Introduction

In the last decade, catalysts acting through hydrogen bond interactions have woken up an amazing interest and represent a noteworthy part of the organocatalytic field.1-3 One of the main organocatalytic structures covering this large group are the thiourea/urea derivatives, and many efforts have been devoted to the design and synthesis of new ones as appropriate catalysts in a great number of interesting processes.4 In the last years, we have focused part of our investigation on the development of new thiourea-catalysed methods.5

The Friedel–Crafts alkylation reaction has received the attention of a great number of research groups, becoming an efficient tool for carbon-carbon bond-formation.6 In fact, some of us pioneered the first thiourea-catalysed Friedel–Crafts alkylation reaction between indoles and nitroalkenes (TSI, Figure 1).5b More recently, we have also reported our preliminary results concerning a new concept about the cooperative effect between a Brønsted acid additive and a chiral thiourea organocatalyst in the same process (TSII, Figure 1).5g In these mechanisms, the essential function exhibited by the hydrogen bond interactions was fundamental for the reactivity and enantioselectivity of the processes. In both cases, two enantiomers of the thiourea-aminoindanol derivative 1a were the catalysts of choice to efficiently promote the Friedel–Crafts reaction between indoles 2 and nitroolefins 3. Transition states depicted in Figure 1 (TSI and TSII) were postulated in order to explain the role of the catalyst and the major enantiomer observed.

Understanding the mechanism of a reaction is always an attractive and challenging task in order to improve the process and to promote further developments. Moreover, the information about the catalyst mode of action could help to understand its use in similar reactions. For this purpose, computational studies, reinforced with experimental results, have become an important tool in organocatalysis. In the last decade, it has allowed to propose interesting reaction mechanisms and to provide remarkable insights into the origin of the catalysis and the selectivity of the explored processes.7

The aminoindanol skeleton has appeared several times in different interesting catalyst structures acting as hydrogen bond promoter, after our pioneering work.8 However, to the best of our knowledge only one work using catalyst (1R,2S)-1a has been focused on computational calculations, in an aza-Michael addition reaction.9

In our previously reported works about this Friedel–Crafts reaction, a reasonable bifunctional mechanism was envisioned based on experimental results (TSI and TSII, Figure 1),5b-g herein we want to report our last studies on this mechanistic hypothesis employing theoretical calculations.10,11 Computational and experimental results underline the important role played by the hydroxy group present in the aminoindanol
structure and the activation through hydrogen bonds of all species involved in the mechanism, which have been found to be crucial for the success of both reactions in terms of reactivity and enantioselectivity (TSIII, Figure 1).

Results and discussion

It has been accepted that the nucleophilic attack of the aromatic ring to the electrophile is the rate-determining step in the Friedel–Crafts reaction and the subsequent proton transfer is a faster process.12 To evaluate our proposed mechanistic hypothesis we started the investigation studying computationally the C–C bond formation pathway, founded on experimental results (some of those experiments are compiled in Scheme 1 and Table 1). Although we observed already the importance of the hydroxy group in the structure is important, it must be placed in the appropriate position, in order to efficiently drive the attack of the external nucleophile through hydrogen bonds coordination, as previously disclosed in Figure 1.5b,e,g

![Scheme 1 Thiourea catalysts tested in the Friedel–Crafts alkylation reaction.](image)

![Fig. 1 Transition states proposed to explain the Friedel–Crafts alkylation reaction.](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Indole</th>
<th>T (°C)</th>
<th>time (h)</th>
<th>yield (%)h</th>
<th>ee (%)h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d</td>
<td>(1R,2S)-1a</td>
<td>2a</td>
<td>–24</td>
<td>72</td>
<td>78</td>
<td>85b (R)-4aa</td>
</tr>
<tr>
<td>2</td>
<td>(1S,2R)-1a</td>
<td>2a</td>
<td>–25</td>
<td>72</td>
<td>40</td>
<td>82g (S)-4aa</td>
</tr>
</tbody>
</table>
| 3 | (S)-1b | 2a | –24 | 72 | 15 | Rac.
| 4f | (R)-1b | 2a | r.t | 120 | 24 | Rac.
| 5 | (R)-1b | 2a | –25 | 72 | n.d.g | Rac.
| 6 | (1R,2R)-1c | 2a | r.t | 96 | n.d.g | Rac.
| 7 | (1R,2R)-1c | 2a | –25 | 120 | n.d.g | 10 (S)-4aa |
| 8 | (1S,2R)-1d | 2a | –25 | 96 | 26 | 54 (S)-4aa |
| 9d | (1R,2S)-1a | 2b | –45 | 72 | 82 | 74b 4ba |
| 10f | (1S,2R)-1a | 2b | r.t | 72 | 94 | 20g 4ba |

