Isolation and characterization of polymorphic microsatellites in the specialism grasshopper *Ramburiella hispanica* (Orthoptera: Acrididae)

Maria Pilar Aguirre · Víctor Noguerales · Pedro J. Cordero · Joaquín Ortego

Maria Pilar Aguirre · Víctor Noguerales · Pedro J. Cordero · Joaquín Ortego · Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, E-13005 Ciudad Real, Spain

Joaquín Ortego · Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092 Seville, Spain

Keywords genetic diversity · landscape genetics · population fragmentation

Author for correspondence:
Joaquín Ortego
Conservation and Evolutionary Genetics Group
Department of Integrative Ecology
Estación Biológica de Doñana, EBD-CSIC
Avda. Américo Vespucio s/n, E-41092 Seville, Spain
E-mail: joaquin.ortego@csic.es
Abstract We describe 12 polymorphic microsatellite markers for *Ramburiella hispanica* (Orthoptera: Acrididae), a specialist Mediterranean grasshopper that often forms highly fragmented populations due to extensive clearing of natural vegetation for agriculture. Polymorphism at these loci was evaluated in 20 individuals from La Mancha region, Central Spain. The number of alleles per locus ranged from 7 to 19 and their observed and expected heterozygosities ranged from 0.41 to 0.90 and from 0.76 to 0.91, respectively. These loci will be highly useful for the study of the genetic structure and diversity of this grasshopper species and understanding the demographic and genetic consequences of population fragmentation in Mediterranean terrestrial organisms.
Ramburiella hispanica (Rambur, 1838) (Orthoptera: Acrididae) is a Mediterranean grasshopper distributed in east France, Spain, Morocco, Tunisia, Algeria and Libya. It is a specialized organism generally restricted to areas covered with esparto grasses, particularly Lygeum spartum and Stipa sp. In many regions across its distribution range, this species forms highly fragmented populations due to historical and extensive natural vegetation clearing for agriculture. This is the case of La Mancha region (Central Spain), where we are performing a long-term study aimed to understand the consequences of population fragmentation across a network of microreserves (~4000 km²) using as study system several grasshopper species with different dispersal capacities and habitat requirements (see Ortego et al. 2012). The study of population genetic structure and diversity at the landscape scale requires information that can be only provided by highly variable genetic markers. Here, we report the development of twelve polymorphic microsatellite loci from the grasshopper R. hispanica that will be useful to estimate effective population sizes and understanding spatial patterns of genetic variation and metapopulation connectivity.

Microsatellite libraries were generated by Genetic Identification Services Inc. (Chatsworth, CA, USA) from an individual R. hispanica collected from Lillo (Toledo province, Central Spain, 39°42'06.6"N, 3°18'13.0"W) and using magnetic bead capture technology with CA, AAC, ATG and TAGA microsatellite motif capture molecules (Peacock et al. 2002; see Adams et al. 2013 for more details). Twenty-four primer pairs were designed from microsatellite-containing sequences and tested using 20 individuals collected from the same locality. Primers producing products of expected size were labelled with fluorescent dyes (6-FAM, PET, NED or VIC) to allow analysis on an automated DNA sequencer and determination of levels of polymorphism. Twelve of the twenty-four loci were discarded because they did not amplify, were monomorphic or produced non-resolvable electropherograms. Amplifications were conducted in 10-μL reaction volumes containing 5
ng of genomic DNA, 1X reaction buffer (67 mM Tris-HCL, pH 8.3, 16 mM (NH₄)₂SO₄, 0.01 M of each primer and 0.1 U of Taq DNA EcoStart Polymerase (Ecogen). The PCR programme used was 9 min denaturing at 95 ºC followed by 40 cycles of 30 s at 94 ºC, 45 s at the annealing temperature (Table S1) and 45 s at 72 ºC, ending with a 5 min final elongation stage at 72 ºC. Amplification products were run on an ABI 310 Genetic Analyzer (Applied Biosystems) and genotypes were scored using GeneMapper 3.7 (Applied Biosystems).

Tests for departure from Hardy-Weinberg equilibrium (HWE) and pairwise linkage disequilibrium were performed using GENEPOP 4.2 (Raymond and Rousset 1995). Significance levels were adjusted for multiple tests using the sequential Bonferroni correction for α = 0.05. We found no evidence of genotypic linkage disequilibrium at any pair of loci. Two loci deviated significantly from HWE and MICRO-CHECKER (Van Oosterhout et al. 2004) analyses indicated that these two loci showed evidence of null alleles (Table S1). The number of alleles (N_A) per locus ranged from 7 to 19 and their observed (H_O) and expected (H_E) heterozygosities ranged from 0.41 to 0.90 and from 0.76 to 0.91, respectively.

Polymorphism characteristics for the twelve microsatellite markers are summarized in Table S1. Overall, these novel polymorphic microsatellites provide a useful genetic tool to study the genetic diversity and structure of *R. hispanica* and address questions on the conservation of highly fragmented Mediterranean landscapes. In combination with mtDNA markers, these microsatellite loci are also a valuable tool to understand the phylogeographic structure and the historical factors structuring genetic variation of this specialist grasshopper species.

Acknowledgements Specimens were captured under license from Junta de Comunidades de Castilla-La Mancha. This work received financial support from the projects POII10-0197-0167 and CGL2011-25053. During this work V.N. was supported by a FPI pre-doctoral
fellowship from Ministerio de Ciencia e Innovación and European Social Fund. M.P.A. was supported by a technician contract from Ministerio de Ciencia e Innovación and J.O. was supported by “Juan de la Cierva” and “Severo Ochoa” post-doctoral fellowships.

