomb instead a microwave oven is employed. 

 In general, the direct analysis of solid samples has a number of advantages over 

analysis in solution. For example, the risk of contamination or loss of analyte is less 

likely [38]. However, these methods also have important limitations such as the manner 

of sample introduction, which can be problematic and a more complex method of 

calibration. [39]. Unsatisfactory results were found when Tl was analyzed in a coal by 

direct solid sampling in a conventional GFAAS device using deuterium background 

correction [35]. However, more satisfactory results were obtained by direct solid 

sampling of coal and fly ash and using a high-resolution continuum-source GFAAS to 
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eliminate spectral interferences. These results were compared to those obtained by ICP-

MS using electrothermal vaporization (ETV) and analyte addition and/or isotope 

dilution (ID) [36]. Although no CRM was available for validating the method the results 

were considered accurate. The data obtained for coal samples and one fly ash by direct 

solid sampling without a modifier, adding palladium to the solution and using 

ruthenium as a permanent modifier were similar, demonstrating the soundness of the 

high-resolution continuum-source (HR-CS) AAS technique. In this way, HR-CS AAS 

was proved to be a powerful tool for detecting and eliminating spectral interferences.  

Most analytical methods used to measure trace element concentrations are 

subject to interferences. Spectral interferences are typical in techniques such as ICP-

AES and ICP-MS [40], but matrix effects are the most common in almost all of the 

techniques. Matrix interferences are especially important in coal analysis because coals 

are complex samples that contain various mineral species in different proportions and 

almost all the elements. The ETV method mentioned above is one of the most suitable 

ways to introduce a coal extract into an ICP-MS, since the solvent and part of the matrix 

can be removed by selective volatilization during the temperature program. By 

introducing a dry sample vapour into the plasma, several spectral and non-spectral 

interferences can be avoided, and a higher sensitivity and a lower consumption of 

sample can be achieved [36]. 

 In summary, there are several methods available for the determination of Tl in 

coal and coal combustion by -products, but GFAAS and ICP-MS are the routine 

methods employed by most laboratories. They require very careful sample pre-treatment 

in order to avoid loss though volatilization and to ensure the complete decomposition of 

the samples. Direct solid sampling by GFAAS, especially coupled to the high-resolution 

continuum-source AAS may also provide acceptable results.  
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Thallium: location within coal 

According to Goldschmidt 1954 [8], the geochemistry of thallium is well known. The 

univalent Tl has an ionic radius very similar to that of Rb and both are concentrated in 

late-stage magmatic K rich minerals such as feldspars and micas. Mica is the most 

relevant for coals. However, Tl is not only a lithophil element, but also, and possibly 

predominantly, a chalcophil element [8]. The mode of occurrence of Tl in coal has not 

been studied in great detail [41], but nevertheless it is generally considered that is 

mainly present in sulphides [42-43]. Thallium concentrations of up to 46 μg g-1 (ash 

basis) have been detected in high-As, high-S lithotypes in the Pond Creek coal bed in 

Pike and Martin counties, eastern Kentucky [44]. The high concentrations could be 

attributable to Tl–As substitution in pyrite, which is supported by the correlation of Tl 

and As with the pyritic sulphur. In a later work [45], Hg and other trace elements, 

including Tl, in pyrite and marcasite from the Manchester coal bed, Clay County, 

Kentucky were detected by scanning proton microprobe (Micro-PIXE). Concentrations 

of Tl were found to be highly variable. This had also been noted in Fe-sulphides from 

the Fire Clay coal bed, eastern [46]. 

When direct analysis of Fe sulphides were undertaken in UK coals using 

synchrotron radiation XRF (SXRF) [47], Cu, Ni, As, Se, and Pb were detected in nearly 

all the analyses while Tl was detected in about half of them. Overall individual element 

concentrations were observed to be highly variable, as in the works cited above. The 

minimum spacial resolution of SXRF at that time (1989) was 20 μm and as a 

consequence the study was restricted to cleat and concretionary pyrite. Laser ablation 

ICP-MS, another direct method of analysis, is also increasingly being used to evaluate 

trace element associations. This method was employed to study a well-characterised 

Spanish coal using a beam diameter of 10 μm, which is smaller than that applied in the 
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other instrumental methods described above [48]. Different forms of Fe sulphide were 

analysed and a concentration of 11μg g-1 of Tl was recorded for pyrite. More recently 

laser ablation ICP-MS was used to study trace element distributions in macerals and the 

importance of pyrite as a host for trace elements was demonstrated [49].  