a Experimental conditions: To a mixture of catalyst 1a-d (20 mol\%) and nitroalkene 3a (0.1 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (0.25 mL), indole 2a,b (0.15 mmol) was further added, in a test tube at low temperature (–25 °C). After the reaction time, products 4 were isolated by flash chromatography. b Isolated yield. c Determined by chiral HPLC. d 0.1 mL CH\textsubscript{2}Cl\textsubscript{2}. e 0.5 mL CH\textsubscript{2}Cl\textsubscript{2}. f Racemic mixture. g Not determined.
In our mechanistic proposals (Figure 1), we hypothesised that the hydroxy group would drive the attack of the indole over a preferential face of the nitroalkene affording the desired product with the corresponding configuration depending on the enantiomer of the catalyst 1a employed.5b,6 The importance of the NH in the molecule of indole seems to be in concordance with a plausible hydrogen bond interaction with the OH of the catalyst (H-O···H-N), which would help in the orientation of the attack of the nucleophile. Remarkably, using catalysts 1b and 1c (Table 1, entries 3-7),5b,6 the results are very poor in terms of both reactivity and selectivity. TSI and TSII could explain that in absence of the hydroxy group the reaction affords racemic mixture, since the indole could attack over both faces of the activated nitroolefin. However, they could not explain the lack of reactivity, which make us think that maybe the hydroxy group is involved in another crucial interaction, playing a dual mode of action (TSIII, Figure 1). On one hand, it would drive the attack of the indole over the nitroalkene as conductor, and on the other hand, it should be also involved in the activation of the nitroalkene. In this sense, the OH could govern the reactivity of the process explaining the lack of reactivity in the absence of it. These experimental observations encouraged us to deeply study, by the first time, the proposed dual role of the hydroxy group in the transition state and to elucidate the mechanism of this Friedel–Crafts alkylation reaction using catalyst 1a.13

Theoretical calculations based on the real catalytic system

All the calculations were carried out at the PCM(CH\textsubscript{2}Cl\textsubscript{2})/M06-2X/6-311G(d,p) level,14 including minima, transition states, structure optimisations and frequencies analyses. The thermal and entropic contributions to the free energies were also obtained from the vibrational frequencies analyses, performed at −24 °C, which is the temperature at which the highest experimental enantiomeric excess was obtained. Although the mechanism of our reaction was studied at the beginning in a simplified system, for more clarity we report here only the complete system with catalyst (1R,2S)-1a, indole (2a) and nitrostyrene (3a), in order to obtain a more accurate approach of our active system in the rate determining step.

To proof the robustness of our mechanism different parameters have been widely analysed. In this sense, the conformations of the catalysts, the attack through both faces of the nitroalkene, the possibility of bidentate or monodentate coordination through directional hydrogen bonds between the nitroalkene and the thiourea, the coordination of the hydroxy group to the indole and the approaching face of the indole, have been some key aspects of this comprehensive study. In order to test the accuracy of our proposed mechanism we analysed different transition states for the C-C bond formation step, that is the attack of indole 2 over the nitroalkene 3 activated with thiourea catalyst (1R,2S)-1a through hydrogen bond interactions, using the complete catalytic system. The analysis of the global reactivity in terms of Fukui’s indices for indole 2, the nitroalkene 3 and the active catalytic complex have been also calculated at the ground state (see supporting information).