References

Isolation and characterization of polymorphic microsatellites in the specialist grasshopper *Ramburiella hispanica* (Orthoptera: Acrididae)

Authors

Maria Pilar Aguirre
Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, E-13005 Ciudad Real, Spain

Víctor Noguerales
Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, E-13005 Ciudad Real, Spain

Pedro J. Cordero
Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, E-13005 Ciudad Real, Spain

Joaquín Ortego
Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092 Seville, Spain

Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, E-13005 Ciudad Real, Spain

E-mail: joaquin.ortego@csic.es
ELECTRONIC SUPPLEMENTARY MATERIAL

Table S1 Characteristics of 12 microsatellite markers developed from *Ramburiella hispanica*.

<table>
<thead>
<tr>
<th>Locus</th>
<th>GenBank accession no.</th>
<th>Primer sequence (5'-3')</th>
<th>Repeat motif</th>
<th>T<sub>a</sub> (° C)</th>
<th>N<sub>A</sub></th>
<th>Allele size range (bp)</th>
<th>H<sub>O</sub></th>
<th>H<sub>E</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>RhA2</td>
<td>JN176145</td>
<td>F: TGGCAACTTAATGTCACCAAC
R: TGGCAGCTTGGTCATATAAGC</td>
<td>(GT)<sub>21</sub></td>
<td>55</td>
<td>14</td>
<td>105-141</td>
<td>0.70</td>
<td>0.86</td>
</tr>
<tr>
<td>RhA105</td>
<td>JN176146</td>
<td>F: ACAGGCATTATGTTGTGCTG
R: TTCCATTGTGGGAGGTCTC</td>
<td>(GT)<sub>18</sub></td>
<td>55</td>
<td>13</td>
<td>254-306</td>
<td>0.70</td>
<td>0.90</td>
</tr>
<tr>
<td>RhA108</td>
<td>JN176147</td>
<td>F: TATTGCTGCGGTTGACACTA
R: TCGATCCATCAATCAGTACG</td>
<td>(GT)<sub>25</sub></td>
<td>55</td>
<td>12</td>
<td>182-222</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>RhA112</td>
<td>JN176148</td>
<td>F: TGCCACTCATTTCAAAAC
R: GCAACAGCAAGCGACTTC</td>
<td>(GT)<sub>25</sub></td>
<td>55</td>
<td>19</td>
<td>96-182</td>
<td>0.58</td>
<td>0.94</td>
</tr>
<tr>
<td>RhA113</td>
<td>JN176149</td>
<td>F: TCAGGCATTACCTCTGAG
R: CGAAGTTTTGTTTGCTGTG</td>
<td>(GT)<sub>25</sub></td>
<td>55</td>
<td>13</td>
<td>245-277</td>
<td>0.45*</td>
<td>0.89</td>
</tr>
<tr>
<td>RhB2</td>
<td>JN176150</td>
<td>F: TTCTGTTCAGCTACCTCCTAC
R: CAAACCCATCTACGAAATGAA</td>
<td>(TGT)<sub>9</sub></td>
<td>55</td>
<td>8</td>
<td>284-299</td>
<td>0.63</td>
<td>0.76</td>
</tr>
<tr>
<td>RhB107</td>
<td>JN176151</td>
<td>F: AATGAAATGCCCCGTGATTTGAT
R: GCCAGTGAACATGTGATG</td>
<td>(AAC)<sub>8</sub></td>
<td>55</td>
<td>10</td>
<td>128-161</td>
<td>0.90</td>
<td>0.87</td>
</tr>
<tr>
<td>RhC1</td>
<td>JN176152</td>
<td>F: CAATCAGCATATTCTCCA
R: GGCCTAAACACAGAAGAAAG</td>
<td>(ATC)<sub>13</sub></td>
<td>60</td>
<td>8</td>
<td>176-215</td>
<td>0.41*</td>
<td>0.83</td>
</tr>
<tr>
<td>RhC2</td>
<td>JN176153</td>
<td>F: GCCGACACCAATCTGAACT
R: CGAATGAACTGCGAGATTG</td>
<td>(ATC)<sub>11</sub></td>
<td>55</td>
<td>7</td>
<td>201-225</td>
<td>0.58</td>
<td>0.80</td>
</tr>
<tr>
<td>RhC112</td>
<td>JN176154</td>
<td>F: ATGGAGGAGGCTCTTTCATTCT
R: CTGCTACACGGCTACATG</td>
<td>(ATG)<sub>15</sub></td>
<td>55</td>
<td>14</td>
<td>131-179</td>
<td>0.85</td>
<td>0.91</td>
</tr>
<tr>
<td>RhC113</td>
<td>JN176155</td>
<td>F: TCACCATTTACATCATTTGAC
R: CAAAGGGTGGTCTGACG</td>
<td>(ATC)<sub>13</sub></td>
<td>55</td>
<td>10</td>
<td>164-194</td>
<td>0.75</td>
<td>0.85</td>
</tr>
<tr>
<td>RhD2</td>
<td>JN176156</td>
<td>F: GTCTTGGTCTGAATGACAT
R: GAGGTTTTGTTGCAGAGAGC</td>
<td>(CTAT)<sub>8</sub></td>
<td>55</td>
<td>8</td>
<td>267-295</td>
<td>0.90</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Data on polymorphism are based on 20 typed individuals from Lillo (Toledo province, Central Spain). For each locus, we list the primer pair, the repeat motif from the original clone, the annealing temperature (T_a), the number of observed alleles (N_A), allele size range in base pairs (bp), and observed (H_O) and expected (H_E) heterozygosity.

* Locus showing significant deviation from Hardy-Weinberg equilibrium after sequential Bonferroni correction