The principal methods for determining trace element locations in coals are 

indirect and are based mainly on the statistical analysis of geochemical data from a suite 

of coal samples representing one or more coals. Because this paper is a review of 

methods of analysis it is appropriate to consider also statistical analysis, particularly as a 

number of issues related to statistics have recently been raised [50]. Statistical methods 

can provide useful insights into trace element modes of occurrence in properly 

constrained suites of samples. One such constraint is that the sample size should be 

large enough for the results to be statistically significant while another is that, as far as 

possible, the populations should be homogeneous. Thus coal samples from different 

provinces should not be combined because geological factors are all important in 

determining their geochemistry. It is also recommended [50] that only coals with a 

limited range of ash content should be analysed. However, this is not something with 

which we would totally agree. If the ash is derived mainly from the detrital minerals, as 

in the UK, then suppressing this variation would make it more difficult to identify the 

elements associated with this fraction. However, as it has been noted [50], once this 

variation is suppressed other relationships may become more apparent. It is also true 

that the greater the amount of independent information available (i.e. mineralogy or 

petrography), the more reliable the statistical results will be [50]. An important aspect of 

correlation analysis not dealt with is the problem of dealing with a system in which the 

components total 100%, which means that if any of the major components increases, 

then one or more of the other components must decrease in what is a closed system 
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[51]. Significance levels are then affected and spurious correlations may arise. Some 

works [52-53] advocated the use of a log-ratio transform to overcome this problem and 

others [54] demonstrated the validity of this approach. When a representative suite of 

UK coals was analysed using energy dispersive polarised XRF [55], it was found that 

the elements As, Mo, Sb, Se and Tl had a significantly positive relationship to Fe, which 

they attributed to pyrite. In a follow up work on the Parkgate coal in the UK [56], Tl 

and other elements were analysed by ICP-MS, which enhances detection limits. From 

the log-ratio transforms it was concluded that pyrite contained nearly all of the Hg, Tl, 

As and Se and most of the Mo, Cd, Ni and Sb. All of these elements have been recorded 

in pyrite [57], either as inclusions or substituted either stoichimetrically or non-

stoichimetrically. The latter case is thought to apply to Tl with Tl3+ replacing for Fe2+ to 

compensate for the charge imbalance resulting from AsS3- substituting for the S2
2- 

dianion. Other cations that behave in a similar manner to Tl are Mo3+ and Au3+. In the 

work on the Parkgate coal [56] statistical analysis was limited to correlation matrices 

and bivariate plots, which has the advantage that close contact is maintained with the 

data. The value of graphical output in statistical analysis has been well documented and 

[58]. Some of the statistical relationships concerning Tl in the Parkgate coal are shown 

in Figure 1. The bivariate plots have correlation coefficient r (Pearson product moment) 

ranging from 0.95 to 0.87 using centred log transformed data. These values exceed the 

99.9% confidence level. Not only can the significance of the correlations be tested but 

also the significance of the intercepts. Only in the case of the Fe vs S plot is the 

intercept significant. As the Fe value tends to zero there remains some residual S which 

is not present in pyrite. This is the organic S and the intercept value corresponds to the 

value determined by conventional methods. The use of intercept values has long been 

used by geochemists. Essentially this was the approach adopted by [8] to demonstrate 
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the Ge-organic association. From the discussion above it should be noted that the 

inverse relationship results from the closed system and also that the composition of the 

organic matter can vary with ash content. The bivariate plots in Figure 1 for Tl all have 

intercept values which are not significantly different to zero. This means that Tl, like 

Hg, is predominantly present in pyrite. The slope of the Fe vs S regression equation 

corresponds to the composition FeS2. Although Fe is present in the clay minerals their 

contribution to the Fe variation is minor and could at most be responsible for some of 

the scatter on the Fe vs S plot. The above discussion, based on the correlation matrices 

and bivariate plots, demonstrates that pyrite is the main location for Tl in these coals. 

It was pointed out earlier that some Tl will probably be present in illite in 

particular because of the similarity in ionic size of univalent Tl and K and Rb. On the 

basis of the analyses of mudrocks associated with the Parkgate coal [56] it is possible to 

calculate the contribution of the clay minerals to the Tl content of the coals assuming 

that all the Tl is present in the clays and the element ratios remain constant from 

mudrock to coal. Using the Tl/K and Tl/Rb ratios for the mudrock, and applying to the 

K and Rb concentrations in the coal, [56] gives, for both ratios, a Tl concentration of the 

clays in the coal of 0.02 μg g-1, compared with the median concentration in the coal for 

Tl of 0.33 μg g-1. That is to say the clay minerals, essentially the detrital fraction, 

account for not more than 5% of the Tl in the coal, which supports the conclusion that 

pyrite is the dominant location for this element in the coal.  