In this respect, we have focused this computational work on the study of all possible hydrogen bond interactions between all involved species what is expected to stabilize the catalytic system in the transition state. Based on an extensive conformational search, we were able to find several transition states. Among all possibilities studied, only the most stable transition states calculated are represented in Figure 2, in which the reaction occurs through a concomitant coordination of both reagents. Additionally, in these transition states some relevant distances have been pointed out, indicating the formation of a C-C bond or all plausible hydrogen bond interactions involved in the process activation. These values are related with the interactions between the NH of the thiourea 1 and the nitroalkene 3, the C-C bond formation between the indole 2 and the nitroalkene 3, the coordination between the OH of the catalyst 1 and the NH of indole 2, and even more interesting is the interaction found for the hydroxy group and one of the oxygen atoms of the nitroalkene 3 (O-H···O-N=O) (TS1, TS2, TS5 and TS6). Furthermore, a relevant additional interaction has been also found between the H atom of the hydroxy group and the S atom of the thiourea (O-H···S), acting as hydrogen acceptor (TS3 and TS4).

We have also examined the energetic cost for the uncatalysed reaction represented in Scheme 1, between indole (2a) and nitrostyrene (3a), and that it is 28 kcal/mol, in contrast to 11 kcal/mol for Δ\textsubscript{G}2 in the case of TS1, the most stable one for the catalysed reaction (Figure 2). This outcome is consistent with the stabilizing effect promoted by the presence of the catalyst and the subsequent acceleration of the reaction. Free energy values for the calculated transition states are relative to the most stable TS1, to which was assigned value 0 of energy.
Some interesting conclusions could be extracted from these outcomes (Figure 2). In all cases, the oxygen atom of the hydroxy group of the catalyst $\mathbf{1a}$ prefers to interact with the NH of the indole (2a) through H-O···H-N, leading to the attack of the nucleophile over the nitroalkene 3, as we previously predicted (Figure 1).5b,g The small differences in activation barriers between the attack of indole (2a) over the \textit{Si} face of the nitrostyrene (3a) ($\text{T}{\text{S}}_{\text{1}}, \ 0.0 \ \text{kcal/mol}$) and the \textit{Re} face ($\text{T}{\text{S}}_{\text{2}}, \ 2.1 \ \text{kcal/mol}$) could justify that the higher enantiomeric excess achieved was around 85% (Table 1, entries 1 and 2). According to the experiments, the most stable transition state $\text{T}{\text{S}}_{\text{1}}$ would afford the \textit{R} enantiomer of the final product (\textit{R})-4aa obtained with (1$\textit{R},2\textit{S}$)-$\mathbf{1a}$ (Table 1, entry 1).5b The opposite is true for the catalyst (1$\textit{S},2\textit{R}$)-$\mathbf{1a}$, which would afford the \textit{S} enantiomer of 4 (Table 1, entry 2). To unambiguously establish the absolute configuration of the final Friedel–Crafts adducts 4 using catalyst (1$\textit{S},2\textit{R}$)-$\mathbf{1a}$, single crystal was grown from adduct 4ab.

As expected, the stereochemical outcome was determined to be \textit{S} for final product 4 (Figure 3).15
Moreover, it is interesting to note that except in TS2, the nitroalkene 3 prefers to be coordinated through a bidentate coordination, as pioneering observed by Etter and co-workers. This bidentate coordination provides a more rigid TS among the three species, although previous works have also postulated a plausible monodentate coordination between a thiourea and a nitroalkene. The stability of the more stable transition state TS1 could be attributed to a less hindered packaging, since the indole (2a) is farther from the aromatic ring of the aminoindanol part of the catalyst than in TS2, which would cause stronger repulsions. In this sense, the indole–nitroalkene relative orientation plays a crucial role determining the selectivity observed in final products 4.