The fact that pyrite can be regarded as the main location of Tl in the coal, has 

several implications. One of these is that the association of environmentally sensitive 

trace elements such as Tl with the Fe sulphide minerals raises the possibility of pre-

combustion cleaning by physical cleaning methods, in which the sulphides usually are 

separated together with the coaly matter [44]. 
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The behaviour and fate of thallium during coal conversion processes 

During coal conversion processes trace elements are partitioned between the 

slag/bottom ash, fly ash and flue gas according to their volatility, their mode of 

occurrence in the coal, the conversion technology, the operational parameters and the 

existing air pollution control devices [20, 59-63]. Different classifications for trace 

element behaviour during coal combustion processes, based on theoretical or 

experimental studies have been proposed. These classifications are divided into three 

main groups [20]: Group 1 includes the non-volatile elements which are concentrated in 

the coarse residues, or are partitioned equally between the coarse residues and 

particulates (Ba, Ce, Cs, Mg, Mn, Th); Group 2 comprises the volatile elements that 

condense on ash particles, even on the fine-grained particles, which may escape the 

particle control systems (As, Cd, Cu, Pb, Sb, Zn) and Group 3 includes the high volatile 

elements, which are concentrated in the vapour or gas phase and are depleted in all the 

solid phases (Br, Hg, I). Several elements may show partitioning behaviour intermediate 

between group 1 and 2 (Cr, Ni, U, V) or between 2 and 3 (Se). Trace elements show a 

similar behaviour during the gasification processes. In most of the studies Tl has been 

assigned to group 3.  

In 1995 a detailed investigation into the behaviour of more than 30 trace 

elements during coal combustion at a large power station was performed [63]. In this 

study Tl was found enriched in fly ashes, and behaved like an element that volatilizes 

and subsequently partially condenses on the particles. Elements of this type may be 

adsorbed onto calcium oxides in a similar way to the excess of sulphur fixation (CaO + 

SO3 = CaSO4). As a consequence, the potential toxicity of fly ashes increases, since Tl, 

like most of the volatile toxic elements, is concentrated in breathable particles. Thallium 

is only partially retained in the solid combustion by-products but is mainly present in 
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phases as sulphates, which can easily leach in natural environment conditions [64]. The 

high lime and anhydrite content of fly ashes may explain the enrichment of Tl in this 

fraction [65]. By means of thermodynamic equilibrium calculations it was found that 

the amount of chlorine in coal had a considerable influence on the volatilization of Tl, 

due to the formation of thermodynamically stable compounds with chlorine [66].  

The available literature on Tl behaviour during coal gasification processes is 

scarce. It is commonly accepted that trace element behaviour during gasification 

processes is similar to that observed during combustion. However, some exceptions 

have been pointed out. Reducing conditions promote the volatility of Tl due to the 

formation of highly volatile species such as chlorides. The evaluation of the partitioning 

of Tl in a pressurised entrained flow gasifier, working under slagging conditions at 

1200–1600 ºC and 25 bar, fed with a mixture of a high volatile bituminous coal rich in 

metals and a pet-coke, with limestone (2–4%) as a fluxing agent [67], has demonstrated 

that Tl behaves like a moderately volatile element up to 40% it being distributed in gas 

phase and 60% in the fly ash.  

In recent years fuels other than coal have been blended with this combustible in 

order to reduce CO2 emissions and the effect of these co-fuels on trace element 

emissions has also been evaluated [68]. In experiments with two coals (one Polish, one 

Colombian), four biomass fuels (wood-bark, straw, pulp sludge, and paper sludge), and 

three waste fuels (agricultural waste, sewage sludge and plastic waste), Tl was observed 

to have been almost completely volatilized from the Colombian coal/straw combustion, 

almost completely retained by sewage sludge ash and partially volatilized from all of the 

other fuels. When combustion in a continuous low airflow of sludge, coal and sludge 

and coal blends was compared, a similar Tl behaviour was observed in all cases [69-70]. 

Because Tl is included among the elements regulated by the 2000/76/EC Directive, it 
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should be borne in mind that sludge could negatively affect the emissions of Tl. During 

the co-combustion of sewage sludge with wood [71], the retention capacity of fly ash 

and the influence of reducing and oxidising conditions, the type of sludge and the 

addition of lime on the distribution of trace elements was also evaluated. Thallium is 

volatilized at 850 ºC in an oxidising atmosphere and in reducing conditions, the 

volatility of this element increases. 

Theoretical predictions are a useful tool for studying the behaviour of trace 

elements during coal conversion processes. Several works on trace element behaviour 

during coal conversion processes have been performed using theoretical data. The first 

authors to consider Tl in these studies were Yan et al.[72-73]. Theoretical predictions 

under oxidizing conditions at temperatures below 550 K, showed two solid and two 

condensed Tl species as the major species: TlCl3(s) (300–350 K) and TlAsO4(s) (below 

550 K), TlCl(cr,l) (at around 400 K), and Tl2SO4(cr,l) (at around 450 K). At higher 

temperatures, several gaseous Tl halides and the gaseous atom [Tl(g)] became dominant: 

TlBr(g) (600–1600 K), TlCl(g) (500–1800 K), Tl(g) (above 1500 K) and a small 

quantity of TlF(g) (;1600 K).Under reducing conditions TlI(cr,l) (300 K), Tl2S(cr,l) 

(350 K), Tl2Se(s) (400 K), and TlBr(cr,l) (450 K) were predominant below 500 K. 

Then, as in oxidizing conditions, several gaseous thallium halides and the gaseous free 

atom (Tl(g)) became dominant: TlBr(g) (500–1400 K), TlCl(g) (500–1500 K), Tl(g) 

(above 1100 K), and TlI(g) (400–1200 K). These results agree with those of Thompson 

and Argent [74]. They predicted the equilibrium distribution of the major, minor and 

trace elements in the Pittsburgh Nº 8 coal for gasification under the conditions of the 

Prenflo gasifier. Thallium was found to have been almost totally volatilised during the 

process. 
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Problems caused by CO2 emissions into the atmosphere have encouraged the 

development of technologies for the capture and sequestration (CCS) of this 

contaminant from coal fired plants. Among them, oxy-fuel combustion is one of the 

promising technologies. In this new scenario there is a considerable lack of knowledge 

about how the different conditions may affect the behaviour of trace elements. Because 

there is no literature on Tl partitioning in oxy-fuel combustion conditions a theoretical 

approach was carried out in this work. HSC Chemistry 6.0 software was used to 

evaluate the possible species of Tl that may be present in the gas atmospheres described 

in Table 1. The results obtained point to a similar amount of Tl in oxy-combustion and 

combustion in air, TlO (g) being the most stable species in the whole range of 

temperature and conditions evaluated (Figure 2). 

From the reviewed literature, it has been clearly demonstrated that Tl is a 

volatile element under coal conversion processes. Its volatility increases with the 

chlorine content, which reacts with this element during co-combustion processes and 

increases under gasification conditions. Gaseous Tl is partially condensed onto fly ashes 

which may late become a hazardous waste. 

 

Conclusions 

The findings of this review may be briefly summarized under three main 

headings. 

1.- Thallium is concentrated in pyrite in coals along with other environmentally 

sensitive elements, notably Hg.  

2.- Thallium is an element of environmental concern, present in coal at the level of trace 

elements and emitted to the atmosphere to different extents in gas phase or in breathable 
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particles. The emissions will vary depending not only on the composition and nature of 

the fuel but also on the combustion conditions. 

3.- Because until now insufficient attention has been paid to the problems that Tl from 

coal combustion may cause, research on its behaviour has been limited. Accurate 

methods of analysis and the possibility of avoiding toxic emissions of Tl to the air or as 

a leachate need to be investigated. 
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Figure 1. To show selected bivariate plots for Fe, S, Hg and Tl in the Parkgate coal from 

data in Spears and Tewalt (39). Fe and S are expressed as percentage and Hg and Tl as 

μ g-1. The correlation coefficients are calculated using log-ratio transforms, whereas the 

regression equations are based on raw data.   
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Figure 2. Tl species predicted for oxy-combustion conditions. 
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Table 1 Gaseous composition (%) considered for theoretical predictions by HSC 
Chemistry. 
 
Atmosphere CO CO2 H2 O2 SO2 H2O H2S N2 HCl Tl (μ g-1)
Combustion — 15 — 9.2 0.2  — 69 — 1 
Oxyfuel IN  50  30  20  0  1 
Oxyfuel Flue gas — 25 — 4 — 70 — 1 — 1 

 

 

 