Having identified the most stable transition state TS1, we proceeded to firstly vary the structure of the catalyst 1 and then the indole 2. Centred on our experiments, we examined the TS for catalyst (S)-1b (Figure 4). The outcome of replacing the OH by H in the catalyst was interesting. First of all, the energetic differences among the different conformations of the catalytic system affording enantiomers (R)-4 and (S)-4, are reduced. This trend supports the observed racemic mixture when catalyst 1b is used (Table 1, entries 3-5).

\[
\Delta G^\ddagger \text{ for TS7 was found to be 17 kcal/mol, 6 kcal/mol more energetic than in the case of TS1, which demonstrates that the hydroxy group has not only a driving effect in this process, orientating the attack of the indole 2, but also a stabilising effect. This is also in concordance with the experimental outcomes reached, since the reaction proceeds scarcely and in a racemic way (Table 1, entries 3-5).}
\]

A similar effect is observed when catalyst (1R,2R)-1c is employed, which has a trans configuration (Figure 5). Interestingly, in this case a preferred hydrogen bond interaction between the hydroxy group and the S atom of the thiourea is found (O-H···S). This coordination does not stabilise the TS more than in the absence of the hydroxy group, since the \(\Delta G^\ddagger \) for TS9 was found to be 18 kcal/mol, the same order of energy than that obtained in TS7 (17 kcal/mol). In both reactions, the high \(\Delta G^\ddagger \) values fit with the almost lack of reactivity observed (Table 1, entries 6 and 7).

In this case, the obtainment of the same enantiomer (R)-4aa would be expected, since the configuration of the carbon bearing the NH group in the aminoindanol structure of the catalyst is the same as in catalyst (1R,2S)-1a (Table 1, entry 1). Remarkably, a variation in the final enantiomer is computationally predicted because the attack of the indole 2 occurs preferentially by the Re face of the nitroalkene 3, affording S configuration in the final product 4. This result is in accordance with the experimental outcome (Table 1, entry 7).

Although the energetic differences between both transition states (TS9 and TS10) are small, the preferred S configuration could be due a more congestive conformation in TS10 between the indole 2 and the aminoindanole ring of the catalyst. In this case, we found preferential monodentate coordination between the nitrostyrene (3a) and the thiourea (1R,2R)-1c (TS9).

Furthermore, we analysed the effect of the catalyst in the absence of the aromatic ring in the aminoindanol skeleton, that is, using (1R,2S)-1d (Figure 6). The most stable transition states (TS11 and TS12) are similar to TS1 and TS2, even with the same differences in energy and with the same favoured coordination by the hydroxy group to the NH in the indole 2 (H-O···H-N) and to the O atom in the nitro group of the alkene 3 (O-H···O-N=O). \(\Delta G^\ddagger \) for TS11 was found to be 12.5 kcal/mol, 1.5 kcal/mol more energetic than in the case of TS1. Although, the absence of the aromatic ring seems not to have great effects in the calculated energies, the experimental results are really different to those reached with catalyst 1a (Table 1, entries 1, 2 and 8). In this case, the influence of the aromatic ring seems to be really important in the origin of the selectivity of the process. We can envision a strong steric effect of the aromatic ring in catalyst 1a, avoiding the attack of the indole 2 by the other side, that in the case of catalyst 1d does not exist.
After analysing the catalyst structure, we further considered varying the indole skeleton (Figure 7). When we explored 2-methylindole (2b) as nucleophile, the central core of the most stable transition states and all the hydrogen bonds remain unaltered compared with TS1 and TS2 (Figure 2). However, the difference in energy between both TS3 and TS4 is very weak. The ΔG is in agreement with the less enantioselective process observed (Table 1, entries 9 and 10). ΔG for TS3 was found to be 9.0 kcal/mol. The energy barrier is much lower (2.1 kcal/mol) than in the case of TS1, indicating much higher reactivity. This behaviour agrees well with the higher reaction rate observed in this process, due to the inductive effect provided by the methyl group, which favours the attack through the third position of the indole 2b.

It is worth noting that we found a preferred monodentate coordination between the thiourea and the nitroalkene 3 (TS13). The coordination of the hydroxy group to the nitro group through O-H⋯O-N=O is also found in both transition states (TS13 and TS14, Figure 7).

With all these outcomes in mind we are pleased to slightly modify our previous two transition states TSI and TSI1 (Figure 1), which were not far from the possible mechanistic activation. In order to better understand the experimental results, we include now the crucial interaction between the OH group of the catalyst and an oxygen atom of the nitroalkene (O-H⋯O-N=O) (Figure 1, TSIII). These theoretical calculations have underlined the essential role of the hydrogen bonding in the success of the process.

Conclusions
We have reported an unprecedented theoretical study of the mechanism of thiourea-catalysed Friedel–Crafts alkylation reaction for the addition of indoles 2 to nitroalkenes 3. The catalyst centre of study was the aminoinanol derived thiourea (1R,2S)-1a and its enantiomer (1S,2R)-1a. Some other catalysts derived from this crucial structure have been also considered. Our work sheds light on the experimental results obtained in this process and supports them. Additionally, the computational results are according to our previous disclosed mechanisms (Figure 1).

It is revealed that indole 2 is coordinated to the crucial hydroxy group of the catalyst through a hydrogen bond (HO⋯H-N) and the nitroalkene 3 is preferentially coordinated via bidentate hydrogen bonds with the thiourea 1. Additionally, we have found an interesting interaction between the hydroxy group of the catalyst 1 and an oxygen atom of the nitro group of the nitroalkene 3 (O-H⋯O-N=O), supporting the lack of reactivity when the OH function is not present in the catalyst structure. Based on extensive computational studies, we can elucidate the preference in the attack of the indole 2 over the appropriate face of the nitroalkene 3 affording the observed major enantiomer in each case. This clarifies the origin of the enantioselectivity in this Friedel–Crafts alkylation reaction for different catalyst structures and indoles. We think that our work could be an important theoretical study to explain the role of the aminoinanol skeleton in organocatalysts, specially the role of the hydroxy group, and it could help to understand future mechanisms where the aminoinanol structure is involved.

Experimental Section
Materials. All commercially available solvents and reagents were used as received. CH2Cl2 was filtered through basic alumina prior to use to avoid the presence of trace amounts of acid. The 1H and 13C NMR spectra for catalysts (1R,2S)-1a, (1S,2R)-1a, (S)-1b, (R)-1b, (1R,2R)-1c, (1S,2R)-1d and final products 4aa, 4ab and 4ba are consistent with values previously reported in the literature.

Representative procedure for thiourea organocatalysed Friedel–Crafts alkylation reaction of indole with nitroalkenes.
To a mixture of catalyst 1a-d (20 mol%) and nitroalkene 3a (0.1 mmol) in CH2Cl2 (0.1, 0.25 or 0.5 mL), indole 2a,b (0.15 mmol) was further added, in a test tube at low temperature (−25 °C). After the appropriate reaction time (see Table 2), the residue was purified by flash chromatography (SiO2; hexane/EtOAc, 8:2) to afford final adducts 4. Yields and enantioselectivities are reported in Table 2. Spectral and
analytical data for compounds are in agreement with those previously reported in the literature.

Computational Methods. All the calculations were performed using the Gaussian09 program. Molecular geometries were optimized with the M06-2X functional in conjunction with the 6-311G(d,p) basis set. Analytical second derivatives of the energy were calculated to classify the nature of every stationary point, to determine the harmonic vibrational frequencies, and to provide zero-point vibrational energy corrections. The thermal and entropic contributions to the free energies were also obtained from the vibrational frequency calculations, using the unscaled frequencies, and a value of -24°C for the temperature (because that is the temperature at which the highest experimental enantiomeric excess was obtained). Full optimization calculations have been carried out considering solvent effects (CH2Cl2) with the PCM model.

Acknowledgements

We thank the Spanish Ministry of Economía y Competitividad (MICINN. Madrid. Spain. Project CTQ2010-19606) and the Government of Aragón (Zaragoza. Spain. Research Group E-10) for financial support of our research. D.R.-L. thanks the Spanish Ministry of Education (MEC) for a pre-doctoral grant (FPU program). We thank Dr. Pablo J. Sanz Miguel (ISQCH) for X-ray structure analysis. We acknowledge the Institute of Biocomputation and Physics of Complex Systems (BIFI) at the University of Zaragoza for computer time at clusters Terminus and Memento. Molecular graphics have been performed with CYLview 1.0 software (C. Y. Legault, University of Sherbrooke, Canada).

Notes and references

15 CCDC-976490 (4ba) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

